chapter 1 微带天线基本概念

合集下载

微带天线设计

微带天线设计

第一章微带天线简介1.1微带天线的发展历史与趋势微带天线是20世纪70年代以来逐渐发展起来的一种新型天线。

虽然在1953年就提出了微带天线的概念,但并没有在工程界的引起重视。

从20世纪50年代到60年代也只是做一些零星的研究,直到20世纪70年代初期,在微带传输线的理论模型及对敷铜的介质基片的光刻技术发展之后,第一批具有许多设计结构的实用的微带天线才被制造出来[3]。

为适应现代通信设备的需求,天线的研发方向主要往几个方面进行,即减小天线的尺寸、宽带和多波段工作、智能方向图控制。

随着电子设备集成度的提高,通信设备的体积也变得越来越小,这时天线尺寸就需要越来越小了。

然而,在减小天线的尺寸的同时又不明显影响天线的增益和效率是一项艰巨的工作。

电子设备集成度提高,经常需要一个天线在较宽的频率范围内来支持两个或更多的无线服务,宽带和多波段天线能满足这样的需要。

微带天线由于重量轻、体积小、成本低、制作工艺简单、易与有源器件和电路集成等诸多优点,所以得到广泛的应用和重视。

1.2 微带天线研究的背景微带天线是带有导体接地板的截止基片上贴加导体薄片而形成的天线。

微带天线通过微带线或者同轴线等馈线馈电,在导体贴片与接地板之间激励起射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射。

微带天线主要是一种谐振式天线,相对带宽比较窄,一般设计的带宽只有2%到5%。

随着天线的工作频率的降低,带宽也逐渐变窄。

在这样的背景下,研究影响微带天线带宽的因素,进而找到展宽微带天线的带宽的方法,对于微带天线能否在工业、民用、国防等领域得到广泛的应用,具有重要的意义。

1.3 多频带微带天线研究的意义当今,无线通讯行业发展迅猛,掌上电脑、笔记本电脑和手机都已经成了人们生活的必需品[4]。

对于频谱资源日益紧张的现在通讯领域,迫切需要天线具有双极化功能,因为双极化可使它的通讯容量增加1倍。

对于有些系统,则要求系统工作于双频,且各个频段的极化又不同。

微带天线的定义

微带天线的定义

微带天线的定义:在有金属接地板的介质基片上沉积或贴附所需形状金属条、片构成的微波天线。

它利用微带线或同轴线馈线馈电,在导体贴片与接地板之间激励器射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射。

