三角形的高、中线与角平分线PPT优选课件

合集下载

三角形高、中线与角平分线课件

三角形高、中线与角平分线课件
三角形的性质法
利用三角形的性质,如角的和差、 外角等于不相邻两内角之和等性质 来证明角平分线。
角平分线在三角形中的位置
角的内部
角平分线一定在角的内部 。
边的中点
角平分线上的点是相对边 的中点。
垂直平分线
在等腰三角形中,顶角的 角平分线也是底边的垂直 平分线。
04
三角形高、中线与角平分 线的相互关系
中线的判定方法
判定方法一
通过三角形的顶点和对边的中点连接,如果这条线段平分对边,则这条线段是 中线。
判定方法二
如果一条线段经过三角形一边的中点,并且这条线段将相对的边分为两段相等 的部分,则这条线段是中线。
中线在三角形中的位置
中线与三角形其他线的关系
中线与三角形的角平分线、高线等其他重要线段存在特定的位置 关系。
在求解三角形问题时,高、中线和角平分线还可以帮助判断三角形的形状和大小。
在解决实际问题中的应用
三角形高、中线和角平分线在解决实 际问题中也有广泛的应用,如建筑设 计、工程测量和航海等。
在工程测量时,可以利用高、中线和 角平分线的性质来测量物体的尺寸和 角度,以确保工程的质量和精度。
在建筑设计时,可以利用高、中线和 角平分线的性质来设计建筑物的结构 ,以确保建筑物的稳定性和安全性。
中线将相对边分为两个相等的部分,并且与三角 形的两个顶点相连。
角平分线的性质
角平分线将相对边分为两个相等的部分,并且与 三角形的两个角相交于一点。
05
三角形高、中线与角平分 线的应用
在几何证明中的应用
三角形高、中线与角平分线是几何证 明中的重要工具,它们在证明三角形 性质和定理时有着广泛的应用。
高线位置
高线是从三角形的一个顶点垂直 到对边的线段。

9.3 三角形的角平分线、中线和高 课件 (共30张PPT) 数学冀教版七年级下册

9.3 三角形的角平分线、中线和高  课件 (共30张PPT) 数学冀教版七年级下册

高(D) C
AD
D
BC B
B C
CA B
A.
B.
AD C.
D
A
D.
2、如果一个三角形的三条高的交点恰是三角 形的一个顶点,那么这个三角形是( B ) A.锐角三角形 B.直角三角形 C.钝角三角形
3、如图,△ABC中,AD是BC边上的中线,若△ABC的周长
为35 cm,BC=11 cm,且△ABD与△ACD的周长之差为3 cm,
知识点1 三角形的角平分线
1.复习用量角器或折纸的办法画出或折出 一个角的平分线。
角平分线的定义及画法: 从一个角的顶点引出的一条射 线把这个角分成两个相等的角, 这条射线叫做这个角的平分线。
2.什么是三角形的角平分线?
定义:在三角形中,一个内角的平分线与
这个角的对边相交,这Байду номын сангаас角的顶点和交点
A
之间的线段叫三角形的角平分线。
如图,△ABC 中,AD 是△ABC 的角平分线,DE∥AC,DF∥AB,
EF 交AD 于点O,请问DO 是△DEF 的角平分线吗?说明理由.
导引:要知道DO 是不是△DEF 的角平 分线,只需要知道∠EDO 与 ∠FDO 是否相等.若相等,根 据三角形的角平分线的定义即 可判定.
解:DO 是△DEF 的角平分线.理由如下: 因为AD是△ABC 的角平分线, 所以∠DAB=∠DAC (角平分线定义).
若和“DE∥AB ”交换. 理由如下:∵DF∥AC,∴∠FDA=∠EAD.
∵AD 是∠CAB 的平分线, ∴∠EAD=∠FAD.∴∠FAD=∠FDA. ∵DO 是∠EDF 的平分线, ∴∠EDA=∠FDA.∴∠EDA=∠FAD.
∴DE∥AB.

