人教版七年级上册数学 压轴题 期末复习试卷及答案-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册数学 压轴题 期末复习试卷及答案-百度文库
一、压轴题
1.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .
①求t 的值;
②此时OQ 是否平分∠AOC ?请说明理由;
(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).
2.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .
(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?
(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.
3.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)
(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;
(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且
3DOE AOE ∠∠=,3COF BOF ∠=∠,72
EOF COD ∠=∠,求EOF ∠的度数;
(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.
4.综合试一试
(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.
(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.
(3)a 是不为1的有理数,我们把11a
-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112
=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.
(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.
(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______
(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.
5.(1)探究:哪些特殊的角可以用一副三角板画出?
在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)
(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.
①当OB 平分EOD ∠时,求旋转角度α;
②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.
6.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?
7.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.
(1)求B 、C 两点的坐标;
(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积;
(3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的
13
?直接写出此时点P 的坐标.
8.射线OA 、OB 、OC 、OD 、OE 有公共端点O .
(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图
2),求∠BOD 的度数;
(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.
9.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点.
(1)请你在图②的数轴上表示出A ,B ,C 三点的位置.
(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒.
①当t =2时,求AB 和AC 的长度;
②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.
10.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”.
(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)
(2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;
(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)
11.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)
()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)
()2当点C 、D 运动了2s ,求AC MD +的值.
()3若点C、D运动时,总有2
MD AC
=,则AM=________(填空)
()4在()3的条件下,N是直线AB上一点,且AN BN MN
-=,求MN
AB
的值.
12.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).
(1)当甲追上乙时,x = .
(2)请用含x的代数式表示y.
当甲追上乙前,y= ;
当甲追上乙后,甲到达C之前,y= ;
当甲到达C之后,乙到达C之前,y= .
问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.
(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.
(2)若从4:00起计时,求几分钟后分针与时针第一次重合.
13.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,B的距离相等,求点P对应的数x的值.
(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.
(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?
14.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.
(1)求A,B两点之间的距离;
(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;
(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.
设运动时间为t秒.
①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)
②求甲乙两小球到原点距离相等时经历的时间.
15.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)
(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是
∠AOC的平分线;
(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;
(3)t=70
3
秒.
【解析】
【分析】
(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;
(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义
再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.
【详解】
(1)①∵∠AOC=30°,
∴∠BOC=180°﹣30°=150°,
∵OP平分∠BOC,
∴∠COP=1
2
∠BOC=75°,
∴∠COQ=90°﹣75°=15°,
∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;
②是,理由如下:
∵∠COQ=15°,∠AOQ=15°,
∴OQ平分∠AOC;
(2)∵OC平分∠POQ,
∴∠COQ=1
2
∠POQ=45°.
设∠AOQ=3t,∠AOC=30°+6t,
由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,
当30+6t﹣3t=225,也符合条件,
解得:t=65,
∴5秒或65秒时,OC平分∠POQ;
(3)设经过t秒后OC平分∠POB,
∵OC平分∠POB,
∴∠BOC=1
2
∠BOP,
∵∠AOQ+∠BOP=90°,
∴∠BOP=90°﹣3t,
又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,
∴180﹣30﹣6t=1
2
(90﹣3t),
解得t=70 3
.
【点睛】
本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.
2.(1)10
7
秒或10秒;(2)
14
13
或
114
13
.
【解析】
【分析】
(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;
(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,
由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.
【详解】
(1)∵|a-20|+|c+10|=0,
∴a-20=0,c+10=0,
∴a=20,c=﹣10.
设点B对应的数为b.
∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).
解得:b=10.
当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.
∵Q到B的距离与P到B的距离相等,
∴|﹣10+5t﹣10|=|20+2t﹣10|,
即5t﹣20=10+2t或20﹣5t=10+2t,
解得:t=10或t=10
7
.
答:运动了10
7
秒或10秒时,Q到B的距离与P到B的距离相等.
(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.
∵点M为线段PR的中点,点N为线段RQ的中点,
∴点M对应的数为22420
2
x x
++-
=
44
2
x
+
,
点N对应的数为205
2
x x
-+
=2x+10,
∴MN=|44
2
x
+
﹣(2x+10)|=|12﹣1.5x|.
∵MN+AQ=25,∴|12﹣1.5x|+|5x﹣20|=25.分三种情况讨论:
①当0<x<4时,12﹣1.5x+20﹣5x=25,
解得:x=14 13
;
当4≤x≤8时,12﹣1.5x+5x﹣20=25,
解得:x =
667
>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 3
1141=. 综上所述:x 的值为
1413或11413. 【点睛】
本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.
3.(1)40º;(2)84º;(3)7.5或15或45
【解析】
【分析】
(1)利用角的和差进行计算便可;
(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;
(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.
