万载县第二中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万载县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )
A .p 或q
B .p 且q
C .¬p 或q
D .p 且¬q
2. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 3. 将函数)63sin(
2)(π+=x x f 的图象向左平移4
π
个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )
A .3)43sin(
2)(--=πx x g B .3)43sin(2)(++=π
x x g C .3)123sin(2)(+-=πx x g D .3)12
3sin(2)(--=π
x x g
【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 4. 已知数列{n a }满足n
n n a 2
728-+=(*
∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .
211 B .227 C . 32259 D .32
435
5. 已知两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,则=( )
A .﹣2
B .2
C .﹣
D .
6. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )
A .{}4,2
B .{}1,3
C .{}1,2,3,4
D .以上情况都有可能
7. (2011辽宁)设sin (+θ)=,则sin2θ=( )
A .﹣
B .﹣
C .
D .
8. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10
C .8
D .6
9. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则
的值为
( )
A .
B .
C .
D .
10.如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )
A .﹣2
B .﹣1
C .1
D .2
11.函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6 C .2
D .3﹣a
12.定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣
>0的解集为( ) A .(2,+∞)
B .(0,2)
C .(0,4)
D .(4,+∞)
二、填空题
13.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数
①f (x )=3x+1 ②f (x )=()x+1
③f (x )=x 2+1 ④f (x )=
其中是“H 函数”的有 (填序号)
14.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32
x = 处的导数302f ⎛⎫
'<
⎪⎝⎭,则13f ⎛⎫
= ⎪⎝⎭
___________.
15.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.
16.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π).
17.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.
18.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2;
②当i=3,j=1时,x=0;
③当x=1时,(i,j)有4种不同取值;
④当x=﹣1时,(i,j)有2种不同取值;
⑤M中的元素之和为0.
其中正确的结论序号为.(填上所有正确结论的序号)
三、解答题
19.已知函数的图象在y轴右侧的第一个最大值点
和最小值点分别为(π,2)和(4π,﹣2).
(1)试求f(x)的解析式;
(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.
20.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面
ABC.
(Ⅰ)求证:AC ⊥PB ;
(Ⅱ)在菱形ABCD 中,若∠ABC=60°,求直线AB 与平面PBC 所成角的正弦值; (Ⅲ)求四面体PABC 体积的最大值.
21.(本小题满分12分)已知圆()()2
2
:1225C x y -+-=,直线
()()():211740L m x m y m m R +++--=∈.
(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.
22.已知集合A={x|
>1,x ∈R},B={x|x 2
﹣2x ﹣m <0}.
(Ⅰ)当m=3时,求;A ∩(∁R B );
(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.
23.(本小题满分10分)
已知圆P 过点)0,1(A ,)0,4(B .
(1)若圆P 还过点)2,6( C ,求圆P 的方程; (2)若圆心P 的纵坐标为,求圆P 的方程.
24.如图,已知椭圆C :
+y 2=1,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 另外一个交点为A ,且
线段AB 的中点E 在直线y=x 上 (Ⅰ)求直线AB 的方程
(Ⅱ)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,证明:OM •ON 为定值.
万载县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:在长方体ABCD﹣A1B1C1D1中
命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,
显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;
命题q:平面AC为平面α,平面A1C1为平面β,
直线A1D1,和直线AB分别是直线m,l,
显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;
故选C.
【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.
2.【答案】B
【解析】
试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.
考点:二次函数图象与性质. 3. 【答案】B
【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4
π个单位得到函数)4(π
+x f 的图
象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4
(++π
x f
3)4
3sin(23]6)4(31sin[2++=+++=π
ππx x .
4. 【答案】D 【解析】
试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,112527
22n n
n n
n n a a ++--∴-=- ()11
252272922
n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,
2
11
1=a ,∴最小项为211,M m +∴的值为32
435
32259211=+.故选D.
考点:数列的函数特性.
5. 【答案】C
【解析】解:两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,
∴存在非0实数k 使得m +n =k (﹣2)=k ﹣2k ,或k (m +n )=﹣2,