因此,微带天线也可以看作为一种缝隙天线。

通常介质基片的厚度与波长相比是很小的,因而它实现了一维小型化,属于电小天线的一类。

微带天线的结构:微带天线是由一块厚度远小于波长的介质板(称为介质基片)和(用印刷电路或微波集成技术)覆盖在它的两面上的金属片构成。

其中一片金属片完全覆盖介质板的一面,称为接地板,另一金属板的尺寸可以和波长相比拟,称为辐射元,辐射元的形状可以是方形、矩形、圆形、椭圆形等等。

微带天线的分类:(1)微带贴片天线导体贴片一般是规则形状的面积单元,如矩形、圆形或或圆形薄片等。

(2)微带振子天线天线同微带贴片天线相似,贴片是窄长条形的薄片振子(偶极子)。

(3)微带线型天线利用微带的某种形变(如弯曲、直角弯头等)来形成辐射。

(4)微带缝隙天线利用开在地板上的缝隙,由介质基片另一侧的微带线或其他馈线(如槽线)对其馈电。

微带天线的馈电技术对微带天线的激励方式主要分为两大类:直接馈电法和间接馈电法。

直接与贴片相接触的方法称之为直接馈电法,目前普遍采用的有同轴背馈法和微带线侧馈法。

与贴片无接触的激励方法就是间接馈电法,此类方法主要有:电磁耦合法,缝隙耦合法和共面波导馈电法等。

馈电技术直接影响到天线的阻抗特性,所以也是天线设计中的一个重要组成部分。

微带天线工作原理——辐射机理:贴片尺寸为a ×b,介质基片厚度为h 。

微带贴片可看作为宽a 长b 的一段微带传输线,其终端(a 边)处因为呈现开路,将形成电压波腹。

一般取b ≈m λ/2 ,m λ 为微带线上波长。

于是另一端(a 边)处也呈电压波腹。

电场可近似表达为(设沿贴片宽度和基片厚度方向电场无变化) E z =0E )b /(cos x π 天线的辐射由贴片四周与接地板间的窄缝形成。

微带天线工作原理

微带天线工作原理

微带天线工作原理微带天线是一种广泛应用于通信系统中的天线结构,它具有结构简单、制作方便、性能可调和工作频段宽等优点,因此在无线通信系统中得到了广泛的应用。

微带天线的工作原理是基于微带线与辐射负载之间的耦合效应,通过合理设计微带线和辐射负载的结构参数,可以实现对天线的频率、阻抗和辐射特性的调节。

本文将从微带天线的基本结构、工作原理和特点等方面进行详细介绍。

1. 微带天线的基本结构。

微带天线的基本结构包括微带线、辐射负载和基底板三部分。

微带线是由金属导体和绝缘基底组成的,其长度和宽度决定了天线的工作频率和阻抗匹配特性。

辐射负载是用来辐射电磁波的部分,通常是一个金属片或贴片,其结构和尺寸对天线的辐射特性有重要影响。

基底板是支撑微带线和辐射负载的部分,通常采用介质常数较小的材料,如陶瓷基板或塑料基板。

2. 微带天线的工作原理。

微带天线的工作原理主要是基于微带线与辐射负载之间的耦合效应。

当微带线上有高频电流通过时,会在微带线和基底板之间产生电磁场,这个电磁场会通过辐射负载辐射出去,从而实现天线的辐射功能。

微带线的长度和宽度决定了天线的工作频率,而辐射负载的结构和尺寸则影响了天线的辐射特性。

通过合理设计微带线和辐射负载的结构参数,可以实现对天线的频率、阻抗和辐射特性的调节。

3. 微带天线的特点。

微带天线具有结构简单、制作方便、性能可调和工作频段宽等特点。

首先,微带天线的制作工艺相对简单,可以采用印制电路板工艺进行批量生产,成本较低。

其次,微带天线的结构参数可以通过调节微带线和辐射负载的尺寸来实现对天线的频率、阻抗和辐射特性的调节,具有较好的可调性。

最后,微带天线的工作频段较宽,可以满足不同频段的通信需求。

总结:微带天线是一种在无线通信系统中广泛应用的天线结构,其工作原理是基于微带线与辐射负载之间的耦合效应。

通过合理设计微带线和辐射负载的结构参数,可以实现对天线的频率、阻抗和辐射特性的调节。

微带天线具有结构简单、制作方便、性能可调和工作频段宽等特点,因此在无线通信系统中得到了广泛的应用。

微带天线辐射原理

微带天线辐射原理

微带天线辐射原理一、微带天线的概念和分类微带天线是一种基于印刷电路板技术制作的平面天线,由于其结构简单、重量轻、易于制造和安装等优点,被广泛应用于通信、雷达和卫星等领域。

根据结构形式不同,微带天线可以分为三种类型:矩形微带天线、圆形微带天线和其他形状的微带天线。

二、微带天线的辐射原理微带天线的辐射原理是基于电磁场理论。

当电流通过导体时,会产生一个电场和一个磁场。

这两个场相互作用,形成电磁波并向外辐射。

在微带天线中,导体是由金属箔片组成的,在介质基板上铺设一层金属箔片,并与地面接触。

当输入信号通过馈线传输到微带天线上时,导体中会产生电流,在介质基板上会产生表面波(Surface Wave)。

表面波在介质基板和空气之间传播时,会沿着导体边缘产生辐射,并向外传播。

三、微带天线的特点1. 结构简单:由于其结构简单,制造过程容易控制,可以批量生产。

2. 重量轻:微带天线是一种平面结构,重量轻,易于安装和维护。

3. 频率范围宽:微带天线的频率范围从几百兆赫兹到几千兆赫兹不等,可以满足不同频段的需求。

4. 辐射效率高:由于其结构特殊,可以提高辐射效率,并且具有良好的方向性和极化特性。

5. 抗干扰能力强:微带天线在设计时可以采用抗干扰技术,提高其抗干扰能力。

四、微带天线的设计要点1. 基板选择:基板是微带天线的重要组成部分,对其性能有很大影响。

选择合适的基板材料和厚度是设计中必须考虑的因素。

2. 导体宽度和长度:导体宽度和长度决定了微带天线的共振频率和辐射特性。

根据需要选择合适的宽度和长度进行设计。

3. 地平面大小:地平面是指微带天线下方接地的金属板。

地平面大小会影响天线的辐射效率和方向性,需要根据设计要求进行选择。

4. 馈线位置和类型:馈线是将信号输入到微带天线中的部分,馈线的位置和类型会影响天线的阻抗匹配和性能。

5. 辐射特性调整:通过调整导体形状、大小和位置等因素可以改变微带天线的辐射特性,满足不同应用需求。

微带天线简介

微带天线简介
微带天线
引言
1953年提出,但到70年带才得到人们的 注意。 由基片、地板、馈电、贴片四部分构成。 加工工艺有光刻和蚀刻等。
工作频率可从100M到100GHz 优点: 1、质量低; 2、低剖面; 3、易加工和批量生产; 4、易与微波电路集成; 5、易于实现双频或双极化; 6、馈电结构以及匹配网络易于设计;
第二节 圆形微带贴片
工作模式:TMnm
双频圆贴片
三角形微带天线
五角形微带天线

分类
1、按形状分
2、按工作原理分 谐振式 非谐振式
3、按应用分 宽带微带天线 圆极化微带天线 双多频微带天线 双极化微带天线 宽波束微带天线
第一节 矩形微带天线
辐射机理: 地板上向半空间辐射 的两个缝隙
分析方法 矢量位法 格林函数法 模式展开法 传输线法 腔模理论法 数值方法
方向图:
矩形天线计算步骤:

微带天线原理

微带天线原理

微带天线原理微带天线是目前应用广泛的一种天线,其原理基于微带线与天线的结合,可以实现多种形式的指向性和宽带性能。

本文将介绍微带天线的原理、特点、设计和应用。

1.微带天线的原理微带天线的原理基于微带线。

微带线是在介质基板表面维持一条导电信号轨迹,通常是金属箔,由于介质常数比空气大,因此可以大大减小微带线的尺寸,使其成为一种具有低剖面、低重量、低成本、易于制造和集成等特点的线路形式。

