加速度传感器模块原理图

合集下载

GY—86很牛X的一个模块

GY—86很牛X的一个模块

在我们的之前的博文中,我们讲过一模块arduIMU 9DOF的使用,现在稍稍升级下,今天来个10DOF的!!光从包含传感器的种类上看,其实他们的区别不是很大,只是10DOF上包含了9DOF上没有的气压传感器BMP085,只是10DOF模块上不再有MCU了-一纯粹的传感器集模块!下面就开始介绍一、模块简介模块板上集成了四种传感器,分别是加速度传感器ADXL345、磁场强度传感器HMC5883L、三轴陀螺仪ITG3205,气压传感器BMP085,给您带来10维的测量空间,它们彼此串联在一起,这样在工作时能够补偿彼此的缺陷,同时在使用算法滤波时也给您提供了一个清晰的方向。

如果应用在机器人、无人驾驶机、自动汽车、图像稳定系统中它将会是强有力的控制器,这将不仅会大大简化您的设计,而且在控制效果方面也很令人满意!还是先来看看模块长啥样吧模块较小,结构紧凑!二、模块的一些特征1、模块结构紧凑、尺寸小!2、预留了两个安装孔,方便安装3、集成了加速度传感器ADXL3454、集成了磁场强度传感器HMC5883L5、集成了三轴陀螺仪ITG32056、集成了气压传感器BMP0857、3.3V供电8、I2C接口通信三、板载传感器的简单介绍 ^_^ADXL345:是一款小而薄的超低功耗3轴加速度计,分辨率高(13位),测量范围达± 16g。

数字输出数据为16位二进制补码格式,可通过SPI(3线或4线)或I2C数字接口访问。

ADXL345非常适合移动设备应用,它可以在倾斜检测应用中测量静态重力加速度,还可以测量运动或冲击导致的动态加速度,其高分辨率(3.9mg/LSB),能够测量不到1.0°的倾斜角度变化。

HMC5883L:是一款带数字接口的弱磁传感器芯片,主要应用于低成本罗盘和磁场检测领域,包括最先进的高分辨率HMC118X系列磁阻传感器,并附带霍尼韦尔专利的集成电路包括放大器、自动消磁转换器、偏差校准、能使罗盘精度控制在1°到2°的12位模数转换器,简易的I2C总线接口。

MEMS加速度传感器

MEMS加速度传感器
光波导式 迈克尔逊、马赫—曾德等干涉仪的
核心部件都包含3 dB耦合器。
微谐振式
谐振式加速度传感器是一种典型的
微机械惯性器件,基本工作原理是 利用振梁的力频特性,通过检测谐 振频率变化量获取输入的加速度。
热对流式
微型热对流加速度计是利用封闭空
气囊内的自由热对流对加速度敏感 性。两个温度传感器对称地在有气 体的腔体两侧,中间有一个热源。
•加速度传感器中的分类
加速度传感器的原理随其应用而不同,有压阻式,电容式,压 电式,谐振式、伺服式等。
GrLoOuGpO3
压阻式加速度传感器
压阻式压阻式器件是最早微型化和商业化的一类加速度传感器。基于世界领先的 MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集 成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监 测等领域。
GrLoOuGpO3
压阻式加速度传感器
工艺流程
(d)在两面涂上光刻胶作为 湿法刻蚀的梁结构 (e)去除光刻胶以后两面重 新被氧化生成SiO2,随后再 EVG-100覆盖 (f)利用剩下的光刻胶进行刻 蚀然后移除光刻胶
GrLoOuGpO3
压阻式加速度传感器
工艺流程
(g)等刻蚀完成,对 称梁结构形成
工艺构造
当前大多数的电容式加速度传感器都是由三部分硅晶体圆片构成的,中层是由双 层的SOI硅片制成的活动电容极板。如图一所示, 中间的活动电容极板是由八个 弯曲弹性连接梁所支撑,夹在上下层两块固定的电容极板之间。基本结构选择需 要考虑的条件是:量程、刚性约束条件、弹性约束条件、谐振频率约束。对于梁 的选择一般是选择U形折叠梁,即可保证其一定的刚度又可以节省材料。为实现 过载保护常采用止挡块结构来限制敏感质量块运动的最大位移。常用材料是二氧 化硅