,或

则=﹣. 故选:C .
【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.
6. 【答案】A 【解析】
试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为
{}4,2.
考点:复合函数求值. 7. 【答案】A
【解析】解:由sin (
+θ)=sin
cos θ+cos
sin θ=
(sin θ+cos θ)=,
两边平方得:1+2sin θcos θ=,即2sin θcos θ=﹣,
则sin2θ=2sin θcos θ=﹣.
故选A
【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题. 8. 【答案】C
【解析】解:直线y=kx ﹣k 恒过(1,0),恰好是抛物线y 2
=4x 的焦点坐标, 设A (x 1,y 1) B (x 2,y 2)
抛物y 2
=4x 的线准线x=﹣1,线段AB 中点到y 轴的距离为3,x 1+x 2=6,
∴|AB|=|AF|+|BF|=x 1+x 2+2=8, 故选:C .
【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
9. 【答案】C
【解析】解:F
,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.
1
点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,
|PF2|==,由勾股定理可得:|PF1|==.
==.
故选:C.
【点评】本题考查椭圆的简单性质的应用,考查计算能力.
10.【答案】A
【解析】解:结合向量数量积的几何意义及点O在线段AB,AC上的射影为相应线段的中点,
可得,,则•==16﹣18=﹣2;
故选A.
【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题11.【答案】A
【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,
求得10≤ω<12,
故选:A.
12.【答案】B
【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.
∵f(2)=4,则2f(2)=8,
f(x)﹣>0化简得,
当x<2时,
⇒成立.
故得x<2,
∵定义在(0,+∞)上.
∴不等式f (x )﹣>0的解集为(0,2). 故选B .
【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.
二、填空题
13.【答案】 ①④
【解析】解:∵对于任意给定的不等实数x 1,x 2,不等式x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1)恒成立, ∴不等式等价为(x 1﹣x 2)[f (x 1)﹣f (x 2)]≥0恒成立, 即函数f (x )是定义在R 上的不减函数(即无递减区间); ①f (x )在R 递增,符合题意; ②f (x )在R 递减,不合题意;
③f (x )在(﹣∞,0)递减,在(0,+∞)递增,不合题意; ④f (x )在R 递增,符合题意; 故答案为:①④.
14.【答案】12
【解析】

点:三角函数图象与性质,函数导数与不等式.
【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫
'< ⎪⎝⎭
来验证.求出()f x 表达式后,就可以求出13f ⎛⎫ ⎪⎝⎭
.1 15.【答案】 2n ﹣1 .
【解析】解:∵a1=1,a n+1=a n+2n,
∴a2﹣a1=2,
a3﹣a2=22,

a n﹣a n﹣1=2n﹣1,
相加得:a n﹣a1=2+22+23+2…+2n﹣1,
a n=2n﹣1,
故答案为:2n﹣1,
16.【答案】.
【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.
∴点P的极坐标为.
故答案为:.
17.【答案】7+
【解析】解:如图所示,
设∠APB=α,∠APC=π﹣α.
在△ABP与△APC中,
由余弦定理可得:AB2=AP2+BP2﹣2AP•BPcosα,
AC2=AP2+PC2﹣2AP•PCcos(π﹣α),
∴AB2+AC2=2AP2+,
∴42+32=2AP2+,
解得AP=.
∴三角形ABP的周长=7+.
故答案为:7+.
【点评】本题考查了余弦定理的应用、中线长定理,考查了推理能力与计算能力,属于中档题.
18.【答案】①③⑤
【解析】解:建立直角坐标系如图:
则P1(0,1),P2(0,0),P3(1,0),P4(1,1).
∵集合M={x|x=且i,j∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,
﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
三、解答题
19.【答案】
【解析】(本题满分为12分)
解:(1)由题意知:A=2,…
∵T=6π,
∴=6π得
ω=,…
∴f(x)=2sin(x+φ),
∵函数图象过(π,2),
∴sin(+φ)=1,
∵﹣<φ+<,
∴φ+=,得φ=…
∴A=2,ω=,φ=,
∴f(x)=2sin(x+).…
(2)∵将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin(x+)的图象,
然后再将新的图象向轴正方向平移个单位,得到函数g(x)=2sin[(x﹣)+]=2sin(﹣)的图象.
故y=g(x)的解析式为:g(x)=2sin(﹣).…
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了函数y=Asin(ωx+φ)的图象变换,函数y=Asin(ωx+φ)的解析式的求法,其中根据已知求出函数的最值,周期,向左平移量,特殊点等,进而求出A,ω,φ值,得到函数的解析式是解答本题的关键.
20.【答案】
【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,
∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.
(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,
PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,
故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,
∴,