微带天线就是将微带线结合到天线中,利用微带线在天线周围形成的电磁场辐射出无线电信号。

微带天线通常由三个部分组成:金属贴片(辐射元件)、介质基板以及接地板(衬底)。

金属贴片是微带天线的辐射元件,一般采用不同形状,如矩形、圆形、圆环等,也可以采用高阻抗元件,如螺旋线等。

对于微带天线来说,它的特性阻抗主要决定于辐射元件的形状和尺寸。

介质基板是微带天线的关键部分,它的相对介电常数决定了微带线的传输特性,从而影响了微带天线的性能。

介质基板的厚度决定了微带线的振荡频率,因此对于特定的微带天线设计,选择合适的介质基板是至关重要的。

接地板是微带天线的底部剩余部分,通常是一个大的金属板,用于提供对天线的支撑和固定,并提供与辐射元件相对的电地。

接地板的质量和大小也会影响微带天线的性能。

2.微带天线的特点与传统的针对特定频带的天线相比,微带天线具有以下优点:1)微带天线低剖面和小尺寸,可以方便地安装在各种设备和系统中。

2)微带天线具有比较宽的带宽。

微带天线的带宽主要由其介质基板的特性决定,而不是由辐射元件的几何形状决定。

微带天线比传统天线具有更好的带宽特性。

3)微带天线的指向性好。

微带天线的辐射元件制作成不同的形状,可以实现不同的指向性特性。

4)微带天线可复制性好。

由于微带天线的制作通常是通过常见的PCB板上的印刷技术实现的,因此可以非常方便地复制和大规模生产。

5)微带天线可以被集成到其他电子元件中,实现多种应用。

如微带天线可以被集成在蓝牙和Wi-Fi等通讯设备的PCB电路板中,形成各种应用形式。

微带天线

微带天线

微带天线1微带天线简介1.1微带天线结构与分类微带天线是近30年来逐渐发展起来的一类新型天线。

早在1953年就提出了微带天线的概念,但并未引起工程界的重视。

在50年代和60年代只有一些零星的研究,真正的发展和使用是在70年代。

常用的一类微带天线是在一个薄介质基(如聚四氟乙烯玻璃纤维压层)上,一面附上金属薄层作为接地板,另一面用光刻腐蚀等方法作出一定形状的金属贴片,利用微带线和轴线探针对贴片馈电,这就构成了微带天线。