加速度传感器原理、结构、使用说明、校准和参数解释

加速度传感器原理、结构、使用说明、校准和参数解释
量块随震动产生的惯性力。
根据牛顿第二定律F=m*a;惯性力等于质量快质量乘以加速度。 将以上两个公式进行组合可得到Q=d*m*a;其中,d和m在当加速度传 感器的压电陶瓷材料和质量块的质量确定之后就是固定值。
在传感器的可测范围之内,Q和a呈线性关系,可通过电荷Q来表征加 速度值。
质量块
压电 陶瓷
结构与特征
11、耐冲击性 对于物理冲击的界限值。
12、传感器质量 传感器质量最好小于待测物的十分之一。
压电型振动传感器分类
压电型加速度传感器
电荷输出型 电压输出型
通用型 小型 高灵敏度型 高/低温型 防水绝缘型 3轴加速度
电荷输出型部分型号
电压输出型部分型号
三轴加速度传感器部分型号
防水绝缘加速度传感器部分型号
6、接地噪音 如果有两个或两个以上的接地端的时候,那么噪音可能从接地端引入,系统只设一个
接地端或者使用绝缘加速度传感器/绝缘螺栓可消除。 7、热电灵敏度
压电陶瓷和热电传感器用的元件有相同的组成,温度变化会产生电荷,几Hz以下的测 定必须注意。 8、最大使用加速度
压电型加速度传感器的动态范围很宽。最大使用加速度需满足两个条件:1是保证加速 度和输出为线性,2是内藏放大器最大输出电压是否饱和。
与声发射传感器比较 检测低频信号 检测更强的信号 信号具有指向性 非内置放大加速度传感器为电荷输出
压电型加速度传感器原理
压电元件是受到惯性力F后会产生电荷的功能材料,其压电常数的定义如下:
所以,电荷Q=d*F;其中Q为电荷量,d为压电常数,F为受到的力。 压电型加速度传感器的机构如右图所示,压电陶瓷受到的力主要是质
接近螺钉固定的效果 胶带固定:适用于振动频率低振幅小时的一种便利方法 绝缘螺栓固定:绝缘螺栓使加速度传感器和被测物电气

加速度传感器工作原理

加速度传感器工作原理

加速度传感器工作原理
加速度传感器是一种能够测量物体加速度的装置。

它的工作原理基于牛顿第二定律,即当一个物体受到外力作用时,它会产生加速度。

加速度传感器利用微小的电子元件,例如微机电系统(MEMS)加速度计或压电晶体,来检测物体的加速度。

在MEMS加速度计中,通常采用质量悬挂在弹簧上的结构。

当物体受到加速度时,惯性将使质量相对于弹簧产生位移。

这种位移可以通过装置上的微小电容或电阻来检测。

当物体加速度改变时,质量相对于弹簧的位移也会随之改变,从而导致电容或电阻的变化。

另一种常见的加速度传感器是基于压电效应工作的。

压电传感器由具有压电性质的晶体制成。

当物体受到加速度时,晶体会产生电荷。

这些电荷可以通过电极测量,从而确定加速度的大小和方向。

加速度传感器通常与其他传感器(如陀螺仪)结合使用,以提供更全面的运动测量。

它们广泛应用于许多领域,包括汽车安全系统、移动设备、航空航天等。

电容式加速度传感器资料

电容式加速度传感器资料

电容式加速度传感器电容式加速度传感器是基于电容原理的极距变化型的电容传感器,其中一个电极是固定的,另一变化电极是弹性膜片。

弹性膜片在外力(气压、液压等)作用下发生位移,使电容量发生变化。

这种传感器可以测量气流(或液流)的振动速度(或加速度),还可以进一步测出压力。

传感器是一种应用非常广泛的设备,在各种自动控制过程中,它能迅速客观地反映出实际情况。

电容式传感器有很多,但原理相同。

平行板电容器的电容C 跟介电常数ε成正比跟正对面积成反比根极板间的距离d成反比有:C=εS/4πkd 式中k为静电力常量。

通过改变介质,极板距离,极板正对面积,这三个参数之一使传感器的电容发生变化,再通过电荷放大器,将电容变化或电量变化转换成容易用电路处理电压或电流量。

这就是电容式传感器的特点,通过上面的原理可以做成很多传感器,比如测长度的,测角度,测空气粉尘,空气湿度,还有声音,振动等,精度很高,比如测振动的精度可以达到零点零几个微米。

