阀门的流量特性曲线.
阀门流量特性曲线图结构

用
途
阀门是一种管路附件。 改变通路断面和介质流动方向,控制输送介质流动的一种装置。
1. 接通或截断管路中的介质。 2. 调节、控制管路中介质的流量和压力。
3. 改变管路中介质流动的方向。 4. 阻止管路中的介质倒流。 5. 分离介质。 6. 指示和调节液面高度。 7. 其他特殊用途。
阀体 阀盖 启闭件 阀芯、阀瓣 阀座 密封面 阀杆 填料函
密封性能—阀杆
阀杆是带动启闭件使阀门开启和关闭的重要部件,因 为阀杆是可动件。所以是最易产生外漏的部件。因此,阀 杆密封对于阀门来讲是非常重要的。
阀杆的密封通常用压缩填料。压缩填料是指压入填 料函内使阀杆周围密封的软质材料。
材质
1.壳体:铜(黄铜、青铜)、铸铁、球墨铸铁、铸钢 2.内件:铜、不锈钢 3.密封:EPDM、NBR、PTFE
阀门流量特性曲线图结构
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
概念、用途
阀门是流体输送系统中的控制部件,具有截断、调 节、导流、防止逆流、稳压、分流或溢流泄压等功能。
阀门零部件
参数--公称通径
阀门的公称通径是管路系统中所有管路附件用数字表 示的尺寸。公称通径是供参考用的一个方便的圆整数,与加 工尺寸呈不严格的关系。
公称通径用字母“DN”后跟一个数字标志。
各种参数—压力
1.公称压力 阀门的公称压力PN是一个用数字表示的与压力有关的标示代号,是仅供参考用的一 个方便的圆整数。
2.试验压力 ⅰ阀门的壳体试验压力是指对阀门的阀体和阀盖等联结而成的整个阀门外壳进行试 验的压力,其目的是检验阀体和阀盖的致密性及包括阀体与阀盖联结处在内的整个壳体的 耐压能力。 ⅱ阀门的密封和上密封试验压力是检验启闭件和阀体密封副密封性能和阀杆与阀盖 密封副密封性能的试验压力。
流量与阀门开度的关系

阀门的流量特性不同的流量特性会有不同的阀门开度;①快开流量特性,起初变化大,后面比较平缓;②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到50%,阀门的流量也达到50%;③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。
阀门开度与流量、压力的关系,没有确定的计算公式。
它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。
调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系:Q/Qmax=f(L/Lmax)调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系:Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。
调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。
阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为:Q/Qmax=(1/R)[1+(R-1)L/Lmax]开度一半时,Q/Qmax=51.7%等百分比流量特性:Q/Qmax=R^(L/Lmax-1)开度一半时,Q/Qmax=18.3%快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)开度一半时,Q/Qmax=75.8%流量特性主要有直线、等百分比(对数)、抛物线及快开四种①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。
②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。
③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。
④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。
隔膜阀的流量特性接近快开特性,蝶阀的流量特性接近等百分比特性,闸阀的流量特性为直线特性,球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。
阀门的流量特性曲线

快 开 型 流 量 特 性 示 意 图
