《命题与四种命题》PPT课件
合集下载
1-1 命题与四种命题 ppt
是否存在相关 性呢?
三个概念
1、互逆命题:如果第一个命题的条件(或题设)是第二个 命题的结论,且第一个命题的结论是第二个命题的条件,那 么这两个命题叫互逆命题。如果把其中一个命题叫做原命题, 那么另一个叫做原命题的逆命题。 2、互否命题:如果第一个命题的条件和结论是第二个命题 的条件和结论的否定,那么这两个命题叫做互否命题。如果 把其中一个命题叫做原命题,那么另一个叫做原命题的否命 题。 3、互为逆否命题:如果第一个命题的条件和结论分别是第 二个命题的结论的否定和条件的否定,那么这两个命题叫做 互为逆否命题。
1.1.1-1.1.2命题 与四种命题
高二数学 选修 1-1
第一章
常用逻辑用语
歌德是18世纪德国的一位著名文艺大师,一天, 他与一位批评家“狭路相逢”,这位文艺批评家生性 古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明, 一边高地往前走。一边大声说道:“我从来不给傻子 让路!”而对如此的尴尬的局面, 但只是歌德笑容可掏,谦恭的闪在一旁,一边有 礼貌回答道“呵呵,我可恰恰相反,”结果故作聪明 的批评家,反倒自讨没趣。
呢?
观察命题(1)与命题(4)的条件和结论之间 分别有什么关系?
(1)若x>2,则x2≥4
(4)若x2≤4 ,则x<2。
互为逆否命题 原命题 (原命题的)逆否命题
原命题: 若p, 则q 逆否命题: 若┐q, 则┐p
例如,命题“同位角相等,两直线平行”的逆否命题是 原命题与其逆 否命题的真假 “两直线不平行,同位角不相等”。
你能分析此故事中歌德与批评家 的言行语句吗?
常用逻辑用语
“数学是思维的科学”
逻辑是研究思维形式和规律的科学.
逻辑用语是我们必不可少的工具.
通过学习和使用常用逻辑用语,掌握常用逻辑 用语的用法,,纠正出现的逻辑错误,体会运用常用 逻辑用语表述数学内容的准确性、简捷性.
三个概念
1、互逆命题:如果第一个命题的条件(或题设)是第二个 命题的结论,且第一个命题的结论是第二个命题的条件,那 么这两个命题叫互逆命题。如果把其中一个命题叫做原命题, 那么另一个叫做原命题的逆命题。 2、互否命题:如果第一个命题的条件和结论是第二个命题 的条件和结论的否定,那么这两个命题叫做互否命题。如果 把其中一个命题叫做原命题,那么另一个叫做原命题的否命 题。 3、互为逆否命题:如果第一个命题的条件和结论分别是第 二个命题的结论的否定和条件的否定,那么这两个命题叫做 互为逆否命题。
1.1.1-1.1.2命题 与四种命题
高二数学 选修 1-1
第一章
常用逻辑用语
歌德是18世纪德国的一位著名文艺大师,一天, 他与一位批评家“狭路相逢”,这位文艺批评家生性 古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明, 一边高地往前走。一边大声说道:“我从来不给傻子 让路!”而对如此的尴尬的局面, 但只是歌德笑容可掏,谦恭的闪在一旁,一边有 礼貌回答道“呵呵,我可恰恰相反,”结果故作聪明 的批评家,反倒自讨没趣。
呢?
观察命题(1)与命题(4)的条件和结论之间 分别有什么关系?
(1)若x>2,则x2≥4
(4)若x2≤4 ,则x<2。
互为逆否命题 原命题 (原命题的)逆否命题
原命题: 若p, 则q 逆否命题: 若┐q, 则┐p
例如,命题“同位角相等,两直线平行”的逆否命题是 原命题与其逆 否命题的真假 “两直线不平行,同位角不相等”。
你能分析此故事中歌德与批评家 的言行语句吗?
常用逻辑用语
“数学是思维的科学”
逻辑是研究思维形式和规律的科学.
逻辑用语是我们必不可少的工具.
通过学习和使用常用逻辑用语,掌握常用逻辑 用语的用法,,纠正出现的逻辑错误,体会运用常用 逻辑用语表述数学内容的准确性、简捷性.
最新人教版高中数学选修2-1第一章《命题与四种命题》课件
探究1: 命题
思考1:什么是命题? 提示:用文字或符号表述的可以判断真假的陈述句
例如:
1、π是无理数吗? (不是陈述句)
2、x>1
(不能判断真假)
思考2:什么是真命题、假命题
提示:判断为真的命题叫作真命题. 判断为假的命题叫作假命题.
例2:判断下列命题的真假: 1、三角形三个内角的和等于180°.
例4.设原命题是“若a=0,则ab=0”. (1)写出它的逆命题、否命题及逆否命题. (2)判断这四个命题是真命题还是假命题. 解(1) 逆命题:“若ab=0,则a=0”; 否命题:“若a≠0,则ab≠0”; 逆否命题:“若ab≠0,则a≠0” . (2)原命题和逆否命题都是真命题,逆命题和 否命题都是假命题.
(是,假)
(6)x>15. (不是命题)
【变式练习】判断下列语句是否是命题.
(1)求证: 3 是无理数.
(2)x 2 2 x 1 0.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果. (5)一个正整数不是质数就是合数.
(6)若 x R ,则 x 2 4 x 7 0.
