竖向荷载计算

合集下载

土木工程毕业设计 第六章 竖向荷载(恒载 活载)作用下框架内力计算讲解

土木工程毕业设计 第六章  竖向荷载(恒载 活载)作用下框架内力计算讲解

第六章竖向荷载(恒载+活载)作用下框架内力计算第一节框架在恒载作用下的内力计算本设计用分层法计算内力,具体步骤如下:①计算各杆件的固端弯矩②计算各节点弯矩分配系数③弯矩分配④调幅并绘弯矩图⑤计算跨中最大弯矩、剪力和轴力并绘图一、恒载作用下固端弯矩计算(一)恒载作用下固端弯矩恒载作用下固端弯矩计算(单位:KN·m) 表6.1弯矩图恒载作用下梁固端弯矩计算统计表6.2(二)计算各节点弯矩分配系数用分层法计算竖向荷载,假定结构无侧移,计算时采用力矩分配法,其计算要点是:①计算各层梁上竖向荷载值和梁的固端弯矩。

②将框架分层,各层梁跨度及柱高与原结构相同,柱端假定为固端。

③计算梁、柱线刚度。

对于柱,假定分层后中间各层柱柱端固定与实际不符,因而,除底层外,上层柱各层线刚度均乘以0.9修正。

有现浇楼面的梁,宜考虑楼板的作用。

每侧可取板厚的6倍作为楼板的有效作用宽度。

设计中,可近似按下式计算梁的截面惯性矩:一边有楼板:I=1.5Ir两边有楼板:I=2.0Ir④计算和确定梁、柱弯矩分配系数和传递系数。

按修正后的刚度计算各结点周围杆件的杆端分配系数。

所有上层柱的传递系数取1/3,底层柱的传递系数取1/2。

⑤按力矩分配法计算单层梁、柱弯矩。

⑥将分层计算得到的、但属于同一层柱的柱端弯矩叠加得到柱的弯矩。

(1)计算梁、柱相对线刚度图6.1 修正后梁柱相对线刚度(2)计算弯矩分配系数结构三层=5.37÷(5.37+1.18)=0.820①梁μB3C3μ=5.37÷(5.37+3.52+1.18)=0.533C3B3=3.52÷(5.37+3.52+1.18)=0.350μC3D3=3.52÷(3.52+1.18)=0.749μD3C3=1.18÷(5.37+1.18)=0.180②柱μB3B2=1.18÷(5.37+3.52+1.18)=0.117μC3C2=1.18÷(3.52+1.18)=0.251μD3D2结构二层①梁μ=5.37÷(1.18+1.18+5.37)=0.695B2C2=5.37÷(1.18+1.18+5.37+3.52)=0.477μC2B2μ=3.52÷(1.18+1.18+5.37+3.52)=0.313 C2D2=3.52÷(1.18+1.18+3.52)=0.5986 μD2C2=1.18÷(1.18+1.18+5.37)=0.1525②柱μB2B3μ=1.18÷(1.18+1.18+5.37)=0.1525B2B1=1.18÷(1.18+1.18+5.37+3.52)=0.105 μC2C3μ=1.18÷(1.18+1.18+5.37+3.52)=0.105 C2C1=1.18÷(1.18+1.18+3.52)=0.2007 μD2D3μ=1.18÷(1.18+1.18+3.52)=0.2007D2D1结构一层=5.37÷(1.18+1+5.37)=0.711①梁μB1C1=5.37÷(1.18+1+5.37+3.52)=0.485 μC1B1=3.52÷(1.18+1+5.37+3.52)=0.318 μC1D1=3.52÷(1.18+1+3.52)=0.618μD1C1=1.18÷(1.18+1+5.37)=0.156②柱μB1B2=1÷(1.18+1+5.37)=0.133μB1B0=1.18÷(1.18+1+5.37+3.52)=0.107μC1C2=1÷(1.18+1+5.37+3.52)=0.090μC1C0μ=1.18÷(1.18+1+3.52)=0.207D1D2μ=1÷(1.18+1+3.52)=0.175D1D0(三)分层法算恒载作用下弯矩恒载作用下结构三层弯矩分配表6.3B C D上柱偏心弯矩分配系数0固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次分配14.650 -13.883 226.915 20.861 -251.346 84.509 -112.810 二次分配14.512 -14.512 228.818 21.278 -250.096 105.707 -105.707恒载作用下结构二层弯矩分配表6.40.768 12.717 -28.301↑↑↑B C D偏心弯矩分配系数固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次分配 6.931 4.431 -4.607 308.811 46.295 47.232 -385.113 169.804 -113.072 -92.837二次分配 5.901 3.401 -9.302 300.595 44.486 45.423 -390.504 191.416 -105.826 -85.591恒载作用下结构一层弯矩分配表6.52.127 9.081 -7.935↑↑↑B C D偏心弯矩分配系数固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次二次7.030 5.338 -12.368 267.469 35.352 22.097 -324.919 357.349 -46.247 -15.172 -295.930图6.2 弯矩再分配后恒载作用下弯矩图(KN·m)(四)框架梁弯矩塑性调幅为了减少钢筋混凝土框架梁支座处的配筋数量,在竖向荷载作用下可以考虑竖向内力重分布,主要是降低支座负弯矩,以减小支座处的配筋,跨中则应相应增大弯矩。

竖向荷载计算--分层法例题详解

竖向荷载计算--分层法例题详解

竖向荷载计算--分层法例题详解例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号内的数字,表示各梁、柱杆件的线刚度值(i?EI)。

l 图1解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。

图2 二层计算简图图3 底层计算简图2、计算修正后的梁、柱线刚度与弯矩传递系数采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。

因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。

底层柱的弯矩传递系数为矩传递系数,均为11,其余各层柱的弯矩传递系数为。

各层梁的弯231。

2图4 修正后的梁柱线刚度图5 各梁柱弯矩传递系数3、计算各节点处的力矩分配系数计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:G节点处:?GH?iGH?iG?GjiGH7.63??0.668iGH?iGD7.63?3.79iGD3.79??0.332iGH?iGD7.63?3.79iHG7.63??0.353iHG?iHE?iHI7.63?3.79?10.21iHI3.79??0.175iHG?iHE?iHI7.63?3.79?10.21iHE10.21??0.472iHG?iHE?iHI7.63?3.79?10.21?GD?iGD?iG?GjH节点处:?HG?iHG?iH?Hj?HI?iHI?iH?Hj?HE?iHE?iH?Hj同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7。

图6 二层节点处力矩分配系数图7 底层节点处力矩分配系数4、采用力矩分配法计算各梁、柱杆端弯矩(1)第二层:①计算各梁杆端弯矩。

先在G、H、I节点上加上约束,详见图8图8 二层计算简图计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号),写在各梁杆端下方,见图9:MFGHql2????13.13kN?m12MFHGql2??13.13kN?m 12ql2M????7.32kN?m12FHIql2M??7.32kN?m12FIH在节点G处,各梁杆端弯矩总和为:FMG?MGH??13.13kN?m在节点H处,各梁杆端弯矩总和为:FFMH?MHG?MHI?13.13?7.32?5.81kN?m在节点I处,各梁杆端弯矩总和为:FMI?MIH?7.32kN?m②各梁端节点进行弯矩分配,各两次,详见图9 第一次弯矩分配过程:放松节点G,即节点G处施加力矩13.13kN?m,乘以相应分配系数?,m+8.76kN?m按0.668和0.332,得到梁端+8.76kN?m和柱端+4.37kN到GH梁H端;1传2感谢您的阅读,祝您生活愉快。

