富顺县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
富顺县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)不等式组的解集是x>1,则m的取值范围是()
A. m≥1
B. m≤1
C. m≥0
D. m≤0
【答案】D
【考点】解一元一次不等式组
【解析】【解答】解:由①得:-4x<-4
解之:x>1
由②得:解之:x>m+1
∵原不等式组的解集为x>1
∴m+1≤1
解之:m≤0
故答案为:D
【分析】先求出每一个不等式的解集,再根据已知不等式组的解集为x>1,根据大大取大,可得出m+1≤1,解不等式即可。
2、(2分)某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()
A. 46人
B. 38人
C. 9人
D. 7人
【答案】D
【考点】扇形统计图
【解析】【解答】解:因为顾客中对商场的服务质量表示不满意的占总体的百分比为:1﹣9%﹣46%﹣38%=7%,
所以100名顾客中对商场的服务质量不满意的有100×7%=7人.
故答案为:D
【分析】先根据扇形统计图计算D所占的百分比,然后乘以顾客人数可得不满意的人数.
3、(2分)如果(a+1)x<a+1的解集是x>1,那么a的取值范围是()
A. a<0
B. a<﹣1
C. a>﹣1
D. a是任意有理数
【答案】B
【考点】不等式及其性质
【解析】【解答】解:如果(a+1)x<a+1的解集是x>1,得a+1<0,a<-1.
故答案为:B.
【分析】由(a+1)x<a+1的解集是x>1,可知,将未知数的系数化为1时,不等号的方向改变,因此a+1<0,求解即可。
4、(2分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()
A.25°
B.35°
C.45°
D.50°
【答案】D
【考点】平行线的性质
【解析】【解答】解:∵CD∥EF,AB∥EF
∴∠C=∠CFE,∠A=∠AFE
∵FC平分∠AFE
∴∠AFE=50°,
即∠A=50°
故答案为:D。
【分析】根据平行线的性质,两直线平行,内错角相等以及角平分线的性质,进行求解即可。
5、(2分)不等式3(x-1)≤5-x的非负整数解有()
A. 1个
B. 2个
C. 3个
D. 4个【答案】C
【考点】解一元一次不等式,一元一次不等式的特殊解
【解析】【解答】解:3x-3≤5-x
4x≤8
解之:x≤2
不等式的非负整数解为:2、1、0一共3个
故答案为:C
【分析】先求出不等式的解集,再确定不等式的非负整数解即可。
6、(2分)如图,同位角是()
A. ∠1和∠2
B. ∠3和∠4
C. ∠2和∠4
D. ∠1和∠4【答案】D
【考点】同位角、内错角、同旁内角
【解析】【解答】解:图中∠1和∠4是同位角,
故答案为:D
【分析】同位角指的是在两条直线的同侧,在第三条直线的同侧;所以∠1和∠4是同位角.
7、(2分)已知= - ,其中A,B为常数,则4A-B的值为()
A. 13
B. 9
C. 7
D. 5
【答案】A
【考点】代数式求值,解二元一次方程组,解分式方程
【解析】【解答】解:
∴
解之:
∴4A-B=4×-=13
故答案为:A
【分析】先将等式的右边通分化简,再根据分子中的对应项系数相等,建立关于A、B的方程组,求出A、B 的值,再求出4A-B的值即可。
8、(2分)若a>-b>0,则关于x的不等式组的解集是()
A. <x<
B. 无解
C. x>
D. x>
【答案】B
【考点】不等式的解及解集,解一元一次不等式组
【解析】【解答】解:原不等式组可化为
因为a>-b>0,所以<0, <0.
而= <1, = >1,
所以< ,所以> ,
所以原不等式组无解,
故答案为:B.
【分析】先求出不等式组中的每一个不等式的解集,再根据a>-b>0,确定不等式组的解集即可。
9、(2分)如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()
A. 两点之间线段最短
B. 两点确定一条直线
C. 垂线段最短
D. 过一点可以作无数条直线
【答案】C
【考点】垂线段最短
【解析】【解答】解:∵从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,
∴AH最短(垂线段最短)
故答案为:C
【分析】根据垂线段最短,即可得出答案。
10、(2分)下列选项中的调查,适合用全面调查方式的是()
A. 日光灯管厂要检测一批灯管的使用寿命
B. 了解居民对废旧电池的处理情况
C. 了解现代大学生的主要娱乐方式
D. 某公司对退休职工进行健康检查
【答案】D
【考点】全面调查与抽样调查
【解析】【解答】解:A、日光灯管厂要检测一批灯管的使用寿命,适合抽样调查,故A不符合题意;
B、了解居民对废旧电池的处理情况,适合抽样调查,故B不符合题意;
C、了解现代大学生的主要娱乐方式,适合抽样调查,故C不符合题意;
D、某公司对退休职工进行健康检查,适合全面调查,故D符合题意。
故答案为:D。
【分析】根据全面调查适合于工作量比较小,对调查结果要求比较准确,调查过程不具有破坏性,危害性,浪费等使劲的调查,即可作出判断。
11、(2分)下列方程组是二元一次方程组的是()
A.