真命题
2、正弦函数y=sin x的定义域是实数集R. 真命题
3、 2 N
假命题
思考3:命题有几部分组成? 一般地,一个命题由条件和结论两部分组成.
例3: 写出命题“三角形三个内角的和等于180°”的条件和结论 条件: 三角形的三个内角
结论:它们的和等于180°
思考4:能否用条件和结论表示命题? 数学中,通常把命题表示为“若p,则q”的形式, 其中p是条件,q是结论
则它的对角线互相垂直且平分. 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分.
思考1:什么是命题? 提示:用文字或符号表述的可以判断真假的陈述句
例如:
1、π是无理数吗? (不是陈述句)
2、x>1
(不能判断真假)
思考2:什么是真命题、假命题
提示:判断为真的命题叫作真命题. 判断为假的命题叫作假命题.
例2:判断下列命题的真假: 1、三角形三个内角的和等于180°.
例4.设原命题是“若a=0,则ab=0”. (1)写出它的逆命题、否命题及逆否命题. (2)判断这四个命题是真命题还是假命题. 解(1) 逆命题:“若ab=0,则a=0”; 否命题:“若a≠0,则ab≠0”; 逆否命题:“若ab≠0,则a≠0” . (2)原命题和逆否命题都是真命题,逆命题和 否命题都是假命题.
(是,假)
(6)x>15. (不是命题)
【变式练习】判断下列语句是否是命题.
(1)求证: 3 是无理数.
(2)x 2 2 x 1 0.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果. (5)一个正整数不是质数就是合数.
(6)若 x R ,则 x 2 4 x 7 0.
真命题
2、正弦函数y=sin x的定义域是实数集R. 真命题
3、 2 N
假命题
思考3:命题有几部分组成? 一般地,一个命题由条件和结论两部分组成.
例3: 写出命题“三角形三个内角的和等于180°”的条件和结论 条件: 三角形的三个内角
结论:它们的和等于180°
思考4:能否用条件和结论表示命题? 数学中,通常把命题表示为“若p,则q”的形式, 其中p是条件,q是结论
则它的对角线互相垂直且平分. 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分.
命题及四种命题培训课件.ppt
条件和结论的否定
像这样,一个命题的条件和结论恰好是另一 个命题的条件的否定和结论的否定,这样的两个 命题叫做互否命题,其中一个叫原命题,另一个 叫原命题的否命题.
vv
否命题
一般地,把条件p,结论q的否定分别记作“ p, q”, 读作“非p”、“非q”.
因此若原命题为“若p,则q”, 则否命题为:若 p,则q”
真
逆命题:若ab=0,则a=0 假
否命题:若a 0,则ab 0 假
逆否命题:若ab 0,则a 0 真
4原命题:若a b,则a2 b2 假
相等; • ④如果两个三角形的面积不相等,那么它们不
全等;
vv
观察命题①与命题②的条件和结论之间 分别有什么关系?
①如果两个三角形全等,那么它们的面积相等; ②如果两个三角形的面积相等,那么它们全等;
可以发现命题①与②的 条件与结论互换了
像这样,一般地,对于两个命题,如果一个命 题的条件和结论分别是另一个命题的结论和条 件,那么我们把这样的两个命题叫做互逆命题, 其中一个命题叫原命题,另一个叫做原命题的 逆命题。
正面 词语 否定
等于 大于 小于 不等于 不大于 不小于
是 不是
都是 不都是
正面 词语 否定
全 不全
至少有 一个
一个也 没有
能 不能
P或q
非p且 非q
P且q
非p或 非q
vv
例1.写出下列命题的逆命题、否命题与逆否
命题并判断真假
1原命题:若x2 3x 2 0,则x 2
假
逆命题:若x 2,则x2 3x 2 0
的,可以判断真假的陈述句叫做命题. 命题的定义的要点:能判断真假的陈述句.
像这样,一个命题的条件和结论恰好是另一 个命题的条件的否定和结论的否定,这样的两个 命题叫做互否命题,其中一个叫原命题,另一个 叫原命题的否命题.
vv
否命题
一般地,把条件p,结论q的否定分别记作“ p, q”, 读作“非p”、“非q”.
因此若原命题为“若p,则q”, 则否命题为:若 p,则q”
真
逆命题:若ab=0,则a=0 假
否命题:若a 0,则ab 0 假
逆否命题:若ab 0,则a 0 真
4原命题:若a b,则a2 b2 假
相等; • ④如果两个三角形的面积不相等,那么它们不
全等;
vv
观察命题①与命题②的条件和结论之间 分别有什么关系?
①如果两个三角形全等,那么它们的面积相等; ②如果两个三角形的面积相等,那么它们全等;
可以发现命题①与②的 条件与结论互换了
像这样,一般地,对于两个命题,如果一个命 题的条件和结论分别是另一个命题的结论和条 件,那么我们把这样的两个命题叫做互逆命题, 其中一个命题叫原命题,另一个叫做原命题的 逆命题。
正面 词语 否定
等于 大于 小于 不等于 不大于 不小于
是 不是
都是 不都是
正面 词语 否定
全 不全
至少有 一个
一个也 没有
能 不能
P或q
非p且 非q
P且q
非p或 非q
vv
例1.写出下列命题的逆命题、否命题与逆否
命题并判断真假
1原命题:若x2 3x 2 0,则x 2
假
逆命题:若x 2,则x2 3x 2 0
的,可以判断真假的陈述句叫做命题. 命题的定义的要点:能判断真假的陈述句.