阀 芯 特 点 形 成 不 同 的 特 性
阀 芯 的 构 成
阀 门 的 固 有 特 性 曲 线
相对行程%
0
10
20
30
40
50
60
70
80
90
100
相对流量%
3.33
4.68
6.58
9.25
12.99
18.26
25.65
36.05
50.65
71.17
100
3。快开流量特性 此种流量特性的控制阀在开度较小时就有较大的流量,随着开度的增大,流 量很快就达到最大;此后再增加开度,流量变化很小,故称快开性流量特性。 它的相对流量与相对行程的函数关系用下式描述: dq=Kv2q-1dι 代入边界条件,求解得到快开流量特性的函数关系是 q=Q/Qmax=(1/R)√1+(R2-1)L/Lmax=(1/R)√1+(R2-1)ι 快开流量特性控制阀的增益Kv2与流量的倒数成正比,或Kv2∝1/Q,随流量增 大,增益反而减小。 由于这种流量特性的控制阀在小开度时就有较大流量,在增大开度,流量变 化已很小,因此称之为快开流量特性。通常有效行程在1/4阀座直径。 快开流量特性的增益: Kv2=[(Q2max-Q2min)/2Lmax]1/R 工厂实际使用的快开流量特性的函数关系如下 q=Q/Qmax=1-(1-1/R)(1-L/Lmax)2=1-(1-1/R)(1-ι )2 实际快开流量特性的增益 Kv2=2Qmax/Lmax(1-1/R)(1-L/Lmax)
1。线性流量特性 线性流量特性关系是指平衡阀的相对流量与相对位移成直线关系。 即单位位移变化所引起的流量变化是常数。用函数的关系描述为 dq=Kv2dι 两边积分,并带入边界条件 L=0 Q=Qmax L=Lmax Q=Qmax 如果定义控制阀的固有可调比 R=Qmax/Qmin 则带入积分常数后,线性流量特性表示 q=Q/Qmax=1/R[1+(R-1)· L/Lmax]=(R-1/R)ι +1/R 上式表明,线性流量特性平衡阀的相对流量与相对行程呈现线性关系, 直线的斜率是(R-1)/R,截距是1/R.因此,线性流量特性控制阀的增益Kv2 (即直线方程的斜率)与可调比R有关;与最大流量Qmax和流过阀门的流 量Q无关。Kv2 是常数。即增益Kv2=1-1/R.可调比R不同,表示最大流量与 最小流量之比不同,从相对流量坐标看,表示为相对行程为零时的起点不 同,起点的相对流量是1/R。由于最大行程时获得最大流量,因此,相对 行程为1时的相对流量为1。线性流量特性控制阀在不同的行程,如果行程 变化相同,则流量的相对变化量不同。 例:计算R=30时线性流量特性控制阀,行程变化量为10%时,不同行程位置 的相对变化量?
DEH调门流量特性曲线修正试验与计算-高鹏义

DEH调门流量特性曲线修正试验与计算高鹏义内蒙古国电电力工程技术研究院热控技术研究所呼和浩特市010010摘要: DEH调门流量特性曲线作为DEH调节系统的核心反映了蒸汽轮机组理论设计与实际运行的结合性。
由于机组运行时间的增加,设备的不断检修,不少机组(主要是已投产且运行时间长的机组)出现投产时输入的调门流量特性曲线与目前机组实际流量特性结合性变差或出现局部偏差的现象,反映出来的运行现象是在某段负荷区间或单阀/顺阀切换过程中负荷摆动大或调门动作幅度大且频繁。
本文主要介绍了如何在机组实际运行中通过试验及计算重新修正DEH调门原始流量特性曲线,使修正后的DEH调门流量特性曲线与机组实际流量特性充分结合,消除上述系统振荡现象,进而提高DEH调节系统的可靠性与稳定性,满足生产要求和需要。
关键词:流量特性;DEH阀门管理;重叠度;参数优化;0前言在生产过程中,汽轮机运行一段时间后或高调门解体检修后,调门的流量特性都会发生改变,与原调门流量开度修正函数产生偏差,在机组变负荷、一次调频时容易出现负荷突变或调节缓慢等问题,使机组的调节性能无法满足电网相关技术要求。
因此,必须定期对汽轮机高压调门的流量特性进行测试,根据实际情况对其控制参数进行优化整定,提高发电机组的控制品质和调节性能,保障发电机组安全、稳定运行。
1、DEH阀门管理功能阀门管理程序接受的控制信号是蒸汽流量百分比,通过程序计算将蒸汽流量百分比信号转换成相应的阀门开度百分比,在单阀方式时,高调门的开度都是一样的,计算较为简单,在顺序阀方式时,需要确定阀门的开启顺序,单独计算各个阀门的开度。
在两种方式相互转换时也需要进行流量与开度的转换。