三角形的高,中线与角平分线

三角形的高,中线与角平分线

角平分线的计算方法
通过角度计算
给定一个三角形,可以通过测量或计算角度来确定角平分线的长度。
通过边长计算
已知三角形的三边长度,可以通过计算来找到角平分线的长度。
角平分线的应用
确定中点和垂直平分线
角平分线可以用来找到一个三角形内的中点,以及过这个中 点的垂直平分线。
判定定理的应用
角平分线的性质可以用于证明某些几何定理,如等腰三角形 的判定定理。
条垂直于底边的高。
注意事项和难点解析
高的定义
三角形的高是顶点到底边的垂线段。在直角三角形中, 斜边上的高是直角边上的高的2倍。
钝角三角形高的画法
在钝角三角形中,需要先确定钝角所对的边,然后在其 延长线上作高。
等腰三角形高的画法
在等腰三角形中,需要找到底边的中点,然后过该点作 两条相等的高。这两条高与底边形成一个等腰直角三角 形。
THANK YOU.
性质
三角形中线平分三角形的三条边,且三条中线交于一点。该交点称为三角形 的重心,每条中线与三条边的长度乘积相等。
中线的计算方法
方法一
利用几何作图法,通过三角形的顶点和对边中点直接连接得到中线。
方法二
通过三角形的顶点和对边中点的距离公式来计算中线的长度。公式为:$AD = \sqrt{AB^{2} + AC^{2}}$,其中AD为中线长度,AB和AC为三角形的两边长度 。
性质
高是连接顶点和垂足的线段,并且高经过三角形的顶点,且 平行于底边。
高的计算方法
• 方法一:直接作图法 • 确定顶点和对边; • 过顶点作对边的垂线; • 连接顶点和垂足,得到高。 • 方法二:利用中线和角平分线性质作图法 • 作三角形中线或角平分线; • 在中线或角平分线上取一点,连接这个点和相应顶点,得到高。

高考数学二轮复习三角形中的中线、高线、角平分线问题ppt课件

高考数学二轮复习三角形中的中线、高线、角平分线问题ppt课件
培优提能5
三角形中的中线、高线、
角平分线问题
一、中线
2
2
2
2
1.中线长定理:在△ABC 中,AD 是边 BC 上的中线,则 AB +AC =2(BD +AD )
推导过程:在△ABD 中,cos B=
在△ABC 中,cos B=
+ -
+ -
·
·


,求 c.






解:(2)设 BC 边上的高为 h,由三角形的面积公式得 S△ABC= ah= ×



bcsin A=×5c×sin=


c,所以


a=


c,即 a=
a=


c,
由余弦定理得 a2=25+c2-5c,
将 a=


c 代入上式得 c2+16c-80=0,解得 c=4 或-20(舍去),所以 c=4.

→ → →
+ +||·||·cos∠ADB,解得


cos∠ADB=.
三角形的角平分线性质定理将分对边所成的线段比转化为对应的两边之比,
再结合共线定理的推论,就可以转化为向量.一般地,涉及三角形中“定比”
类问题,运用向量知识解决起来都较为简捷.
触类旁通2 如图,在△ABC中,内角A,B,C的对边分别为a,b,c.已知b=3,c=6,








两边平方得 4 = + +2·,
2
2
2

三角形的高线中线角平分线优秀课件

三角形的高线中线角平分线优秀课件
∴ ∠1=∠2= ½ ∠BAC
小结: ①任何三角形有三条中线,并且
都在三角形 的内部,交与一 点。 ②三角形的中线是一条线段。 ③三角形的任意一条中线把这个
三角形分成了两个面积相等的 三角形。
我来分地
❖ 如图有一块三角形的菜地,现在要求
分成面积比为2:3:4三块,且图中 A处是三块菜地的共同的水源处。问: 怎样分?
A
·
· · B
C
三角形的角平分线
画∠A的平分线AD, 交∠A所对的边BC于点D,
线段AD叫做ΔABC的
角平分线。