《四种命题的关系》课件
范畴命题
根据主语对它的属性或成员进行判断。范畴命 题分为 A、E、I、O 四种类型。
陈述命题
对客观事实或事件进行陈述。
定义命题
用于说明一个概念或对象的定义。
命题函数
包含变量的命题,可为真或假,取决于变量的 赋值。
命题的关系
1 等价命题
具有相同真值的命题,它们的真值表完全一 致。
2 逆命题
若 p → q,则 q → p 为逆命题。
《四种命题的关系》PPT 课件
探索四种命题之间的关系,了解命题的定义、类型和逻辑关系图等。让我们 一起深入了解命题逻辑。
命题的定义
陈述性语句
命题是可以为真或假的陈述性语句,由主语和谓语组成。
语法结构
命题是一种特定的语法结构,通常由主语和谓语组成。
符号表示
命题可以用符号表示,如 p真,则 ¬p 为假。
4 逆否命题
若 p → q,则 ¬q → ¬p 为逆否命题。
关系图
逻辑关系图
用图形表示命题的相互关系,包 括等价、逆、否、逆否关系。
圆形图示
用圆形、箭头等图形形式展示命 题之间的关系。
线段图示
利用线段将命题相关性表示出来, 形成直观的逻辑关系图。
根据主语对它的属性或成员进行判断。范畴命 题分为 A、E、I、O 四种类型。
陈述命题
对客观事实或事件进行陈述。
定义命题
用于说明一个概念或对象的定义。
命题函数
包含变量的命题,可为真或假,取决于变量的 赋值。
命题的关系
1 等价命题
具有相同真值的命题,它们的真值表完全一 致。
2 逆命题
若 p → q,则 q → p 为逆命题。
《四种命题的关系》PPT 课件
探索四种命题之间的关系,了解命题的定义、类型和逻辑关系图等。让我们 一起深入了解命题逻辑。
命题的定义
陈述性语句
命题是可以为真或假的陈述性语句,由主语和谓语组成。
语法结构
命题是一种特定的语法结构,通常由主语和谓语组成。
符号表示
命题可以用符号表示,如 p真,则 ¬p 为假。
4 逆否命题
若 p → q,则 ¬q → ¬p 为逆否命题。
关系图
逻辑关系图
用图形表示命题的相互关系,包 括等价、逆、否、逆否关系。
圆形图示
用圆形、箭头等图形形式展示命 题之间的关系。
线段图示
利用线段将命题相关性表示出来, 形成直观的逻辑关系图。
《命题及四种命题》课件
详细描述
总结词
如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,则这两个命题称互为逆否命题。
详细描述
互为逆否命题是四种命题中的一种,它指的是两个命题之间的一种关系。如果一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,那么这两个命题就是互为逆否命题。例如,“所有动物都是生物”和“所有非生物都不是动物”就是一对互为逆否命题。
互逆命题和互否命题的关系
互逆命题之间不一定是互否命题,互否命题之间也不一定是互逆命题。互逆命题和互否命题的真假性没有必然联系。
互为逆否命题:如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个命题的真假性相反,则这两个命题称互为逆否命题。如:原命题为“若a=b,则a^2=b^2”,其逆否命题为“若a^2≠b^2,则a≠b”。
在解决代数方程时,常常需要使用四种命题来推导和证明方程的解。例如,可以通过逆命题或否命题来证明一个代数方程是否有解。
在代数方程中的应用
在几何学中的应用
四种命题在推理逻辑中有着广泛的应用。例如,通过使用四种命题,可以构建有效的推理链条,从而证明某个结论的正确性。
在推理逻辑中的应用
在决策制定过程中,可以使用四种命题来分析各种可能性和结果。例如,可以通过分析命题的真假来评估某个决策的风险和收益。
反归纳推理
命题逻辑与推理
一个明确的陈述,具有真或假两种状态。
命题
由简单命题通过逻辑联结词组合而成的命题。
复合命题
不能再分解为更简单形式的命题。
原子命题
从一般到特殊的推理,必须保证前提真实和推理形式正确。
演绎推理
总结词
如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,则这两个命题称互为逆否命题。
详细描述
互为逆否命题是四种命题中的一种,它指的是两个命题之间的一种关系。如果一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个否定后的条件和结论交换了位置,那么这两个命题就是互为逆否命题。例如,“所有动物都是生物”和“所有非生物都不是动物”就是一对互为逆否命题。
互逆命题和互否命题的关系
互逆命题之间不一定是互否命题,互否命题之间也不一定是互逆命题。互逆命题和互否命题的真假性没有必然联系。
互为逆否命题:如果两个命题中,一个命题的条件和结论分别是另一个命题的结论和条件的否定,并且这两个命题的真假性相反,则这两个命题称互为逆否命题。如:原命题为“若a=b,则a^2=b^2”,其逆否命题为“若a^2≠b^2,则a≠b”。
在解决代数方程时,常常需要使用四种命题来推导和证明方程的解。例如,可以通过逆命题或否命题来证明一个代数方程是否有解。
在代数方程中的应用
在几何学中的应用
四种命题在推理逻辑中有着广泛的应用。例如,通过使用四种命题,可以构建有效的推理链条,从而证明某个结论的正确性。
在推理逻辑中的应用
在决策制定过程中,可以使用四种命题来分析各种可能性和结果。例如,可以通过分析命题的真假来评估某个决策的风险和收益。
反归纳推理
命题逻辑与推理
一个明确的陈述,具有真或假两种状态。
命题
由简单命题通过逻辑联结词组合而成的命题。
复合命题
不能再分解为更简单形式的命题。
原子命题
从一般到特殊的推理,必须保证前提真实和推理形式正确。
演绎推理
《四种命题的概念》课件
命题之间存在所谓的前提和结论,前提为真时结 论必定为真。
总结与提高
命题是推理的基础,对于 逻辑思维的培养非常重要。
学习命题需要掌握分类、 逻辑运算、等价和蕴含等 概念。
通过练习,不断提高命题 推理的能力。
命题的分类
按照真值的不同分类
分为真命题、假命题和不确定命 题。
按照语法结构的不同分类
分为简单命题、复合命题和开放 命题。
分类时需要注意哪些问题?