B.
C.
D.
【答案】D
【考点】二元一次方程组的定义
【解析】【解答】解:A、是二元二次方程组,故A不符合题意;
B、是分式方程组,故B不符合题意;
C、是二元二次方程组,故C不符合题意;
D、是二元一次方程组,故D符合题意;
故答案为:D.
【分析】根据二元一次方程组的定义:方程组中含有两个未知数,且未知数的最高次数是2的整式方程,再对关系逐一判断,可得出答案。
12、(2分)a是非负数的表达式是()
A.a>0
B.≥0
C.a≤0
D.a≥0
【答案】D
【考点】不等式及其性质
【解析】【解答】解:非负数是指大于或等于0的数,所以a≥0,
故答案为:D.
【分析】正数和0统称非负数,根据这个定义作出判断即可。
二、填空题
13、(3分)已知a、b、c满足,则a=________,b=________,c=________.
【答案】2;2;-4
【考点】三元一次方程组解法及应用
【解析】【解答】解:①﹣②,得:3a﹣3b=0④
①﹣③,得:﹣4b=﹣8,解得:b=2,
把b=2代入④,得:3a﹣3×2=0,解得:a=2,
把a=2,b=2代入②,得2+2+c=0,解得:c=﹣4,
∴原方程组的解是.
故答案为:2,2,﹣4.
【分析】观察方程组中同一未知数的系数特点:三个方程中c的系数都是1,因此①﹣②和①﹣③,就可求出b 的值,再代入计算求出a、c的值。
14、(1分)若x+y+z≠0且,则k=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵,
∴,
∴,即.
又∵,
∴.
【分析】将已知方程组转化为2y+z=kx;2x+y=kz;2z+x=ky,再将这三个方程相加,由x+y+z≠0,就可求出k 的值。
15、(2分)若方程组与有相同的解,则a=________,b=________。
【答案】3;2
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:
由得:11x=22
解之:x=2
把x=2代入得:4-y=5
解之:y=-1
∴
由题意得:把代入得
解之:
故答案为:
【分析】利用加减消元法解方程组,求出x、y的值,再将x、y的值代入,建立关于a、b的方程组,解方程组求出a、b的值即可。
16、(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程
∴
解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
17、(1分)若则x+y+z=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:在中,由①+②+③得:,
∴.
【分析】方程组中的三个方的x、y、z的系数都是1,因此由(①+②+③)÷2,就可求出结果。
18、(1分)正数的两个平方根分别是和,则正数=________.
【答案】100
【考点】平方根
【解析】【解答】解:∵正数a的两个平方根分别是2m和5-m,
∴2m+5-m=0,
解得:m=-5,
∴a=(2m)2=(-5×2)2=100.
故答案为:100.
【分析】一个正数的两个平方根互为相反数,从而可得2m+5-m=0,解之求出m值,再由a=(2m)2即可求得答案.
三、解答题
19、(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.
20、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。
21、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
22、(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,∠EOD=36°,
求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。
23、(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
24、(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
每亩生产成本每亩产量油菜籽市场价格种植面积
310元130千克5元/千克500000亩
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)
【答案】(1)解:根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),
答:种植油菜每亩的种子成本是31元
(2)解:根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元
(3)解:根据题意得:340×500 000=170 000 000=1.7×108(元),
答:2014年南县全县农民冬种油菜的总获利为1.7×108元
【考点】统计表,扇形统计图,科学记数法—表示绝对值较大的数
【解析】【分析】(1)先根据扇形统计图计算种子的百分比,然后乘以每亩的成本可得结果;
(2)根据产量乘单价再减去生产成本可得获利;
(3)根据(2)中的利润乘以种植面积,最后用科学记数法表示即可.
25、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|-
3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.
26、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值. 【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。