湖北省黄冈中学高三数学复数测试题 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.复数21i
=+( ) A .1i --
B .1i -+
C .1i -
D .1i + 2.在复平面内,复数
534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4
B .()4,3-
C .43,55⎛⎫- ⎪⎝⎭
D .43,55⎛⎫- ⎪⎝⎭ 3.212i i
+=-( ) A .1
B .−1
C .i -
D .i 4.已知复数21i z i =
-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
5.已知i 为虚数单位,若复数()12i z a R a i +=
∈+为纯虚数,则z a +=( )
A B .3 C .5 D .6.若(1)2z i i -=,则在复平面内z 对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 7.若1m i i
+-是纯虚数,则实数m 的值为( ).
A .1-
B .0
C .1
D 8.设复数2i 1i z =
+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限 9.若复数
2i 1i a -+(a ∈R )为纯虚数,则1i a -=( )
A B C .3
D .5 10.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( )
A .22z +=
B .22z i +=
C .24z +=
D .24z i += 11.122i i
-=+( ) A .1
B .-1
C .i
D .-i 12.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( )
A .17i -
B .16i -
C .16i --
D .17i --
13.已知i 是虚数单位,设复数22i a bi i -+=
+,其中,a b ∈R ,则+a b 的值为( ) A .7
5 B .75- C .15 D .1
5
- 14.复数12z i =-(其中i 为虚数单位),则3z i +=( )
A .5
B C .2 D 15.复数
21i i +的虚部为( ) A .1- B .1 C .i D .i -
二、多选题
16.i 是虚数单位,下列说法中正确的有( )
A .若复数z 满足0z z ⋅=,则0z =
B .若复数1z ,2z 满足1212z z z z +=-,则120z z =
C .若复数()z a ai a R =+∈,则z 可能是纯虚数
D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限
17.已知复数z 满足2
20z z +=,则z 可能为( )
A .0
B .2-
C .2i
D .2i - 18.下列四个命题中,真命题为( )
A .若复数z 满足z R ∈,则z R ∈
B .若复数z 满足1R z ∈,则z R ∈
C .若复数z 满足2z ∈R ,则z R ∈
D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =
19.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )
A .0P 点的坐标为(1,2)
B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称
C .复数z 对应的点Z 在一条直线上
D .0P 与z 对应的点Z 间的距离的最小值为
20.已知复数122z =-
+(其中i 为虚数单位,,则以下结论正确的是( ). A .20z
B .2z z =
C .31z =
D .1z = 21.已知复数1cos 2sin 2
2
2z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限
B .z 可能为实数
C .2cos z θ=
D .1z 的实部为12
- 22.已知i 为虚数单位,以下四个说法中正确的是( ).
A .234i i i i 0+++=
B .3i 1i +>+
C .若()2
z=12i +,则复平面内z 对应的点位于第四象限
D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线
23.已知复数122,2z i z i =-=则( )
A .2z 是纯虚数
B .12z z -对应的点位于第二象限
C .123z z +=
D .12z z =24.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )
A .若z 为纯虚数,则实数a 的值为2
B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122
- C .实数12
a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 25.任何一个复数z a bi =+(其中a 、
b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s n n n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦
+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )
A .22z z =
B .当1r =,3πθ=
时,31z =
C .当1r =,3πθ=时,12z =
D .当1r =,4π
θ=时,若n 为偶数,则复数n z 为纯虚数
26.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )
A .1z +=
B .z 虚部为i -
C .202010102z =-
D .2z z z += 27.下面四个命题,其中错误的命题是( ) A .0比i -大
B .两个复数当且仅当其和为实数时互为共轭
复数
C .1x yi i +=+的充要条件为1x y ==
D .任何纯虚数的平方都是负实数 28.以下命题正确的是( )
A .0a =是z a bi =+为纯虚数的必要不充分条件
B .满足210x +=的x 有且仅有i
C .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件
D .已知()f x =()1
878
f x x '= 29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )
A .1
B .4-
C .0
D .5
30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )
A .|z |=
B .复数z 在复平面内对应的点在第四象限
C .z 的共轭复数为12i -+
D .复数z 在复平面内对应的点在直线2y x =-上
【参考答案】***试卷处理标记,请不要删除
一、复数选择题
1.C
【分析】
根据复数的除法运算法则可得结果.