注意排除歧义和重复,以及分类 的合理性。
命题的逻辑运算
1
命题有哪些逻辑运算符?
非、与、或、异或、蕴含和等价。
2
逻辑运算符的运算规则是什么?
按照真值表和优先级进行计算。
四种命题的概念
在这个PPT课件中,我们将探讨命题的定义、分类、逻辑运算以及等价和蕴含。 掌握这些概念非常重要,它们为逻辑思维提供了基础。
命题的定义
什么是命题?
命题是可以判断真假的陈述句。
命题的特点有哪些?
命题具有真假性、确定性和稳定性。
命题与语句的关系是什么?
命题是语句的一种,但不是所有语句都是命题。
3
逻辑运算符的真值表是怎样的?
根据运算规则,可以列出运算符的真值表。
命题的等价和蕴含
什么是等价命题?
两个命题在任何情况下的真假值均相同。
什么是蕴含命题?
如果一个命题的真,则另一个命题一定为真。
Байду номын сангаас
等价命题的特点有哪些?
其中一个命题可以替换为另一个命题,而不影响 命题间的逻辑关系。
蕴含命题的特点有哪些?
总结与提高
命题是推理的基础,对于 逻辑思维的培养非常重要。
学习命题需要掌握分类、 逻辑运算、等价和蕴含等 概念。
通过练习,不断提高命题 推理的能力。
命题的分类
按照真值的不同分类
分为真命题、假命题和不确定命 题。
按照语法结构的不同分类
分为简单命题、复合命题和开放 命题。
分类时需要注意哪些问题?
注意排除歧义和重复,以及分类 的合理性。
命题的逻辑运算
1
命题有哪些逻辑运算符?
非、与、或、异或、蕴含和等价。
2
逻辑运算符的运算规则是什么?
按照真值表和优先级进行计算。
四种命题的概念
在这个PPT课件中,我们将探讨命题的定义、分类、逻辑运算以及等价和蕴含。 掌握这些概念非常重要,它们为逻辑思维提供了基础。
命题的定义
什么是命题?
命题是可以判断真假的陈述句。
命题的特点有哪些?
命题具有真假性、确定性和稳定性。
命题与语句的关系是什么?
命题是语句的一种,但不是所有语句都是命题。
3
逻辑运算符的真值表是怎样的?
根据运算规则,可以列出运算符的真值表。
命题的等价和蕴含
什么是等价命题?
两个命题在任何情况下的真假值均相同。
什么是蕴含命题?
如果一个命题的真,则另一个命题一定为真。
Байду номын сангаас
等价命题的特点有哪些?
其中一个命题可以替换为另一个命题,而不影响 命题间的逻辑关系。
蕴含命题的特点有哪些?
〔高中数学〕命题与四种命题PPT课件
观察命题(1)与命题(2)的条件和结论之间 分别有什么关系?
1. 若f(x)是正弦函数,则f(x)是周期函数;
2. 若f(x)是周期函数,p 则f(x)是正弦函数;q
你能分析此故事中歌德与批评家 的言行语句吗?
第一章
常用逻辑用语
“数学是思维的科学”
逻辑是研究思维形式和规律的科学.
逻辑用语是我们必不可少的工具.
通过学习和使用常用逻辑用语,掌握常用逻辑 用语的用法,,纠正出现的逻辑错误,体会运用常用 逻辑用语表述数学内容的准确性、简捷性.
命题及其关系
1.1.1 命题
“若p则q”形式的命题的优点是条件与结论容易辨 别,缺点是太格式化且不灵活.
“若p则q”形式的命题的书写
了解命题表示的判断,明确与判断有关的条件与 结论。
对于一些条件与结论不明显的命题,一般采取先 添补一些命题中省略的词句, 确定条件与结论。
如命题:“垂直于同一条直线的两个平面平行”。 写成“若p则q”的形式为:
(3) 0.5是整数;
(4)对顶角相等;
(5)3 能被2整除;
(6)若x2=1,则x=1.
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。
判断为真的语句叫做真命题。
判断为假的语句叫做假命题。
理解:
1)命题定义的核心是判断,切记:判断的标准 必 须确定,判断的结果可真可假,但真假必居其一。
增加,它是真命题.
在本题中,a>0是大前提,应单独给出, 不能把大前提也放在命题的条件部分内.
2、把下列命题改写成“若p,则q”的形式, 并判断它们的真假.