1.1流量特性函数曲线以四个高压调门的汽轮机为例,阀门管理程序的调门控制方法主要有两种结构,如图1、2所示,为便于说明本文将其分别定义为“混合式”结构和“独立式”结构。
“混合式”用的较多。
图1 混合式DEH阀门管理程序示意图图2 独立式DEH阀门管理程序示意图“独立式”结构控制方法的调门开度指令形成方式如图4所示,这种控制结构的主要特点是:1)在单阀与多阀方式下,调门控制回路相互独立,修改或调整一种阀序下的流量开度修正函数不会影响到另一种阀序下调门的控制特性;2)多阀方式下的流量修正环节只有一个函数,综合了流量背压修正、调门开启顺序、重叠度、流量开度修正等内容,增加了参数优化工作的难度。
自力式流量控制阀的特性曲线及对使用的指导意义

自力式流量控制阀的特性曲线及对使用的指导意义刘兆军一、概述自力式流量控制阀是目前国内解决供热系统水利失调的有力武器,很多供热公司在使用它进行供热系统的流量控制之后,多年不热的用户热了,冬季开窗户的少了。
但是,也有不少供热公司,在使用自力式流量控制阀之后,出现原来热的用户反而不热的现象。
这样的问题出现之后,供热公司或说产品有问题,或说自力式流量控制阀本身就不好用,而自力式流量控制阀的生产厂家则说供热公司的供热系统有问题,最终谁也说不清真正的原因。
为了解释这种现象,也为了更好地促进自力式流量控制阀行业的健康发展,为了让更多的人充分认识自力式流量控制阀,为了让更多的供热公司用好自力式流量控制阀,有必要对自力式流量控制阀进行深入的探究。
要深入的探究自力式流量控制阀,就必须研究它的性能参数及特性曲线。
二、自力式流量控制阀的由来我国第一台自力式流量控制阀,在一九九零年由位于河北省廊坊市的原中油管道局动力实业总公司环保节能设备厂张炳礼先生发明,批量生产后名称为“自力式流量控制器”,注册商标为“爱能”,至今已经有十多年的历史了。
后来,国内也有人将其叫做“自力式流量控制阀”、“自动平衡阀”、“动态平衡阀”、“恒流量阀”、“流量平衡阀”。
2003年,在建设部相关部门的推动下,以“爱能牌”自力式流量控制阀的企业标准为基础,在固安县爱能供热设备有限公司制定了自力式流量控制阀的行业标准草案,获得建设部批准,标准号是CJ/T179-2003。
行业标准中,将其名称指定为“自力式流量控制阀”。
自此,自力式流量控制阀的发展迈上了一个新台阶。
二、自力式流量控制阀的现状目前,国内生产自力式流量控制阀的厂家很多,大体可将其分为三种:第一种是专业生产自力式流量控制阀的厂家;第二种是原来生产调节阀、平衡阀等其他水力调控阀门的厂家,现在增加了自力式流量控制阀的生产;第三种是生产普通关断阀的厂家,增加了自力式流量控制阀的生产。
从市场上各个厂家自力式流量控制阀的性能来看,也可分为三类:第一类性能好的,各项性能指标均能达到或超过行业标准要求,本文中称其为A类产品;第二类质量一般的,各项性能指标中个别指标没有达到行业标准要求,其它指标达到行业标准要求,本文中称其为B类产品;第三类性能低下的,各项性能指标中多数指标没有达到行业标准要求,个别指标达到行业标准要求,本文中称其为C类产品。
阀门流量特性曲线图结构

概念、用途
阀门是流体输送系统中的控制部件,具有截断、调节、 导流、防止逆流、稳压、分流或溢流泄压等功能。
用
途
阀门是一种管路附件。
改变通路断面和介质流动方向,控制输送介质流动的一种装置。 1. 接通或截断管路中的介质。
2. 调节、控制管路中介质的流量和压力。
3. 改变管路中介质流动的方向。 4. 阻止管路中的介质倒流。 5. 分离介质。 6. 指示和调节液面高度。
密封性能—阀杆
阀杆是带动启闭件使阀门开启和关闭的重要部件,因 为阀杆是可动件。所以是最易产生外漏的部件。因此,阀 杆密封对于阀门来讲是非常重要的。 阀杆的密封通常用压缩填料。压缩填料是指压入填料 函内使阀杆周围密封的软质材料。
材
质
1.壳体:铜(黄铜、青铜)、铸铁、球墨铸铁、铸钢 2.内件:铜、不锈钢 3.密封:EPDM、NBR、PTFE
密封性能--密封面
阀门的密封面是指阀座与关闭件互相接触而进行关闭 的部分。 由于阀门在使用过程中密封面在进行密封中要受到冲 刷和磨损,所以阀门的密封性能随着使用时间而减低。
1. 金属密封面
2. 软密封面
密封性能—垫片
垫片是阀门产生外漏的关键因素之一 1. 金属平垫片 2. 压缩石棉纤维垫片 3. 缠绕式垫片
阀权度对流量特性曲线的影响
等百分比特性
线性特性
快开型:行程较小时,流量就比较大,随着行程的增大流量很快 达到最大。阀的有效行程<d/4(d为阀座直径)。行程再增大时已不 起调节作用,适用于双位控制。