竖向荷载的计算方法

竖向荷载的计算方法

竖向荷载的计算方法竖向荷载呢,简单说就是垂直方向作用在结构上的力。

在建筑结构里,这可是个很重要的事儿。

那咱们先来说说恒载的计算。

恒载就是那些固定不变的重量,像建筑物的自重啦。

比如说楼板,你就可以根据楼板的厚度、材料的密度来算出它的重量。

如果是混凝土楼板,混凝土的密度大概是一个固定的值,你量出楼板的面积和厚度,一乘就大概能知道这楼板自身的重量啦。

这就像是一个人本身的体重,稳稳地压在结构上,不会变来变去的。

墙的重量计算也类似哦,根据墙的类型,是砖墙还是混凝土墙,然后算出每立方米的重量,再乘以墙的体积就妥了。

再说说活载的计算。

活载可就调皮一些啦,它是可变的荷载。

像咱们人在建筑物里走来走去,家具的摆放啥的。

不同的建筑功能,活载取值可不一样呢。

比如说住宅里,按照规范呢,每平方米的活载取值有个大概的范围。

但是你要是在商场里,那活载取值就要大很多啦,毕竟商场里人多,而且可能还会有一些较重的货物临时堆放啥的。

计算活载的时候,就是用规定的活载取值乘以相应的面积。

就好像是根据不同的活动场景,预估会有多少“活动的重量”压在结构上。

还有雪荷载呢。

这雪荷载就看老天爷的心情啦。

不同地区的雪荷载标准值不一样哦。

在北方那些经常下雪的地方,雪荷载可能就比较大。

计算雪荷载的时候,也是根据当地的雪荷载标准值和屋面的面积来计算。

这就像是大自然偶尔给建筑物戴上的一顶“雪帽子”,不过这“帽子”的重量可得算清楚,不然结构可能就会被压得“喘不过气”啦。

总的来说,竖向荷载的计算虽然有点小复杂,但是只要咱们把各个部分的荷载计算清楚,再把它们加起来,就能知道结构到底承受了多少竖向的压力啦。

宝子们,是不是感觉也没有那么难呢?。

竖向荷载计算

竖向荷载计算

竖向荷载计算3.1竖向荷载计算总说明框架剪力墙结构是由两种变形性质不同的抗侧力单元框架和剪力墙通过楼板协调变形而共同抵抗竖向荷载及水平荷载的结构。

在竖向荷载作用下,按各自的承载面积计算每榀框架和每榀剪力墙的竖向荷载,分别计算内力。

在每榀结构中:剪力墙:计算其墙肢轴力和弯矩。

在本结构中,弯矩主要有墙肢两边端柱上不对称的集中力和墙柱间连梁的端弯矩引起。

框架:计算其梁及柱的弯矩、剪力和轴力。

框架在竖向荷载下采用分层力矩分配法。

在分层力矩分配法中,注意:①梁柱线刚度修正:梁截面惯性矩在梁一侧有楼板时乘以1.5,两侧有楼板时乘以2.0;除底层柱外,上层各柱线刚度乘以0.9的修正系数。

②梁柱弯矩分配系数和传递系数按修正后的刚度计算各节点周围杆件的杆端分配系数;所有上层柱的弯矩传递系数取1/3,底层柱的传递系数取1/2。

本办公楼中,所有楼板均为双向板。

双向板传给支承梁的荷载,可用下述近似方法计算:从板的四角作45o线将每一区格分为四块,每块面积内的荷载传与其相邻的支承梁。

因此,长边梁承受梯形分布荷载,短边梁承受三角形分布荷载。

由上可以得到导荷图,如下图3.1.1:图3.1.1 楼屋面导荷图承受三角形或梯形分布荷载的梁,其内力计算可利用固端弯矩相等的条件将其换算为等效均布荷载,换算公式如下:三角形荷载(图3.1.2)作用时:梯形荷载(图3.1.3)作用时:图3.1.2 三角形荷载的等效均布荷载图3.1.3 梯形荷载的等效均布荷载3.2荷载退化通过分析该结构,将所有板和次梁上的竖向荷载传递至主体结构上,形成主体结构在竖向荷载作用下的计算简图,同时考虑横向和纵向两个方向的荷载退化。

主体结构平面图如下图3.2.1:图3.2.1 主体结构平面图在本计算书中:不考虑电梯机房的竖向和水平荷载;将楼梯开间的竖向荷载近似为整块板计算;在计算内力时,近似将2、4、7、10、12、C轴(即所有次梁所在的轴)上的次梁假定为两端铰接。

建筑吊篮施工荷载计算及吊篮承载力相关计算

建筑吊篮施工荷载计算及吊篮承载力相关计算

建筑吊篮施工荷载计算及吊篮承载力相关计算建筑吊篮施工荷载计算及吊篮承载力相关计算根据《建筑施工工具式脚手架安全技术规范》JGJ202-2010 进行计算、核验,公式引用该规范(特别注明除外),以下计算中悬吊平台按5.5m 长计算。

一、吊篮施工荷载计算及吊篮承载力计算根据JGJ202-2010施工活载标准值宜按均布荷载考虑,应为1KN/ m 2吊篮的施工活载Q K=[( 长度)5.5m* (宽度)0.76m]*1KN/ m 2 =4.18KN ZLP630 电动吊篮的额定荷载为630kg,安全荷载应控制在额定荷载的80%,即630*80%=504kg=4.94KN4.18KN,吊篮承载符合要求。

二、吊蓝的风荷载标准值计算Q wk =w k ×F(5.1.4)式中Q wk ——吊蓝的风荷载标准值(kN);w k ——风荷载标准值(kN/m2 );F——吊蓝受风面积(m2 )。

风荷载标准值的计算:w k =β gz μ z μ s w o(GB*****-20017.1.1-2) 式中w k —风荷载标准值(kN/m2 );β gz —高度z 处的阵风系数;μ s —风荷载体型系数,取1.0;μ z —风压高度变化系数;w o —基本风压(kN/㎡),取0.45。

本工程属B 类地区计算高度z 按77.95 米μ z: 75m 高处风压高度变化系数:(GB*****-20017.2.1)μz= (z10 )0.32 =1.9292μ f: 脉动系数:(GB*****-20017.4.2-8)μf=0.5× (z10 )-0.16 =0.3600β gz: 阵风系数:(GB*****-20017.5.1-1)βgz=0.89×(1+2×μf) = 1.5308 吊蓝在结构设计时,应应考虑风荷载影响;在工作状态下,应能承受基本风压值不低于500Pa;在非工作状态下,当吊蓝高度不大于60m 时,应能承受基本风压值不低于1915Pa,每增高30m,基本风压值增加165 Pa;吊蓝的固定装置结构设计风压值应按1.5 倍的基本风压值计算。

(整理)4荷载计算及计算简图.

(整理)4荷载计算及计算简图.

4 荷载计算及计算简图4.1 竖向荷载表4.1.1 梁自重计算项目梁宽(m)梁高(m)板厚(m)材料重(3/mKN)均布梁重(mKN/)纵轴线主梁0.3 0.6 0.12 25 3.6 横轴线主梁0.3 0.6 0.12 25 3.6 次梁0.25 0.45 0.12 25 2.063 表4.1.1 柱自重计算层数柱截面宽(m)柱截面高(m)柱高(m)材料重(3/mKN)柱重(KN)1 0.60 0.60 3.9 25 38.8442~8 0.60 0.60 3.3 25 32.826 表4.1.3 竖向荷载计算汇总位置项目荷载大小屋面屋面均布恒载 6.442/mKN屋面均布活载0.52/mKN楼面楼面均布恒载 3.772/mKN办公室、厕所活载 2.02/mKN走廊、楼梯活载 2.52/mKN墙体标准层外纵墙自重 3.363mKN/标准层内横墙或纵墙自重 5.616mKN/标准层AB.CD跨山墙自重 6.048mKN/标准层BC跨山墙自重 3.363mKN/底层外纵墙自重 4.295mKN/底层内横墙或纵墙自重 6.864mKN/底层AB.CD跨山墙自重7.392mKN/底层BC跨山墙自重 4.707mKN/男女卫生间隔墙 5.928mKN/女儿墙 4.86mKN/梁纵轴线主梁 3.6mKN/横轴线主梁 3.6mKN/次梁2.063m KN /楼、屋面荷载按照图4.1.1所示导荷方式传递到相应框架梁上。

