大悟县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大悟县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知全集为,且集合,,则等于( )R }2)1(log |{2<+=x x A }01
2
|{≥--=x x x B )(B C A R A .
B .
C .
D .)1,1(-]1,1(-)2,1[]
2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.2. 复数的虚部为( )
A .﹣2
B .﹣2i
C .2
D .2i
3. 函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( )
A .0<a ≤
B .0≤a ≤
C .0<a <
D .a >
4. 若,,则不等式成立的概率为(
)
[]0,1b ∈2
2
1a b +≤A .
B .
C .
D .
16
π
12
π
8
π
4
π
5. 下列函数在(0,+∞)上是增函数的是( )
A .
B .y=﹣2x+5
C .y=lnx
D .y=
6. “a >b ,c >0”是“ac >bc ”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
7. 已知AC ⊥BC ,AC=BC ,D 满足=t +(1﹣t ),若∠ACD=60°,则t 的值为( )
A .
B .
﹣
C .
﹣1D .
8. 图
1是由哪个平面图形旋转得到的(
)
A .
B .
C .
D .
9. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )
A .[5,10]
B .(5,10)
C .[3,12]
D .(3,12)
10.的外接圆圆心为,半径为2,为零向量,且,则在方向上
ABC ∆O OA AB AC ++ ||||OA AB =
CA BC 的投影为( )
A .-3
B .
C .3
D 11.已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( )
A .{5,8}
B .{4,5,6,7,8}
C .{3,4,5,6,7,8}
D .{4,5,6,7,8}
12.函数y=2|x|的图象是(
)
A .
B .
C .
D .
二、填空题
13.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
14.已知两个单位向量满足:,向量与的夹角为,则
.
,a b 1
2
a b ∙=- 2a b - cos θ=15.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)
①﹣,1是函数g (x )=2x 2﹣1有两个不动点;
②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点;
④函数g (x )=2x 2﹣1共有三个稳定点;
⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同.
16.等差数列的前项和为,若,则等于_________.{}n a n S 37116a a a ++=13S 17.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.18.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .
三、解答题
19.(本小题满分12分)
某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:
0.005
0.02a
频率组距
千克
(Ⅰ)求频率分布直方图中的的值,并估计每天销售量的中位数;
a (Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.
20.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;
(1)求f(x)的对称轴方程和单调递增区间;
(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.
21.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到
如图所示的几何体σ.
(1)求几何体σ的表面积;
(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形.
1cm
22.圆锥底面半径为,其中有一个内接正方体,求这个内接正方体的棱长.
23.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,
5313a b +=.111]
(1)求{}n a ,{}n b 的通项公式;(2)求数列{
}n
n
a b 的前项和n S .24.设函数f (x )=mx 2﹣mx ﹣1.
(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.
大悟县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】C
2.【答案】C
【解析】解:复数===1+2i的虚部为2.
故选;C.
【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.
3.【答案】B
【解析】解:当a=0时,f(x)=﹣2x+2,符合题意
当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数
∴⇒0<a≤
综上所述0≤a≤
故选B
【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.
4.【答案】D
【解析】
考点:几何概型.
5.【答案】C
【解析】解:对于A,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;
对于B,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;
对于C,函数y=lnx在(0,+∞)上是增函数,∴满足题意;
对于D,函数y=在(0,+∞)上是减函数,∴不满足题意.
故选:C.
【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.
6.【答案】A
【解析】解:由“a>b,c>0”能推出“ac>bc”,是充分条件,
由“ac>bc”推不出“a>b,c>0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac>bc,但是a<b,c<0,
故选:A.
【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题
7.【答案】A
【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;
若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;
根据题意,∠ACD=60°,∠DCF=30°;
∴;
即;
解得.
故选:A.
【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.
8.【答案】A
【解析】
试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.
考点:旋转体的概念.
9.【答案】A
【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)
即
解得:x=3,y=1
即4a﹣2b=3(a﹣b)+(a+b)
∵1≤a﹣b≤2,2≤a+b≤4,
∴3≤3(a﹣b)≤6
∴5≤(a﹣b)+3(a+b)≤10
故选A
【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.
10.【答案】B
【解析】
考点:向量的投影.
11.【答案】C
【解析】解:∵A={4,5,6,8},B={3,5,7,8},
∴A∪B={3,4,5,6,7,8}.
故选C
12.【答案】B
【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)
∴y=2|x|是偶函数,
又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.
且当x=0时,y=1;x=1时,y=2,故A,D错误
故选B
【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.
二、填空题
13.【答案】
【解析】【知识点】空间几何体的三视图与直观图
【试题解析】正方体中,BC中点为E,CD中点为F,
则截面为
即截去一个三棱锥其体积为:
所以该几何体的体积为:
故答案为:
14.【答案】.
【解析】
考点:向量的夹角.
【名师点睛】平面向量数量积的类型及求法
(1)
求平面向量的数量积有三种方法:一是定义;二是坐标运算公式
cos a b a b θ⋅=
;三是利用数量积的几何意义.