调节阀流量特性曲线的选择
期望的阀门控制信号—热量输出曲线图
实际的换热器/风机盘管流量—热量输出特性曲线
期望的阀门开度/信号—流量特性曲线
阀门的流量特性曲线

例:计算R=30时线性流量特性控制阀,行程变化量为10%时,不同行程位置 的相对变化量?
解:不同行程ι 时的相对的流量如下表 相对流量变化10%时,
在相对流量10%处,相对流量的变化量为(22.67-13)/13=74.38%; 在相对流量50%处,相对流量的变化量为(61.33-51.7)/51.7=18.62%; 在相对流量90%处,相对流量的变化量为(100-90.33)/90.33=10.71%。
等百分比流量特性控制阀的增 Kv2=(Q/Lmax)
等百分比流量特性控制阀的增益Kv2与流量Q成正比,又因 △Q/Q=R△ι -1 当相对行程变化量相同时,流量也变化相同的百分比,因此称为等百分比流量特性
例:计算R=30时等百分比流量特性控:根据q=R(ι -1)计算不同相对行程ι 和相对 量q。行程变化量为10%时,不同行程位置的相对变化量
示例说明,等百分比流量特性的控制阀在不同开度下,相同的行程变化引起 量的相对变化是相等的,因此称之为等百分比流量特性,它在全行程范围内具有 同的控制精度。它在小开度时,增益较小,因此调节平缓;在大开度时,增益较
,能够有效地进行调节
50
60
70
80
90 100
相对流量% 3.33 4.68 6.58 9.25 12.99 18.26 25.65 36.05 50.65 71.17 100
几种。
1。线性流量特性 线性流量特性关系是指平衡阀的相对流量与相对位移成直线关系。
即单位位移变化所引起的流量变化是常数。用函数的关系描述为
dq=Kv2dι 两边积分,并带入边界条件
L=0 Q=Qmax L=Lmax Q=Qmax 如果定义控制阀的固有可调比 R=Qmax/Qmin
流量与阀门开度的关系e

阀门的流量特性不同的流量特性会有不同的阀门开度;①快开流量特性,起初变化大,后面比拟平缓;②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度到达50%,阀门的流量也到达50%;③等百流量特性,跟快开式的相反,是起初变化小,后面比拟大。
阀门开度与流量、压力的关系,没有确定的计算公式。
它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。
调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系:Q/Qmax=f(L/Lmax)调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系:Q/Qmax=f(L/Lmax)〔dP1/dP〕^(1/2)。
调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。
阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 那么直线流量特性的流量与开度的关系为:Q/Qmax=〔1/R〕[1+〔R-1〕L/Lmax]开度一半时,Q/Qmax=51.7%等百分比流量特性:Q/Qmax=R^(L/Lmax-1〕开度一半时,Q/Qmax=18.3%快开流量特性:Q/Qmax=〔1/R〕[1+〔R^2-1〕L/Lmax]^(1/2)开度一半时,Q/Qmax=75.8%流量特性主要有直线、等百分比〔对数〕、抛物线及快开四种①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。
②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。
③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。
④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就到达最大,此后再增加开度,流量变化很小,故称快开特性。
隔膜阀的流量特性接近快开特性,蝶阀的流量特性接近等百分比特性,闸阀的流量特性为直线特性,球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。
流量与阀门开度的关系

