工程热力学与传热学课程总结与体会

合集下载

传热学心得体会

传热学心得体会

传热学心得体会热是一种抽象的物理量,它可以描述物质内部分子的运动状态。

而传热学则是研究热的传递过程的学科,它在自然界和工程领域都起着重要的作用。

在我的学习过程中,我深刻体会到了传热学的重要性和深刻的物理原理,下面我将分享我的心得体会。

热的传递方式热可以通过三种方式传递:热传导、热对流和热辐射。

热传导是指热在物质内部通过分子间的传递方式进行传递。

热对流是指液体或气体的流动导致热的传递。

热辐射则是指热通过电磁波辐射的方式进行传递。

这三种方式互相联系,共同构成了传热学的重要内容。

热传导热传导是物体内部热传递的基本方式。

在物质内部,热的传递是由高温区向低温区流动的。

学习过程中,我了解到热传导的速度取决于物体的热导率、温度差、距离等因素。

这些因素不同的组合会产生不同的回答。

例如,热传导速度越快,热传导距离越短,温度差越大,热能量的传递速度就越快。

而热导率和物体的物理性质有关,是一个常数,不易改变。

热对流热对流是指热通过流体内部的流动进行传递。

在天然对流中,热在液体或气体中的密度变化引起液体或气体的对流,从而导致热的传递。

在强迫对流中,我们通过泵或风扇等装置来控制液体或气体的流动,从而传递热量。

学习传热学时,我对热对流有了更深刻的理解。

热对流是一种相对复杂的热传递方式。

根据不同的物理结构和流动状态,热对流的传热模型也不尽相同。

热辐射热辐射是指热通过电磁波辐射的方式进行传递。

学习传热学时,我知道了热辐射常用于工业中的高温设备,例如高温炉、熔炉等。

这些设备需要进行高温加热,而传统的加热方式,如热传导和热对流,不能满足要求。

相比之下,热辐射的加热方式更加高效,也更加符合工程需求。

其他有关传热学的知识物体的传热过程需要满足一些物理定律和数学方程式来进行计算和分析。

例如,热传导的计算使用傅里叶热传导定律和一维热传导方程。

热对流的计算则使用涡流及Navier-Stokes方程等。

对于不同的物理结构和流体状态,我们需要选用不同的数学工具和模型来进行计算。

工程热力学学习感想

工程热力学学习感想

工程热力学学习感想第一篇:工程热力学学习感想前言:工程热力学是以研究热能与其他形式的能量相互转换规律、工质的热力性质及各种热力装置工作情况的分析的一门学科。

目前,热力学的研究范围已涉及到化工、空调以及近代的低温、超导、电磁及生物等各个领域。

工程热力学属于应用科学的范畴,是工程科学的重要领域之一,是工程类各专业本科生重要的专业基础课,是研究热能和机械能相互转换的基本原理和规律,一提高热能利用为基础的一门学科。

工程热力学是研究热能和机械能相互转换的基本原理和规律,一提高热能利用为基础的一门学科,属于应用科学的范畴,是工程科学的重要领域之一,是工程类各专业本科生重要的专业基础课,是农业工程类、能源工程类、、电气信息类等专业的主要专业基础课之一。

工程热力学是关于热现象的宏观理论,它主要以热力学第一定律、热力学第二定律作为推理的基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究,通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。

自然能源的开发和利用更是人类走向繁荣的起点能源开发和利用的程度是生产发展的一个重要标志。

能源的开发和利用,不但推动着社会生产力的发展与进步,而且与国民经济发展有着密切的联系。

能源是指为人类生产和日常生活提供各种能量和动力的物质资源。

迄今为止,自然界中已为人们发现的可被利用的能源主要有风能、水能、太阳能、地热能、海洋潮汐能、核能及燃料的化学能等。

在众多能源中,人们从自然能源中获得能量的主要形式是热能。

但是长期以来,我们总是以为我国地大物博,资源丰富。

然而,我国是世界上人口最多的国家,人均资源水平极低,几乎所有人均资源都低于世界的平均水平,能源的使用已经达到瓶颈的状态,能源利用率低下,污染较严重,因此,运用工程热力学的理论知识,对实际工作中的热力过程和热力循环进行分析,才能提出提高能源利用经济性的具体途径与措施。