图4.1.1 荷载传导方式4.2 楼、屋面恒载计算4.2.1 作用在顶层框架梁上的线荷载标准值1)梁自重m KN g g g BC CD AB /6.3161616=== 2)均布恒载(楼板传至的梁段最大值)m KN g g CD AB /184.236.344.62626=⨯== m KN g BC /32.19344.626=⨯=4.2.2 作用在标准层框架梁上的线荷载标准值 1)梁自重+墙自重m KN g g CD AB /216.911== m KN g BC /85.21=2)均布恒载(楼板传至的梁段最大值)m KN g g CD AB /572.136.377.322=⨯== m KN g BC /31.11377.32=⨯=4.2.3 框架节点集中荷载标准值1)顶层框架边节点集中荷载计算如表4.2.1。

竖向荷载计算(弯矩二次分配法)实例

竖向荷载计算(弯矩二次分配法)实例
03 在节点平衡条件中,考虑上下平衡,以更准确地 计算弯矩。
05
结论
竖向荷载计算的重要性
确保结构安全
竖向荷载计算是结构设计中的重要环节,准确计 算竖向荷载对于保证结构安全至关重要。
提高结构性能
合理的竖向荷载计算有助于优化结构设计,提高 结构的承载能力、稳定性和抗震性能。
降低成本
竖向荷载计算的误差可能导致结构加固或重建, 准确计算可降低不必要的成本。
弯矩二次分配法的限制条件
01
假定楼板为刚性,不考虑楼板的变形和位移。
ቤተ መጻሕፍቲ ባይዱ02
仅适用于规则的结构,对于不规则的结构需要进行 特殊处理。
03
对于节点平衡条件,仅考虑节点左右两侧的平衡, 不考虑上下平衡。
弯矩二次分配法的优化建议
01 考虑楼板的变形和位移,采用有限元法或其他数 值方法进行计算。
02 对于不规则的结构,采用特殊处理方法,如引入 弹性支座或采用有限元模型进行模拟。
弯矩二次分配法的优势与局限性
优势
局限性
弯矩二次分配法计算过程较为复杂,需要耗费较多 时间和计算资源,对于大型复杂结构可能不适用。
弯矩二次分配法能够考虑各杆件之间的相互 作用和影响,计算结果相对准确,适用于多 种结构形式。
适用范围
弯矩二次分配法适用于梁、柱等杆系结构, 但对于板、壳等连续介质,需要采用其他方 法进行计算。
03
竖向荷载计算实例
实例一:简单框架结构
总结词
简单框架结构适用于跨度较小、层数较少的建筑,其竖向荷载计算相对简单。
详细描述
简单框架结构通常由梁和柱组成,竖向荷载通过梁传递至柱,再由柱传递至基 础。弯矩二次分配法在此类结构中应用广泛,能够快速准确地计算出各构件的 弯矩值。

4荷载计算及计算简图15页word

4荷载计算及计算简图15页word

4 荷载计算及计算简图4.1 竖向荷载第 1 页楼、屋面荷载按照图4.1.1所示导荷方式传递到相应框架梁上。

图4.1.1 荷载传导方式4.2 楼、屋面恒载计算4.2.1 作用在顶层框架梁上的线荷载标准值1)梁自重m KN g g g BC CD AB /6.3161616=== 2)均布恒载(楼板传至的梁段最大值) 4.2.2 作用在标准层框架梁上的线荷载标准值 1)梁自重+墙自重2)均布恒载(楼板传至的梁段最大值) 4.2.3 框架节点集中荷载标准值1)顶层框架边节点集中荷载计算如表4.2.1。

表4.2.1 顶层框架边节点集中荷载计算顶层框架边节点集中荷载 153.73KN 2)顶层框架中节点集中荷载计算如表4.2.2。

顶层框架中节点集中荷载 151.39KN 3)标准层框架边节点集中荷载计算如表4.2.3。

标准层框架边节点集中荷载 114.063KN 4)标准层层框架中节点集中荷载计算如表4.2.4。

标准层框架中节点集中荷载 148.121KN4.3 楼、屋面活载计算4.3.1 顶层框架梁上线荷载(楼板传至的梁段最大值)4.3.2 顶层框架梁上集中荷载4.3.1 顶层框架梁上线荷载(楼板传至的梁段最大值)梁上线荷载(楼板传至的梁段最大值)4.3.4 标准层框架梁上集中荷载4.4 竖向荷载作用下结构计算简图竖向荷载作用下结构计算简图如图4.4.1及4.4.2所示。

4.5 水平荷载计算第 3 页4.5.1计算质点重力荷载代表值1)顶层重力荷载代表值计算如表4.5.1。

2)标准层重力荷载代表值计算如表4.5.2。

第 5 页3)底层重力荷载代表值计算如表4.5.3。

根据表4.5.1~4.5.3,等效总重力荷载为:4.5.2 D 值的计算1)各构件截面尺寸:纵向框架梁:300mmX600mm横向框架梁:250mmX500mm 柱:650mmX650mm2)梁截面惯性矩:现浇楼面中框架,0.20I I =边框架梁05.1I I =,12/30bh I =3)各构件线刚度:l EI i /=。

土木工程毕业设计 第六章 竖向荷载作用下框架内力计算

土木工程毕业设计 第六章  竖向荷载作用下框架内力计算

第六章竖向荷载(恒载+活载)作用下框架内力计算第一节框架在恒载作用下的内力计算本设计用分层法计算内力,具体步骤如下:①计算各杆件的固端弯矩②计算各节点弯矩分配系数③弯矩分配④调幅并绘弯矩图⑤计算跨中最大弯矩、剪力和轴力并绘图一、恒载作用下固端弯矩计算(一)恒载作用下固端弯矩恒载作用下固端弯矩计算(单位:KN·m) 表恒载作用下梁固端弯矩计算统计表(二)计算各节点弯矩分配系数用分层法计算竖向荷载,假定结构无侧移,计算时采用力矩分配法,其计算要点是:①计算各层梁上竖向荷载值和梁的固端弯矩。

②将框架分层,各层梁跨度及柱高与原结构相同,柱端假定为固端。

③计算梁、柱线刚度。

对于柱,假定分层后中间各层柱柱端固定与实际不符,因而,除底层外,上层柱各层线刚度均乘以修正。

有现浇楼面的梁,宜考虑楼板的作用。

每侧可取板厚的6倍作为楼板的有效作用宽度。

设计中,可近似按下式计算梁的截面惯性矩:一边有楼板:I=两边有楼板:I=④计算和确定梁、柱弯矩分配系数和传递系数。

按修正后的刚度计算各结点周围杆件的杆端分配系数。

所有上层柱的传递系数取1/3,底层柱的传递系数取1/2。

⑤按力矩分配法计算单层梁、柱弯矩。

⑥将分层计算得到的、但属于同一层柱的柱端弯矩叠加得到柱的弯矩。

(1)计算梁、柱相对线刚度图修正后梁柱相对线刚度(2)计算弯矩分配系数结构三层=÷+=①梁μB3C3μ=÷++=C3B3=÷++=μC3D3μ=÷+=D3C3=÷+=②柱μB3B2μ=÷++=C3C2μ=÷+=D3D2结构二层=÷++=①梁μB2C2μ=÷+++=C2B2=÷+++=μC2D2μ=÷++=D2C2②柱μ=÷++=B2B3=÷++=μB2B1=÷+++=μC2C3=÷+++=μC2C1=÷++=μD2D3μ=÷++=D2D1结构一层=÷+1+=①梁μB1C1=÷+1++=μC1B1=÷+1++=μC1D1=÷+1+=μD1C1=÷+1+=②柱μB1B2=1÷+1+=μB1B0=÷+1++=μC1C2=1÷+1++=μC1C0μ=÷+1+=D1D2μ=1÷+1+=D1D0(三)分层法算恒载作用下弯矩恒载作用下结构三层弯矩分配表B C D上柱偏心弯矩分配系数0固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次分配二次分配恒载作用下结构二层弯矩分配表↑↑↑B C D偏心弯矩分配系数固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次分配二次分配恒载作用下结构一层弯矩分配表↑↑↑B C D偏心弯矩分配系数固端弯矩分配传递分配传递分配传递分配传递分配传递分配传递分配传递合计一次二次图弯矩再分配后恒载作用下弯矩图(KN·m)(四)框架梁弯矩塑性调幅为了减少钢筋混凝土框架梁支座处的配筋数量,在竖向荷载作用下可以考虑竖向内力重分布,主要是降低支座负弯矩,以减小支座处的配筋,跨中则应相应增大弯矩。