阀门的流量特性不同的流量特性会有不同的阀门开度;①快开流量特性,起初变化大,后面比较平缓;②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到50%,阀门的流量也达到50%;③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。
阀门开度与流量、压力的关系,没有确定的计算公式。
它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。
调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系:Q/Qmax=f(L/Lmax)调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系:Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。
调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。
阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin,则直线流量特性的流量与开度的关系为:Q/Qmax=(1/R)[1+(R-1)L/Lmax]开度一半时,Q/Qmax=51.7%等百分比流量特性:Q/Qmax=R^(L/Lmax-1)开度一半时,Q/Qmax=18.3%快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)开度一半时,Q/Qmax=75.8%流量特性主要有直线、等百分比(对数)、抛物线及快开四种①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。
②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。
③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。
④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。
隔膜阀的流量特性接近快开特性,蝶阀的流量特性接近等百分比特性,闸阀的流量特性为直线特性,球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。
节流截止阀曲线

节流截止阀曲线
节流截止阀曲线是指在节流截止阀工作过程中,阀门开度和流体流量之间的关系曲线。
这条曲线具有以下特点:
1. 随着阀门开度的增大,流体流量逐渐增加。
2. 当阀门达到全开状态时,流体流量达到最大值。
3. 当阀门开度减小,流体流量逐渐减少,并在阀门达到最小开度时,流量为零。
节流截止阀曲线可以用来描述节流截止阀的流量控制特性,以及在不同开度下,流体的流量变化情况。
这种曲线对于节流截止阀的设计、选型和使用都有重要的指导意义。
止回阀流量工作曲线

止回阀流量工作曲线
止回阀是一种防止流体倒流的阀门,它通常用于管道系统中。
止回阀的流量工作曲线描述了在不同压力下止回阀的流量特性。
通
常情况下,止回阀的流量工作曲线是非线性的,这是由于流体在通
过阀门时受到阀座和阀瓣的阻力影响。
在低压差下,止回阀的流量
通常较小,随着压差的增加,流量逐渐增加,但在达到一定压差后,流量增加会变得缓慢,最终趋于稳定。
止回阀的流量工作曲线受到多种因素的影响,包括阀门设计、
阀座和阀瓣的材料、流体的性质以及压力等。
因此,针对不同类型
的止回阀,其流量工作曲线可能会有所不同。
从工程角度来看,了解止回阀的流量工作曲线对于设计和选择
合适的止回阀至关重要。
工程师需要根据具体的管道系统要求,选
择合适的止回阀类型以及其参数,以确保在不同压力和流量条件下,止回阀能够可靠地工作并满足系统的要求。
此外,对于操作人员来说,了解止回阀的流量工作曲线也有助
于他们更好地掌握管道系统的运行特性,及时发现和解决可能出现
的问题,确保管道系统的安全稳定运行。
总的来说,止回阀的流量工作曲线是描述止回阀在不同压力下流量特性的重要参数,对于工程设计和运行管理都具有重要意义。
阀门流量计算方法

阀门流量计算方法如何使用流量系数How to use Cv阀门流量系数(Cv)是表示阀门通过流体能力的数值。