传热学心得体会

传热学心得体会

传热学心得体会传热学是研究热量在物体之间传递的学科,它在我们日常生活和工程实践中都扮演着重要的角色。

通过学习传热学,我深刻理解了热量的传递方式、途径和影响因素,下面将分享我对传热学的心得体会。

一、热传导:承接热量的“接力棒”热传导是物体内部热量传递的方式之一。

在传热学中,我了解到热传导是由分子之间的相互作用导致的。

当物体的一部分受热时,其周围的分子会通过碰撞将热量传递给邻近的分子。

这类似于接力赛中的接力棒,热量在物体内部通过分子相互碰撞的方式传递。

热传导的速度与物体的导热性质相关,我了解到导热性能好的物质会更有效地传导热量。

例如,金属具有良好的导热性能,因此金属制品在传热过程中会传递更多的热量。

而绝缘材料则有较低的导热性能,可以减少热量的传递。

二、对流传热:热流之水,携热而行对流传热是指热量通过流体的传递方式。

这种传递方式在我们日常生活中非常常见,例如风扇吹来的冷风、水的热量传递等。

在对流传热中,热量基本上是通过流体的对流来传递的。

对流传热的特点是需要通过流体来承载热量,并且需要有流体内的物质运动。

例如,当水加热时,受热的水会被加热并上升,而凉爽的水则下沉,形成对流。

这种对流传热方式可以使热量更快地传递,提高传热效率。

三、辐射传热:能量的跳跃传递辐射传热是指通过电磁波辐射的方式传递热量。

这种方式在太阳能、火焰热等场景中广泛应用。

辐射传热是一种无需通过介质的传递方式,热量可以直接在真空中传递。

辐射传热是由发射热辐射的源头向周围的物体传递热量。

在传热学中,我了解到热辐射是由发射、传输和吸收三个过程组成的。

当一个物体的温度高于其周围的物体时,它将以电磁波的形式发射热辐射,传递给周围的物体。

这种方式使得热量可以越过空气、液体和固体等物质直接传入目标物体内部。

四、传热过程的应用通过学习传热学,我不仅了解了传热的基本原理,还学到了如何将传热知识应用于日常生活和工程实践中。

例如,我们在空调工作原理中应用了对流传热,通过冷热空气的流动来调节室内温度。

传热学心得体会

传热学心得体会

传热学心得体会传热学是研究热能如何在物体之间传递的一门学科。

在学习传热学的过程中,我深入了解了热传递的机制、方法和影响因素,并从中获得了一些宝贵的心得和体会。

首先,热传递的三种方式:传导、对流和辐射,是我们研究热传递的基础。

传导是指热量通过物质内部的分子传递,而对流是指热量通过流体(液体或气体)的流动传递,辐射则是指热量通过电磁波的辐射传递。

这三种方式在实际中常常同时存在,并相互作用。

其次,温度是影响热传递的重要因素。

温度差可以促进热量的传递,而温度差越大,传热速率就越大。

这是因为温度差会产生梯度,从而驱动热量的流动。

在实际的工程应用中,我们常常会利用这一原理来设计和改进热交换设备,提高传热效率。

同时,传热还受到材料的热导率的影响。

热导率是指单位时间内单位面积上热量通过的量,它与物质的导热性能有关。

导热性能好的材料能够快速传递热量,而导热性能差的材料则难以迅速传递热量。

在材料选择和热传递系统设计中,我们需要考虑不同材料的热导率,以便实现预期的传热效果。

此外,表面特性对传热也有着重要的影响。

光滑的表面对辐射传热有着良好的反射性能,可以降低传热速率。

而粗糙的表面则会增加辐射传热的吸收,提高传热速率。

对于对流传热而言,在表面上形成湍流可以加快传热速率。

通过调节表面特性,我们可以灵活地控制传热过程,实现所需的热传递。

最后,我认识到热传递在许多领域中的重要性。

无论是日常生活中的烹饪、取暖,还是工业生产中的加热和冷却过程,传热都扮演着重要的角色。

通过深入研究传热学,我理解了热传递的原理和应用,为今后的工作提供了理论基础。

总的来说,传热学是一门重要且有趣的学科,它让我深入了解了热传递的机制和影响因素。

通过学习,我掌握了热传递的基本理论和实际应用技巧,对于今后的工作和研究,我有了更深入的认识和规划。

我相信,通过不断地学习和实践,我会在传热学领域取得更多的成果和进步。

工程热力学及传热学课程中的几点教学体会

工程热力学及传热学课程中的几点教学体会

工程热力学及传热学课程中的几点教学体会作者:冯立品来源:《中国化工贸易·中旬刊》2018年第08期摘要:“工程热力学及传热学”是一门与工程实际联系紧密、应用性很强的热科学基础课,它源于化工等工程领域中的实际工程问题。