竖向荷载作用下内力分析 (2)

竖向荷载作用下内力分析 (2)

5.6 竖向荷载作用下内力分析: 5.6.1 计算单元及计算简图的确定:仍取④轴线横向框架和⑤⑥轴线间的横向剪力墙进行计算,由于楼面荷载均匀分布,故取两轴线中线之间的长度为计算单元宽度,计算简图如下图所示:图1-35 竖向荷载计算单元 5.6.2 荷载计算(标准值): 5.6.2.1框架荷载计算: (1)恒荷载作用情况下:0q 包括梁重(扣除板重)和隔墙重,由前面的相关数据得:1~8F :()()32025/0.80.10.4 1.88/ 3.60.8q KN m m m m KN m m =⨯-⨯+⨯-7/ 5.828/12.828/KN m KN m KN m =+= 9F : 0 6.7/q K N m =(注:0'7.0/q KN m =)12,q q 为板自重传给横梁的荷载峰值:1~8F :2122 3.8/ 4.215.96/3.8/ 4.215.96/q KN m m KN m q KN m m KN m=⨯==⨯=9F :2122 6.84/ 4.228.728/6.84/ 4.228.728/q K N m m K N m q K N m m K N m =⨯==⨯=1P 为纵梁传给○A 柱的板自重、梁自重(扣除板厚)和外隔墙重:1~5F :()()21 2.1 4.2 2.113.8/ 4.2 2.127/8.40.6522P KN m KN m m m +⨯⎡⎤=⨯⨯⨯+⨯+⨯-⎢⎥⎣⎦()()22.21/3.90.88.40.65K N m m m m m +⨯-⨯- 198.317KN = 6~8F :()()()190.972 2.21/ 3.90.878.40.55P KN KN m m =+⨯-⨯8.4-0.55+⨯- 199.702KN =9F :()21 6.84/11.972 6.7216.35P KN m KN =⨯⨯+⨯8.4-0.55=1M 为1P 对上柱形心轴产生的偏心矩:1~5F :1198.3170.07514.874M KN m KM m =-⨯=- 6~8F :1199.7020.025 4.993M KN m KM m =-⨯=-9F : 1216.350.025 5.409M K N m K M m=-⨯=- 此外,2P 、3P 、4P 分别为纵梁传给○B 轴、○C 轴、○D 轴柱的板自重、梁自重(扣除板厚)和外隔墙重,4M 为4P 对上柱形心轴产生的偏心矩,计算方法如上所述,计算过程从略,计算结果见表1-31 。

水平荷载和竖向荷载计算方法

水平荷载和竖向荷载计算方法

水平荷载和竖向荷载计算方法
水平荷载和竖向荷载是工程设计中常见的两种荷载类型,它们
分别用于结构的水平和竖向承载能力的计算。

下面我将从多个角度
分别介绍它们的计算方法:
1. 水平荷载计算方法:
水平荷载通常指风荷载或地震荷载,其计算方法如下:
风荷载计算,根据当地的风速、结构的高度和形状、结构的暴
露系数等参数,采用规范中的公式或图表来计算风荷载。

常见的规
范包括《建筑抗震设计规范》和《建筑结构荷载规范》等。

地震荷载计算,根据结构所在地区的地震烈度、结构的重要性、结构类型等参数,采用规范中的地震作用系数和地震力计算公式来
计算地震荷载。

常见的规范包括《建筑抗震设计规范》和《地震动
参数区划图》等。

2. 竖向荷载计算方法:
竖向荷载通常指结构的自重、活荷载和附加荷载等,其计算方法如下:
结构自重计算,根据结构的材料和构造,计算结构的各部分的体积或面积,并乘以相应的材料密度来计算结构的自重。