但是测长度的线性度不好,需要通过电路矫正,还有容易受到电路中的寄生电容的影响,所以电路设计的时候要很注意。

把被测的机械量,如位移、压力等转换为电容量变化的传感器。

它的敏感部分就是具有可变参数的电容器。

其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器(见图)。

若忽略边缘效应,平板电容器的电容为εA/δ,式中ε为极间介质的介电常数,A为两电极互相覆盖的有效面积,δ为两电极之间的距离。

δ、A、ε三个参数中任一个的变化都将引起电容量变化,并可用于测量。

因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类。

极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化(见电容式压力传感器)。

面积变化型一般用于测量角位移或较大的线位移。

介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。

电容式加速度传感器的数学模型传感器的结构简图电容式加速度传感器的原理结构如图:由图可见,它实际上是变介子电容式位移传感器,配接“m-k —C ”系统构成的。

8 传感器实验-加速度传感器

8 传感器实验-加速度传感器

传感器实验压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。

虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。

与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。

加速度传感器知识准备1 以上知识点,可参阅<M M A 7660.P D F >讯方公司 传感器实验通过本实验了解加速度传感器的硬件电路和工作原理1.编写一个读取加速度传感器输出信号的程序2. 将X 、Y 、Z 三个轴的加速度值分别做简单的处理显示1. 硬件部分(1) 采集节点一个(2)J-Link 仿真器一个 (3) 显示终端一台 (4) 加速度传感器一个2. 软件部分Keil μVision4 开发环境,J-Link 驱动程序1. 加速度传感器工作原理电路中用到,加速度传感器电路、信号放大电路、单片机系统、状态显示系统构成。

其基本工作原理:经过信号放大电路,加速度传感器电路将感受到X 、Y 、Z 三个轴加速度以数字形式输出至单片机系统, 由状态显示系统进行显示。

加速度传感器工作框图如图5-1:图5-1 电路工作框图2.加速度传感器的硬件电路图电路中,加速度传感器电路如图5-2。

图5-2 加速度传感器原理图3.工作模式:mma7660主要有三种工作模式.(通过设置MODE寄存器)1).Standby(待机)模式此时只有I2C工作,接收主机来的指令. 该模式用来设置寄存器. 也就是说, 要想改变mma7660的任何一个寄存器的值,必须先进入Standby模式. 设置完成后再进入Active或Auto-Sleep模式.2).Active and Auto-Sleep (活动并且Auto-Sleep) 模式mma7660的工作状态分两种, 一种是高频度采样, 一种是低频度采样. 为什么这样分呢, 为了节省功耗,但是在活动时又保持足够的灵敏度. 所以说mma7660的Active模式其实又分两种模式,一种是纯粹的Active模式, 即进了Active模式后一直保持高的采样频率,不变. 还有一种是Active & Auto-Sleep模式, 就是说系统激活后先进入高频率采样,经过一定时间后,如果没检测到有活动,它就进入低频率采样 ,所以就叫做Auto-Sleep, Sleep并不是真的Sleep , 只是说降低采样频率.低频率采样模式又叫Auto-Wake摸式, 即自动唤醒模式.它不是睡眠模式, 它只是降低采样频率.3). Auto-Wake (自动唤醒) 模式Auto-Sleep后就进入低频率采样模式,这种模式就叫做Auto-Wake摸式, 即自动唤醒模式.它不是睡眠模式, 它只是降低采样频率.讯方公司传感器实验6 实验步骤实验基本步骤如下:1.启动Keil μVision4,新建一个项目工程Bank,添加常用组,并添加相应库函数;2.在user文件中建立main.c,SystemInit.c,PublicFuc.c文件;3.新建一个组sensor,在sensor中编写读取加速度传感器数值变化的代码;4.编译链接工程,并生成hex 文件,所有文件如下图6-1所示:图6-1 文件示意图5.将加速度传感器接到传感器接口1;图 6-2 加速度传感器6.将J-Link仿真器、ZigBee路由器接入传感器采集节点,仿真器USB 接口连入PC 机,插好电源,并打开开发实验箱上的电源开关,如图6-3:图6-3 硬件连接示意图7. 将ZigBee 协调器接入智能网关,插好电源,并打开电源启动智能网关系统,运行传感器实验显示程序;图6-4 传感器实验显示程序电源开关电源传感器接口1传感器接口2传感器接口3J-LINK 接口ZigBee_DEBUG复位 节点按键 拨码开关 ZigBee 按键 红外发射天线指示灯ZigBee 复位讯方公司 传感器实验图6-5 智能网关连接示意图8. 选择【Debug 】->【Start/Stop Debug Session 】,启动J-Link 进行仿真调试; 9. 选择【Debug 】->【run 】或者按快捷键“F5”,运行程序; 10. 验证:移动加速度传感器,观察显示屏上数值的变化;11. 验证完毕后,退出J-Link 仿真界面,关闭Keil μVision4软件;关闭硬件电源,整理桌面; 12. 实验完毕。