B
A
F ●

●E


D
C
画一画 画出ΔABC的另外两条角平分线; 想一想 观察三条角平分线,说说你的发现。
对于其它的任意三角形是不是也有同样的结果?
三角形的三条角平分线在三角形的内部交于一点
角平分线的理解
A.锐角三角形 B.直角三角形 C.钝角三角形 D.锐角三角形
A
【拓展训练】
B
D
C
1、已知,AD是△ABC的中线△ABD的周长比△ACD的周
长大3cm,AB=8cm,则AC=
2、如图,BO、CO分别平分∠ABC和∠ACB,∠A=40º, 则∠O= 3、如图, AD是△ABC的中线,则S△ABD S△ACD
4、已知:如图,在Rt△ABC 中,∠ACB=90º,斜边AB的 高为CD,AC=3,BC=4,AB=5
求:CD的长
C
A
A
D
三角形的 重要线段
概念
图形
表示法
三角形 的高线
从三角形的一个顶 点向它的对边所在 的直线作垂线,顶 点和垂足之间的线 段

第十一章课件第二课时三角形的高、中线与角平分线

第十一章课件第二课时三角形的高、中线与角平分线
A F
D
B
E
C
O
高 条数
锐角三角形
3
直角三角形 3
钝角三角形 3
夹钝角两边上的高在 三角形外部,另一条 高在内部 ①在相应顶点的对边 的延长线上 ②在钝角的对边上 在三角形外部
P
直角边上的高分别与 另一条直角边重合, 位置 都在三角形内部 还有一条高在三角形 内部
垂足 交点
在相应顶点的 对边上 在三角形内部 A
解: ∵ AE是BC边上的角平分线,
且∠BAC=82°
∴ ∠EAC=
∵ AD是△ABC的高, ∴ ∠ADC=90°
1 ∠BAC=41° 2
∵ ∠DAC+ ∠ADC+ ∠C =180°
∴ ∠DAC=180°-∠ADC-∠C =180°-90°-40° =50° ∴ ∠DAE=∠DAC-∠C=50°-41°=9°
A
D B

BD 斜边AC边上的高是_________.
(2)它们有怎样的位置关系?
C
直角三角形的三条高交于直角顶点.
3、钝角三角形三条高的画法
钝角三角形的三条高 (1) 钝角三角形的三条高交于一点吗?
(2) 它们所在的直线交于一点吗?
钝角三角形的三条高不 相交于一点. 钝角三角形的三条高 所在的直线交于一点.

A
∵AD是 △ ABC的角平分线 ︶ ● ∴∠BAD = ∠CAD = 1∠BAC 2 B D
1 2
C
三角形的角平分线与角的平分线有 什么区别?
三角形的角平分线是一条线段, 角的平分线是一条射线.
如图,在△ABC,∠A=75° ∠B=45°,则∠ACD=_______
在Δ ABC中,AE是中线,AD是角平分线,AF是高.

中小学数学课件:三角形的高、中线与角平分线

中小学数学课件:三角形的高、中线与角平分线

三角形的高的定义
从三角形的一个顶点,向它的对边 所在直线作垂线, 顶点 和垂足之间的线段 叫做三角形的高线,简称三角形的高.
如右图, 线段AD是BC边上的高. B
几何语言:AD⊥BC于点D,读作AD垂直 BC于点D或∠ADC=∠ADB=90°.
01 23 4 5
01 23 4 5
A DC
探究新知 画一画 你还能画出一条高来吗?
能在三角形外 D.三角形的角平分线是射线
课堂检测
2.在△ABC中,AD为中线,BE为角平分线,则在以下等式
中:①∠BAD=∠CAD;②∠ABE=∠CBE;③BD=DC;
④AE=EC.其中正确的是 ( D )
A.①②
B.③④
C.①④
D.②③
A E
B
D
C
课堂检测
3. 如图,△ABC中∠C=90°,CD⊥AB,图中线段中可以
A
F
钝角三角形的三条高不相交于一点;
(4)它们所在的直线交于 一点吗?
DB
C
钝角三角形的三条高所在的直线交
E
于一点.
O
探究新知
三角形的三条高的特性:
高在三角形内部的数量 高之间是否相交
高所在的直线是否相交 三条高所在直线的 交点的位置
锐角三角形 直角三角形 钝角三角形
3 相交
1 相交
1 不相交
相交
课堂小结