当贴片是一面积单元时,称它为微带天线;若贴片是一细长带条则称其为微带阵子天线。

图1所示为一基本矩形微带天线元。

长为L,宽为W2的矩形微带天线元可看作一般低阻传输线连接两个辐射缝组成。

L为半个微带波长即为λg/2时,在低阻传输线两端形成两个缝隙a-a和b-b,构成一二元缝阵,向外辐射。

另一类微带天线是微带缝隙天线。

它是把上述接地板刻出窗口即缝隙,而在介质基片的另一面印刷出微带线对缝隙馈电。

按结构特征把微带天线分为两大类,即微带贴片天线和微带缝隙天线;按形状分类,可分为矩形、圆形、环形微带天线等。

按工作原理分类,无论那一种天线都可分成谐振型(驻波型)和非揩振型(行波型)微带天线。

前一类天线有特定的谐振尺寸,一般只能工作在谐振频率附近;而后一类天线无谐振尺寸的限制,它的末端要加匹配负载以保证传输行波。

1.2微带天线的性能微带天线一般应用在1~50GHz频率范围,特殊的天线也可用于几十兆赫。

和常用微波天线相比,有如下优点:(1)体积小,重量轻,低剖面,能与载体(如飞行器)共形;(2)电性能多样化。

不同设计的微带元,其最大辐射方向可以从边射到端射范围内调整;易于得到各种极化;(3)易集成。

能和有源器件、电路集成为统一的组件。

1.3微带贴片形状贴片形状是多种多样的,实际应用中由于某些特殊的性能要求和安装条件的限制,必须用到其他形状的微带贴片天线。

例如,国外某型炮弹引信天线要求半球覆盖的方向图,即E面和H面方向图在端射方向()的电平也要求在半功率电平以上,而规则的矩形或圆形贴片无法满足。

微带天线原理

微带天线原理

微带天线原理微带天线是一种小型化的天线结构,具有体积小、重量轻、制作工艺简单、成本低廉等特点,因此在现代通信系统中得到了广泛的应用。

微带天线的原理是基于微带电路的辐射原理,通过微带线和贴片天线的结合实现信号的辐射和接收。

本文将详细介绍微带天线的原理及其在通信系统中的应用。

微带天线的基本结构包括微带贴片天线和微带线两部分。

微带贴片天线一般由金属贴片和基底组成,金属贴片用来辐射和接收电磁波信号,基底用来支撑和固定金属贴片。

微带线则是用来连接微带贴片天线和馈电点,将射频信号传输到天线上。

当微带线上的高频信号传输到微带贴片天线时,由于金属贴片的存在,会产生电磁场的辐射,从而实现信号的发射和接收。

微带天线的原理是基于微带线上的高频信号在金属贴片上产生感应电流,从而产生电磁场并辐射出去。

微带天线的工作频率与微带线的长度和宽度、基底材料的介电常数以及金属贴片的形状和尺寸等因素有关。

通过合理设计微带线和贴片天线的结构参数,可以实现对特定频段的信号进行辐射和接收。

在通信系统中,微带天线可以用于实现天线阵列、天线分集和波束赋形等功能。

天线阵列是将多个微带天线按照一定的几何形状排列在一起,通过控制各个天线的相位和幅度来实现波束的形成,从而提高通信系统的传输距离和抗干扰能力。

天线分集是利用多个微带天线同时接收信号,并通过信号处理算法将多个信号进行合成,从而提高接收系统的灵敏度和抗多径衰落能力。

波束赋形是根据通信系统的需要,通过调整微带天线的辐射方向和波束形状,实现对特定区域的信号覆盖和干扰抑制。

总之,微带天线作为一种小型化、高性能的天线结构,在现代通信系统中发挥着重要的作用。

通过合理设计微带线和贴片天线的结构参数,可以实现对特定频段的信号进行辐射和接收,从而满足不同通信系统对天线性能的要求。

同时,微带天线还可以通过天线阵列、天线分集和波束赋形等功能实现对通信系统性能的进一步提升,为通信技术的发展提供了重要支持。

微带天线的基本理论和分析方法

微带天线的基本理论和分析方法

微带天线的基本理论和分析方法目录摘要.............................................. 错误!未定义书签。

Abstract.......................................... 错误!未定义书签。

1 绪论 (3)1.1研究背景及意义 (6)1.2国内外发展概况 (7)1.3本文的主要工作 (8)2 微带天线的基本理论和分析方法 (9)2.1 微带天线的辐射机理 (9)2.2微带天线的分析方法 (10)2.2.1传输线模型理论 (11)2.2.2 全波分析理论 (14)2.3微带天线的馈电方式 (14)2.3.1微带线馈电 (15)2.3.2同轴线馈电 (15)2.3.3口径(缝隙)耦合馈电 (15)2.4本章小结 (16)3宽带双频双极化微带天线单元的设计 (17)3.1天线单元的结构 (17)3.2天线单元的设计 (18)3.2.1介质基片的选择 (19)3.2.2天线单元各参数的确定 (19)3.3天线单元的仿真结果 (21)3.4本章小结 (22)4 结束语 (22)参考文献 (24)致谢 (29)1 绪论1.1研究背景及意义近年来,随着卫星通信技术的发展和卫星通信业务及卫星移动通信的迅猛增长,以往的微波较低频段(300MHz-10GHz)已经变得拥挤不堪,因此卫星通信中开始使用Ku波段甚至Ka波段的通信以满足大信息量的需求。

目前,广泛用于Ku波段的通信天线主要是抛物面天线,然而这种传统的天线体积大、重量沉、造价高而且调整困难。

由于物理空间的限制,这种抛物面天线体积过大不能满足某些天线的技术要求,因此天线的小型化迫在眉睫。

在某些特殊应用的领域如移动通信方面,要求天线具有隐蔽性好、机动性强的特点,而这种传统的天线尺寸大、机动性差、难与载体共形、容易暴露目标,已不再适应现代卫星通信系统的需求。

现代的卫星通信系统对天线提出了更高的要求,不仅要求天线小型化、重量轻、具有良好的隐蔽性和机动性,同时为了满足大容量通信的需求,要求天线具有双极化、多频性及宽带特性。

微波天线的设计资料(微带天线)(MicrostripAntenna)

微波天线的设计资料(微带天线)(MicrostripAntenna)

实验十三微带天线(Microstrip Antenna)一、实验目的1.了解天线之基本原理与微带天线的设计方法。

2.利用实验模组的实际测量得以了解微带天线的特性。

二、预习内容1.熟悉微带天线的理论知识。

2.熟悉天线设计的基本概念及理论知识。

三、实验设备四、理论分析天线基本原理:天线的主要功能是将电磁波发射至空气中或从空气中接收电磁波。

所以天线亦可视为射频发收电路与空气的信号耦合器。

在射频应用上,天线的类型与结构有许多种类。

就波长特性分有八分之一波长、四分之一波长、半波天线;就结构分,常见有单极型(Monopole)、双极型(Dipole)、喇叭型(Horn)、抛物型(Parabolic Disc)、角型(Corrner)、螺旋型(Helix)、介电质平面型(Dielectric Patch)及阵列型(Array)天线,如图13-1所示。

就使用频宽来分别有窄频带型(Narrow-band,10%以下)及宽频带型(Broad-band,10%以上)。

图13-1 常见天线(一)天线特性参数1.天线增益(Antenna Gain’G):isotropicPPG=其中 G——天线增益P——与测量天线距离R处所接收到的功率密度,Watt / m2Pisotropic——与全向性天线距离R处所接收到的功率密度,Watt / m2由此可推导出,与增益为G的天线距离R处的功率密度应为接收功率密度:24RPGP txrec⋅⋅=π其中 G——天线增益P tx——发射功率,Watt / m2R——与天线的距离,m2.天线输入阻抗(Antenna Input Impedance’Zin):IVZin=其中 Z in——天线输入阻抗V——在馈入点上的射频电压I——在馈入点上的射频电流以偶极天线为例,其阻抗由中心处73Ω变化到末端为2500Ω。