【详解】
解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD
又∵∠AOD+∠BOC=160°且∠AOB=120°
∴COD AOD BOC AOB ∠=∠+∠-∠
160120=︒-︒
40=︒
(2)3DOE AOE ∠=∠,3COF BOF ∠=∠
∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒
则3COF y ∠=︒,
44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒
EOF EOD FOC COD ∠=∠+∠-∠
()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒
72
EOF COD ∠=∠ 7120()(44120)2
x y x y ∴-+=+- 36x y ∴+=
120()84EOF x y ∴︒+︒︒∠=-=
(3)当OI 在直线OA 的上方时,
有∠MON=∠MOI+∠NOI=1
2
(∠AOI+∠BOI))=
1
2
∠AOB=
1
2
×120°=60°,
∠PON=1
2
×60°=30°,
∵∠MOI=3∠POI,
∴3t=3(30-3t)或3t=3(3t-30),
解得t=15
2
或15;
当OI在直线AO的下方时,
∠MON═1
2
(360°-∠AOB)═
1
2
×240°=120°,
∵∠MOI=3∠POI,
∴180°-3t=3(60°-6120
2
t-
)或180°-3t=3(
6120
2
t-
-60°),
解得t=30或45,
综上所述,满足条件的t的值为15
2
s或15s或30s或45s.
【点睛】
此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.
4.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)
25032
;(4)9.38;(5)0;(6)24或40
【解析】
【分析】 (1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得
9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.
【详解】
(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,
故答案为23+(-3)3+43,73+(-5)3+(-6)3
(2)∵2a b a ab ⊗=-,
∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]
=(-5)⊗15
=(-5)2-(-5)×15
=100.
(3)∵a 1=2,
∴a 2=1112
=--, a 3=11(1)--=12
, 412112
a ==-
a 5=-1
…… ∴从a 1开始,每3个数一循环,
∵2500÷3=833……1,
∴a 2500=a 1=2,
∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032
. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,
∴平均分为中间8个分数的平均分,
∵平均分精确到十分位的为9.4,
∴平均分在9.35至9.44之间,
9.35×8=74.8,9.44×8=75.52,
∴8个裁判所给的总分在74.8至75.52之间,
∵打分都是整数,
∴总分也是整数,
∴总分为75,
∴平均分为75÷8=9.375,
∴精确到百分位是9.38.
故答案为9.38
(5)2019÷4=504……3,
∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……
∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0
∴所得结果可能的最小非负数是0,
故答案为0
(6)设x 分钟后甲和乙、丙的距离相等,
∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,
∴120x-400-100x=90x+800-120x
解得:x=24.
∵当乙追上丙时,甲和乙、丙的距离相等,
∴400÷(100-90)=40(分钟)
∴24分钟或40分钟时甲和乙、丙的距离相等.
故答案为24或40.
【点睛】
本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.
5.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.
【解析】
【分析】
(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;
(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12
×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.
【详解】
解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,
∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;
故选④;
(2)①因为COD 60∠=,
所以EOD 180COD 18060120∠∠=-=-=.
因为OB 平分EOD ∠, 所以11EOB EOD 1206022
∠∠==⨯=. 因为AOB 45∠=,
所以αEOB AOB 604515∠∠=-=-=.
②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.
因为BOC 2AOD ∠∠=,
所以()135α2120α-=-.
解得α105=.
当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.
因为BOC 2AOD ∠∠=,
所以()135α2α120
-=-.
解得α125=.
综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.
【点睛】
本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.
6.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;
(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;
②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.
【详解】
解:(1)∵数轴上点A 表示的数为6,
∴OA =6,
则OB =AB ﹣OA =4,
点B 在原点左边,
∴数轴上点B 所表示的数为﹣4;
点P 运动t 秒的长度为5t ,
∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P 所表示的数为:6﹣5t ,
故答案为﹣4,6﹣5t ;
(2)①点P 运动t 秒时追上点Q ,
根据题意得5t =10+3t ,
解得t =5,
答:当点P 运动5秒时,点P 与点Q 相遇;
②设当点P 运动a 秒时,点P 与点Q 间的距离为8个单位长度,
当P 不超过Q ,则10+3a ﹣5a =8,解得a =1;
当P 超过Q ,则10+3a+8=5a ,解得a =9;
答:当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
7.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13
.此时点P 的坐标是(0,﹣4)或(83
,﹣6) 【解析】
【分析】
(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;
(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;
(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.
【详解】
(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).
(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=
⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意
得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形
OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12
-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=
S 长方形OBCD 13
=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4);
②当﹣3t+21=8时,t
13
3
=,PB=2t﹣6
26188
333
=-=,此时P(
8
3
,﹣6).
综上所述:当t为2秒或13
3
秒时,△OPM的面积是长方形OBCD面积的
1
3
.此时点P的
坐标是(0,﹣4)或(8
3
,﹣6).
【点睛】
本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,
求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类
讨论是解答本题的关键.
8.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,
∠COD,∠DOE;(2)∠BOD=54°;(3)
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】
【分析】
(1)根据角的定义即可解决;
(2)利用角平分线的性质即可得出∠BOD=1
2∠AOC+1
2
∠COE,进而求出即可;
(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.