钝角三角形两短边上的高的画法
三角形重 要线段
中线
会把原三角形面积平分
一边上的中线把原三角形分成两个 三角形,这两个三角形的周长差等 于原三角形其余两边的差
角平分线
在△ABD中,∠B+∠ADB+∠BAD=180°,

三角形的高中线和角平分线课件人教版八年级数学上册

三角形的高中线和角平分线课件人教版八年级数学上册
第十一章 三角形
11.1.2 三角形的高、中 线与角平分线
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
平分线( B )
A. AD
B. AE
C. AF
D. AC
2. 如图,在△ABC中,BC边上的高为( D )
A. BF
B. CF
C. BD
D. AE
课堂练习
3. 下列说法错误的是( C ) A.锐角三角形的三条高、三条中线、三条角平分线分别交于一点 B.钝角三角形有两条高线三角形外部 C.直角三角形只有一条高 D.任意三角形都有三条高、三条中线、三条角平分线
课堂小结
通过本节课的学习,你有哪些收获?
布置作业
书面作业:完成相关书本作业
数学活动 任意画一个三角形并分别画出的高、中线、角平分线
再见
前言
学习目标
1、通过画图与观察的实践过程,认识三角形的高、中线与角平分线。 2、会画出任意三角形的角平分线、高、中线,通过画图了解三角形三条角 平分线、三条中线、三条高交汇于一点。
重点难点
重点:会画出任意三角形的角平分线、高、中线。 难点:理解三角形的角平分线、高、中线的概念。
问题 还记得“过一点画已知直线的垂线”吗? 如何画线段的中点,怎样画∠ABC 的角平分线?
A C
请同学将自己准备好的三角形纸片ABC 拿出来,把内角∠BAC对折一次,使AB 与AC重合,得到一条折痕为AD。
B 把三角形纸片展开、铺平,AD一定平 分∠BAC吗?

人教版八年级数学上册11.1.2三角形的高、中线与角平分线 教学课件(共68张PPT)

人教版八年级数学上册11.1.2三角形的高、中线与角平分线  教学课件(共68张PPT)
,,
如图,△ 的三边分别为____________,


顶点 的对边是___;∠
的对边是___.



,,
如图,△ 的三边分别为____________,


顶点 的对边是___;∠
的对边是___.



,,
如图,△ 的三边分别为____________,
边的高线是在△ 的外部,还是内部呢?






画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
边的高线是在△ 的外部,还是内部呢?




画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
三角形的高线定义
(________________)



画一画
你能画出此三角形 边上的高线吗?




画一画
你能画出此三角形 边上的高线吗?




画一画
你能画出此三角形 边上的高线吗?





画一画
你能画出此三角形 边上的高线吗?
发现: 边上的高 在△ 的外部.
三角形的高.