3.辐射阻抗(Radiation Resistance’Rrad):(a)单极型(c)喇叭型(d)抛物面(e)螺旋型(f)阵列型2i P R av rad =其中Pav ——天线平均辐射功率,Wi ——馈入天线的有效电流,A I ——在馈入点上的射频电流对一半波长天线而言,其辐射阻抗为73Ω。

本科毕业论文---微带天线设计

本科毕业论文---微带天线设计

天线 CAD 大作业学院:电子工程学院专业:电子信息工程微带天线设计一、设计要求:( 1)工作频带 1.1-1.2GHz ,带内增益≥ 4.0dBi ,VSWR ≤2:1 。

微波基板介电常数为r = 6,厚度 H ≤5mm ,线极化。

总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等。

( 2)拓展要求:检索文献,学习并理解微带天线实现圆极化的方法,尝试将上述天线设计成左旋圆极化天线,并给出轴比计算结果。

二、设计步骤计算天线几何尺寸微带天线的基板介电常数为r = 6 , 厚度 为 h=5mm,中 心频 率为f=1.15GHz, c 3 108m / s 天线使用 50Ω同轴线馈电,线极化,则cr1 )1(1)辐射切片的宽度 w=69.72mmf(22 2r 1 r 1 h12(2)有效介电常数 e 22( 112w)=5.33(3)辐射缝隙的长度L0.412h (e 0.3)(w / h 0.264) =2.20( e 0.258)( w / h 0.8)(4)辐射切片的长度 LcL =52.10mm22 fe(5)同轴线馈电的位置 L1r1 r 1 h 12 =5.20re( L)(1 12) 22LL1L(11 ) =14.63mm2re三、 HFSS 设计( 1)微带天线建模概述为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:微带天线的 HFSS 设计模型如下:立体图俯视图模型的中心位于坐标原点,辐射切片的长度方向沿着x 轴,宽度方向沿着y 轴。

介质基片的大小是辐射切片的 2 倍,参考地和辐射切片使用理想导体来代替。

对于馈电所用的50Ω同轴线,这用圆柱体模型来模拟。

使用半径为 0.6mm、坐标为(L1,0,0 );圆柱体顶部与辐射切片相接,底部与参考地相接,及其高度使用变量 H 表示;在与圆柱体相接的参考地面上需要挖一个半径为 1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为 50Ω。

