高考物理高考物理万有引力定律的应用答题技巧及练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理高考物理万有引力定律的应用答题技巧及练习题(含答案)
一、高中物理精讲专题测试万有引力定律的应用
1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.
(1)求M 、N 间感应电动势的大小E ;
(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;
(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】
(1)法拉第电磁感应定律
E=BLv
代入数据得
E =1.54V
(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有
2Mm
G
mg R
= 匀速圆周运动
2
2
()Mm v G m R h R h
=++ 解得
2
2gR h R v
=-
代入数据得
h ≈4×105m
【方法技巧】
本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不
大,但第二问很容易出错,要求考生心细,考虑问题全面.
2.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.
(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转的角速度为ω,地球半径为R . (2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50kg 的人对水平地板的压力大小.取地面附近的重力加速度g=10m/s 2,地球自转的角速度ω=7.3×10-5rad/s ,地球半径R=6.4×103km . 【答案】(1)22111
()2
m R h ω+;(2)11.5N 【解析】
试题分析:(1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.(2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小. 解:(1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度v=(R+h 1)ω, 货物相对地心的动能.
(2)根据
,
因为a=,,
联立解得
N==≈11.5N.
根据牛顿第三定律知,人对水平地板的压力为11.5N.
3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。
已知月球的半径为R,求:
(1)月球的质量;
(2)月球的自转周期。
【答案】(1) (2)
【解析】
【分析】
本题考查考虑天体自转时,天体两极处和赤道处重力加速度间差异与天体自转的关系。
【详解】
(1)科学家在“两极”处竖直上抛物体时,由匀变速直线运动的公式
解得月球“两极”处的重力加速度
同理可得月球“赤道”处的重力加速度
在“两极”没有月球自转的影响下,万有引力等于重力,
解得月球的质量
(2)由于月球自转的影响,在“赤道”上,有
解得:。
4.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。
(1)2018年12月27日中国北斗卫星导航系统开始提供全球服务,标志着北斗系统正式迈入全球时代。
覆盖全球的北斗卫星导航系统由静止轨道卫星(即地球同步卫星)和非静
止轨道卫星共35颗组成的。
卫星绕地球近似做匀速圆周运动。
已知其中一颗地球同步卫星距离地球表面的高度为h ,地球质量为M e ,地球半径为R ,引力常量为G 。
a.求该同步卫星绕地球运动的速度v 的大小;
b.如图所示,O 点为地球的球心,P 点处有一颗地球同步卫星,P 点所在的虚线圆轨道为同步卫星绕地球运动的轨道。
已知h = 5.6R 。
忽略大气等一切影响因素,请论证说明要使卫星通讯覆盖全球,至少需要几颗地球同步卫星?(cos81= 0.15︒,sin810.99︒=)
(2)今年年初上映的中国首部科幻电影《流浪地球》引发全球热议。
根据量子理论,每个光子动量大小h
p λ
=
(h 为普朗克常数,λ为光子的波长)。
当光照射到物体表面时将产
生持续的压力。
设有一质量为m 的飞行器,其帆面始终与太阳光垂直,且光帆能将太阳光全部反射。
已知引力常量为G ,光速为c ,太阳质量为M s ,太阳单位时间辐射的总能量为E 。
若以太阳光对飞行器光帆的撞击力为动力,使飞行器始终朝着远离太阳的方向运动,成为“流浪飞行器”。
请论证:随着飞行器与太阳的距离越来越远,是否需要改变光帆的最小面积s 0。
(忽略其他星体对飞行器的引力) 【答案】(1)a.e
GM v R h
=
+ b .至少需要3颗地球同步卫星才能覆盖全球(2)随着飞行器与太阳的距离越来越远,不需要改变光帆的最小面积s 0 【解析】 【详解】
(1)a .设卫星的质量为m 。
由牛顿第二定律()
2
e 2
M m
v G
m R h
R h =++,
得e
GM v R h
=
+ b .如答图所示,设P 点处地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ,至少需要N 颗地球同步卫星才能覆盖全球。
由直角三角形函数关系cos R
R h
θ=
+,h = 5.6 R ,得θ= 81°。
所以1颗地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ = 162°
360=2.22N θ
︒
≥
所以,N = 3,即至少需要3颗地球同步卫星才能覆盖全球
(2)若使飞行器始终朝着远离太阳的方向运动,当飞行器与太阳距离为r 时,光帆受到太阳光的压力F 与太阳对飞行器的引力大小关系,有s 2M m F G r
≥ 设光帆对太阳光子的力为F ',根据牛顿第三定律F ' =F
设t ∆时间内太阳光照射到光帆的光子数为n ,根据动量定理:'2h
F t n
λ
∆=
设t ∆时间内太阳辐射的光子数为N ,则
E t
N c h
λ
∆=
设光帆面积为s ,2
4n s N r π= 当s 2=M m F G
r 时,得最小面积s 0
2cGM m
s E
π= 由上式可知,s 0和飞行器与太阳距离r 无关,所以随着飞行器与太阳的距离越来越远,不
需要改变光帆的最小面积s 0。
5.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:
(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月. 【答案】
(1)r =22022=R h M Gs 月月 【解析】
本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解
6.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:
(1)月球的质量M ;
(2)轨道舱绕月飞行的周期T .