该课程具有概念抽象、难点多、计算关联式多,并且与工程实际贴近等特点,而使这门课一直被认为是既难教也难学的一门课。

本文作者结合自身在讲授该课程过程中的实际教学经验,就如何在课堂上调动学生的积极性、教学方法多样化及最终考核方式谈了几点自己的体会。

关键词:工程热力学;传热学;N+2考核Abstract:"Engineering thermodynamics and heat transfer theory"is a basic course of thermal science which is closely related to engineering practice and has strong application. It is derived from practical engineering problems in engineering fields such as chemical engineering. The course has the characteristics of abstract concept, many difficulties, many calculation and connection with the engineering practice, and it has always been considered as a difficult and difficult course. The author, in combination with his own teaching experience in the course of teaching the course, talks about how to mobilize the enthusiasm of the students in the classroom, the diversification of teaching methods and the way of final assessment.Key words:Engineering Thermodynamics;heat transfer;N+2assessment热传递现象无时无处不在,它的影响几乎遍及现代所有的工业部门,像传统的工业领域,如化工、能源动力、冶金等;高新技术领域,如航空航天、核能、材料等[1]。

工程热力学总结

工程热力学总结

“工程热力学”课程总结
一般概念
质量守恒
第一定律
第二定律
第三定律
过程
工质
“工程热力学”课程总结
一般概念
热力系统、温度、平衡、准静态、可逆、循环、状态参数等
第一定律
能的数量关系
闭口、开口、循环 化学反应(反应热)
01
02
03
“工程热力学”课程总结
第二定律
表述、卡诺定理 克氏不等式、熵、Ex、作功能力损失 过程方向、最大(小)功,化学平衡判据
某闭口系统经1-a-2压缩过程,吸热6kJ,外界耗功30kJ;若该系统经2-b-1过程后回到了原状态,其间向外放热9kJ,则2-b-1过程中系统对外做功为()。
01
某一过程中,使工质熵增加25kJ/K,且从热源(300K)吸热6000kJ,此过程是()。 a.可逆过程; b. 不可逆过程; c.不能实现
能的质量
第三定律
05
绝对熵
“工程热力学”课程总结
“工程热力学”课程总结
过程
化学反应过程
热力过程
闭口系热力过程
开口系热力过程
循环
制冷热泵
内燃机
外燃机
柴油
汽油
燃气轮机
空气压缩
蒸气压缩
吸收
热机
蒸汽动力
工质
种类
研究方法
状态参数全微分特征
Maxwell式
理想气体
实际气体
混合气体
比热关系式
湿空气
水蒸气
制冷工质
Tel:
Email:
试题示例
简答题
01
某理想气体k=1.4,Rg=290 J/(kg•K),假定其比热容为定值,试问该气体能否从初态p1=3×105 Pa、t1=157℃绝热膨胀至终态p2=1×105 Pa、t2=57℃?