微带天线原理

微带天线原理

微带天线原理
微带天线是一种广泛应用于微波通信领域的天线结构,其原理基于微带线和辐射负载之间的耦合效应。

微带天线具有结构简单、制造成本低、易于集成和良好的辐射特性等优点,因此受到了广泛的关注和应用。

首先,微带天线的基本结构是由微带线、辐射负载和补偿电容组成的。

微带线是由导体贴片和基板组成的,其长度和宽度决定了天线的工作频率和阻抗匹配。

辐射负载则是用来辐射电磁波的元件,通常采用贴片形式,其尺寸和形状会影响天线的辐射特性。

而补偿电容则用来调节天线的阻抗匹配,保证其在工作频率下具有良好的阻抗匹配特性。

其次,微带天线的工作原理是基于微带线和辐射负载之间的电磁耦合效应。

当微带线上有高频信号传输时,会在微带线和辐射负载之间产生电磁耦合,从而使得辐射负载辐射出电磁波。

由于微带天线的尺寸通常远小于工作波长,因此其工作原理和传统天线有所不同,主要表现为谐振频率高、辐射效率低等特点。

此外,微带天线的特性受到其结构参数的影响较大。

微带线的长度和宽度决定了其工作频率和阻抗匹配特性,而辐射负载的尺寸和形状则会影响天线的辐射特性和频率选择性。

因此,在设计微带天线时,需要充分考虑这些结构参数的影响,通过合理的设计来实现所需的天线特性。

总的来说,微带天线是一种结构简单、制造成本低、易于集成和具有良好辐射特性的天线结构。

其工作原理基于微带线和辐射负载之间的电磁耦合效应,具有谐振频率高、辐射效率低等特点。

在实际应用中,可以根据具体需求来设计和优化微带天线的结构参数,以实现所需的天线特性。

微带天线在无线通信、雷达系统、航天器等领域有着广泛的应用前景,对于推动微波通信技术的发展具有重要意义。

微带天线的分析和宽频带设计

微带天线的分析和宽频带设计

1、采可以增加天线的带宽。这是因为多层结 构可以提供更多的谐振腔体,从而产生更多的谐振频率点。此外,通过在各层之 间添加适当的阻抗变换器,可以进一步扩展带宽。
2、采用多频带工作
通过设计多个独立谐振频率的微带天线,可以实现多频带工作。例如,可以 采用多个贴片或多个地面结构来产生多个谐振频率。这种方法可以在不同频率范 围内获得良好的辐射特性,从而实现宽频带工作。
3、采用可调谐谐振器
通过采用可调谐的材料或结构,可以改变微带天线的谐振频率。例如,可以 采用压电材料或磁性材料来实现频率调谐。这种方法可以在不同频率范围内获得 良好的辐射特性,从而实现宽频带工作。
4、采用超材料技术
通过采用超材料技术,可以设计出具有特殊电磁特性的微带天线。例如,可 以采用超材料结构来增强天线的带宽或改变天线的辐射方向图。这种方法可以在 不同频率范围内获得良好的辐射特性,从而实现宽频带工作。
一、宽频带微带天线的理论基础
微带天线的带宽主要受限于其辐射单元的尺寸和形状。为了提高微带天线的 带宽,可以从以下几个方面进行考虑:
1、增加辐射单元的尺寸:辐射单元的尺寸增加可以有效地减小表面波的传 播长度,从而扩展天线的带宽。然而,这也会导致天线的尺寸增大,因此在设计 时需要权衡尺寸和带宽的关系。
二、微带天线的宽频带设计
宽频带设计是指通过调整天线的设计参数,使其在宽频率范围内保持稳定的 性能。对于微带天线来说,宽频带设计是一项重要的挑战,因为微带天线的带宽 通常很窄。
1、调整几何结构:通过改变导体片的形状和尺寸,可以影响微带天线的带 宽。例如,可以增加导体片的面积或调整导体片的边缘曲线,以改变电流分布和 辐射阻抗,从而增加带宽。
3、阻抗:天线的阻抗是指电流在天线中流动时遇到的电阻。阻抗与天线的 辐射效率和稳定性密切相关。计算阻抗通常需要考虑天线的工作频率、形状和尺 寸,以及周围环境的介电常数和磁导率等因素。

微带天线报告

微带天线报告

目录一、微带天线简介 (2)1.1微带天线的概念与分类 (2)1.2微带天线的激励方法 (4)1.3微带天线的工作原理——辐射机理 (5)二、微带天线的分析方法 (8)2.1传输线模型 (8)2.2格林函数法 (10)2.3腔体模型 (11)2.4积分方程法 (11)三、微带天线宽频实现 (12)3.1采用厚介质基片 (12)3.2采用介电常数较小或有耗的介质基片 (12)3.3附加阻抗匹配网络 (12)3.4采用楔形或阶梯形基片 (12)3.5采用非线性基片材料 (13)四、微带天线的多频技术 (13)4.1开槽加载 (13)4.2销钉加载 (14)微带天线摘要:随着社会和经济的发展,通信技术在社会中变得越来越重要,人们的生活也越来越离不开通信。

与此同时,对于接受外来信号的天线的设计也越来越多样化。

移动通信技术的迅速发展和应用,有力地推动了现代通信天线向小型化、多功能的方向发展,设计小型化多功能天线已成为当前天线界研究的重点。

微带天线以其体积小,重量轻,低剖面,能与载体共形,易于制造,成本低,易于与有源器件和电路集成为单一的模件,便于实现圆极化、双极化和双频段等优点得到日益广泛的关注和应用。

本文应老师要求,对微带天线进行简单介绍。

关键字:分类激励工作原理分析方法宽频多频内容:一、微带天线简介1.1微带天线的概念与分类概念:微带天线(microstrip antenna)在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成的天线。

分类:微带天线的特征之一就是相对于普通的微波天线有更多的物理参数,可以有任意的几何形状和尺寸。

微带天线可以分为三种基本类型:微带行波天线、微带缝隙天线和微带贴片天线。

Ⅰ、微带行波天线微带行波天线由基片、在基片一面上的链形周期结构或普通的长TEM波传输线(也维持一个TE模)和基片另一面上的接地板组成。

微带天线及有源加载天线综述讲解

微带天线及有源加载天线综述讲解

微带天线及有源加载天线综述摘要微带天线由于重量轻、制作简单、成本低、易于与载体平台共形以及适合组阵等诸多优点,广泛应用于各种移动地面设备,以及飞行载体电子设备。

但微带贴片天线同时有是阻抗带宽窄、增益低等缺点。

这些缺点大大限制了它的应用范围。

一直以来,有关天线小型化与宽带化的新理论与新技术都是天线领域的研究热点,随着高性能电子器件的不断涌现,越来越多的新技术从理论走向了实践,天线的带宽也因此而做的越来越宽,但是为了有效地实现电磁能量的转换,在设计天线时需保持一定的天线尺寸,因此天线小型化常难以实现。

有源天线既易于实现天线的小型化,且能够实现通信天线的宽频段要求,因而越来越引起人们的关注与研究。

第一部分,本文较详细地描述了微带天线的结构特性和辐射特性,并通过运用HFSS设计了一个中心频率为2.45GHz的矩形微带天线,分析其阻抗特性及方向图等诸多天线性能参数。

第二部分,首先介绍了几种主要的天线小型化宽带化技术,然后着重研究了有源加载天线的加载方式和分析方法,最后简要探讨了两种有源加载天线,并分析其性能参数,旨在引导后续进一步的研究。