【答案】(1)G
gR M 2
=
(2)2r r
T R g
π=【解析】 【分析】
月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】
解:(1)设月球表面上质量为m 1的物体,其在月球表面有:112Mm G
m g R = 1
12
Mm G m g R
= 月球质量:G
gR M 2
=
(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m
由牛顿运动定律得: 2
2Mm 2πG m r r T ⎛⎫= ⎪⎝⎭
222()Mm G m r r T π= 解得:2r
r T R g
π=
7.在月球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R ,万有引力常量为G ,月球质量分布均匀。
求: (1)月球的密度; (2)月球的第一宇宙速度。
【答案】(1)0
32v RGt ρπ=(2)02v R
v t
=
【解析】 【详解】
(1)根据竖直上抛运动的特点可知:01
02
v gt -= 所以:g=
2v t
设月球的半径为R,月球的质量为M,则:2
GMm
mg R = 体积与质量的关系:34
·3
M V R ρπρ== 联立得:0
32v RGt
ρπ=
(2)由万有引力提供向心力得
2
2
GMm v m R R
= 解得;02v R
v t
=
综上所述本题答案是:(1)032v RGt ρπ=(2)02v R
v t
=
【点睛】
会利用万有引力定律提供向心力求中心天体的密度,并知道第一宇宙速度等于v gR = 。
8.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
量子卫星成功运行后,我国已首次实现了卫星和地面之间的量子通信,成功构建了天地体化的量子保密通信与科学实验体系。
假设量子卫星轨道在赤道平面, 如图所示。
已知量子卫星的轨道半径是地球半径的m 倍,同步卫星的轨道半径是地球半径的n 倍,图中P 点是地球赤道上一点,求量子卫星的线速度与P 点的线速度之比。
【答案】
【解析】试题分析:研究量子卫星和同步卫星绕地球做匀速圆周运动,根据万有引力提供向心力,求出两颗卫星的线速度;研究地球赤道上的点和同步卫星,具有相等角速度,求P 点的线速度,从而比较量子卫星的线速度与P 点的线速度之比。
设地球的半径为R ,对量子卫星,根据万有引力提供向心力
则有:,又
解得:
对同步卫星,根据万有引力提供向心力
则有:,又
解得:
同步卫星与P 点有相同的角速度,则有:
解得:
则量子卫星的线速度与P 点的线速度之比为
【点睛】求一个物理量之比,我们应该把这个物理量先用已知的物理量表示出来,再根据表达式进行比较.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.
9.“神舟”十号飞船于2013年6月11日17时38分在酒泉卫星发射中心成功发射,我国首位 80后女航大员王亚平将首次在太空为我国中小学生做课,既展示了我国在航天领域的实力,又包含着祖国对我们的殷切希望.火箭点火竖直升空时,处于加速过程,这种状态下宇航员所受支持力F 与在地球表面时重力mg 的比值后F
k mg
=
称为载荷值.已知地球的半径为R =6.4×106m (地球表面的重力加速度为g =9.8m/s 2)
(1)假设宇航员在火箭刚起飞加速过程的载荷值为k =6,求该过程的加速度;(结论用g 表示)
(2)求地球的笫一宇宙速度;
(3)“神舟”十号飞船发射成功后,进入距地面300km 的圆形轨道稳定运行,估算出“神十”绕地球飞 行一圈需要的时间.(π2≈g )
【答案】(1) a =5g (2)37.9210m/s v =⨯ (3)T =5420s 【解析】 【分析】
(1)由k 值可得加速过程宇航员所受的支持力,进而还有牛顿第二定律可得加速过程的加速度.
(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,此时万有引力近似等于地球表面的重力,然后结合牛顿第二定律即可求出;
(3)由万有引力提供向心力的周期表达式,可表示周期,再由地面万有引力等于重力可得黄金代换,带入可得周期数值. 【详解】
(1)由k =6可知,F =6mg ,由牛顿第二定律可得:F -mg =ma 即:6mg -mg =ma 解得:a =5g
(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,
由万有引力提供向心力得:2
v mg m R
=
所以:639.8 6.410m/s 7.9210m/s v gR =
=⨯⨯=⨯
(3)由万有引力提供向心力周期表达式可得:2
22()Mm G m r T
π= 在地面上万有引力等于重力:2
Mm
G
mg R = 解得:2363
262
44(6.710)s 5420s (6.410)r T gR π⨯⨯===⨯
【点睛】
本题首先要掌握万有引力提供向心力的表达式,这在天体运行中非常重要,其次要知道地面万有引力等于重力.
10.阅读如下资料,并根据资料中有关信息回答问题 (1)以下是地球和太阳的有关数据
(2)己知物体绕地球表面做匀速圆周运动的速度为v =7.9km/s ,万有引力常量G =6.67×l0-
11
m 3kg -1s -2,光速C =3×108ms -1;
(3)大约200年前法国数学家兼天文学家拉普拉斯曾预言一个密度如地球,直径为太阳250倍的发光星体由于其引力作用将不允许任何光线离开它,其逃逸速度大于真空中的光速2倍),这一奇怪的星体就叫作黑洞.
在下列问题中,把星体(包括黑洞)看作是一个质量分布均匀的球体.(①②的计算结果用科学计数法表达,且保留一位有效数字;③的推导结论用字母表达) ①试估算地球的质量;
②试估算太阳表面的重力加速度;
③己知某星体演变为黑洞时的质量为M ,求该星体演变为黑洞时的临界半径R . 【答案】(1)6×1024kg (2)32310/m s ⨯(3)2
2GM
C 【解析】
(1)物体绕地球表面做匀速圆周运动2
2
m GM v m R R =地地 解得:2
R v M G
=地=6×1024kg (2)在地球表面2
m
GM mg R =地地地
解得:2
G R M g =
地
地地
同理在太阳表面2
G R M g =
日
日日
2
322g g 310/M R m s M R ==⨯日地
日地
日
地 (3)第一宇宙速度212
v GMm
m R R
=
第二宇宙速度21v c == 解得:2
2GM R C =
【点睛】本题考查了万有引力定律定律及圆周运动向心力公式的直接应用,要注意任何物体(包括光子)都不能脱离黑洞的束缚,那么黑洞表面脱离的速度应大于光速.。