(1)等腰三角形两腰的中线相等;
(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行。
四种命题PPT优秀课件1
一个符号 条件P的否定,记作“P”。读作“非 P”。
原命题: 若p 则q 逆命题: 若q 则p
否命题:若 p 则 q
逆否命题:若 q 则 p
练习:
1、用否定的形式填空: (1)a > 0; a≤0。 (2)a ≥0或b<0; a<且b≥0。 (3)a、b都是正数; a、b不都是正数。 (4)A是B的子集; A不是B的子集。 结论:(1)“或”的否定为“且”,
式 的形式 的形 的形
观察与思考
?
1 ) 若 f ( x ) 是 正 弦 函 数 , 则 f ( x ) 是 周 期 函 数 。
2 ) 若 f ( x ) 是 周 期 函 数 , 则 f ( x ) 是 正 弦 函 数 。
3 ) 若 f ( x ) 不 是 正 弦 函 数 , 则 f ( x ) 不 是 周 期 函 数 。
(2)线段垂直平分线 上的点到线段两端点的 距离相等。
.若一个点在线段的垂直 平 分线上, 则它到这 条线段两端点的距离相等。
逆命题:如果一个四边形四边
相等,那么它是正方形。
2、分别写出下列各命题 的逆命题、否命题和逆 否命题:
(1)正方形的四边相等。
否命题:如果一个四边
形不是正方形,那么它的 四条边不相等。
• 小结: 1、本节内容: (1)三个概念; (2)一个符号; (3)四种命题
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领
命题及其关系01四种命题PPT教学课件
我们把用语言、符号或式子表达的,
可以判断真假的语句称为命题.
其中判断为真的语句称为真命题,判断为假
的语句称为假命题. 2020/12/10
2
命题(1)(4)(5),具有 “若P, 则q” 的形式 也可写成 “如果P,那么q” 的形式
通常,我们把这种形式的命题中的P叫做命题 的条件,q叫做结论.
记做: pq
原命题为真,它的否命题不一定为真;
20原20/12/1命0 题为真,它的逆否命题一定为真.
10
例2.把下列命题改写成“若p则q”的形式, 并写出它们的逆命题、否命题与逆否命题, 同时指出它们的真假。
(1)菱形的对角线互相垂直且平分;
(2)四边相等的四边形是正方形;
(3)负数的平方是正数;
2020/12/10
两个互为逆否的命题同真或同假
2020/12/10
14
课后练习
1.命题“内错角相等,则两直线平行”的
否命题为( )
A.两直线平行,内错角相等
B.两直线不平行,则内错角不相等
C.内错角不相等,则两直线不平行
D.内错角不相等,则两直线平行
2.命题“若 a b ,则 a 1”的逆否命题为( ) b
A.若 a 1,则 a b B.若 a ≤ b ,则 a ≤1
b
b
C.若 a b ,则 b a D.若 a ≤1,则 a ≤ b b
2020/12/10
15
PPT教学课件
谢谢观看
Thank You For Watching
16
2020/12/10
1
问题1:下面的语句的表述形式有什么特点? 你能判断它们的真假吗? (1)若xy=1,则x、y互为倒数 ; (2)相似三角形的周长相等; (3) 2+3=6; (4)如果b≤-1,那么x2-2bx+b2+b=0方程有实根;
可以判断真假的语句称为命题.
其中判断为真的语句称为真命题,判断为假
的语句称为假命题. 2020/12/10
2
命题(1)(4)(5),具有 “若P, 则q” 的形式 也可写成 “如果P,那么q” 的形式
通常,我们把这种形式的命题中的P叫做命题 的条件,q叫做结论.
记做: pq
原命题为真,它的否命题不一定为真;
20原20/12/1命0 题为真,它的逆否命题一定为真.
10
例2.把下列命题改写成“若p则q”的形式, 并写出它们的逆命题、否命题与逆否命题, 同时指出它们的真假。
(1)菱形的对角线互相垂直且平分;
(2)四边相等的四边形是正方形;
(3)负数的平方是正数;
2020/12/10
两个互为逆否的命题同真或同假
2020/12/10
14
课后练习
1.命题“内错角相等,则两直线平行”的
否命题为( )
A.两直线平行,内错角相等
B.两直线不平行,则内错角不相等
C.内错角不相等,则两直线不平行
D.内错角不相等,则两直线平行
2.命题“若 a b ,则 a 1”的逆否命题为( ) b
A.若 a 1,则 a b B.若 a ≤ b ,则 a ≤1
b
b
C.若 a b ,则 b a D.若 a ≤1,则 a ≤ b b
2020/12/10
15
PPT教学课件
谢谢观看
Thank You For Watching
16
2020/12/10
1
问题1:下面的语句的表述形式有什么特点? 你能判断它们的真假吗? (1)若xy=1,则x、y互为倒数 ; (2)相似三角形的周长相等; (3) 2+3=6; (4)如果b≤-1,那么x2-2bx+b2+b=0方程有实根;
1.1.1《命题及其关系(一)四种命题》课件
ks5u精品课件
关于逆命题、否命题与逆否命题,也 可以这样表述:
⑴交换原命题的条件和结论,所得的命 题是逆命题; ⑵同时否定原命题的条件和结论,所得 的命题是否命题; ⑶交换原命题的条件和结论,并且同时 否定,所得的命题是逆否命题.
ks5u精品课件
四种命题的形式
原命题:若p则q; 逆命题:若q则p; 否命题:若┐p则┐q; 逆否命题:若┐q则┐p.