【详解】
.
故选:C
解析:C
【分析】
根据复数的除法运算法则可得结果.
【详解】
21i =+2(1)(1)(1)i i i -=+-2(1)12
i i -=-. 故选:C
2.D
【分析】
运用复数除法的运算法则化简复数的表示,最后选出答案即可.
【详解】
因为,
所以在复平面内,复数(为虚数单位)对应的点的坐标为.
故选:D
【分析】 运用复数除法的运算法则化简复数
534i i -的表示,最后选出答案即可. 【详解】 因为55(34)15204334(34)(34)2555
i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数
534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫- ⎪⎝⎭. 故选:D
3.D
【分析】
利用复数的除法运算即可求解.
【详解】
,
故选:D
解析:D
【分析】
利用复数的除法运算即可求解.
【详解】
()()()()2221222255121212145
i i i i i i i i i i i +++++====--+-, 故选:D
4.B
【分析】
对复数进行化简,再得到在复平面内对应点所在的象限.
【详解】
,在复平面内对应点为,在第二象限.
故选:B.
解析:B
【分析】
对复数z 进行化简,再得到z 在复平面内对应点所在的象限.
【详解】
21i z i =-()(
)()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.
5.A
根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得
【详解】
由复数为纯虚数,则,解得
则 ,所以,所以
故选:A
解析:A
【分析】
根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a +
【详解】
()()()()()()2221222121122111
i a i a a i a i i a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101
a a
a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--
,所以z a +=
故选:A
6.B
【分析】
先求解出复数,然后根据复数的几何意义判断.
【详解】
因为,所以,
故对应的点位于复平面内第二象限.
故选:B.
【点睛】
本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计
解析:B
【分析】
先求解出复数z ,然后根据复数的几何意义判断.
【详解】
因为(1)2z i i -=,所以()212112
i i i z i i +=
==-+-, 故z 对应的点位于复平面内第二象限.
【点睛】
本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.
7.C
【分析】
对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.
【详解】
由题是纯虚数,
为纯虚数,
所以m=1.
故选:C
【点睛】
此题考查复数的运算和概念辨析,关键在于熟
解析:C
【分析】
对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.
【详解】 由题1m i i
+-是纯虚数, ()()()()
()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1.
故选:C
【点睛】
此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.
8.D
【分析】
先求出,再求出,直接得复数在复平面内对应的点
【详解】
因为,所以,在复平面内对应点,位于第四象限.
故选:D
解析:D
【分析】
先求出z ,再求出z ,直接得复数z 在复平面内对应的点
【详解】 因为211i z i i ==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限.
9.B
【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.
【详解】
由
复数()为纯虚数,则 ,则
所以
故选:B
解析:B
【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模.
【详解】 由()()()()
()()21i 2221112a i a a i a i i i i ----+-==++- 复数2i 1i a -+(a ∈R )为纯虚数,则202202
a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =
所以112ai i -=-=故选:B
10.B
【分析】
利用复数模的计算公式即可判断出结论.
【详解】
因为复数对应的点为,所以
,满足则
故选:B
解析:B
【分析】
利用复数模的计算公式即可判断出结论.
【详解】
因为复数z 对应的点为(,)x y ,所以z x yi =+
x ,y 满足22(2)4x y ++=则22z i +=
11.D
【分析】
利用复数的除法求解.
【详解】
.
故选:D
解析:D
【分析】
利用复数的除法求解.