活荷载计算,根据规范中给出的建筑物使用的类型、场所、人员密度等参数,计算活荷载的大小。

常见的规范包括《建筑结构荷载规范》等。

附加荷载计算,包括设备荷载、雪荷载等,根据具体的情况进行计算。

总的来说,水平荷载和竖向荷载的计算方法需要根据具体的工程情况和规范要求进行综合考虑,确保结构在受到外部荷载作用时能够安全稳定地工作。

第六章-竖向荷载作用下的内力计算

第六章-竖向荷载作用下的内力计算

第六章竖向荷载作用下内力计算6.1 框架结构的荷载计算6.1.1.板传荷载计算计算单元见下图所示:因为楼板为整体现浇,本板选用双向板,可沿四角点沿45°线将区格分为小块,每个板上的荷载传给与之相邻的梁,板传图6-1框架结构计算单元一.B~C,(D~E)轴间框架梁:屋面板传荷载:恒载:222⨯⨯+⨯N/m6.09K N/m 1.5m[1-2(1.5/6)(1.5/6)]2=17.128K 活载:222⨯⨯⨯+⨯2.0K N/m 1.5m[1-2(1.5/6)(1.5/6)]2=5.625K N/m楼面板传荷载:恒载:222⨯⨯⨯+⨯N/m3.83K N/m 1.5m[1-2(1.5/6)(1.5/6)]2=10.772K 活载:222⨯⨯⨯+⨯m2.0K N/m 1.5m[1-2(1.5/6)(1.5/6)]2=5.625K N/梁自重:3.95K N /mB ~C , (D ~E )轴间框架梁均布荷载为:屋 面 梁:恒载=梁自重+板传荷载=17.128 K N /m +3.95 K N /m =21.103 K N /m活载=板传荷载=5.625 K N /m楼面板传荷载:恒载=梁自重+板传荷载=3.95 K N /m +10.772 K N /m =14.747 K N /m活载=板传荷载=5.625 K N /m图6-2 框架结构计算单元等效荷载二. C ~D 轴间框架梁:屋面板传荷载:恒载:26.09K N /m 1.2m 5/82=9.135K N /m ⨯⨯⨯ 活载:22.0K N /m 1.5m 5/82=3K N /m⨯⨯⨯ 楼面板传荷载:恒载:23.83K N /m 1.25/82=5.745K N /m⨯⨯⨯ 活载:22.0K N /m 1.2m 5/82=3.75K N /m ⨯⨯⨯ 梁自重:3.95K N /mC ~D 轴间框架梁均布荷载为:屋 面 梁:恒载=梁自重+板传荷载=2.349 K N /m +9.135 K N /m =11.484 K N /m活载=板传荷载=3 K N /m楼面板传荷载:恒载=梁自重+板传荷载=2.349 K N /m +5.745K N /m =8.09K N /m活载=板传荷载=3.75 K N /m三.B 轴柱纵向集中荷载计算:顶层柱:女儿墙自重:(做法:墙高900㎜,100㎜的混凝土压顶)330.240.918/25/0.10.24m m kn m KN m m m ⨯⨯+⨯⨯+()1.220.240.5 5.806/m m m KN m ⨯+⨯=顶层柱恒载=女儿墙+梁自重+板传荷载=5.806/6 3.975/(60.6)KN m KN m m m ⨯+⨯-⨯()()2212 1.5/6 1.5/66/42 6.09/ 1.55/832123.247KN m m KN ⎡⎤-⨯+⨯⨯+⨯⨯⨯⨯=⎣⎦顶层柱活载=板传荷载=()()222.0/ 1.512 1.5/6 1.5/66/42KN m m ⎡⎤⨯⨯-⨯+⨯⨯+⎣⎦2.0/ 1.55/83219.688KN m m KN ⨯⨯⨯⨯=标准层柱恒载=墙自重+梁自重+板荷载=7.794/(60.6) 3.975/(60.6) 3.83/ 1.55/832KN m KN m KN m m ⨯-+⨯-+⨯⨯⨯⨯ (2.332311.52)61/42 2.3325/61/42KN m ++⨯⨯⨯+⨯⨯⨯+()()223.83 1.512 1.5/6 1.5/66/42124.172m m KN ⎡⎤⨯⨯-⨯+⨯⨯=⎣⎦标准层柱活载=板传荷载=()()222.0 1.512 1.5/6 1.5/63 2.0 1.55/83219.688m m m m KN ⎡⎤⨯⨯-⨯+⨯+⨯⨯⨯⨯=⎣⎦基础顶面荷载=底层外纵墙自重+基础自重=9.738/(60.6) 2.5/(60.6)16.085KN m m m KN m m m KN ⨯-+⨯-=四.C 柱纵向集中力计算:顶层柱荷载=梁自重+板传梁荷载=3.975/(90.9) 2.349/(1.20.3) 6.09/ 1.55/832KN m m KN m m KN m m ⨯-+⨯-+⨯⨯⨯⨯6.09/ 1.25/8 1.22(2.3323/11.52/)61/42KN m m KN m KN m m +⨯⨯⨯⨯++⨯⨯⨯ 154.318KN =顶层柱活载=板传荷载=()()222.0 1.512 1.5/6 1.5/63m m ⎡⎤⨯⨯-⨯+⨯+⎣⎦()()222.0 1.212 1.2/6 1.2/63 2.0 1.2m m m m ⎡⎤⨯⨯-⨯+⨯+⨯⎣⎦5/8 1.22 2.0 1.55/83239.272m m KN ⨯⨯⨯+⨯⨯⨯⨯=标准柱恒载=墙+梁自重+板传荷载=11.52/(30.6)15.12/(30.6)15.12/(30.6)KN m m KN m m KN m m ⨯-+⨯-+⨯-+2.349/(1.20.3)3.975/(60.6) 6.09/ 1.55/832KN m m KN m m KN m m ⨯-+⨯-+⨯⨯⨯⨯+26.09/61/21/2 2.67/ 2.4/26 3.83/36200.173KN m m KN m m KN m m m KN ⨯⨯⨯+⨯⨯+⨯⨯=标准层活载=板传荷载=222.0/36 2.5/ 1.2654KN m m m KN m m m KN ⨯⨯+⨯⨯=基础顶面恒载=底层外纵墙自重+基础自重9.738/(60.6) 2.5/(60.6)66.085KN m m m KN m m m KN ⨯-+⨯-=(3).框架柱自重:柱自重:底层:1.2×0.6m ×0.6m ×253/KN m ×4.55m =49.14K N其余柱:1.2×0.6m ×0.6m ×253/K N m ×3.6m =38.88K N6.2恒荷载作用下框架的内力6.2.1.恒荷载作用下框架的弯矩计算一.恒荷载作用下框架可按下面公式求得:21/12ab M ql =- (61)- 21/12ba M ql = (62)- 故:2771/1221.03663.09.B C M KN m =-⨯⨯=-7763.09.C B M KN m =2771/1211.4846 5.512.C D M KN m =-⨯⨯=-77 5.512.C D M KN m =2661/1214.747644.241.B C M KN m =-⨯⨯=-6644.241.C B M KN m =2661/128.096 3.883.C D M KN m =-⨯⨯=-66 3.883.D C M KN m =恒荷载作用下框架的受荷简图如图6-3所示:图6-3竖向受荷总图:注:1.图中各值的单位为K N2.图中数值均为标准值3.图中括号数值为活荷载图6-4:恒载作用下的受荷简图(2).根据梁,柱相对线刚度,算出各节点的弯矩分配系数ij μ:/()ij c b i i i μ=∑+∑ (63)-分配系数如图6-5 , 图6-6所示:图6-5 B 柱弯矩各层分配系数简图B 柱:底层:0.801/(0.8010.609 1.0i ++=下柱= 1.0/(0.8010.609 1.0)0.415i ++=上柱=0.609/(0.8010.609 1.0)0.253i ++=左梁=标准层: 1.0/(0.609 1.0 1.0)i ++=上柱= 1.0/(0.609 1.0 1.0)0.383i ++=下柱=0.609/(0.609 1.0 1.0)0.234i ++=左梁=顶层: 1.0/(0.609 1.0)0.6i +=下柱= 0.609/(0.609 1.0)0.622i +=左梁=图6-6 C 柱弯矩各层分配系数简图C 柱: 0.609/(0.609 1.00.2110.801)0i +++=右梁= 1.0/(0.609 1.00.2110.801)0.382i +++=上柱= 0.801/(0.609 1.00.2110.801)0i +++=下柱=0.211/(0.609 1.00.2110.801)0.081i +++=左梁=标准层: 1.0/(0.609 1.00.2110.8i +++=下柱= 1.0/(0.609 1.00.2110.801)0.355i +++=上柱=0.609/(0.609 1.00.2110.801)0.216i +++=右梁=0.211/(0.609 1.00.2110.801)0.074i +++=左梁=顶层: 1.0/(0.609 1.00.211)0.i ++=下柱= 0.211/(0.609 1.00.211)0.116i ++=左梁=0.609/(0.609 1.00.211)0.335i ++=右梁=三.恒荷载作用下的弯矩剪力计算,根据简图(6-4)梁:A M 0∑= 21/2.0A B B M M ql Q l ---=/1/2B A B Q M M l ql =--B M 0∑= 21/2.0A B A M M ql Q l -+-=/1/2A A B Q M M l ql =-+ (6-4) 柱:C M 0∑= .0C D D M M Q h ---=()/D C D Q M M h =-+D M 0∑= .0C D C M M Q h ---=()/C C D Q M M h =-+ (6-5)四.恒荷载作用下的边跨框架的轴力计算,包括连梁传来的荷载及柱自重.7123.24721.1036/2186.556N KN=+⨯=67124.17214.7476/238.88393.849N N KN =++⨯+=56124.17214.7476/238.88601.142N N KN =++⨯+=45124.17214.7476/238.88808.435N N KN =++⨯+=34124.17214.7476/238.881015.728N N KN =++⨯+=23124.17214.7476/238.881223.021N N KN =++⨯+=12124.17214.7476/238.881382.487N N KN =++⨯+=图6-5 恒荷载作用下的计算简图恒荷载作用下的中跨框架的轴力计算:7154.31811.484 2.4/2168.099N KN=+⨯= 67200.1738.09 2.4/238.88416.88N N KN =++⨯+=56200.1738.09 2.4/238.88665.621N N KN =++⨯+=45200.1738.09 2.4/238.88808.435N N KN =++⨯+=34200.1738.09 2.4/238.881015.728N N KN =++⨯+=23200.1738.09 2.4/238.881223.021N N KN =++⨯+=12200.1738.09 2.4/238.881382.487N N KN =++⨯+=五.弯矩分配及传递弯矩二次分配法比分层法作了更进一步的简化。

