泗县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泗县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( ) A .2
B .﹣2
C
.﹣
D
.
2. 在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥n
B .如果平面α内的两条直线都平行于平面β,那么平面α∥平面β
C .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥α
D .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β
3. 在△ABC 中,a=1,b=4,C=60°,则边长c=( ) A .13
B
.
C
.
D .21
4. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )
A .若m ∥β,则m ∥l
B .若m ∥l ,则m ∥β
C .若m ⊥β,则m ⊥l
D .若m ⊥l ,则m ⊥β
5. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )
A .a <1<b
B .a <b <1
C .1<a <b
D .b <1<a
6. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )
A .5
B .4
C .
4 D .
2
7. 如图,空间四边形OABC 中,,,,点M 在OA
上,且,点N 为BC 中点,
则
等于( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .
C .
D .
8. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)
9. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .14101
10.设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与
sin sin 0bx B y C -+=的位置关系是( )
A .平行
B . 重合
C . 垂直
D .相交但不垂直 11.常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底
数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x
)
{g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )
A .h ()
B .h ()
C .h ()
D .h ()
12.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,
则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:1
二、填空题
13.(x ﹣)6的展开式的常数项是 (应用数字作答).
14.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是
15.已知双曲线
的一条渐近线方程为y=x ,则实数m 等于 .
16.已知正整数m 的3次幂有如下分解规律:
113=;5323+=;119733++=;1917151343+++=;…
若)(3
+∈N m m 的分解中最小的数为91,则m 的值为 .
【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度
中等.
17.如图,在矩形ABCD 中,AB = 3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________
18.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .
三、解答题
19.火车站北偏东方向的
处有一电视塔,火车站正东方向的
处有一小汽车,测得
距离为31
,
该小汽车从
处以60
的速度前往火车站,20分钟后到达
处,测得离电视塔21
,问小汽车到火车站还需
多长时间?
20.已知函数f (x )=sin2x+(1﹣2sin 2
x ).
(Ⅰ)求f (x )的单调减区间;
(Ⅱ)当x ∈[﹣,
]时,求f (x )的值域.
21.(本小题满分16分)
在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;
(2)假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
22.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连结BC′,证明:BC′∥面EFG.
23.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.
(Ⅰ)求数列{a n}的通项公式
(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.
24.已知正项等差{a n},lga1,lga2,lga4成等差数列,又b n=
(1)求证{b n}为等比数列.
(2)若{b n}前3项的和等于,求{a n}的首项a1和公差d.
泗县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】B
【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,
所以f(2015)=f(3×672﹣1)=f(﹣1);
又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,
所以f(﹣1)=﹣f(1)=﹣2,
即f(2015)=﹣2.
故选:B.
【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).
2.【答案】C
【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;
对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;
对于C,根据线面垂直的判定定理可得正确;
对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;
故选:C.
【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.
3.【答案】B
【解析】解:∵a=1,b=4,C=60°,
∴由余弦定理可得:c===.
故选:B.
4.【答案】D
【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可
【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;
B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;
C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;
D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;
综上D选项中的命题是错误的
故选D
5.【答案】A
【解析】解:由f(x)=e x+x﹣2=0得e x=2﹣x,
由g(x)=lnx+x﹣2=0得lnx=2﹣x,
作出计算y=e x,y=lnx,y=2﹣x的图象如图:
∵函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,
∴y=e x与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,
由图象知a<1<b,
故选:A.
【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.
6.【答案】D
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,
则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),
∵点P到点F的距离等于点P到平面ABB1A1的距离,
∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,
PE取最小值,
此时,P(2,2,4),E(4,2,0),
∴|PE|min==2.
故选:D.
【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.
7.【答案】B
【解析】解:===;
又,,,
∴.
故选B.
【点评】本题考查了向量加法的几何意义,是基础题.
8.【答案】D
【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.
若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),
若f(x)存在唯一的零点x0,且x0>0,
若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,
由f′(x)<0得0<x<,此时函数单调递减,
故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.
若a<0,由f′(x)>0得<x<0,此时函数递增,
由f′(x)<0得x<或x>0,此时函数单调递减,
即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),
若存在唯一的零点x0,且x0>0,
则f()>0,即2a()3﹣3()2+1>0,
()2<1,即﹣1<<0,
解得a<﹣1,
故选:D
【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.
9. 【答案】B
【解析】解:∵a n+1a n +2=2a n+1+2a n (n ∈N +
),∴(a n+1﹣2)(a n ﹣2)=2,当n ≥2时,(a n ﹣2)(a n ﹣1﹣2)=2,
∴
,可得a n+1=a n ﹣1,
因此数列{a n }是周期为2的周期数列. a 1=3,∴3a 2+2=2a 2+2×3,解得a 2=4, ∴S 2015=1007(3+4)+3=7052.
【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.
10.【答案】C 【解析】
试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,
则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 11.【答案】B
【解析】解:(h (x ))′=x x
[x ′lnx+x (lnx )′]
=x x (lnx+1),
令h (x )′>0,解得:x >,令h (x )′<0,解得:0<x <,
∴h (x )在(0,)递减,在(,+∞)递增,
∴h ()最小, 故选:B .
【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.