1212a b x x y y ⋅=+
(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简15.【答案】 ①②⑤
【解析】解:对于①,令g (x )=x ,可得x=或x=1,故①正确;
对于②,因为f (x 0)=x 0,所以f (f (x 0))=f (x 0)=x 0,即f (f (x 0))=x 0,故x 0也是函数y=f (x )的稳
定点,故②正确;
对于③④,g (x )=2x 2﹣1,令2(2x 2﹣1)2﹣1=x ,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x ﹣1)(2x+1)(4x 2+2x ﹣1)=0还有另外两解
,故函数g (x )的稳定点有﹣,1,
,其中
是稳定点,但不是
不动点,故③④错误;
对于⑤,若函数y=f (x )有不动点x 0,显然它也有稳定点x 0;
若函数y=f (x )有稳定点x 0,即f (f (x 0))=x 0,设f (x 0)=y 0,则f (y 0)=x 0即(x 0,y 0)和(y 0,x 0)都在函数y=f (x )的图象上,
假设x 0>y 0,因为y=f (x )是增函数,则f (x 0)>f (y 0),即y 0>x 0,与假设矛盾;假设x 0<y 0,因为y=f (x )是增函数,则f (x 0)<f (y 0),即y 0<x 0,与假设矛盾;故x 0=y 0,即f (x 0)=x 0,y=f (x )有不动点x 0,故⑤正确.故答案为:①②⑤.
【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.
16.【答案】26【解析】
试题分析:由题意得,根据等差数列的性质,可得,由等差数列的求和
371177362a a a a a ++==⇒=.
11313713()
13262
a a S a +=
==考点:等差数列的性质和等差数列的和.17.【答案】120
【解析】
考
点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,sin :sin :sin 3:5:7A B C =3,5,7a b ===熟记正弦、余弦定理的公式是解答的关键.
18.【答案】 70 .
【解析】解:根据题意二项式
展开式中,仅有第五项的二项式系数最大,
则n=8,
所以二项式=展开式的通项为T r+1=(﹣1)r C 8r x 8﹣2r
令8﹣2r=0得r=4
则其常数项为C 84=70
故答案为70.
【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.
三、解答题
19.【答案】(本小题满分12分)
解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数.
(Ⅰ)由得 (3分)
(0.0050.0150.020.025)101a ++++⨯=0.035a = 每天销售量的中位数为千克 (6分)0.15701074.30.35
+
⨯=(Ⅱ)若当天的销售量为,则超市获利元;[50,60)554202180⨯-⨯= 若当天的销售量为,则超市获利元;
[60,70)654102240⨯-⨯= 若当天的销售量为,则超市获利元, (10分)
[70,100)754300⨯=∴获利的平均值为元. (12分)
0.151800.22400.65300270⨯+⨯+⨯=20.【答案】
【解析】解:(1)函数f (x )=cos (ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f (x )=cos (2x+
).
令2x+=k π,求得x=﹣,可得对称轴方程为 x=﹣,k ∈Z .
令2k π﹣π≤2x+≤2k π,求得 k π﹣
≤x ≤k π﹣,
可得函数的增区间为,k ∈Z .
(2)当2x+
=2k π,即x=k π﹣,k ∈Z 时,f (x )取得最大值为1.
当2x+=2k π+π,即x=k π+,k ∈Z 时,f (x )取得最小值为﹣1.
∴f (x )取最大值时相应的x 集合为{x|x=k π﹣,k ∈Z};
f (x )取最小值时相应的x 集合为{x|x=k π+
,k ∈Z}.
21.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=
×4π×2×2=8π,
或S=×4π×2+
×(4π×2﹣2π×)+×2π×=8π;(2)由已知S △ABD =××2×sin135°=1,
因而要使四面体MABD 的体积为
,只要M 点到平面ABCD 的距离为1,因为在空间中有两个平面到平面ABCD 的距离为1,
它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
22..【解析】
试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可.
试题解析:过圆锥的顶点和正方体底面的一条对角线作圆锥的截面,得圆锥的轴截面,正方体对S CD SEF 角面,如图所示.
11CDD C
设正方体棱长为,则,,1CC x =11C D =
作于,则,,
SO EF ⊥O SO =1OE =
∵,∴
1ECC EOS ∆∆:11CC EC SO EO
=
=∴.x =cm 考点:简单组合体的结构特征.
23.【答案】
(1)2,2==q d ;(2)12
326-+-
=n n n S .【解析】(2)
12
12--=n n n n b a ,………………6分122121223225231---+-++++=n n n n n S ,①n n n n n S 2
12232252321211321-+-++++=- .②……………8分①-②得n n n n n S 2122222222212`1221--+++++=-- 23112222211222222n n n n S --=++++-,…………10分
所以1
2326-+-=n n n S .………………12分考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.
【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;
(2)数列}a {n
n b 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S .24.【答案】
【解析】解:(1)当m=0时,f (x )=﹣1<0恒成立,
当m ≠0时,若f (x )<0恒成立,则
解得﹣4<m <0
综上所述m 的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(2)要x ∈[1,3],f (x )<﹣m+5恒成立,即
恒成立.令
﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
当 m >0时,g (x )是增函数,
所以g (x )max =g (3)=7m ﹣6<0,解得.所以当m=0时,﹣6<0恒成立.
当m <0时,g (x )是减函数.
所以g (x )max =g (1)=m ﹣6<0,
解得m <6.
所以m <0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.。