传感器技术与应用第9章加速度传感器

传感器技术与应用第9章加速度传感器
由图9-5可知,它采用简谐振子结构形式。激光束通过 分光器分为两束光,透射光作为参考光束,反射光作为测量 光束。当光纤感受到加速度作用时,由于质量块m对光纤的 作用,从而使光纤被拉伸,引起光程差的改变。相位改变的 激光束由单模光纤射出后与参考光束汇合产生干涉效应。激 光干涉检测器把干涉条纹的移动经光电接收器件转换为电信 号,通过信号处理电路处理后,便可在显示器上正确地显示 出加速度的测量值。
F ma
图9-1 应变式加速度传感器结构示意图
9.1.2 应变式加速度传感器的测量原理
测量时,将传感器壳体与被测对象刚性连接,当被测物 体以加速度a运动时,质量块就受到一个与加速度方向相反 的惯性力作用,使悬臂梁变形。该变形被粘贴在悬臂梁上的 电阻应变片感受到,并随之产生应变,从而使应变片的阻值 发生变化。这个变化经过全桥差动测量电路转变成电桥不平 衡电压输出。并且这个不平衡电压Uo的大小与被测物体的运 动加速度a成正比。
ቤተ መጻሕፍቲ ባይዱ
图9-2 压电式加速度传感器结构示意图
9.2.2压电式加速度传感器的测量原理
测量时,把压电加速度传感器与被测物体刚性连接,当加 速度传感器和被测物体一起受到冲击振动时,由于弹簧的刚 度很大,而质量块的质量相对较小,可以认为质量块的惯性 很小。因此,质量块感受与传感器基座相同的振动。这样, 质量块m就有一惯性力F作用到压电元件上。由于压电效应, 便在压电元件上产生电荷q,其电荷量大小为
第9章 加速度传感器及其应用案例
9.1 应变式加速度传感器 9.2 压电式加速度传感器 9.3 电容式加速度传感器 9.4 差动变压器式加速度传感器 9.5 加速度测量显示系统案例
返回主目录
9.1 应变式加速度传感器
9.1.1 应变式加速度传感器的结构

梳齿式电容加速度传感器的原理和性能分析

梳齿式电容加速度传感器的原理和性能分析

梳齿式电容加速度传感器的原理和性能分析微加速度传感器也称微加速度计,是用来测量微加速度的惯性传感器件,是微型惯性组合测量系统的核心器件。

可以应用于倾斜角、惯性力、冲击及振动等惯性参数的测量。

最先得到成功应用微机械电容式加速度传感器是将被测的非电量变化转换为电容量变化的一类传感器,由于它具有灵敏度高、功耗低、温度稳定性好等优点,因此广泛应用在在汽车、消费电子、航空航天、军事、工业、医疗、惯性制导等领域。

1 模型及其工作原理定齿偏置梳齿式电容加速度传感器是微机械电容式加速度传感器的最优结构,如图1 所示,敏感质量元件是一个H 形的双侧梳齿结构,敏感质量的2 n s 对检测动齿和2 n f 对加力动齿与定齿相互交错配置总体形成1 对差动检测电容C s1与C s2和1 对差动加力电容C f1与C f2..依据动力学原理,其经典力学模型可等效为如图2 所示的质量2弹簧2阻尼器力学系统。