Cv越大,在给定压降下阀门能够通过的流体就越多。
Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C的水。
Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。
Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve.A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI.公式1FORMULA 1流速:磅/小时(蒸汽或水)FLOW RATE LBS/HR (Steam or Water)在此:Where:dp = 压降,单位:PSIdp = pressure drop in PSIF = 流速,单位:磅/小时F = flow rate in lbs./hr.= 比容积的平方根,单位:立方英尺/磅(阀门下游)= square root of a specific volume in ft3/lb.(downstream of valve)公式2FORMULA 2流速:加伦/分钟(水或其它液体)FLOW RATE GPM (Water or other liquids)在此:Where:dp = 压降,单位:PSIdp = pressure drop in PSISg = 比重Sg = specific gravityQ = 流速,单位:加伦/分钟Q = flow rate in GPM局限性LIMITATIONS上列公式在下列条件下无效:Above formulas are not valid under the following conditions:a.对于可压缩性流体,如果压降超过进口压力的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相对行程%
0
10
20
30
40
50
60
70
80
90Βιβλιοθήκη 100相对流量%3.33
4.68
6.58
9.25
12.99
18.26
25.65
36.05
50.65
71.17
100
3。快开流量特性 此种流量特性的控制阀在开度较小时就有较大的流量,随着开度的增大,流 量很快就达到最大;此后再增加开度,流量变化很小,故称快开性流量特性。 它的相对流量与相对行程的函数关系用下式描述: dq=Kv2q-1dι 代入边界条件,求解得到快开流量特性的函数关系是 q=Q/Qmax=(1/R)√1+(R2-1)L/Lmax=(1/R)√1+(R2-1)ι 快开流量特性控制阀的增益Kv2与流量的倒数成正比,或Kv2∝1/Q,随流量增 大,增益反而减小。 由于这种流量特性的控制阀在小开度时就有较大流量,在增大开度,流量变 化已很小,因此称之为快开流量特性。通常有效行程在1/4阀座直径。 快开流量特性的增益: Kv2=[(Q2max-Q2min)/2Lmax]1/R 工厂实际使用的快开流量特性的函数关系如下 q=Q/Qmax=1-(1-1/R)(1-L/Lmax)2=1-(1-1/R)(1-ι )2 实际快开流量特性的增益 Kv2=2Qmax/Lmax(1-1/R)(1-L/Lmax)
1。线性流量特性 线性流量特性关系是指平衡阀的相对流量与相对位移成直线关系。 即单位位移变化所引起的流量变化是常数。用函数的关系描述为 dq=Kv2dι 两边积分,并带入边界条件 L=0 Q=Qmax L=Lmax Q=Qmax 如果定义控制阀的固有可调比 R=Qmax/Qmin 则带入积分常数后,线性流量特性表示 q=Q/Qmax=1/R[1+(R-1)· L/Lmax]=(R-1/R)ι +1/R 上式表明,线性流量特性平衡阀的相对流量与相对行程呈现线性关系, 直线的斜率是(R-1)/R,截距是1/R.因此,线性流量特性控制阀的增益Kv2 (即直线方程的斜率)与可调比R有关;与最大流量Qmax和流过阀门的流 量Q无关。Kv2 是常数。即增益Kv2=1-1/R.可调比R不同,表示最大流量与 最小流量之比不同,从相对流量坐标看,表示为相对行程为零时的起点不 同,起点的相对流量是1/R。由于最大行程时获得最大流量,因此,相对 行程为1时的相对流量为1。线性流量特性控制阀在不同的行程,如果行程 变化相同,则流量的相对变化量不同。 例:计算R=30时线性流量特性控制阀,行程变化量为10%时,不同行程位置 的相对变化量?