【详解】
(1)如图1中小于平角的角
∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.
(2)如图2,
∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),
∴∠BOD=1
2
∠AOD﹣
1
2
∠COE+
1
2
∠COE=
1
2
×108°=54°;
(3)如图3,
∠AOE=88°,∠BOD=30°,
图中所有锐角和为
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE
=4∠AOB+4∠DOE=6∠BOC+6∠COD
=4(∠AOE﹣∠BOD)+6∠BOD
=412°.
【点睛】
本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与
∠AOE、∠BOD和∠BOD的关系是解题的关键,
9.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变
【解析】
【分析】
(1)根据点的移动规律在数轴上作出对应的点即可;
(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;
②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.
【详解】
(1)A,B,C三点的位置如图所示:
.
(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-(-4)=9,AC=12-(-4)=16.
②3AC-4AB的值不变.
当移动时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t +6,则:AC=(3t+6)-(-t-2)=4t+8,AB=(2t+1)-(-t-2)=3t+3,∴3AC-4AB=3(4t+8)
-4(3t +3)=12t +24-12t -12=12.
即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.
【点睛】
本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.
10.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或
607. 【解析】
【分析】
(1)根据“2倍点”的定义即可求解;
(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;
(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.
【详解】
(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;
(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523
⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:
由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .
∵PB =20-2t ≥0,∴t ≤10.
∵QP =3t -20≥0,∴t ≥
203,∴203≤t ≤10. 分三种情况讨论:
①当AQ =
13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =
12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607
=; 答:t 为10或
607时,点 Q 是线段AP 的“2倍点”. 【点睛】
本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.
11.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13
MN AB =或1. 【解析】
【详解】
(1)根据题意知,CM=2cm ,BD=4cm .
∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;
(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .
∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;
(3)根据C 、D 的运动速度知:BD=2MC .
∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .
∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=
13
AB=4. 故答案为4;
(4)①当点N 在线段AB 上时,如图1.
∵AN ﹣BN=MN .
又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,
∴MN AB =412=13
; ②当点N 在线段AB 的延长线上时,如图2.
∵AN ﹣BN=MN .
又∵AN ﹣BN=AB ,∴MN=AB=12,
∴MN AB =1212
=1. 综上所述:
MN AB =13或1. 【点睛】
本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.
12.问题一、(1)
32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011
. 【解析】
【分析】
问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。
【详解】
问题一:(1)当甲追上乙时,甲的路程=乙的路程+3
所以,863x x =+
23x =
32
x = 故答案为
32. (2) 当甲追上乙前,路程差=乙所行的路程+3-甲所行的路程;
所以,63832y x x x =+-=-.
当甲追上乙后,甲到达C 之前,路程差=甲所行的路程-3-乙所行的路程;
所以,83623y x x x =--=-.
当甲到达C 之后,乙到达C 之前,路程差=总路程-3-乙所行的路程;
所以,1636136y x x =--=-.
问题二:(1)由题意AB 为钟表外围的一部分,且∠AOB=30°
可知,钟表外围的长度为31236cm ⨯=
分针OD 的速度为336605cm min ÷=
时针OE 的速度为136020
cm min ÷= 故OD 每分钟转动3
5
cm ,OE 每分钟转动120cm . (2)4点时时针与分针的路程差为4312cm ⨯=
设x 分钟后分针与时针第一次重合。
由题意得,
3112520x x =+ 解得,24011x =
. 即24011
分钟后分针与时针第一次重合。
【点睛】
本题考查了一元一次方程中的行程问题,解题的关键是要读懂题目的意思,根据题目给出的条件找出等量关系,列出方程求解即可。
13.(1)x=1;(2) x =-3或x =5;(3) 30.
【解析】
【分析】
(1)根据题意可得4-x =x -(-2),解出x 的值;
(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;
(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.
【详解】
(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:
x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:
2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.
【点睛】
本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.
14.2+t6-2t或2t-6
【解析】
分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.
详解:(1)、由题意知a=-2,b=6,故AB=8.
(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=8
3
,∴C点表示的数为6-
8 3=
10
3
.
(3)①2+t;6-2t或2t-6.
②当2+t=6-2t时,解得t=4
3
,当2+t=2t-6时,解得t=8.∴t=
4
3
或8.
点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.
15.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.
【解析】
整体分析:
(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.
解:(1)如图②,∠AOC=120°,
∴∠BOC=180°﹣120°=60°,
又∵OM平分∠BOC,
∴∠BOM=30°,
又∵∠NOM=90°,
∴∠BOM=90°﹣30°=60°,
故答案为60°;
(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,
∴∠AOP=1
2
∠AOC,
∴射线OP是∠AOC的平分线;
(3)如图④,∵∠AOC=120°,
∴∠AON=120°﹣∠NOC,
∵∠MON=90°,
∴∠AON=90°﹣∠AOM,
∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。