微机械电容式加速度传感器的基本原理是基于电容变化的原理,加速度的检测是通过检测电容变化量实现的。

在差动检测电容左右两边定齿S1 、S2 分别施加一对幅值相等相位相差180°的幅值为V dir的高频正弦激励信号u s ,将输入加速度a 引起的敏感质量位移x 变为差动电容的容值发生微弱变化,输出电压u c ,通过检测电路将信号放大并解调得到输出电压。

为了形成静电力负反馈,在加力电容C f1 与C f2的固定极板上施加一对正负极性的偏置电压V ref 和- V ref ,把输出电压取样作为负反馈电压V fb叠加其上,因此施加在差动反馈加力电容上的电压分别为和。

依靠加力齿产生的静电力可平衡由于输入加速度而引起的惯性力,使敏感质量保持在平衡位置附近。

图1 梳齿式加速度传感器结构示意图图2 闭环加速度传感器的模型2 性能分析2. 1 静电力分析设A se 、A fe为检测电极与加力电极的极板等效重叠面积。

该结构受力如图3 所示。

传感器课程设计加速度传感器

传感器课程设计加速度传感器

一、设计要求1、功能与用途加速度传感器在现代生产生活中被应用于许许多多的方面,如手提电脑的硬盘抗摔保护,另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,自动调节相机的聚焦。

而这些产品中由于要求对温度的干扰有很大的免疫力,其中采用的都是压电式加速度传感器。

压电加速度传感器还应用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面,灵敏度是压电加速度传感器应用时候要考虑到的重要因素之一。

概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。

2、指标要求分别用压电式传感器、电阻应变式传感器、电容传感器实现加速度的测量将非电量转化为电量输出。

二、设计方案及其特点依据压电效应、电阻应变效应以电容相关的物理参数及性质随外力而变化的特性,可制作成压电式加速度传感器、电阻应变式加速度传感器及电容式加速度传感器。

三种加速度传感器的设计及特点分别叙述如下:1、方案一压电式加速度传感器压电加速度测量系统结构框图如图1图1压电加速度传感器采用具有压电效应的压电材料作基本元件,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。

这些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态;当作用力的方向改变时,电荷的极性也随着改变。

电信号经前置放大器放大,即可由一般测量仪器测试出电荷(电压)大小,从而得出物体的加速度图2 压电式加速度计的幅频特性曲线加速度计的使用上限频率取决于幅频曲线中的共振频率图2。

方案二电阻应变式加速度传感器应变式加速度传感器主要用于物体加速度的测量。

其基本工作原理是:物体运动的加速度与作用在它上面的力成正比,与物体的质量成反比,即a=F/m。

加速度传感器_G-sensor_重力传感器(accelerometer)原理

加速度传感器_G-sensor_重力传感器(accelerometer)原理

加速计——概述
加速计分类
• 摆式 摆式积分加速计 液浮摆式加速计 挠性摆式加速计
• 非摆式 振梁加速计 静电加速计
• MEMS加速计
电容式 压阻式 热电耦式 谐振式 压电式 隧道效应式 光波导式
加速计——原理
MEMS加速度传感器有多种实现方式,但它们的工作原理都是靠MEMS中可移动 部分的惯性。以某种电容式MEMS加速度传感器为例,它的关键部分是一种悬臂构造 的质量很大的中间电容板,当速度变化或者加速度达到足够大时,它所受到的惯性 力超过固定或者支撑它的力,这时候它会移动,它跟上下电容板之间的距离就会变 化,上下电容就会因此变化。电容的变化跟加速度成正比。电容的变化会被转化成 电压信号直接输出或经过数字化处理后输出。根据不同测量范围,中间电容板悬臂 构造的强度或者弹性系数可以设计得不同。
MID中的传感器——MEMS传感器
陀螺仪(Gyroscope) • 测量角速度 • 可用于相机防抖、视频游戏动作感应、汽车电子稳定控制系统(防滑) 加速度传感器(Accelerometer) • 测量线加速度 • 可用于运动检测、振动检测、撞击检测、倾斜和倾角检测 地磁传感器(Geomagnetic sensor) • 测量磁场强度 • 可用于电子罗盘、GPS导航
MID中的传感器——MEMS传感器
集成电路(Integrated Circuit,IC) 把电子元件/电路/电路系统集成到硅片(或其它半导体材料)上。
微机械(Micro-Mechanics) 把机械元件/机械结构集成到硅片(或其它半导体材料)上。
微机电系统(Micro Electro Mechanical Systems,MEMS) MEMS = 集成电路 + 微机械