三角形的高
定义
垂线 ,
从三角形的一个顶点向它的对边所在直线作_____
顶点 垂足
线段
_____和_____之间的_____叫做三角形的高线,简称
三角形的高
符号语言
∵ 是△ 的高,(已知)
三角形的高线定义

..三角形的高、中线与角平分线 优秀课特等奖 课件

..三角形的高、中线与角平分线    优秀课特等奖 课件

B
C
B A (C) D
B C D (D) A
2、 如果一个三角形的三条高的交点恰是三角形的一个 顶点,那么这个三角形是( B ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.锐角三角形
对自己说,你有什么收获? 对同学说,你有什么温馨提示? 对老师说,你还有什么困惑?
小结
1、三角形的高的画法与性质 2、三角形的中线的画法与性质
锐角三角形 直角三角形 钝角三角形
高在三角形内部的数量 高之间是否相交 高所在的直线是否相交
3 相交 相交
三角形内部
1 相交 相交
直角顶点
1 不相交 相交
三角形外部
三条高所在直线的 交点的位置
三角形的三条高所在直线交于一点
三角形的中线
在三角形中,连接一个顶点与它对边中点的线段,
叫做这个三角形这边的中线.
5
2 3
4
3
2
1
0
D
C
锐角△ABC, 请你画出BC边上的高. 注意 ! 标明 垂直的记号 和垂足的字母.
A
B
D
C
1
2
3
4
5
0 1 4 5 6 7 8
9
锐角三角形的三条高
每人画一个锐角三角形纸片。 使折痕过顶点,顶点的 A (1) 你能画出这个三角形的三条高吗? 对边边缘重合 F (2) 你能用折纸的办法得到它们吗? E (3) 这三条高之间有怎样的位置关系? O 将你的结果与同伴进行交流. C B 锐角三角形的三条高是 D 在三角形的内部还是外部?
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分

7.1.2三角形的高、中线、角平分线

7.1.2三角形的高、中线、角平分线
如果三角形的边在锐角之间,该边高在 内部;如果三角形的边在钝角和锐角之间, 该边高在钝角外部。
1、一个三角形的三条中线位置为( A.一定都在三角形内 B.一定都在三角形外 C.可能在三角形外,也可能在三角形内 D.可能与三 角 E
三角形的中线
连接三角形一个顶点与对边中点的线段 叫做三角形的中线 A
B
D
C
关于三角形的中线
• 三角形的中线是一条线段 • 三角形有三条中线,三条中线的交点叫做 三角形的重心(重心都在三角形内部) • 三角形每一条中线分成两个面积相等的三 角形 • 重心到顶点的距离是到对边中点距离的 倍 重心到顶点的距离是到对边中点距离的2倍
三角形的角平分线
三角形一个内角的角平分线与对边相 交,顶点与交点的线段,叫做三角形的 角平分线 A
D B C
关于三角形的角平分线
• 三角形的角平分是一条线段 • 三角形有三条角平分线,三条角平分线交 于一点,这点叫做三角形的内心(内心都在 三角形内部) • 内心到三边的距离相等
1、请完成课本66页-练习第一题
7.1.2 三角形的高、中线与角平 分线
三角形的高、中线与角平分线
三角形的高 三角形的中线 三角形的角平分线
三角形的高
从三角形的一个顶点作对边(对边的延长 线)的垂线,顶点与垂足的之间的线段,叫 三角形的高。 A
C
D
B
关于三角形的高
• 三角形的高都是线段 • 三角形有三条高交于一点,这个交点叫三 角形的垂心 • 锐角三角形垂心在三角形内部,直角三角 形垂心在直角顶点上,钝角三角形垂心在 三角形外部

三角形的高、中线和角平分线初中数学原创课件

三角形的高、中线和角平分线初中数学原创课件
一、三角形的高
二、三角形的中线
三、三角形的角平分线
作业布置【知识技能类作业】必做题:
1.作△ABC的边AB上的高,下列作法中,正确的是( D )
B
B
D
A
A
C
B
D
A
B
C
D A
B
C
C
C
A
E
D
2.如图,在△ABC中,D、E、F分别是BC、AD、CE的中点,S△ABC=8cm2,则阴影
2cm2
部分△BEF的面积等于_____.
作业布置【知识技能类作业】选做题:
3.如图,在△ABC中,AB=AC=2,P是BC边上的任意一点,PE⊥AB于点E,
6
PF⊥AC于点F.若△ =6 ,则PE+PF=______.
4.已知△ABC中,AC=30cm,中线AD把△ABC分成两个三角形,这两个三角形的
42cm或18cm
周长差是12cm,则AB的长是________________.
(3)锐角三角形的三条高是在三角形的内部还是外部?
锐角三角形的三条高都在三角形的内部.
如图所示;
新知讲解
其他的三角形也是一样吗?
A
O
D
O┐
C
F
B
B
A