ks5u精品课件
形式,并写出它们的逆命题、否命 题与逆否命题,同时指出它们的真 假。
形是正方形; (3)负数的平方是正数;
ks5u精品课件
练习
1.举出一些命题的例子 并判断它们的真假 举出一些命题的例子,并判断它们的真假 举出一些命题的例子 并判断它们的真假. 2.判断下列命题的真假 判断下列命题的真假: 判断下列命题的真假 (1)能被 整除的整数一定能被 整除 能被6整除的整数一定能被 整除; 能被 整除的整数一定能被3整除 (2)若一个四边形的四条边相等 则这个四边形 若一个四边形的四条边相等,则这个四边形 若一个四边形的四条边相等 是正方形; 是正方形 (3)二次函数的图象是一条抛物线 二次函数的图象是一条抛物线; 二次函数的图象是一条抛物线 (4)两个内角等于 45 的三角形是等腰直角三 两个内角等于 角形. 角形
2)若两个三角形面积相等,则这两个三角形全等; 2)若两个三角形面积相等,则这两个三角形全等; 若两个三角形面积相等 结论 条件
否命题: 同时否定原命题的条件和结论 否命题 (同时否定原命题的条件和结论) 同时否定原命题的条件和结论)
3)若两个三角形不全等,则这两个三角形面积不相等; 3)若两个三角形不全等,则这两个三角形面积不相等; 若两个三角形不全等 条件 结论
《四种命题与四种命题间的相互关系》课件
逆否命题 真 真 假 假
思考感悟 四种命题中真命题的个数可能为多少? 提示:由于互为逆否关系的命题同真同假,真 命题可能有 0 个,2 个或 4 个.
尝试应用
1.若x>y,则x2>y2的否命题是( ) A.若x≤y,则x2>y2 B.若x>y, 则x2<y2 C.若x≤y,则x2≤y2 D.若x<y, 则x2<y2 答案:C
典例精析
类型一 四种命题之间的转换 [例1] 写出下列命题的逆命题、否命题和逆否命 题. (1)垂直于同一平面的两直线平行. (2)若m·n<0,则方程mx2-x+n=0有实数根.
[分析] 由题目可以获取以下主要信息: ①第一个命题的条件是垂直于同一平面的两条直 线,结论是两直线平行; ②第二个命题的条件和结论非常清楚. 解答本题时可先分清命题的条件和结论,写成 “若p,则q”形式,再写出逆命题、否命题和逆否命 题.
[解] 方法1:原命题的逆否命题: 已知a,x为实数,若a<1, 则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为 空集.判断真假如下: 抛物线y=x2+(2a+1)x+a2+2开口向上, 判别式Δ=(2a+1)2-4(a2+2)=4a-7.
因为a<1,所以4a-7<0. 即抛物线y=x2+(2a+1)x+a2+2与x轴无交点. 所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集 为空集. 故原命题的逆否命题为真.
逆命题:若一个数的平方是正数,则它是负数; 否命题:若一个数不是负数,则它的平方不是正 数; 逆否命题:若一个数的平方不是正数,则它不是 负数. 也可写成“若一个数是负数的平方,则这个数是 正数”,则其对应的逆命题、否命题、逆否命题相应 变为:
《四种命题的概念》课件
符号表述方式
符号表述方式是数学中常用的命题表述方式,它通过数学符号和公式来表示数学 概念、定理和性质等。
符号表述方式具有表达精确、简练的特点,但有时候对于初学者来说不太容易理 解。
图形表述方式
图形表述方式是通过几何图形来表示数学概念、定理和性质等。 图形表述方式具有直观、形象的特点,能够帮助人们更好地理解抽象的数学概念。
05
四种命题的练习题与解析
练习题一及解析
练习题一:写出下列 命题的否定
所有的猫都是动物。
存在一个实数x,使 得x^2 + x + 1 < 0 。
练习题一及解析
3是一个偶数。 解析
存在一个实数x,使得x^2 + x + 1 ≥ 0。
练习题一及解析
存在一个动物不是猫。
3是一个奇数。
练习题二及解析
四种命题是指:原命题、逆命题、逆否命题和等价命题。
在此添加您的文本16字
原命题指的是条件和结论都为真的命题,如“若a>b,则 a+c>b+c”。
在此添加您的文本16字
逆命题是将原命题的条件和结论互换得到的命题,如“若 a+c>b+c,则a>b”。
在此添加您的文本16字
逆否命题是逆命题的否命题,即同时否定条件和结论得到 的命题,如“若a≤b,则a+c≤b+c”。
在此添加您的文本16字
等价命题是与原命题等价的命题,即两者可以相互推导。
命题的分类依据
01
根据条件和结论的真假值,可以 将命题分为真命题和假命题两类 。
02
真命题是指条件为真且结论为真 的命题,假命题则是条件或结论 至少有一个为假的命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)含有变量且在未给定变量的值之前无法确定语句的 真假。
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。如何判断一个语句是不是命题?
1) 7是23的约数吗?
疑问句
2) X>5. 3) -2<a<3. 4) 画线段AB=CD.
开语句 祈使句
判断一个语句是不是命题,关键看这语句是否符 合“是陈述句”和“可以判断真假” 这两个条件。
(3) 0.5是整数;
(4)对顶角相等;
(5)3 能被2整除;
(6)若x2=1,则x=1.
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。
判断为真的语句叫做真命题。
判断为假的语句叫做假命题。
理解:
1)命题定义的核心是判断,切记:判断的标准 必 须确定,判断的结果可真可假,但真假必居其一。
(6)x>15. (不是命题)
练习 判断下列语句是否是命题 .
