谷里初中2018-2019学年初中七年级上学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谷里初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•六盘水)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()
A. 相对
B. 相邻
C. 相隔
D. 重合
2.(2分)(2015•衢州)﹣3的相反数是()
A. 3
B. -3
C.
D. -
3.(2分)(2015•宁德)2015的相反数是()
A. B. C. 2015 D. -2015
4.(2分)(2015•佛山市)-3的倒数为()
A. B. C. D. 3
5.(2分)(2015•河南)据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()
A. B. C. D.
6.(2分)(2015•安顺)|﹣2015|等于()
A. 2015
B. ﹣2015
C. ±2015
D.
7.(2分)(2015•咸宁)方程2x﹣1=3的解是()
A. -1
B. -2
C. 1
D. 2
8.(2分)(2015•六盘水)下列运算结果正确的是()
A. ﹣87×(﹣83)=7221
B. ﹣2.68﹣7.42=﹣10
C. 3.77﹣7.11=﹣4.66
D. <
9.(2分)(2015•厦门)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()
A. ∠A和∠B互为补角
B. ∠B和∠ADE互为补角
C. ∠A和∠ADE互为余角
D. ∠AED和∠DEB互为余角
10.(2分)(2015•天津)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()
A. 0.227×107
B. 2.27×106
C. 22.7×105
D. 227×104
二、填空题
11.(1分)(2015•玉林)将太阳半径696000km这个数值用科学记数法表示是 ________km.
12.(1分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=________ .
13.(1分)(2015•来宾)﹣2015的相反数是 ________.
14.(1分)(2015•常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:
,
如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为________ .
15.(1分)(2015•上海)计算:|﹣2|+2=________ .
16.(1分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为
2.72×10n,则n=________ .
三、解答题
17.(10分)如图,检测5个排球,其中质量超过标准的克数记为正数,不足的克数记为负数.
(1)从轻重的角度看,几号球最接近标准?
(2)若每个排球标准质量为260克,求这五个排球的总质量为多少克?
18.(10分)燕尾槽的截面如图所示
(1)用代数式表示图中阴影部分的面积;
(2)若x=5,y=2,求阴影部分的面积
19.(6分)小明拿扑克牌若千张变魔术,将这些扑克牌平均分成三份,分别放在左边,中间,右边,第一次从左边一堆中拿出两张放在中间一堆中,第二次从右边一堆中拿出一张放在中间一堆中,第三次从中间一堆中拿出一些放在左边一堆中,使左边的扑克牌张数是最初的2倍.
(1)如一开始每份放的牌都是8张,按这个规则魔术,你认为最后中间一堆剩________张牌?
(2)此时,小慧立即对小明说:“你不要再变这个魔术了,只要一开始每份放任意相同张数的牌(每堆牌不少于两张),我就知道最后中间一堆剩几张牌了,我想到了其中的奥秘!”请你帮小慧揭开这个奥秘.(要求:用所学的知识写出揭秘的过程)
20.(7分)观察下列等式:
请解答下列问题:
(1)按以上规律列出第5个算式: ________
(2)由此计算:
(3)用含n的代式表示第n个等式:a n= ________(n为正整数);
21.(16分)同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:
(1)|-4+6|=________;|-2-4|=________;
(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;
(3)若数轴上表示数a的点位于-4与6之间,求|a+4|+|a-6|的值;
(4)当a=________时,|a-1|+|a+5|+|a-4|的值最小,最小值是________;
(5)当a=________时,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,最小值是________.22.(8分)(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高
积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.
(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?
(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪
3
5
7
(1)【问题解决】
①当三角形内有4个点时,最多剪得的三角形个数为________;
②你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加________个;
③猜想:当三角形内点的个数为n时,最多可以剪得________个三角形;
像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.(2)【问题拓展】请你尝试用归纳的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?