关键词:微带传输线;天线设计;有源天线;小型宽带化;加载目录摘要 (I)一、微带天线简述及其HFSS仿真 (1)0 绪论 (1)1 微带天线的基本理论 (2)1.1 微带天线的结构和特点 (2)1.2 微带传输线的基本特性 (3)1.3 微带天线的辐射特性 (3)2 微带天线的HFSS仿真设计 (5)2.1 微带天线模型及设计参数 (5)2.2 天线性能指标及分析 (7)3 总结 (9)二、有源加载天线简述 (10)0 绪论 (10)1 有源天线的研究现状 (10)2 天线的小型化和宽频带技术 (11)2.1 天线的小型化技术 (12)2.1.1 加载技术 (12)2.1.2 采用特殊材料基片 (14)2.1.3 采用特殊形式,优化天线的外形结构 (14)2.1.4 分形技术 (15)2.2 天线的宽频带技术 (17)2.2.1 缝隙以及耦合技术 (17)2.2.2 利用宽带匹配网络实现天线小型化和宽频带特性 (17)3 加载天线的研究 (18)3.1 介质加载 (18)3.2 顶部加载 (19)3.3 分布加载 (21)3.4 集总元件加载 (22)3.5 有源加载 (23)4 有源天线 (24)4.1 有源天线的发展历程 (24)4.2 有源集成天线的分类 (25)4.2.1 振荡器型有源微带天线 (26)4.2.2 放大器型有源微带天线 (26)4.2.3 频率变换型有源微带天线 (26)4.2.4 有源集成天线的收/发模块 (26)4.3 有源集成天线的优点 (27)4.4 有源天线的小型化及等效模型 (27)4.5 几种典型的有源天线 (30)4.5.1 基于加载变容二极管的电扫描天线 (30)4.5.2 基于加载有源网络的微带贴片天线 (31)参考文献 (35)一、微带天线简述及其HFSS仿真0 绪论通信、雷达、遥感、广播、电视、导航等无线电设备,都是依靠无线电波来工作的,都需要无线电波的辐射和接收。

浅谈微带天线

浅谈微带天线

浅谈微带天线微带天线,是由导体薄片粘贴在背面有导体接地板的介质基片上而形成的天线。

通常利用微带传输线或同轴探针来馈电,使导体贴片与接地板之间激励高频电磁场,并通过贴片四周与接地板之间的缝隙向外辐射。

金属贴片通常是形状规则的薄片,形状有矩形、圆形或椭圆形等;也可以是窄长条形的薄片振子(偶极子)或由这些单元构成的阵列结构。

这三种形式分别称为微带贴片天线、微带振子天线和微带阵列天线。

微带贴片天线,通常介质基片厚度h远小于工作波长λ,罗远祉等人提出的空腔模型理论是分析这类天线的一种基本理论。

帖片与接地板之间的空间犹如一个上下为电壁、四周为磁壁的空腔谐振器。

对常用的工作模式,长度L约为半个波长,其电场E沿长度方向(x轴)的驻波没有横向(y轴)的变化。

天线的辐射主要由沿横向的两条缝隙产生,每条缝隙对外的辐射等效于一个沿-y轴的磁流元(J m =-n×E,n为缝隙外法线单位矢量)。

由于这两个磁流元方向相同,合成辐射场在垂直贴片方向(z轴)最大,随偏离此方向的角度增大而减小,形成一个单向方向图。

天线输入阻抗靠改变馈电位置加以调节。

阻抗频率特性与简单并联谐振电路相似,品质因数Q较高,故阻抗频带窄,通常约为1%~5%。

可用适当增加基片厚度等方法来展宽频带。

接地板上的介质层会使电磁场束缚在导体表面附近传播而不向空间辐射,这种波称为表面波。

故增加基片厚度时须避免出现明显的表面波传播。

微带振子天线,当介质基片厚度远小于工作波长或微带振子长度为谐振长度时,振子上的电流近于正弦分布。

因此,它具有与圆柱振子相似的辐射特性,只是它在介质层中还有表面波传播,使效率降低。

微带阵列天线,利用若干微带贴片或微带振子可构成具有固定波束和扫描波束的微带阵列。

与其他阵列天线相同,可采用谐振阵或非揩振阵(行波阵)。

微带阵列的波束扫描可利用相位扫描、时间延迟扫描、频率扫描和电子馈电开关等多种方式来实现。

微带天线作为一种新型的天线,与普通天线相比,具有不可替代的优势。

第四讲-微带天线

第四讲-微带天线

第四讲微带天线一、引言上一讲介绍了对称振子和接地单极子天线。

这两种天线本质上属于线天线。

但是手机内置天线往往都不是线天线的形式,常见的PIFA天线和单极子变形天线往往都是平面天线的形式。

尽管在某种程度上它们也和对称振子或接地单极子天线有某种程度的相似性。

在现有理论基础下,由于专门对手机天线进行严格理论分析的论著还很少,所以为更加深入地理解手机天线,我们还有必要了解几种其他类型的天线的一般特性。

这一讲主要介绍微带天线的概念和基本原理。

二、微带天线的结构如下图所示,结构最简单的微带天线是由贴在带有金属地板的介质基片()上的辐射贴片所构成的。

贴片上导体通常是铜和金,它可以为任意形状。

但通常为便于分析和便于预测其性能都用较为简单的几何形状。

为增强辐射的边缘场,通常要求基片的介电场数较低。

三、微带天线的特点微带天线的典型优点是:1.重量轻、体积小、剖面薄;2.制造成本低,适于大量生产;3.通过改变馈点的位置就可以获得线极化和圆极化;4.易于实现双频工作。