12.【答案】D
【解析】解:设球的半径为R ,圆锥底面的半径为r ,则πr 2
=×4πR 2=
,∴r=.
∴球心到圆锥底面的距离为=.∴圆锥的高分别为和
.
∴两个圆锥的体积比为: =1:3.
故选:D .
二、填空题
13.【答案】 ﹣160
【解析】解:由于(x ﹣)6
展开式的通项公式为 T r+1=
•(﹣2)r •x 6﹣2r ,
令6﹣2r=0,求得r=3,可得(x ﹣)6
展开式的常数项为﹣8
=﹣160,
故答案为:﹣160.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
14.【答案】(],1-∞ 【解析】
试题分析:函数(){}
2
min 2,f x x x =-的图象如下图:
观察上图可知:()f x 的取值范围是(],1-∞。
考点:函数图象的应用。
15.【答案】 4 .
【解析】解:∵双曲线
的渐近线方程为 y=x , 又已知一条渐近线方程为y=x ,∴ =2,m=4,
故答案为4.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为 y=x ,是解题
的关键.
16.【答案】10
【解析】3m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,3
2为连续两项和,3
3为接下来三项和,故3
m 的首个数为12
+-m m .
∵)(3+∈N m m 的分解中最小的数为91,∴9112
=+-m m ,解得10=m .
17.【答案】212
【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.
因为BE ⊥AC ,AB =3,所以AE =3
2
,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2
-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =21
2.
18.【答案】
.
【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n
.
故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n ﹣3n ﹣1=2•3n ﹣1
,
故a n =
.
【点评】本题主要考查等比数列的通项公式,等比数列的前n 项和公式,数列的前n 项的和Sn 与第n 项an 的关系,属于中档题.
三、解答题
19.【答案】
【解析】 解:由条件=
,设
,
在中,由余弦定理得
.
=.
在中,由正弦定理,得
(
)
(分钟)
答到火车站还需15分钟.
20.【答案】
【解析】解:(Ⅰ)f (x )
=sin2x+(1﹣2sin 2
x )
=sin2x+
cos2x
=2
(
sin2x+cos2x )=2sin (
2x+),
由2k π
+
≤
2x+
≤2k π
+
(k ∈Z )得:k π
+
≤x ≤k π
+
(k ∈Z ),
故f (x )的单调减区间为:[k π
+,k π
+
](k ∈Z );
(Ⅱ)当x ∈[
﹣
,
]时,(
2x+)∈[0
,
],2sin (
2x+
)∈[0,2],
所以,f (x )的值域为[0,2].
21.【答案】(1) ()()2
10473h x x x =
+-- (37x <<)(2) 13 4.33
x =≈ 试
题解析:(1) 因为()f x 与3x -成反比,()g x 与7x -的平方成正比, 所以可设:()13
k f x x =-,()()2
27g x k x =-,12.00k k ≠≠,,
则()()()()2
1273
k h x f x g x k x x =+=
+--则 ………………………………………2分 因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套
所以,()()521, 3.569h h ==,即1
2124212
49269
4
k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:12104k k =⎧⎨=⎩, ……………6分
所以,()()2
10473
h x x x =
+-- (37x <<) ………………………………………8分 (2) 由(1)可知,套题每日的销售量()()2
10473
h x x x =
+--,
答:当销售价格为4.3元/套时,网校每日销售套题所获得的利润最大.…………16分
考点:利用导数求函数最值
22.【答案】
【解析】解:(1)如图
(2)它可以看成一个长方体截去一个小三棱锥,
设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=6×4×4=96cm3,
V2=••2•2•2=cm3,
∴V=v1﹣v2=cm3
(3)证明:如图,
在长方体ABCD﹣A′B′C′D′中,连接AD′,则AD′∥BC′
因为E,G分别为AA′,A′D′中点,所以AD′∥EG,从而EG∥BC′,
又EG⊂平面EFG,所以BC′∥平面EFG;
2016年4月26日
23.【答案】
【解析】解:(I)∵2a1,a1+a2+2a3,a1+2a2成等差数列.
∴2(a1+a2+2a3)=2a1+a1+2a2.
∴2(1+q+2q2)=3+2q,化为4q2=1,公比q>0,解得q=.
∴a n=.
(II)∵数列{b n}满足a n+1=(),∴=,
∴b n=n,∴b n=n•2n﹣1.
∴数列{b n}的前n项和T n=1+2×2+3×22+…+n•2n﹣1.
2T n=2+2×22+…+(n﹣1)•2n﹣1+n•2n,
∴﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n,
∴T n=(n﹣1)•2n+1.
24.【答案】
【解析】(1)证明:设{a n}中首项为a1,公差为d.
∵lga1,lga2,lga4成等差数列,∴2lga2=lga1+lga4,
∴a22=a1a4.
即(a1+d)2=a1(a1+3d),∴d=0或d=a1.
当d=0时,a n=a1,b n==,∴=1,∴{b n}为等比数列;
当d=a1时,a n=na1,b n==,∴=,∴{b n}为等比数列.
综上可知{b n}为等比数列.
(2)解:当d=0时,S3==,所以a1=;
当d=a1时,S3==,故a1=3=d.
【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆.。