桩基础设计单桩竖向荷载的传递计算

桩基础设计单桩竖向荷载的传递计算
主要有:工型或 H 型钢桩,钢板桩,开口钢管桩,开口钢筋混凝土管桩。
(3)挤土桩:成桩过程中,桩孔中的土未取出,全部挤压到桩的四周, 这类桩称为挤土桩。
主要有:木桩、钢筋混凝土桩,闭口的钢管桩或钢筋混凝土管桩, 沉管灌注桩。
第8章 桩基础设计
5、按桩的使用功能分类 竖向抗压桩、竖向抗拔桩、水平受荷桩以及复合受荷桩。
二、桩基设计原则 (一)桩基的极限状态
1.承载能力极限状态 :对应于桩基达到最大承载力导致整体 失稳或发生不适于继续承载的变形。
2.正常使用极限状态:对应于桩基达到建筑物正常使用所规定 的变形限值或达到耐久性要求的某项 限值。
第8章 桩基础设计
(二)建筑桩基设计等级划分
设计
建筑类型
等级
甲级 乙级
(1)重要建筑物; (2)30层以上或高度超过100m的高层建筑; (3)体型复杂,层数相差超过10层的高低层(含纯地下室)连体建筑; (4)20层以上框架-核心筒结构及其他对差异沉降有特殊要求的建筑; (5)场地和地基条件复杂的七层以上的一般建筑及坡地、岸边建筑; (6)对相邻既有工程影响较大的建筑
第8章 桩基础设计
桩的长径比L/d是影响荷载传递的主要因素之一,随着 长径比L/d 增大,桩端土的性质对承载力的影响减小, 当长径比L/d接近100时,桩端土性质的影响几乎等于零。
发现这一现象的重要意义在于纠正了“桩越长,承载力 越高”的片面认识。希望通过加大桩长,将桩端支承在 很深的硬土层上以获得高的端阻力的方法是很不经济的, 增加了工程造价但并不能提高很多的承载力。
桩基础设计
桩基础设计单桩竖向荷载的传递 计算
本章内容简介
1、桩基设计原则 2、桩及桩基础的分类 3、单桩竖向荷载的传递 4、单桩竖向承载力的确定 5、单桩抗拔承载力及单桩水平承载力 6、桩基础设计

竖向荷载作用下框架结构的内力计算计算书3:正文6-11章

竖向荷载作用下框架结构的内力计算计算书3:正文6-11章

第6章竖向荷载作用下框架结构的内力计算6.1计算单元的确定取7轴线横向框架进行计算,计算单元宽度为2.75m,如图6.1所示。

传给该框架的楼面荷载如图中的水平阴影线所示,计算单元范围内的其余楼面荷载则通过次梁和纵向框架梁以集中力的形式传给横向框架,作用于各节点上。

由于纵向框架的中心线与柱的中心线不重合,因此在框架节点上还作用有集中力矩。

图6.1 计算单元6.2 竖向荷载计算6.2.1恒荷计算1.1-5层荷载计算:梁自重:梁AB=2.1kN/m梁BD=2.1kN/m梁DE=2.1kN/m挑梁=0.525kN/m板传递给梁的梯形及三角形荷载:板AB(左)=3.742kN/m×1.35m=5.05kN/m板AB(右)=3.742kN/m×1.5m=5.61kN/m板BD(左)=3.742kN/m×1.95m=7.29kN/m板BD(右)=3.742kN/m×2.1m=7.85kN/m板DE(左)=3.742kN/m×1.35m=5.05kN/m板DE(右)=3.742kN/m×1.4m=5.24kN/m悬挑部分的板为单向板,所以直接传递给梁的恒荷载为零墙自重:墙AB =2.12×2.4=5.09kN/m墙BD =2.12×2.4=5.09kN/m墙DE =2.12×2.4=5.09kN/m墙悬挑=2.12×2.6=5.51kN/m恒载:梁自重+板传荷载+墙自重挑梁=梁自重+墙自重柱的集中力:A 3.740.50.5 2.71.350.531.5 2.850.525 2.375 2.6 2.8526.78kNP=⨯⨯⨯⨯+⨯⨯⨯⨯⨯=()++B 3.740.50.5 2.7 1.350.53 1.5 2.850.5250.5 3.743.150.750.50.5 1.95 1.950.5 2.1 3.9 2.12 2.6 2.8538.31k NP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯=()++() D 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.743.150.750.50.5 1.951.950.5 2.1 3.5 2.12 2.6 2.7536.31kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯=()++() E 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.740.65 5.52.375 2.6 2.8532.8kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯+⨯⨯=()++E 0.5 3.740.65 5.5 2.750.525 2.375110.5kN P -=⨯⨯⨯⨯+⨯=+柱所受集中力产生的弯矩:A 26.78(0.450.2)/2 3.35kN m M =⨯-=⋅B 0kN m M =⋅D 36.31(0.450.2)/2 4.45kN m M =⨯-=⋅E 32.8(0.450.2)/2 4.1kN m M =⨯-=⋅ 2.6层荷载计算:梁自重:梁AB=2.1kN/m梁BD=2.1 kN/m 梁DE=2.1kN/m挑梁=0.525 kN/m板传递给梁的梯形及三角形荷载: 板AB (左)=3.742kN/m ×1.35m=5.05kN/m 板AB (右)=3.742kN/m ×1.5m=5.61kN/m 板BD (左)=3.742kN/m ×1.95m=7.29kN/m 板BD (右)=3.742kN/m ×2.1m=7.85kN/m 板DE (左)=3.742kN/m ×1.35m=5.05kN/m 板DE (右)=3.742kN/m ×1.4m=5.24kN/m 悬挑部分的板为单向板,所以直接传递给梁的恒荷载为零 墙自重: 墙AB =2.12×1.925=4.081kN/m墙BD =2.12×3.36=7.12kN/m 墙DE =2.12×1.725=3.657kN/m恒载:梁自重+板传荷载+墙自重挑梁=梁自重 柱的集中力 A 3.740.50.5 2.71.350.531.5 2.850.525 2.3750.6 2.8513.17kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯=()++ B 3.740.50.5 2.71.350.531.5 2.850.5250.5 3.74 3.150.750.50.51.951.950.5 2.1 3.922.6kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() D 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.74 3.150.750.50.51.951.950.5 2.1 3.521.15kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() E 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.740.65 5.5 2.375 0.6 2.8519.26 kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯+⨯⨯=()++-E 0.5 3.740.65 5.5 2.750.5258.13kN P =⨯⨯⨯⨯=+柱所受集中力产生的弯矩:A 13.17(0.450.2)/2 1.65kN m M =⨯-=⋅B 0kN m M =⋅D 21.15(0.450.2)/2 2.64kN m M =⨯-=⋅E 19.26(0.450.2)/2 2.41kN m M =⨯-=⋅ 3.顶层荷载计算:梁自重:梁AB=2.35 kN/m 梁BD=2.35 kN/m 梁DE=2.35 kN/m板传递给梁的梯形及三角形荷载: 板AB (左)=5.192kN/m ×1.35m=7.01kN/m 板AB (右)=5.192kN/m ×1.5m=7.79kN/m 板BD (左)= 5.192kN/m ×1.95m=7.29kN/m 板BD (右)= 5.192kN/m ×2.1m=10.9kN/m 板DE (左)= 5.192kN/m ×1.35m=7.01kN/m 板DE (右)= 5.192kN/m ×1.4m=7.27kN/m 悬挑部分的板为单向板,所以直接传递给梁的恒荷载为零柱的集中力: A 5.190.50.5 2.71.350.531.5 2.850.5251.1212.24kN P =⨯⨯⨯⨯+⨯⨯⨯⨯=()+ B 5.190.50.5 2.7 1.350.53 1.5 2.850.525 1.120.55.19 3.15 0.750.50.51.951.950.5 2.1 3.915.83kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() D 5.190.50.5 2.71.350.5 2.81.4 2.750.5251.120.5 5.19 3.150.750.50.51.951.950.5 2.1 3.528.97kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() E 5.190.50.5 2.7 1.350.5 2.8 1.49.82k NP =⨯⨯⨯⨯+⨯⨯=()柱所受集中力产生的弯矩:A 12.24(0.450.2)/2 1.53kN m M =⨯-=⋅B 0kN m M =⋅ D 28.97(0.450.2)/2 3.62kN m M =⨯-=⋅ E 9.82(0.450.2)/2 1.23kN m M =⨯-=⋅6.2.2 活荷载计算活荷载作用下各层框架梁上活载为板传递给梁的荷载。