但微带天线也有如下缺点:1.工作频带窄;2.损耗大,增益低;3.大多微带天线只在半空间辐射;4.端射性能差;5.功率容量低。

四、微带天线的辐射机理微带天线的辐射是由微带天线导体边沿和地板之间的边缘场产生的。

这可以从以下图中的情况简单说明,这个图是一个侧向馈电的矩形微带贴片,与地板相距高度为h。

假设电场沿微带结构的宽度和厚度方向没有变化,则辐射器的电场仅仅沿约为半波长()的贴片长度方向变化。

辐射基本上是由贴片开路边沿的边缘场引起的。

在两端的场相对地板可以分解为法向和切向分量,因为贴片长度为,所以法向分量反相,由它们产生的远区场在正面方向上互相抵消。

平行于地板的切向分量同相,因此合成场增强,从而使垂直于地板的切向分量同相,因此合成场增强,从而使垂直于结构表面的方向上辐射场最强。

根据以上分析,贴片可以等效为两个相距、同相激励并向地板以上半空间辐射的两个缝隙。

对微带贴片沿宽度方向的电场变化也可以采用同样的方法等效为同样的缝隙。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Microstrip Antenna inside GPS device
Microstrip Antenna inside PCB Board
5
Mobile Phone PIFA Antenna WLAN-Bluetooth PIFA Antenna
6 Fractal Antenna---Novel Type of MA
Yagi-antenna, Parabolic antenna
• Current Distribution
15
• Directivity, The directivity of a transmitting antenna is defined
as the ratio of the radiation intensity flowing in a given direction to the radiation intensity averaged over all direction.
11
Textbook:《 Antenna Theory and Microstrip Antennas 》方大纲 ,科学出版社,2006
Reference: 1.《Advances in Microstrip and Printed Antenna》 , Wiley Interscience,1997 2.《微带天线原理与应用》钟顺时 ,西安电子科技大学出 版社,1991 3.《微带天线理论与工程》张钧 ,国防工业出版社,1998
22
1.2.2 Classification
① Classification by structure
•Microstrip Traveling Wave Antenna (MTA)
A MTA may consist of chain-shaped periodic conductors or a long microstrip line of sufficient width to support a TE mode. The other end of the travelingwave antenna is terminated in a matched resistive load to avoid the standing waves on the antenna. MAT can be designed so that the main beam lies in any direction from broadside to the end fire.
• Efficiency, The efficiency of a transmitting antenna is the ratio of the total radiated power radiated by the antenna to the input power to the antenna.
19
1.2.1 Definition
① A Microstrip antenna in its simplest configuration consists of a radiating patch on one side of a dielectric substrate, which has a ground plane on the other side.
7
Ultra Wideband (UWB) Antenna --- UWB Technology
8
Reconfigurable Antenna
9
Metamaterial Antenna
10
Normal RangeMax router RangeMax router with metamaterial
• Gain, The absolute gain of a transmitting antenna in a given direction is defined as the ratio of the radiation intensity flowing in that direction to the radiation intensity that would be obtained if the power accepted by the antenna were radiated isotropically.
Chapter 4 Design and Analysis of MA Arrays Chapter 5 Broadbanding of Microstrip Antenna
Chapter 6 Fractal Antenna: Design and Analysis
Chapter 1 Basic Concepts of Antenna and Microstrip Antenna
14
• Directional Antenna, A directional antenna
is one "having the property of radiating or receiving electromagnetic waves more effectively in some directions than in others."
23
1.2.2 Classification
① Classification by structure
•Microstrip Slot Antenna (MSA)
MSAs comprise a slot in the ground plane of a grounded substrate. The slot can have virtually any shape. Theoretically, most of the microstrip patch shapes can be realized in the form of a printed slot. However, only a few basic slot shapes have been studied. These include a rectangular slot, annular slot, rectangular ring slot and tapered slot.
Outline
12
Chapter 1 Basic Concepts of Antenna and Microstrip Antenna (MA) Chapter 2 Linear Polarized Microstrip Patch Antenna
Chapter 3 Circular Polarized Microstrrip Slot Antenna (MSA)
21
1.2.2 Classification
① Classification by structure • Microstrip Patch Antenna (MPA)
A MPA consists of a conducting patch of any planar or nonplanar geometry on one side of a dielectric substrate with a ground plane on the other side.
1
Microstrip Antennas
32 (4/week) 9th ~ 16th week Hongyan Tang
Rectangular Microstrip Antenna (MA) 2
Circular Microstrip Antenna (MA) 3
4
Microstrip Antenna inside Laptop
13
1.1 Basic Concepts of Antenna
• Radiation Pattern • Radiation Field
• Omnidirectional Antenna
Isotropic, An isotropic antenna is defined as "a hypothetical lossless antenna having equal radiation in all directions." ficticious entity Dipole, Monopole
② Fabrication Methods: Etching, Photolithigraphic,
20
1.2.2 Classification
① Classification by structure • Microstrip Patch Antenna (MPA)
• Microstrip Traveling Wave Antenna (MTA)
(G ? D) (G = ηD)
16
• Input Impedance ( ? 50Ω ) Return Loss (S11), VSWR
• Beamwidth, Bandwidth, Half-
power BW, Major lobe, Sidelobe Level,
• Polarization:
• Since then, extensive research and development of MAs and arrays, aimed at exploiting their numerous advantages such as light weight, low volume, low cost, conformal configuration, compatibility with integrated circuits, have led to diversified applications within the broad field of microwave antennas.
相关文档
最新文档