(1)求证 3 是无理数。
(2) x2 2x 1 0.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果。 (5)一个正整数不是质数就是合数。
(6)若 x R,则 x2 4x 7 0.
(7)x+3>0. (1)(3)(7)不是命题,(2)(4)(5)(6)是命题。
“若p则q”形式的命题的优点是条件与结论容易辨 别,缺点是太格式化且不灵活.
“若p则q”形式的命题的书写
了解命题表示的判断,明确与判断有关的条件与 结论。
对于一些条件与结论不明显的命题,一般采取先 添补一些命题中省略的词句, 确定条件与结论。
如命题:“垂直于同一条直线的两个平面平行”。 写成“若p则q”的形式为:
思考
下列语句的表述形式有什么特点?你能判断 它们的真假吗? (1) 12>5; (2) 3是12的约数; 语句都是陈述句, (3) 0.5是整数; (4)对顶角相等; 并且可以判断真假。 (5)3 能被2整除; (6)若x2=1,则x=1.
命题的概念
(1) 12>5;
(2) 3是12的约数;
6) x>4。
不是(开语句)
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1) 空集是任何集合的子集. (是,真) (2)若整数a是素数,则a是奇数(. 是,假) (3)指数函数是增函数吗?(不是命题)
(4)若平面上两条直线不相交,
则这两条直线平行. (是,真) (5) (2)2 2 (是,假)
你能分析此故事中歌德与批评家 的言行语句吗?
常用逻辑用语
“数学是思维的科学” 逻辑是研究思维形式和规律的科学. 逻辑用语是我们必不可少的工具. 通过学习和使用常用逻辑用语,掌握常用逻辑
用语的用法,,纠正出现的逻辑错误,体会运用常用 逻辑用语表述数学内容的准确性、简捷性.命题及其关系1.1 Nhomakorabea1 命题
若两个平面垂直于同一条直线,则这两个平 面平行。
例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。
解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。
2) 写成若p,则q 的形式:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
1.1.1-1.1.2命题 与四种命题
高二数学 选修2-1
第一章 常用逻辑用语
2008-12-05
歌德是18世纪德国的一位著名文艺大师,一天, 他与一位批评家“狭路相逢”,这位文艺批评家生性 古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明, 一边高地往前走。一边大声说道:“我从来不给傻子 让路!”而对如此的尴尬的局面,但只是歌德笑容可 掏,谦恭的闪在一旁,一边有礼貌回答道“呵呵,我 可恰恰相反,”结果故作聪明的批评家,反倒自讨没 趣。
(2)若函数是偶函数,则函数的图象关于y轴对称,这是真 命题。 (3)若两个平面垂直于同一平面,则这两个平面互相平行。 这是假命题。
命题及其关系
1.1.2 四种命题
下列四个命题中,命题(1)与命题(2)(3)(4) 的条件和结论之间分别有什么关系?
1. 若f(x)是正弦函数,则f(x)是周期函数; 2. 若f(x)是周期函数,则f(x)是正弦函数; 3. 若f(x)不是正弦函数,则f(x)不是周期函数; 4. 若f(x)不是周期函数,则f(x)不是正弦函数。
“若p则q”形式的命题
命题“若整数a是素数,则a是奇数。”具
有“若p则q”的形式。 p
q
通常,我们把这种形式的命题中的p叫做命题的条 件,q叫做命题的结论。
“若p则q”形式的命题是命题的一种形式而不是 唯一的形式,也可写成“如果p,那么q” “只要p,就有 q”等形式。
其中p和q可以是命题也可以不是命题.
观察命题(1)与命题(2)的条件和结论之间 分别有什么关系?
1. 若f(x)是正弦函数,则f(x)是周期函数;
增加,它是真命题.
在本题中,a>0是大前提,应单独给出, 不能把大前提也放在命题的条件部分内.
2、把下列命题改写成“若p,则q”的形式, 并判断它们的真假.
(1)等腰三角形两腰的中线相等;
(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行。
(1)若三角形是等腰三角形,则三角形两边上的中线相等。 这是真命题。
例3 把下列命题改写成“若p则q”的形 式,并判定真假。
(1) 负数的平方是正数. (2) 偶函数的图像关于y轴对称.
(3)垂直于同一条直线的两条直线平行
(4) 面积相等的两个三角形全等. (5) 对顶角相等.
真命题 真命题 假命题 假命题 真命题
练习
1、将命题“a>0时,函数y=ax+b的值随x值的增 加而增加”改写成“p则q”的形式,并判断命题的 真假。 解答:a>0时,若x增加,则函数y=ax+b的值也随之
有些语句中含有变量,在不给定变量的值之前,我们无法 确定这语句的真假,这样的语句叫开语句,以后会专门研 究。
看看下列语句是不是命题?
1) 今天天气如何?
不是(疑问句)
2) 你是不是作业没交? 不是(疑问句)
3) 这里景色多美啊! 不是(感叹句)
4) -2不是整数。
是(否定陈述句)
5) 4>3。
是(肯定陈述句)
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。如何判断一个语句是不是命题?
1) 7是23的约数吗?
疑问句
2) X>5. 3) -2<a<3. 4) 画线段AB=CD.
开语句 祈使句
判断一个语句是不是命题,关键看这语句是否符 合“是陈述句”和“可以判断真假” 这两个条件。
(3) 0.5是整数;
(4)对顶角相等;
(5)3 能被2整除;
(6)若x2=1,则x=1.