解:不同行程ι 时的相对的流量如下表 相对流量变化10%时, 在相对流量10%处,相对流量的变化量为(22.67-13)/13=74.38%; 在相对流量50%处,相对流量的变化量为(61.33-51.7)/51.7=18.62%; 在相对流量90%处,相对流量的变化量为(100-90.33)/90.33=10.71%。 示例说明,线性流量特性的控制阀在小开度时,流量小,但相对变化 量大,灵敏度很高,行程稍有变化就会引起流量的较大变化,因此在小开度 时容易发生震荡。在大开度时,流量大,但流量的相对变化量小,灵敏度很低 ,行程要有较大变化才能够时流量有所变化,因此,在大开度时控制呆滞,调 节不及时,容易超调,使过渡过程变慢。
根据阀门两端的压降,阀门流量特性分固 有流量特性和工作流量特性。固有流量特 性是阀门两端压降恒定时的流量特性,亦 称为理想流量特性。工作流量特性是在工 作状态下(压降变化)阀门的流量特性, 阀门出厂所提供的流量特性为固有流量特 性
阀门的流量特性曲线
阀的结构特性是阀芯的位移与流体通过的截面积之间的关系,他不 考虑阀两端的压降。因此,只与阀芯的形状、大小等几何因子有关 阀门的流量特性,有线性、等百分比、抛物线、双曲线、快开、平 方根等不同类型。常用的固有流量特性有线性、等百分比、快开等 几种。
-1)计算不同相对行程ι
和相对流量q
相对行程变化10% 。 在相对行程10%处,相对流量的变化量(6.58-4.68)/4.68=40.50% 在相对行程50%处,相对流量的变化量(25.65-18.26)/18.28=40.50% 在相对行程90%处,相对流量的变化量(100-71.17)/71.17=40.50% 示例说明,等百分比流量特性的控制阀在不同开度下,相同的行程变化引起流 量的相对变化是相等的,因此称之为等百分比流量特性,它在全行程范围内具有相 同的控制精度。它在小开度时,增益较小,因此调节平缓;在大开度时,增益较大 ,能够有效地进行调节。
相对行程 %
相对流量%
0
10
20
30
40
50
60
70
80
90
100
3.33
13.0
22.67
32.33
42.0
51.7
61.33
71.0
80.67
90.33 100
2。等百分比流量特性 等百分比流量特性是指单位相对位移变化所引起的相对流量变化与此点的 相对流量变化成正比关系。即控制阀的放大系数是变化的,它随相对流量的增 大而增大。 等百分比流量特性控制阀的相对流量与相对行程的函数关系是 dq=Kv2qdι 两边积分,并带入边界条件,可得到等百分比流量特性的函数关系是 q=Q/Qmax=R(L/Lmax-1)=R(ι -1) 上式表明,等百分比流量特性控制阀的相对行程与相对流量的对数成比 例关系。即在半对数坐标上,流量特性曲线成直线,或在制宪坐标上流量特性 曲线是一条对数曲线,由上式可知lnq∝ι ,即相对流量的对数与相对行程成正比。 等百分比流量特性控制阀的增益 Kv2=(Q/Lmax)lnR 等百分比流量特性控制阀的增益Kv2与流量Q成正比,又因 △Q/Q=R△ι -1,则 当相对行程变化量相同时,流量也变化相同的百分比,因此称为等百分比流量特性 例:计算R=30时等百分比流量特性控:根据q=R(ι -1)计算不同相对行程ι 和相对流 量q。行程变化量为10%时,不同行程位置的相对变化量。 解:根据q=R(ι
快开流量特性控制阀相对行程和相对流量关系(R=30)
相对行程% 相对流量 % 理想快开 % 实际快开 % 0 3.33 3.33 10 20 30 40 50 70.75 75.83 60 77.49 84.53 70 83.69 91.3 80 90 100 100 100 31.78 44.82 54.84 63.30 21.7 38.13 52.63 65.2 89.46 94.87 96.13 99.03