模板强度及稳定性计算

模板强度及稳定性计算

模板计算一、模板构造模板采用厚度为6mm的定型钢模,横肋间距为350mm、纵肋间距为450mm,横肋采用尺寸为80mm*10mm、厚为6mm的钢板,上面加焊同样尺寸的盖板以加强模板刚度,形成T形结构。

横向侧模之间采用对拉螺栓固定。

纵向侧模外用钢管固定。

模板具体设计构造见模板设计图纸,附后。

二、荷载计算1、竖向荷载根据《路桥施工计算手册》相关内容,荷载取值如下:(1)新浇混凝土自重:按配筋量大于2%算取26kN/m3。

(2)模板重量:取0.75 kN/m2。

(3)倾倒混凝土时产生的冲击力:取2.0kPa。

(4)振捣混凝土产生的荷载:取2.0kPa。

(5)人员、机具材料堆放等荷载:计算模板时取2.5kPa。

2、水平荷载根据《公路桥涵施工技术规范》(JTJ041-2000)推荐的模板侧压力计算公式:Pm=4.6v1/4式中:v——混凝土的浇筑速度,m/h。

混凝土浇筑速度取3m/h。

盖梁混凝土浇筑侧压力为:6.05kPa。

三、底模验算图一图示圆弧段即为收荷载最大的位置,讲圆弧型荷载偏安全的转化为直线段计算。

此部分总荷载值如下:(1)新浇混凝土荷载:26kN/m3×3.4m×1.3m(按荷载较大的B形桥墩宽计算)×4.8m=551.616 kN(2)模板重量:0.75 kN/m2×4.8m×(3.4m+3.4m)=24.48 kN(3)倾倒混凝土时产生的冲击力:2.0kPa×1.3m×3.4m=8.84 kN(4)振捣混凝土产生的荷载:2.0kPa×1.3m×3.4m=8.84 kN(5)人员、机具材料堆放等荷载:1.0kPa×1.3m×3.4m=4.42 kN总荷载值为:N=(1)+(2)+(3)+(4)+(5)+(6)= 612.83 kN 化为均布荷载大小为:P=N/(1.7*∏*1.3)=88kPa。

竖向荷载下内力计算方法(1)分层法.

竖向荷载下内力计算方法(1)分层法.

5.4 框架结构竖向荷载下的内力计算方法高层建筑结构是一个高次超静定结构,目前已有许多计算机程序供内力、位移计算和截面设计。

尽管如此,作为初学者,应该学习和掌握一些简单的手算方法。

通过手算,不但可以了解各类高层建筑结构的受力特点,还可以对电算结果的正确与否有一个基本的判别力。

除此之外,手算方法在初步设计中作为快速估算结构的内力和变形也十分有用。

本节介绍分层法、弯矩二次分配法、迭代法和系数法等四种常用方法。

5.4.1 分层法1、基本假定:(1)在竖向荷载作用下,框架侧移小,可忽略不计。

(2)每层梁上的荷载对其他各层梁的影响很小,可以忽略不计。

因此,每层梁上的荷载只在该层梁及与该层梁相连的柱上分配和传递。

根据上述假定,三层框架可简化成三个只带一层横梁的框架分别计算,然后将内力叠加。

单元之间内力不相互传递。

5.4.1 分层法⏹2、注意:(1)采用分层法计算时,假定上、下柱的远端为固定时与实际情况有出入。

因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数(原因:本来为弹性支承现假定为固定端),其传递系数由1/2改为1/3。

(下图5.9)⏹(2)分层法计算的各梁弯矩为最终弯矩,各柱的最终弯矩:因每一柱子属于上、下两层,所以每一柱子的弯矩需由上、下两层计算所得的弯矩值叠加得到。

若节点弯矩不平衡,需要更精确时,可将节点不平衡弯矩再进行一次分配。

5.4.1 分层法2、注意:(3)在内力与位移计算中,所有构件均可采用弹性刚度。

(4)在竖向荷载作用下,可以考虑梁端塑性变形内力重分布而对梁端负弯矩进行调幅,调幅系数为:现浇框架:0.8-0.9;装配式框架:0.7-0.8。

(5)梁端负弯矩减小后,应按平衡条件计算调幅后的跨中弯矩。

梁的跨中正弯矩至少应取按简支梁计算的跨中弯矩之一半。

如为均布荷载,则5.4.1 分层法2、注意:(6)竖向荷载产生的梁弯矩应先进行调幅,再与风荷载和水平地震作用产生的弯矩进行组合,求出各控制截面的最大最小弯矩。

设计竖向荷载

设计竖向荷载

设计竖向荷载1. 竖向荷载的定义竖向荷载是指作用在建筑结构垂直方向上的力,包括重力荷载、活荷载和附加荷载等。

在建筑设计中,竖向荷载的计算和设计是非常重要的,因为它能够决定建筑结构的安全性和稳定性。

2. 重力荷载的计算和设计重力荷载是由于自重和受重物的作用而产生的竖向荷载。

在设计建筑结构时,需要计算和设计重力荷载,以确保结构的稳定性和安全性。

重力荷载的计算包括以下步骤:2.1 确定重力荷载大小首先需要确定各个构件(如梁、柱、墙等)的自重,并根据设计要求计算出所承受的重力荷载。

2.2 确定重力荷载的作用位置确定重力荷载的作用位置可以根据建筑结构的布置和荷载的分布情况进行计算。

通常情况下,重力荷载作用位置可以取构件的重心位置。

2.3 确定重力荷载的作用方向确定重力荷载的作用方向有利于计算结构的受力情况和变形情况。

通常情况下,重力荷载的作用方向为竖直向下的方向。

2.4 计算结构的承载能力根据结构的材料和形状等参数,计算结构的承载能力,以确定结构是否满足要求的安全性和稳定性。

3. 活荷载和附加荷载的计算和设计除了重力荷载外,还需要考虑活荷载和附加荷载对建筑结构的影响。

活荷载包括人员荷载、设备荷载和雪荷载等;附加荷载包括风荷载、地震荷载和温度荷载等。

活荷载和附加荷载的计算和设计需要根据具体的建筑结构和使用要求进行。

通常情况下,可以根据相关规范和设计标准来确定活荷载和附加荷载的计算方法和设计要求。

4. 竖向荷载的设计原则在进行竖向荷载的设计时,需要遵循一些基本原则,以确保建筑结构的安全可靠。

4.1 安全性原则在设计竖向荷载时,需要确保结构能够承受荷载的作用,不产生过大的应力和变形,以保证结构的安全性。

4.2 经济性原则在设计竖向荷载时,需要尽量减少结构的重量和材料的使用量,以保证结构的经济性。

同时还需要考虑结构的施工难度和成本等因素。

4.3 实用性原则在设计竖向荷载时,需要考虑结构的使用要求和功能,以满足建筑的实际需要。

支座竖向承载力

支座竖向承载力

支座竖向承载力
支座竖向承载力
一、基本概念
支座竖向承载力是指支座在抗竖向荷载作用下时,能抵抗荷载的强度。

支座竖向承载力的大小与支架的设计、制造、安装工艺及使用环境等有关。

支座竖向承载力的表示方法一般有两种:一种是以荷载量数值表示,单位为牛顿或其它;另一种是以荷载等级表示,等级范围为3级到6级,从低到高依次为:3级、4级、5级、6级,荷载等级越高,荷载量越大。

二、计算原则
1.支座真实受力情况分析
当支座受到一定的竖向荷载时,它的内部会受到拉拔应力和剪切应力,拉拔应力的分布范围大于剪切应力,因此支座竖向承载力的计算可以只考虑拉拔应力。