传热学心得体会

传热学心得体会

传热学心得体会传热学作为热力学的一个重要分支,研究的是热量在物体之间的传递过程以及传递规律。

通过学习传热学知识,我对热量的传递和相关现象有了更深的了解,收获了许多宝贵的体会。

首先,我认识到热量传递是各种生活和工程中常见的现象。

无论是在日常生活中还是在各种工业生产过程中,热量传递都扮演着重要的角色。

例如,我们用电熨斗烫平衣物时,热量从电熨斗传递给衣物,使其升温,进而达到熨烫的效果。

而在汽车发动机的运行过程中,燃烧所产生的热量则需要通过散热系统传递到外部环境中,以保证发动机的正常运转。

传热学的知识帮助我更好地理解这些现象,使我在实际生活和工程应用中能够更加合理地处理热量传递的问题。

其次,我深刻认识到热量传递是有规律可循的。

传热学通过对传热过程的研究,总结出了许多传热规律和模型,例如热传导、对流传热和辐射传热等。

这些规律和模型为我们热量传递过程的分析和计算提供了重要的理论基础。

在我学习传热学的过程中,我通过课堂学习和实验实践,对这些规律和模型有了更加深入的了解。

例如,在学习热传导时,我了解到热传导的速率与物体的热导率、温度梯度以及物体的几何尺寸等因素有关。

这种理论知识为我们在实际问题中准确地分析和计算传热过程提供了依据和方法。

此外,我还学会了一些实用的传热技术。

在传热学的学习中,我接触到了许多传热设备和技术,如换热器、散热器和热泵等。

这些设备和技术在各个领域中有着广泛的应用,包括化工、电力、制冷空调等。

通过学习这些传热设备和技术,我对它们的结构和工作原理有了更加全面的认识。

这些实用的传热技术在我们的生活和工作中发挥着重要的作用,能够帮助我们实现能源的高效利用和减少能量损失,对于提高生活质量和保护环境具有重要意义。

综上所述,通过学习传热学,我对热量传递和相关现象有了更深入的了解,并获得了许多宝贵的体会。

传热学让我认识到热量传递是各种生活和工程中常见的现象,并具有可预测和规律性,这为我们在实际问题中解决热量传递问题提供了指导和方法。

工程热力学与传热学与复习总结

工程热力学与传热学与复习总结

一、基本要求严格遵守考试纪律,绝不做任何有作弊嫌疑的动作。

二、考试需要携带的物品相关身份证件、笔、计算器三、复习要点(一)基本概念(红色粗体部分是热力学与传热学最基本的概念,要求掌握其定义、物理意义、表达式、单位)第一章基本概念工质:热能与机械能之间转换的媒介物质。

热源:热容量很大、并且在吸收或放出有限热量时自身温度及其他的热力学参数无明显变化的物体。

热力系统:人为选取的研究对象(空间或工质)。

外界(环境):系统以外的所有物质。

闭口系统:与外界无物质交换的系统。

开口系统:与外界有物质交换的系统。

绝热系统:与外界无热量交换的系统。

孤立系统:与外界既无热量交换又无物质交换的系统。

平衡状态:在不受外界影响(重力场作用除外)的条件下,工质或系统的状态参数不随时间而变化的状态。

热力状态:工质在某一瞬间所呈现的宏观物理状况。

状态参数:压力、温度、比体积、热力学能、焓、熵等。

基本状态参数:压力、温度、比体积压力(Pa ,mmH 2O ,mmHg ,atm, at 换算):1 bar = 105 Pa 1 MPa = 106 Pa1 atm = 760 mmHg = 1.013105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665104 Pa1 psi=0.006895MPa温度:处于同一热平衡状态的各个热力系,必定有某一宏观特征彼此相同,用于描述此宏观特征的物理量。

(标志冷热程度的物理量) 比体积:单位质量的工质所占有的体积。

密度:单位体积工质的质量。

ρν=1。

状态公理:对组元一定的闭口系,独立状态参数个数 N =n +1 状态方程式:Ϝ(p ,ν,T)=0。

独立参数数目N =不平衡势差数=能量转换方式的数目=各种功的方式+热量= n +1准平衡过程:系统所经历的每一个状态都无限接近平衡态的过程。

可逆过程:系统经历某一过程后,如果再沿着原路径逆行而回到初始状态,外界也随之恢复到原来的状态,而不留下任何变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程热力学与传热学课程总结与体会Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】工程热力学与传热学题目:工程热力学与传热学课程总结与体会院系:水利建筑工程学院给排水科学与工程班级:给排水科学与工程一班姓名:张琦文指导老师:姚雪东日期:2016年5月1日认识看法地位作用存在问题解决措施未来发展展望传热学在高新技术领域中的应用摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。

本文介绍了航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。

可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。

不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。

在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。

前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。

发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。

传热学是研究由温度差异引起的热量传递过程的科学。

传热现象在我们的日常生活中司空见惯。

早在人类文明之初人们就学会了烧火取暖。

随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。

当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国际问题。

传热学在促进经薪发展和加强环境保护方面起着举足轻重的作用。

20世纪以前传热学是作为物理热学的一部分而逐步发展起来的。

20世纪以后,传热学作为一门独立的技术学科获得迅速发展,越来越多地与热力学、流体力学、燃烧学、电磁学和机械工程学等一些学科相互渗透,形成多相传热、非牛顿流体传热、燃烧传热、等离子体传热和数值计算传热等许多重要分支。

现在,机械工程仍不断地向传热学提出大量新的课题。

如浇铸和冷冻技术中的相变导热,切削加工中的接触热阻和喷射冷却,等离子工艺中带电粒子的传热特性。

核工程中有限空间的自然对流,动力和化工机械中超临界区换热,小温差换热,两相流换热,复杂几何形状物体的换热湍流换热等。

随着激光等新的实验技术的引入和计算机的应用,为传热学的发展提供了广阔前景。

传热学是研究热量传递规律的一门学科,生产部门存在的多种多样的热量传递问题都可以用传热学来解决,这些部门包括能源、化工、冶金、建筑、机械制造、电子、制冷、航天航空、农业、环境保护等。