速度和加速度传感器

速度和加速度传感器
机电一体化
速度和加速度传感器
速度、加速度测试有许多方法,可以使用直流测速机直接测量速度,也可 以通过检测位移换算出速度和加速度,还可以通过测试惯性力换算出加速度等。 下面介绍几种典型的测试方法。 1. 直流测速机速度检测
直流测速机是一种测速元件,实际上它就是一台微型的直流发电机。根据 定子磁极激磁方式的不同,直流测速机可分为电磁式和永磁式两种。如以电枢 的结构不同来分,有无槽电枢、有槽电枢、空心杯电枢和圆盘电枢等。近年来, 又出现了永磁式直线测速机。常用的为永磁式测速机。
的输入轴)上的带缝隙圆盘、光源、光电器件和指示缝隙盘组成,如图3-15所
示。光源发生的光通过缝隙圆盘和指示缝隙照射到光电器件上。当缝隙圆盘随
被测轴转动时,由于圆盘上的缝隙间距与指示缝隙的间距相同,因此圆盘每转
一周,光电器件输出与圆盘缝隙数相等的电脉冲,根据测量单位时间内的脉冲
数N,则可测出转速为
n
60 N Zt
式中 Z——圆盘上的缝隙数; n——转速(r/min); t——测量时间(s)。
图 3-15 光电式转速传感器的结构原理图
图 3-16 应变式加速度传感器
一般取Zt=60×10 m (m=0,1,2,…),利用两组缝隙间距W相
同,位置相差(i/2+1/4)W(i=0,1,2,…)的指示缝隙和两个光
直流测速机的特点是输出斜率大、线性好,但由于有电刷和换向器 ,构造和维护比较复杂,摩擦转矩较大。
直流测速机在机电控制系统中,主要用作测速和校正元件。在使用 中,为了提高检测灵敏度,尽可能把它直接连接到电机轴上。有的电机 本身就已安装了测速机。
2. 光电式转速传感器
光电式转速传感器是一种角位移传感器,由装在被测轴(或与被测轴相连接

MMA8451三轴加速度传感器

MMA8451三轴加速度传感器

MMA8451三轴加速度传感器,16引脚,QFN封装,数字I2C输出,8位/14位精度可选,量程错误!未找到引用源。

2g/错误!未找到引用源。

4g/错误!未找到引用源。

8g可选,电源供电1.95v~3.6v可选。

输出数据速率从1.56到800Hz。

有两个可编程的中断引脚,7个中断源。

可检测自由落体、运动、脉冲、振动等、倾角等。

32个采样FIFO,每次采样都通过高通滤波后传入FIFO。

典型应用有:电子罗盘,静态姿态、运动检测,笔记本电子书等便携设备的翻滚、自由落体检测,实时的方向检测可用于虚拟现实设备或3d游戏中的位置检测,便携设备的节能应用中的运动检测等等。

芯片外形不同姿态下X、Y、Z三轴对应的重力输出典型连接灵敏度由count/g表示,2g量程下,可达4096/g,4g量程下,可达2048/g,8g量程下,可达1024/gMMA8451状态转换图MMA8451内部框图,分为数字部分和模拟部分在OFF模式下,数字部分和模拟部分都不工作在STANDBY模式下,IIC通信照常进行,但模拟模块被禁止,内部时钟停止在ACTIVE模式下(WAKE或SLEEP),IIC通信照常进行,数字和模拟模块都正常工作I2C串行通信MMA8451使用I2C串行通信和外部交换数据,MMA8451可通过中断信号指示新的采样序列可用,也可通过设置使用中断信号指示设备的移动、自由落体、瞬变、方向、单/双击。