23.(11分)
(1)【归纳】观察下列各式的大小关系:
|-2|+|3|>|-2+3| |-6|+|3|>|-6+3|
|-2|+|-3|=|-2-3| |0|+|-8|=|0-8|
归纳:|a|+|b|________|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)
(2)【应用】根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.
(3)【延伸】a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.
24.(10分)
(1)关于x的方程与方程的解相同,求m的值.
(2)已知关于x的多项式的值与x的值无关,求m,n的值.
谷里初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题
1.【答案】B
【考点】几何体的展开图
【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,
“我”与“国”是相对面,
“我”与“祖”是相对面,
“爱”与“的”是相对面.
故原正方体上两个“我”字所在面的位置关系是相邻.
故选B.
【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.2.【答案】A
【考点】相反数及有理数的相反数
【解析】【解答】﹣3的相反数是3,
故选:A.
【分析】根据相反数的概念解答即可.
3.【答案】D
【考点】相反数及有理数的相反数
【解析】【解答】解:2015的相反数是:﹣2015,故选:D
【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.
4.【答案】A
【考点】有理数的倒数
【解析】【解答】∵(﹣3)×(﹣)=1,
∴﹣3的倒数是﹣.
故选A.
【分析】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.5.【答案】D
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】40570亿=4057000000000=4.057×1012,故选D.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中40570亿,有13位整数,n=13﹣1=12.
6.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】|﹣2015|=2015
【分析】一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.
7.【答案】D
【考点】解一元一次方程
【解析】【解答】解:方程2x﹣1=3,
移项合并得:2x=4,
解得:x=2,
故选D.
【分析】方程移项合并,把x系数化为1,即可求出解.
8.【答案】A
【考点】有理数大小比较,有理数的减法,有理数的乘法
【解析】【解答】A、原式=7221,正确;
B、原式=﹣10.1,错误;
C、原式=﹣3.34,错误;
D、﹣>﹣,错误,
故选A
【分析】原式各项计算得到结果,即可做出判断.
9.【答案】C
【考点】余角和补角
【解析】【解答】解:∵∠C=90°,
∴∠A+∠B=90°,
∵∠B=∠ADE,
∴∠A+∠ADE=90°,
∴∠A和∠ADE互为余角.
故选:C.
【分析】根据余角的定义,即可解答.
10.【答案】B
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将2270000用科学记数法表示为2.27×106.故选B.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
二、填空题
11.【答案】6.96×105
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:696000=6.96×105,
故答案为:6.96×105.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
12.【答案】5
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将272000用科学记数法表示为2.72×105.
∴n=5.
故答案为5.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
13.【答案】2015
【考点】相反数及有理数的相反数
【解析】【解答】解:﹣2015的相反数是2015,
故答案为:2015.
【分析】根据只有符号不同的两个数互为相反数,可得答案.
14.【答案】128、21、20、3
【考点】探索数与式的规律
【解析】【解答】解:根据分析,可得
则所有符合条件的m的值为:128、21、20、3.
故答案为:128、21、20、3.
【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.
15.【答案】4
【考点】绝对值及有理数的绝对值,有理数的加法
【解析】【解答】解:原式=2+2
=4.
故答案为4.
【分析】先计算|﹣2|,再加上2即可.
16.【答案】5
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将272000用科学记数法表示为2.72×105.
∴n=5.