随着传热学的理论体系日趋完善,内容不断充实,已经发展为现代科学技术中充满活力的一门重要技术基础学科。

传热学是研究不同温度的物体或同一物体的不同部分之间热量传递规律的学科。

传热不仅是常见的自然现象,而且广泛存在于工程技术领域。

例如,提高锅炉的蒸汽产量,防止燃气轮机燃烧室过热、减小内燃机气缸和曲轴的热应力、确定换热器的传热面积和控制热加工时零件的变形等都是典型的传热问题。

传热的基本方式有热传导、热对流和热辐射三种。

热传导是指在不涉及物质转移的情况下,热量从物体中温度较高的部位传递给相邻的温度较低的部位或从高温物体传递给相接触的低温物体的过程,简称导热。

热对流是指不同温度的流体各部分由相对运动引起的热量交换。

工程上广泛遇到的对流换热是指流体与其接触的固体壁面之间的换热过程,它是热传导和热对流综合作用的结果。

决定换热强度的主要因素是对流的运动情况。

热辐射是指物体因自身具有温度而辐射出能量的现象。

它是波长在~100微米之间的电磁辐射,因此与其他传热方式不同热量可以在没有中间介质的真空中直接传递。

太阳就是以辐射方式向地球传递巨大能量的。

每一物体都具有与其绝对温度的四次方成比例的热辐射能力也能吸收周围环境对它的辐射热。

辐射和吸收所综合导致的热量转移称为辐射换热。

实际传热过程一般都不是单一的传热方式,如火焰对炉壁的传热就是辐射、对流和传导的综合,而不同的传热方式则遵循不同的传热规律。

为了分析方便,人们在传热研究中把三种传热方式分解开来,然后再加以综合。

一、在航空航天、核能、微电子领域的应用(1)人类征服天空和宇宙空间的不懈努力以及所取得的巨大成果,是当今世界上各领域高技术、新材料研究最集中的体现。

其中传热学所起的作用功不可没。

据美国航空和宇宙航行局(NASA)所作的技术分析,美国航天飞机的技术关键只有一个半,这半个是大推力的液氢—液氧火箭发动机(其中自然与传热有密切的关系),而那一个关键则是所谓“热防护系统”(TPS),即指以航天飞机外表面的防热瓦为主的整个热防护结构。

它被视为可反复使用的航天飞机成败的最大关键。

之所以把热防护系统提到如此重要的地位,是由于航天飞机极端复杂的气动热环境以及要求该防热系统必须能够重复使用造成的。

举几个数字为证,航天飞机在地球轨道上将反复地经受因太阳直接辐照产生的高温和进入地球阴影时面对接近0K的宇亩空间导致的低温变化范围达到-157—55℃,同时还要经受×10-4Pa的高真空环境,在以s的速度从120km高度重返地球大气层时,飞行器表面的热流密度大约达到×105W/m2机翼前缘和头锥帽上的温度高达1650℃,除此之外还必须能够经受太阳紫外线、高能粒子和微陨石可能的撞击。

在这样严酷的情况下要能够保证飞行安全内部的人员、设备不受任何干扰,必须采取特殊有效的热防护措施,为此先后研制成功并投入使用的第一代低温陶瓷防热瓦(LRSI)LI—900、第二代高温陶瓷防热瓦(HRSI)LI—2200以及较晚研制成功的由氧化硅纤维和氧化铝纤维组成的第二代陶瓷瓦HTP是这一系统的核心。

(2)红外辐射除了可以用于工业加热和物料干燥之外,红外测试技术还具有不干扰、不破坏原有温度分布的突出优点,因而在资源勘查、农作物估产、环境监测、火灾防护、医疗诊断,甚至刑事案件的侦破和军事侦察、跟踪等许多高技术领域当中扮演着重要的角色。

(3)多孔介质中的传热传质是当今传热学科很活跃的一个前沿领域。

所谓多孔介质是以自然形态存在的一类特殊材料,如土壤的闭粒结构,很多建筑材料,如混凝土、砖、砂石等,生物材料,像人和动物的组织、脏器和皮肤等。

它们一般是由固体骨架或固体颗粒堆积组成的多相体系,其中的质量、动量和热量的传递规律是揭开很多大自然秘密的关键因素。

燃气轮机高温叶片的发散冷却技术,石油热采地热利用中地下热储的热量传递,利用土壤岩层进行蓄热、蓄冷,化工反应器如固定床和催化剂填充床中的传热传质过程,核废料在地下的安全存放,生物体和食品的贮存保鲜技术,城市污水及工业废水的排放、扩散(注入或渗入地下)与控制,农作物的节水灌溉技术,谷物的长期存贮(冷却及干燥)等均属于多孔介质传热传质研究的范畴。