【详解】
()()()()
12212222i i i i i i i ---==-++-. 故选:D
12.A
【分析】
根据复数的几何意义得出坐标,由平行四边形得点坐标,即得点对应复数,从而到共轭复数.
【详解】
由题意,设,
∵是平行四边形,AC 中点和BO 中点相同,
∴,即,∴点对应是,共轭复数为.
解析:A
【分析】
根据复数的几何意义得出,A C 坐标,由平行四边形得B 点坐标,即得B 点对应复数,从而到共轭复数.
【详解】
由题意(2,5),(3,2)A C -,设(,)B x y ,
∵OABC 是平行四边形,AC 中点和BO 中点相同,
∴023052x y +=-+⎧⎨+=+⎩,即17x y =⎧⎨=⎩
,∴B 点对应是17i +,共轭复数为17i -. 故选:A .
13.D
【分析】
先化简,求出的值即得解.
【详解】
,
所以.
故选:D
解析:D
【分析】 先化简345
i a bi -+=
,求出,a b 的值即得解. 【详解】 22(2)342(2)(2)5
i i i a bi i i i ---+===++-, 所以341,,555
a b a b =
=-∴+=-. 故选:D 14.B
【分析】
首先求出,再根据复数的模的公式计算可得;
【详解】
解:因为,所以
所以.
故选:B.
解析:B
【分析】
首先求出3z i +,再根据复数的模的公式计算可得;
【详解】
解:因为12z i =-,所以31231z i i i i +=-+=+
所以3z i +==
故选:B . 15.B
【分析】
将分母乘以其共轭复数进行分母实数化,化成的代数形式即得结果.
【详解】
,故虚部为1.
故选:B.
解析:B
【分析】
将分母乘以其共轭复数进行分母实数化,化成(),a bi a b R +∈的代数形式即得结果.
【详解】
22(1)11(1)(1)
i i i i i i i -==+++-,故虚部为1. 故选:B.
二、多选题
16.AD
【分析】
A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;
B 选项,举出反例,根据复数模的计算公式,即可判断出结果;
C 选项,根据纯虚数的定义,可判断出结果;
D 选项,设出复数,根据题
解析:AD
【分析】
A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;
B 选项,举出反例,根据复数模的计算公式,即可判断出结果;
C 选项,根据纯虚数的定义,可判断出结果;
D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.
【详解】
A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;
B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;
C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;
D 选项,设(),z a bi a b R =+∈,则()2
222234z a bi a abi b i =+=+-=+, 所以22324
a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.
17.ACD
【分析】
令代入已知等式,列方程组求解即可知的可能值.
【详解】
令代入,得:,
∴,解得或或
∴或或.
故选:ACD
【点睛】
本题考查了已知等量关系求复数,属于简单题.
解析:ACD
【分析】
令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.
【详解】
令z a bi =+代入2
2||0z z +=
,得:2220a b abi -+=,
∴22020
a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.
故选:ACD
【点睛】
本题考查了已知等量关系求复数,属于简单题.
18.AB
【分析】
利用特值法依次判断选项即可得到答案.
【详解】
对选项A ,若复数满足,设,其中,则,则选项A 正确;
对选项B ,若复数满足,设,其中,且,
则,则选项B 正确;
对选项C ,若复数满足,设
解析:AB
【分析】
利用特值法依次判断选项即可得到答案.
【详解】
对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足
1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a
=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,
但z i R =∉,则选项C 错误;
对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;
故答案选:AB
【点睛】
本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,
属于简单题.
19.ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确
解析:ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.
【详解】
复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;
复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;
设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即
=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距
2
=,故D 正确. 故选:ACD
【点睛】
本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 20.BCD
【分析】
计算出,即可进行判断.
【详解】
,
,故B 正确,由于复数不能比较大小,故A 错误;
,故C 正确;
,故D 正确.
故选:BCD.
【点睛】
本题考查复数的相关计算,属于基础题.