I2C总线使用三根信号线进行通信,分别是SCL、SDA和SA0,外部上拉电阻需要将SDA和SCL接到VDDIO上,当总线空闲时,这两根线表现为高电平状态。

MMA8451的I2C接口可工作在快速模式400KHz或普通模式100KHz。

总线传输开始由START信号触发,START信号定义为,当数据线从高电平跳变到低电平,而时钟线SCL仍然保持高电平。

由主机发送START信号过后,I2C总线被认为从空闲(free)状态进入忙(busy)状态。

速度及加速度检测—磁电式速度传感器

速度及加速度检测—磁电式速度传感器

自动检测技术
2)温度误差 当温度变化时,式(5-7)中右边三项都不为零,
对铜线而言每摄氏度变
化量为dL/L≈0.157×10-4,
dR/R≈0.43×10-2,dB/B每摄氏度的变化量取决于永久磁铁的
磁性材料。对铝镍钴永久磁合金,dB/B≈-0.02×10-2,这样由
式(5-7)可得近似值:
这一数值是很可观的,所以需要进行温度补偿。补偿通常采 用热磁分流器。热磁分流器由具有很大负温度系数的特殊磁性材 料做成。它在正常工作温度下已将空气隙磁通分路掉一小部分。
自动检测技术
磁电式传感器的工作原理是基于法拉第电磁感应 原理。当匝数为N的线圈在磁场中运动而切割磁力 线,或通过闭合线圈的磁通量ф发生变化时,线 圈中将产生感应电势e
e N d
dt
磁电式传感器的分类
按工作原理不同,磁电感应式传感器可分为恒定磁通式 和变磁通式,即动圈式传感器和磁阻式传感器。
变磁通 式
三、 磁电感应式传感器测量电路
自动检测技术
图5-4 磁电感应式传感器测量电路方框图 磁电式传感器直接输出感应电动势,且传感器通常具有
较高的灵敏度,不需要高增益放大器。但磁电式传感器是速 度传感器,若要获取被测位移或加速度信号,则需要配用积 分或微分电路。图5-4为一般测量电路方框图。
自动检测技术Leabharlann 产生磁场的永久磁铁和线圈都固定
不动,通过磁通Φ的变化产生感应 电动势e。常用于角速度的测量。
恒磁通 式
工作气隙中的磁通保持不变,线圈 相对永久磁铁运动,并切割磁力线 而产生感应电势。
自动检测技术
动圈式磁电感应式传感器可以分为线速度型 和角速度型
自动检测技术
磁电式转速传感器根据磁路的不同,分成开磁路 式和闭磁路式两种。

压电式加速度传感器(最新整理)

压电式加速度传感器(最新整理)

压电式加速度传感器摘要:本文介绍了压电式加速度传感器的结构和工作原理,推导了传感器的数学模型,并分析了测量电路,压电传感器的产生零漂现象的各种原因,并针对这些原因提出相应的解决措施。

关键词:压电式;加速度传感器;零漂1 引言现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。

所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。

它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。

振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。

压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。

压电式传感器具有体积小,质量轻,工作频带宽等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、体育、制造业、军事、航空航天等领域都得到了非常广泛的应用。

加速度传感器作为测量物体运动状态的一种重要的传感器,加速度传感器主要分为压阻式、电容式、应变式、压电式、振弦式、挠性摆式、液浮摆式等类型。

压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。

2工作原理压电式加速度传感器又称为压电加速度计,它也属于惯性式传感器。

它是典型的有源传感器。

利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。

压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。

压电加速度传感器的原理框图如图1所示,原理如图2所示。

图1 加速度传感器的组成框图支座图2 压电加速度传感器原理图实际测量时,将图中的支座与待测物刚性地固定在一起。

当待测物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷(电压)。

加速度传感器工作原理及应用

加速度传感器工作原理及应用

加速度传感器工作原理及应用可穿戴设备当中传感器至关重要,其中的加速度传感器能够完成位置及姿势的识别。

本文通过对三轴传感器工作原理的解析,帮助读者更好的理解加速度传感器的应用。

一、加速度传感器工作原理加速度传感器自然是对自身器件的加速度进行检测。

其自身的物理实现方式咱们就不去展开了,可以想象芯片内部有一个真空区域,感应器件即处于该区域,其通过惯性力作用引起电压变化,并通过内部的ADC给出量化数值。

对于三轴加速度传感器,其能检测X、Y、Z的加速度数据,如下图:在静止的状态下,传感器一定会在一个方向重力的作用,因此有一个轴的数据是1g(即9.8米/秒的二次)。