人们还发现多孔材料常常是性能优良的强化传热传质媒体和隔热性能良好的热绝缘材料。

为此已设计生产出各种“模拟的”人造多孔体材料,用它们制造换热设备以达到强化传热的目的或者制造用于极低温度环境下的超级隔热材料。

二、在生物医学工程、环境工程领域(1)生物传热学是近年才发展起来的新兴传热学科分支。

虽然远末达到完善的程度却已经显示出强大的生命力和令人鼓舞的应用前景。

它是由生物学、临床医学和传热学多个学科领域交叉形成的一门新学科,其目的在于通过把传热学的基本原理和研究方法、手段引入到生物和医学工程领域中,探讨物质和能量在生物体内的传输规律,以便为诸多至今末解开的生物医学难题寻求有效的解决方案。

比如人体器官、组织及皮肤癌变的热诊断与高温治疗,激光和超低温外科手术,人体器官移植与冷冻贮存,胚胎的低温保存,烧伤、烫伤和冻伤的临床治疗及康复等。

除此以外,摸清生物传热的基本规律还可以为开发各种热疗和热诊断用的仪器设备奠定必要的理论基础。

研究生物传热的困难在于生物组织本身的结构极其复杂,它们一般既是各向异性体,又是多相体、多孔体,同时还存在因生物代谢产生的内热源。

生物体内有很多血管,要确定因血液灌流导致的热量传递是非常困难的。

而且几乎所有的动物、甚至一些植物都具备通过中枢神经系统来感知和调节自身温度的能力,这是一套极复杂的温度传感和控制体系。

加之生物体内的传热温差通常非常小,生物材料的特性随民族、年龄、性别和身体状况等因素各不相同。

(2)以化石燃料(煤炭、石油和天然气)为主构成的常规能源终将耗尽,而且已经为期不远。

以太阳能、地热能、海洋能(包括海洋温差和波浪能)以及效率更高的发电方式,如氢燃料电池、磁流体发电乃至可控核聚变为代表的新能源总要逐步走向前台,成为人类的主要消费能源。

这些新型能源的获得、转换和使用都要以传热学的基本原理为指导。

可以预计,这些新型能源技术的逐步完善一定会极大地推动传热学科的进一步发展。

比如太阳能热利用就必须妥善地解决低能量密度情况下热能的有效采集和转换,以及因昼夜更替、气候变化带来的贮能问题。

再比如地球上蕴藏海洋温差能的海域达到6×107/m2,发电能力达到1012W量级。

但是可利用的温差仅15—25℃,要在这样小的温差下充分利用这个巨大的能源,非得有换热效率极高的热交换设备不可。

(3)以计算机芯片为代表的微电子元器件发展迅速,随着芯片体积微型化,线宽迅速下降,芯片表面的热流密度已经超过106w/m2,因此有“热障”之说,这对微型化高效冷却技术提出了极高的要求。

近年用于高端服务器和桌面工作站的新型空气冷却装置的冷却能力也已经达到105w/m2。

(4)现代的机械加工工艺已经不限于传统的车、钳、铣、刨像激光钻孔、激光切割这类高热流、超短时间的新型加工手段已经用于石油钻井管等一些有特殊要求的场合,并取得了良好的技术和经济效益。

这类特殊加工方式所涉及的热量传递问题己不能再用传统的导热理论来分析,而必须加入对热量传输速度的考虑,这类问题被称为“非博里叶导热”。

(5)环境与发展是当今全世界各国普通关注的两大问题。

为了快速发展经济,不合理地甚至掠夺式地开发自然资源,以及在工业化初期对各种污染处理不当或者未加处理就任意排放的现象十分普遍,造成的后果是极其严重的。

环境污染主要由大气污染、水体污染和固体废物污染构成。

仅就大气污染而言,主要包括气溶胶状态污染物(指固态、液态粒子利它们在气体中的悬浮物)、硫化物、氮氧化物、碳氧化物和碳氢化合物。

气溶胶按粒径大小又分为总悬浮颗粒物、飘尘、降尘和可吸入粒子,这些都是评价大气质量的主要指标,同时也是对人身健康构成威胁的丰要因素。

相关文档
最新文档