解析:BCD
【分析】
计算出23
,,,z z z z ,即可进行判断.
【详解】
1
22
z =-+, 221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222
222z ,故C 正确; 2213122z
,故D 正确.
故选:BCD.
【点睛】 本题考查复数的相关计算,属于基础题.
21.BC
【分析】 由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.
【详解】
因为,所以,所以,所以,所以A 选
解析:BC
【分析】
由22π
π
θ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部
sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭
时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.
【详解】
因为22π
π
θ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,
所以A 选项错误;
当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝
⎭时,复数z 是实数,故B 选项正确;
2cos z θ===,故C 选项正确:
()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22
θθ+=+,故D 不正确. 故选:BC
【点睛】
本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.
22.AD
【分析】
根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.
【详解】
,则A 正确;
虚数不能比较大小,则B 错误;
,则,
解析:AD
【分析】
根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.
【详解】
234110i i i i i i +++=--+=,则A 正确;
虚数不能比较大小,则B 错误;
()22
1424341z i i i i =++=+-+=,则34z i =--,
其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣
,
=,解得0x =
则z 在复平面内对应的点的轨迹为直线,D 正确;
故选:AD
【点睛】
本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.
23.AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.
【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,对应的
解析:AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.
【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;
对于C 选项,122+=+z z i ,则12z z +==,故C 错;
对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z =
=D 正确. 故选:AD
【点睛】
本题考查复数的相关概念及复数的计算,较简单.
24.ACD
【分析】
首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误
【详解】
∴选项A :为纯虚数,有可得,故正确
选项B
解析:ACD
【分析】
首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误
【详解】
()(12)2(12)z a i i a a i =++=-++
∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩
可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120
a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12
a =-,它们互为充要条件,故正确
选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确
故选:ACD
【点睛】
本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围
25.AC
【分析】
利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.
【详解】
对于A 选项,,则,可得
解析:AC
【分析】
利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.
【详解】
对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得
()222cos 2sin 2z r i r θθ=+=,()22
2cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=
时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;
对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则12z =,C 选项正确;
对于D 选项,()cos sin cos sin cos sin 44
n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.
故选:AC.
【点睛】
本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.
26.ACD
【分析】
先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
由可得,,所以,虚部为;
因为,所以,.
故选:ACD .
【
解析:ACD
【分析】
先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】
由1zi i =+可得,11i z i i
+==-,所以12z i +=-==,z 虚部为1-; 因为2422,2z i z =-=-,所以()5052020410102z
z ==-,2211z z i i i z +=-++=-=.
故选:ACD .
【点睛】
本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 27.ABC
【分析】
根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正
误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.
【详解】
对于A 选项,由于虚数不能比大小,
解析:ABC
【分析】
根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.
【详解】
对于A 选项,由于虚数不能比大小,A 选项错误;
对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,
C 选项错误;
对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()2
20ai a =-<,D 选项正确. 故选:ABC.
本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.
28.AC
【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式
解析:AC
【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.
【详解】
对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,
所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;
对于B 选项,解方程210x +=得x i =±,B 选项错误;
对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.
反之,取()3f x x =,()2
3f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,
即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.
所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.
C 选项正确;
对于D 选项,()11172488
f x x x ++=
==,()1878f x x -'∴=,D 选项错误. 故选:AC.
【点睛】
本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 29.ABC
【分析】
设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
∴,
∴,解得:,
∴实数的值可能是.
故选:ABC.
【点
解析:ABC
【分析】
设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方
程,利用判别式大于等于0,从而求得a 的范围,即可得答案.
【详解】
设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222
223,23042,
x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴2
44(3)04
a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.
故选:ABC.
【点睛】
本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.
30.AC
【分析】
根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.
【详解】
,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对
解析:AC
【分析】
根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.
【详解】
||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.
故选:AC
【点睛】
本小题主要考查复数的有关知识,属于基础题.。