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。
判断为真的语句叫做真命题。
判断为假的语句叫做假命题。
理解:
1)命题定义的核心是判断,切记:判断的标准 必 须确定,判断的结果可真可假,但真假必居其一。
(6)x>15. (不是命题)
练习 判断下列语句是否是命题 .
(1)求证 3 是无理数。
(2) x2 2x 1 0.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果。 (5)一个正整数不是质数就是合数。
(6)若 x R,则 x2 4x 7 0.
(7)x+3>0. (1)(3)(7)不是命题,(2)(4)(5)(6)是命题。
“若p则q”形式的命题的优点是条件与结论容易辨 别,缺点是太格式化且不灵活.
“若p则q”形式的命题的书写
了解命题表示的判断,明确与判断有关的条件与 结论。
对于一些条件与结论不明显的命题,一般采取先 添补一些命题中省略的词句, 确定条件与结论。
如命题:“垂直于同一条直线的两个平面平行”。 写成“若p则q”的形式为:
思考
下列语句的表述形式有什么特点?你能判断 它们的真假吗? (1) 12>5; (2) 3是12的约数; 语句都是陈述句, (3) 0.5是整数; (4)对顶角相等; 并且可以判断真假。 (5)3 能被2整除; (6)若x2=1,则x=1.
命题的概念
(1) 12>5;
(2) 3是12的约数;
6) x>4。
不是(开语句)
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1) 空集是任何集合的子集. (是,真) (2)若整数a是素数,则a是奇数(. 是,假) (3)指数函数是增函数吗?(不是命题)
(4)若平面上两条直线不相交,
则这两条直线平行. (是,真) (5) (2)2 2 (是,假)
你能分析此故事中歌德与批评家 的言行语句吗?
常用逻辑用语
“数学是思维的科学” 逻辑是研究思维形式和规律的科学. 逻辑用语是我们必不可少的工具. 通过学习和使用常用逻辑用语,掌握常用逻辑
用语的用法,,纠正出现的逻辑错误,体会运用常用 逻辑用语表述数学内容的准确性、简捷性.命题及其关系1.1 Nhomakorabea1 命题
若两个平面垂直于同一条直线,则这两个平 面平行。
例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。
解:1) 条件p:整数a能被2整除, 结论q:整数a 是偶数。
2) 写成若p,则q 的形式:若四边形是菱形, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
1.1.1-1.1.2命题 与四种命题
高二数学 选修2-1
第一章 常用逻辑用语
2008-12-05
歌德是18世纪德国的一位著名文艺大师,一天, 他与一位批评家“狭路相逢”,这位文艺批评家生性 古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明, 一边高地往前走。一边大声说道:“我从来不给傻子 让路!”而对如此的尴尬的局面,但只是歌德笑容可 掏,谦恭的闪在一旁,一边有礼貌回答道“呵呵,我 可恰恰相反,”结果故作聪明的批评家,反倒自讨没 趣。
(2)若函数是偶函数,则函数的图象关于y轴对称,这是真 命题。 (3)若两个平面垂直于同一平面,则这两个平面互相平行。 这是假命题。
命题及其关系
1.1.2 四种命题
下列四个命题中,命题(1)与命题(2)(3)(4) 的条件和结论之间分别有什么关系?
1. 若f(x)是正弦函数,则f(x)是周期函数; 2. 若f(x)是周期函数,则f(x)是正弦函数; 3. 若f(x)不是正弦函数,则f(x)不是周期函数; 4. 若f(x)不是周期函数,则f(x)不是正弦函数。
“若p则q”形式的命题
命题“若整数a是素数,则a是奇数。”具
有“若p则q”的形式。 p
q
通常,我们把这种形式的命题中的p叫做命题的条 件,q叫做命题的结论。
“若p则q”形式的命题是命题的一种形式而不是 唯一的形式,也可写成“如果p,那么q” “只要p,就有 q”等形式。
其中p和q可以是命题也可以不是命题.
观察命题(1)与命题(2)的条件和结论之间 分别有什么关系?
1. 若f(x)是正弦函数,则f(x)是周期函数;
增加,它是真命题.
在本题中,a>0是大前提,应单独给出, 不能把大前提也放在命题的条件部分内.
2、把下列命题改写成“若p,则q”的形式, 并判断它们的真假.
(1)等腰三角形两腰的中线相等;
(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行。
(1)若三角形是等腰三角形,则三角形两边上的中线相等。 这是真命题。
例3 把下列命题改写成“若p则q”的形 式,并判定真假。
(1) 负数的平方是正数. (2) 偶函数的图像关于y轴对称.
(3)垂直于同一条直线的两条直线平行
(4) 面积相等的两个三角形全等. (5) 对顶角相等.
真命题 真命题 假命题 假命题 真命题
练习
1、将命题“a>0时,函数y=ax+b的值随x值的增 加而增加”改写成“p则q”的形式,并判断命题的 真假。 解答:a>0时,若x增加,则函数y=ax+b的值也随之
有些语句中含有变量,在不给定变量的值之前,我们无法 确定这语句的真假,这样的语句叫开语句,以后会专门研 究。
看看下列语句是不是命题?
1) 今天天气如何?
不是(疑问句)
2) 你是不是作业没交? 不是(疑问句)
3) 这里景色多美啊! 不是(感叹句)
4) -2不是整数。
是(否定陈述句)
5) 4>3。
是(肯定陈述句)