2.支座竖向承载力计算
当支座受竖向荷载时,其最大拉拔应力可根据支座分析计算得出,最大拉拔应力为支座竖向承载力的计算基础。

最大拉拔应力可表达为:
F max =F 0 +F c
其中:F 0 为支座抗拉强度,F c 为支座抗剪强度。

根据F max 即可计算出支座的竖向承载力。

三、实例
以下为一个支座竖向承载力计算实例:
假设,一个支座的抗拉强度F 0 为1000N,抗剪强度F c 为500N,则支座的最大拉拔应力F max 为1500N,即支座的竖向承载力为1500N,等级为4级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.33 3.33 F FG
2.54 2.54 J JK
-2.90 -2.90
恒荷载作用下 底层 B(66.56) BA BC BB1 0.301 0.380 0.390 -91.55 7.52 9.50 9.75 7.52 9.50 -81.80 2~4层(以2层为计算) C(66.56) CB CD CC1 0.352 0.352 0.296 -91.55 8.80 8.80 7.40 8.80 8.80 -84.15 5层 F(66.56) FE FG FF1 0.400 0.263 0.337 -91.55 10.00 6.57 8.42 10.00 6.57 -83.13 6~9层(以6层为对象) G(66.56) GF GH GG1 0.305 0.305 0.390 -91.55 7.62 7.62 9.75 7.62 7.62 -81.80 顶层 K(68.91) K1(-8.51) KJ KK1 K1K 0.438 0.562 -49.06 49.06 -8.69 -11.16 -5.58 -8.69 -60.22 34.97
K KJ
J JK 0.358 1.87 1.87 JJ1 0.642 -5.21 3.34 -1.87
J1 J1J 5.21 1.67
0.62 0.62
JJ1 0.642 -45.56 13.83 -31.73
活载 JK 0.358 1.87 0.60 2.46
JJ1 0.642 -3.54 1.07 -2.47
B1(-6.43) B1B 69.46 4.87 67.90 C1(-6.43) C1C 69.46 3.70 66.73 F1(-6.43) F1F 69.46 4.21 67.24 G1(-6.43) G1G 69.46 4.87 67.90
C CB
3.17 3.17 D DC
2.93 2.93 G GF
C CB
1.38 1.38 D DC
1.28 1.28 G GF
0.96 0.96 H HG
1.11 1.11
(7751 .76 568 .25 1.0) 2.4 (9.0 3.7 1.0) 0.6 2 2 2 4 (2.4 1.2 ) 4 0.6 2
698.625833
A AB
1.64 1.64 B BC
1.28 1.28 E EF
1.46 1.46 F FG
1.11 1.11 J JK
0) B1(-2.70) BA BC BB1 B1B 0.301 0.380 0.390 -20.41 15.55 3.29 4.15 4.26 2.13 3.29 4.15 -16.15 14.98 2~4层(以2层为计算) C(9.48) C1(-2.70) CB CD CC1 C1C 0.352 0.352 0.296 -20.41 15.55 3.85 3.85 3.24 1.62 3.85 3.85 -17.17 14.47 5层 F(9.48) F1(-2.70) FE FG FF1 F1F 0.400 0.263 0.337 -20.41 15.55 4.37 2.87 3.68 1.84 4.37 2.87 -16.73 14.69 6~9层(以6层为对象) G(9.48) G1(-2.70) GF GH GG1 G1G 0.305 0.305 0.390 -20.41 15.55 3.33 3.33 4.26 2.13 3.33 3.33 -16.15 14.98 顶层 K(9.46) K1(-2.53) KJ KK1 K1K 0.438 0.562 -15.13 15.13 2.48 3.19 1.59 2.48 -11.94 16.72
节点 杆件 分配系数 固端弯矩 分配与传递 合计 节点 杆件 分配系数 固端弯矩 分配与传递 合计 节点 杆件 分配系数 固端弯矩 分配与传递 合计 节点 杆件 分配系数 固端弯矩 分配与传递 合计 节点 杆件 分配系数 固端弯矩 分配与传递 合计
A AB
3.76 3.76 B BC
2.93 2.93 E EF
楼梯间屋面的分层计算 节点 K J 杆件 KJ JK 0.358 分配系数 固端弯矩 分配与传递 8.01 24.02 合计 8.01 24.02 活荷载 节点 杆件 分配系数 固端弯矩 分配与传递 合计 节点平衡计算 恒载 JK 0.358 24.02 7.71 31.73
J1 JJ1 0.642 -67.10 43.08 -24.02 J1J 67.10 21.54
2.19 2.19 H HG
2.54 2.54
6
节点 杆件 分配系数 固端弯矩 分配与传递 合计 节点 杆件 分配系数 固端弯矩 分配与传递 合计 节点 杆件 分配系数 固端弯矩 分配与传递 合计 节点 杆件 分配系数 固端弯矩 分配与传递 合计 节点 杆件 分配系数 固端弯矩 分配与传递 合计
分配系数 杆段弯矩 分配 合计 层次 节点 杆段 分配系数 杆段弯矩 分配 合计 层次 节点 杆段 分配系数 杆段弯矩 分配 合计 层次 节点 杆段 分配系数 杆段弯矩 分配 合计
恒载节点平衡计算(柱节点) 活载节点平衡计算(柱节点) 底层 底层 B(66.56) B(9.48) BA BC BB1 BA BC BB1 0.301 0.380 0.390 0.301 0.380 0.390 7.52 12.43 -81.80 3.29 5.43 -16.15 -1.42 -1.79 -1.84 -0.62 -0.78 -0.80 6.10 10.64 -83.64 2.67 4.65 -16.95 2层 2层 C(66.56) C(9.48) CB CD CC1 CB CD CC1 0.352 0.352 0.296 0.352 0.352 0.296 11.97 11.73 -84.15 5.23 5.13 -17.17 -2.15 -2.15 -1.81 -0.94 -0.94 -0.79 9.82 9.58 -85.96 4.29 4.19 -17.96 3层 2层 D(66.56) C(9.48) DC DE DD1 DC DE DD1 0.352 0.352 0.296 0.352 0.352 0.296 11.73 11.73 -84.15 5.13 5.13 -17.17 -2.07 -2.07 -1.74 -0.90 -0.90 -0.76 9.66 9.66 -85.89 4.23 4.23 -17.93 4层 4层 E(66.56) E(9.48) ED EF EE1 ED EF EE1 0.352 0.352 0.296 0.352 0.352 0.296 11.73 12.13 -84.15 5.13 5.31 -17.17 -2.21 -2.21 -1.86 -0.97 -0.97 -0.81 9.52 9.92 -86.01 4.16 4.34 -17.98 5层 5层 F(66.56) F(9.48) FE FG FF1 FE FG FF1 0.400 0.263 0.337 0.400 0.263 0.337 12.93 9.11 -84.15 5.65 3.98 -16.73 -1.78 -1.17 -1.50 -0.95 -0.63 -0.80 11.15 7.94 -85.65 4.70 3.35 -17.53 6层 6层 G(66.56) G(9.48) GF GH GG1 GF GH GG1 0.305 0.305 0.390 0.305 0.305 0.390 9.81 10.16 -83.13 4.29 4.44 -16.15 -1.04 -1.04 -1.33 -0.63 -0.63 -0.80 8.77 9.12 -84.46 3.66 3.81 -16.95 7层 7层 H(66.56) H(9.48) HG HI HH1 HG HI HH1
层次 节点 杆段 分配系数 杆段弯矩 分配 合计 层次 节点 杆段 分配系数 杆段弯矩 分配 合计 层次 节点 杆段 分配系数 杆段弯矩 分配 合计 层次 节点 杆段 分配系数 杆段弯矩 分配 合计 层次 节点 杆段 分配系数 杆段弯矩 分配 合计 层次 节点 杆段 分配系数 杆段弯矩 分配 合计 层次 节点 杆段
相关文档
最新文档