在实际的应用中,我们并不使用跟9.8相关的计算方法,而是以1g作为标准加速度单位,或者使用1/1000g,即mg。

既然是ADC转换,那么肯定会有量程和精度的概念。

在量程方面,Lis3dh支持(+-)2g/4g/8g/16g四种。

一般作为计步应用来说,2g是足够的,除去重力加速度1g,还能检测出1g的加速度。

至于精度,那就跟其使用的寄存器位数有关了。

Lis3dh使用高低两个8位(共16位)寄存器来存取一个轴的当前读数。

由于有正反两个方向的加速度,所以16位数是有符号整型,实际数值是15位。

以(+-)2g量程来算,精度为2g/2 = 2000mg/32768 =0.061mg。

当以上图所示的静止状态,z轴正方向会检测出1g,X、Y轴为0.如果调转位置(如手机屏幕翻转),那总会有一个轴会检测出1g,其他轴为0,在实际的测值中,可能并不是0,而是有细微数值。

在运动过程中,x,y,z轴都会发生变化。

计步运动也有其固有的数值规律,因为迈步过程也有抬脚和放脚的规律过程,如下图。

脚蹬离地是一步的开始,此时由于地面的反作用力,垂直方向加速度开始增大,当脚达到最高位置时,垂直方向加速度达到最大;然后脚向下运动,垂直加速度开始减小,直到脚着地,垂直加速度减到最小值。

接着下一步迈步。

闸门振动监测加速度传感器设计

闸门振动监测加速度传感器设计

• 196•闸门振动是闸门系统中最为关键的水力学问题;在闸门运行中,其振动特性与闸门结构自振特性及流体力学紧密相关,尤其是在闸门开启、闭合进程中由于流体冲击与闸门启闭设备的相互作用会引起闸门无规律振动,是导致闸门疲劳损坏的关键因素,将直接影响闸门的运行、甚至危机水利枢纽安全。

本文针对闸门振动特性,设计了一种基于ADXL356的高灵敏度加速度传感器,重点分析、研究了新型MEMS 电容式三轴加速度传感器的工作原理,设计了其外围电路,并对实际工程中传感器隔水、防腐蚀和防水压等传感器封装进行了分析、研究和设计,实际工程应用验证了该设计的工程应用的有效性。

重大水利工程是强化水旱灾害防治、优化水资源配置、改善水生态环境、促进流域区域协调发展的重要手段,由于闸门在开启过程中水流冲击与启闭机的相互作用极易引起闸门无规律振动,这将导致闸门疲劳损坏,影响闸门寿命,因此,闸门振动实时监测是水库安全运行的重要工程问题。

随着微机电系统(MEMS )技术的飞速发展,基于MEMS 的三轴传感器具有较高的灵敏度,且重量轻、功耗低、耐用性好,将其应用于大型钢闸门振动监测具有天然优势。

本文分析、设计了适用于水下监测的基于MEMS 的低频加速度传感器,对传感器进行了特定工程需求的封装、校准和标定,以满足实际工程应用的要求。

1 加速度传感器的工作原理加速度传感器是感知加速度物理信号、并将其转换为可测量电信号的器件,基本加速度计的组成元素包含:质量块、弹性件、阻尼元件和限位件。

本文设计采用基于ADXL356芯片的加速度传感器,利用通过改变极距来改变电容,从而改变电压的输出来测量加速度的值。

有绝缘介质分开的两个平行金属板组成平板电容器,如果不考虑边缘效应,其电容量为:(1)式中:ε-电容极板间介质的介电常数,ε = ε0εr ,其中ε0为真空的介电常数,εr 为极板间介质相对介质常数:A -两平行板所覆盖的面积;d -两平行板之间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档