D
E
C
新知讲解
三角形高的特点
锐角三角 直角三角


钝角三角

高在三角形内部的数量
3
1
1
高之间是否相交
ቤተ መጻሕፍቲ ባይዱ相交
相交
不相交
高所在的直线是否相交
相交
相交
相交
又∵AB+AC=11cm,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1.2
2020/10/18
1
回顾 & 思考 ☞
画一个△ABC,请你回忆作出△ABC
的高AD.
问题:(1) △ABC的高有什么特点?
(2)你能用折纸的方法找出你准备好的三
角形的高吗?(3)请你试用语言描述高
的定义.
A
2020/10/18
BD
2C
回顾 & 思考 ☞
如图,从△ABC的顶点A向它所 对的边BC画垂线,垂足为D,所得线 段AD叫做△ABC的边BC上的高.
汇报人:XXX 日期:20XX年XX月XX日
A
∵AD是△ABC的高
∴AD⊥BD,
∠ADC=∠ADB=90°
B 2020/10/18
D
C
3
探索& 创新 ☞
出示你所准备好的三角形纸片,把 B、C重合对折,折痕与BC交于点D.
问题:(1)D点有什么特殊性?
(2)连接线段AD,AD把△ABC分成 的两个三角形的面积有何关系?
(3)你能给AD起个名称吗?
2020/10/18
8
练习& 反馈 ☞
1.如图,(1),(2)和(3)中的三个 ∠B有什么不同?这三个△ABC的边BC 上 的 高 AD 在 各 自 三 角 形 的 什 么 位 置 ? 你能说出其中的规律吗?
A
A
A
BD
2020/10/18
C B(D) C D B C
9
2.填空:
练习& 反馈 ☞
(1)如图(1),AD,BE,CF是△ABC的三条 中线,则AB=2___,BD=____ ,AE= ___.
A ∵AD是△ABC的角平分线
∴∠BAD=∠CAD=
1 2
∠BAC
BD
C
2020/10/18
7
巩固& 思考 ☞
1.你认为一个三角形有几条高、几条中 线、几条角平分线?并分别作出来.
2.通过你所作出的三线,请说明它们各 自的共性.
3.你认为“三线”定义中,高与线段垂 线、三角形角平分线与角的平分线、中线 与线段中点有何异同.
0/18
D
C
10
练习& 反馈 ☞
(2)如图(2),AD,BE,CF是△ABC的三条角 平分线,则∠1= ,∠3= ,∠ACB=2 .
A
12
F
E
2020/10/18
3
B
4
D
C
11
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
(4)请你试用语言描述中线定义 .
2020/10/18
4
探索& 创新 ☞
如图,连接△ABC的顶点A和它
所对的边BC的中点D,所得线段AD叫
做△ABC的边BC上的中线.
A
∵AD是△ABC的中线
∴BD=CD=
1 2
BC
B 2020/10/18
D
C
5
探索& 创新 ☞
请你再出示一个三角形纸片,对折, 使 AC 与 AB 所 在 直 线 重 合 , 折 痕 与 BC 交于D.
问题:(1)通过这个操作你认为AD 有什么位置特点?
(2)你能用尺规作出AD吗?
(3)你能给AD起个名称吗?
(4)请你试用语言描述角平分线的
定义. 2020/10/18
6
探索& 创新 ☞
如 图 , 画 ∠ A 的 平 分 线 AD, 交 ∠A所对的边BC于点D,所得线段AD 叫做△ABC的角平分线.
相关文档
最新文档