故答案为5.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
三、解答题
17.【答案】(1)解:根据图形可得差的绝对值最小为0.6,
所以从轻重的角度看,5号球最接近标准
(2)解:260×5+(5-3.5+0.7-2.5-0.6)
=1300-0.9
=1299.1(克)
【考点】运用有理数的运算解决简单问题
【解析】【分析】(1)从轻重的角度看绝对值越小越接近标准质量;
(2)用标准质量的和再加上5个排球质量超过标准的克数或不足的克数的和即可算出这五个排球的总质量。
18.【答案】(1)解:图中阴影部分的面积为:
(2)解:把代入,得阴影部分的面积为:
【考点】整式的加减运算
【解析】【分析】(1)由图可知:图中的阴影部分的面积就是两个直角三角形的面积,这两个直角三角形的一条直角是y,一条直角边是x,根据直角三角形的面积计算公式即可算出阴影部分的面积;
(2)将x=5,y=2 代入(1)所得的代数式,根据有理数的混合运算顺序即可算出答案。
19.【答案】(1)1
(2)解:不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,按这样的游戏规则:第一次:左边,中间,右边的扑克牌分别是(x-2)张,(x+2)张,x张;第二次:左边,中间,右边的扑克牌分别是(x-2)张,(x+3)张,(x-1)张,第三次:若中间一堆中拿y张扑克牌到左边,此时左边有(x-2)+y=2x张;即:y=2x-(x-2)=(x+2)张,所以,这时中间一堆剩(x+3)-y=(x+3)-(x+2)=1张扑克牌,所以,最后中间一堆只剩1张扑克牌.
【考点】列式表示数量关系,整式的加减运算
【解析】【解答】解:(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,由题意列等式的x-2+y=2x,解得y=x+2,
即y是x的一次函数,
当x=8时,y=10,
把x=8,y=10代入x+2-y+1=1.
最后中间一堆剩1张牌,
故答案为:1;
【分析】(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,第一次从左边一堆中拿出两张放在中间一堆中左边一堆剩x-2张,第二次左边的牌的数量没有发生变化,第三次从中间一堆中拿出y张放
在左边一堆中,左边一堆中共有(x-2+y)张,又第三次后左边的扑克牌张数是最初的2倍.从而列出方程,然后举哀那个x=8代入即可算出y的值,进而即可得出答案;
(2)不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,分别写出第一次,第二次,第三次左边、中间、右边的牌的数量,然后根据题意列出方程,求解即可。
20.【答案】(1)
(2)解: 原式= ×(1﹣)+ ×(﹣)+ ×(﹣)+…+ ×(﹣)
= ×(1﹣+ ﹣+ ﹣+…+ ﹣)
= ×(1﹣)
= ×
=
(3).
【考点】有理数的加减乘除混合运算,探索数与式的规律
【解析】【解答】解:(1)第5个等式:a5= = ×(﹣);
(3 ).
【分析】(1)和(3)的分子是1,分母是相差2的两个自然数的积,等于分子是1,分母是这两个自然数的两个分数差的一半,根据这个规律再运用有理数的加减即可解决问题。
(2)利用(1)(3)得出的结论即可解决问题。
21.【答案】(1)2;6
(2)解:即整数x与-2的距离加x与1的距离和为3,则-2≤x≤1,
答所有符合条件的整数x有:-2,-1,0,1
(3)解:即:-4≤x≤6,则|a+4|+|a-6|=10,
故:答案为10
(4)1;9
(5)1;4n+1
【考点】数轴及有理数在数轴上的表示,绝对值及有理数的绝对值
【解析】【解答】解:(1)答案为:2,6;
(4 )取-5,1,4三个数的中间值即可,即a=1,
则最小值为9,
故答案为1,9;
(5 )依据(4)取-2n,-2n+1,…1,2,3…,2n+1的中间值1,
则最小值为2n+1-(-2n)=4n+1,
故:答案为1,4n+1.
【分析】(1)|-4+6|表示-4与-6差的绝对值,先算出其差,再根据绝对值的意义去掉绝对值符号即可;同理|-2-4| 表示-2与4差的绝对值,先算出其差,再根据绝对值的意义去掉绝对值符号即可;
(2)|x+2|+|x-1|=3 表示的意义是:整数x与-2的距离加x与1的距离和为3 ,故表示x的点应该位于-2与1之间,从而得出x的取值范围-2≤x≤1,再找出这个范围内的整数即可;
(3)由题意知:-4≤a≤6,故a+4≥0,a-6≤0,根据绝对值的意义即可去掉绝对值符号,再合并同类项即可;(4)|a-1|+|a+5|+|a-4| 表示的是a到1,-5,4的距离和,根据两点之间线段最短,故要使|a-1|+|a+5|+|a-4|的值最小,则a=1,把a=1代入即可算出答案;
(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。
22.【答案】(1)9;2;2n+1
(2)解:1+3+5+7+…+(2n-1)+(2n+1)=
= (n+1)(1+2n+1)
=(n+1)2
=n2+2n+1.