设平面PBC的法向量,直线AB与平面PBC成角为θ,
∴,取x=1,则,于是,
∴,∴直线AB与平面PBC成角的正弦值为.
(Ⅲ)法一:
设∠ABC=∠APC=α,α∈(0,π),∴,,
又PO⊥平面ABC,∴=
(),


∴,当且仅当,即时取等号,
∴四面体PABC体积的最大值为.
法二:设∠ABC=∠APC=α,α∈(0,π),
∴,,又PO⊥平面ABC,
∴=(),
设,则,且0<t<1,
∴,
∴当时,V'PABC>0,当时,V'PABC<0,
∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.
法三:设PO=x,则BO=x,,(0<x<2)
又PO⊥平面ABC,
∴,


当且仅当x 2=8﹣2x 2
,即
时取等号,∴四面体PABC 体积的最大值为

【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.
21.【答案】(1)证明见解析;(2)250x y --=. 【解析】
试题分析:(1)L 的方程整理为()()4270x y m x y +-++-=,列出方程组,得出直线过圆内一点,即可
证明;(2)由圆心()1,2M ,当截得弦长最小时, 则L AM ⊥,利用直线的点斜式方程,即可求解直线的方程.
1111]
(2)圆心()1,2M ,当截得弦长最小时, 则L AM ⊥, 由1
2
AM k =-
得L 的方程()123y x -=-即250x y --=. 考点:直线方程;直线与圆的位置关系.
22.【答案】
【解析】解:(1)当m=3时,由x 2
﹣2x ﹣3<0⇒﹣1<x <3,

>1⇒﹣1<x <5,
∴A ∩B={x|﹣1<x <3}; (2)若A ∩B={x|﹣1<x <4}, ∵A=(﹣1,5),
∴4是方程x 2
﹣2x ﹣m=0的一个根,
∴m=8,
此时B=(﹣2,4),满足A ∩B=(﹣1,4). ∴m=8.
23.【答案】(1)047522=++-+y x y x ;(2)4
25)2()2
5(2
2=-+-y x . 【解析】
试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程022=++++F Ey Dx y x ,将三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为2
5
,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.
试题解析:(1)设圆P 的方程是02
2
=++++F Ey Dx y x ,则由已知得
⎪⎩
⎪⎨⎧=+-+-+=++++=++++0
26)2(60
04040001222
222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为04752
2
=++-+y x y x .
(2)由圆的对称性可知,圆心P 的横坐标为25
241=+,故圆心)2,2
5(P , 故圆P 的半径25)20()251(||2
2=-+-==AP r ,
故圆P 的标准方程为4
25)2()25(2
2=-+-y x .
考点:圆的方程 24.【答案】
【解析】(Ⅰ)解:设点E (t ,t ),∵B (0,﹣1),∴A (2t ,2t+1), ∵点A 在椭圆C 上,


整理得:6t2+4t=0,解得t=﹣或t=0(舍去),
∴E(﹣,﹣),A(﹣,﹣),
∴直线AB的方程为:x+2y+2=0;
(Ⅱ)证明:设P(x0,y0),则,
直线AP方程为:y+=(x+),
联立直线AP与直线y=x的方程,解得:x M=,
直线BP的方程为:y+1=,
联立直线BP与直线y=x的方程,解得:x N=,
∴OM•ON=|x M||x N|
=2•||•||
=||
=||
=||
=.
【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.。

相关文档
最新文档