【考点】探索图形规律
【解析】【解答】解:(1)①∵当三角形内点的个数为1时,最多可以剪得3个三角形;
当三角形内点的个数为2时,最多可以剪得5个三角形;
当三角形内点的个数为3时,最多可以剪得7个三角形;
∴当三角形内点的个数为4时,最多可以剪得9个三角形;
故答案为:9;
②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;
故答案为:2;
③∵1×2+1=3,2×2+1=5,3×2+1=7,
∴当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
故答案为:2n+1;
【分析】(1)①探索图形规律的题,根据题意画出图形即可得出答案;②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;③通过观察,三角形内的点每增加1个,所剪出的三角形的个数就增加两个,而所剪出的三角形的个数是从1开始的连续奇数个,根据奇数的表示方法,当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
(2)根据补项法,1+3+5+7+…+(2n-1)+(2n+1)=
,根据连续奇数和
的计算方法,用首加尾的和为(2n+1+1)共有这样的加数和的个数为,从而利用用首加尾的和再乘以这样的和的个数即可算出答案。
23.【答案】(1)≥
(2)解:由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n 异号.当m为正数,n 为负数时,m-n=13,则n=m-13,|m+m-13|=1,m=7或6;当m为负数,n为正数时,-m+n=13,则n=m+13,|m+m+13|=1,m=-7或-6.综上所述:m为±6或±7
(3)解:若按a、b、c中0的个数进行分类,可以分成四类:第一类:A.b、c三个数都不等于0 .①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|;②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|;③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除;④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除;第二类:A.b、c三个数中有1个0 【结论同第(1)问①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除;②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除;③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|;第三类:A.b、c三个数中有2个0.①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除;②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除;第四类:A.b、c 三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除;综上所述:不等式成立的条件是:1个负数2个正数;1个正数2个负数;1个0,1个正数和1个负数.
【考点】探索数与式的规律
【解析】【分析】(1)由题意可得;
(2)由已知可得≠,所以可知m、n异号,分两种情况讨论即可求解:①当m为正数,n为负数时;②当m为负数,n为正数时;
(3)由题意可按a、b、c中0的个数进行分类,可以分成四类:
第一类:A.b、c三个数都不等于0。
①1个正数,2个负数,结合已知可求解;②1个负数,2个正
数,结合已知可求解;③3个正数,结合已知可求解;
第二类:A.b、c三个数中有1个0 ,①1个0,2个正数,结合已知可求解;②1个0,2个负数,结
合已知可求解;③1个0,1个正数,1个负数,结合已知可求解;
第三类:A.b、c三个数中有2个0.①2个0,1个正数,结合已知分析可求解;②2个0,1个负数,结合已知分析可求解;
第四类:A.b、c 三个数都为0,此时|a|+|b|+|c|=|a+b+c| 不符合题意。
24.【答案】(1)解:(x-16)=-6,x-16=-12,x=16-12,x=4,把x=4代入得,
2+ =0,∴m=-6
(2)解:∵多项式-2x2+mx+nx2-5x-1的值与x的取值无关,∴-2+n=0,m-5=0,∴n=2,m=5
【考点】整式的加减运算,一元一次方程的解
【解析】【分析】(1)首先求出方程的解,然后将x的值代入方程即可算出m的值;
(2)由于多项式是关于x的多项式,将m,n作为常数合并同类项,根据关于x的多项式
的值与x的值无关,故含x的项的系数都应该为0,从而列出方程,求解即可。