汽车电动助力转向系统的设计

合集下载

电动助力转向系统的控制系统设计

电动助力转向系统的控制系统设计

转向轴助力式电动助力转向系统
毛建伟 杨建中 蔡志标 陈仁史
《电动助力转向系统的控制系统设计》 毛建伟 杨建中 蔡志标 陈仁史
1.3 研究的目的和意义
汽车转向系一直存在着“轻”与“灵”的矛盾,而且转 向力与路感也相互制约。EPS由电机提供助力,助力大小由 电控单元(ECU) 实时调节与控制,可以较好地解决上述矛盾。 EPS控制策略的设计是EPS系统的关键技术之一,如何得到 任意车速下的助力曲线是研究EPS技术的重点与难点。
式中
I m ——电动机和离合器的转动惯量,Kg m2 ; Bm ——电动机粘性阻尼系数, N m /(rad / s) ;
电动机等效电路图
m ——电动机的转角, rad ;
Tm ——电动机电磁转矩,这里即是电动机的控制输入, N m ;
Ta ——电动机负载,这里即为电动机输出助力转矩, N m 。
0
0
0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 ks
0
ks rp
0 0
《电动助力转向系统的控制系统设计》 毛建伟 杨建中 蔡志标 陈仁史
3 EPS控制系统设计及仿真研究
常规助力控制
EPS的控制模式
在实际的控制系统中,电动机助力转矩Ta 可以表示为:
Ta 式中
K
mK(mm— —n1电1 )动机和减20速20机/3/2构2 的刚性系数,
N
m
/
rad

输出轴子模型
《电动助力转向系统的控制系统设计》 毛建伟 杨建中 蔡志标 陈仁史
对转向柱输出轴及电机输出轴进行动力学分析,得到下面的运动学方程: I e1 Be1 Tsen n1Ta Tw

汽车电动助力转向系统(EPS)硬件设计

汽车电动助力转向系统(EPS)硬件设计

内容摘要电动助力转向( Electric Power Steering, 简称EPS) 作为一种新型转向系统, 因其具有节能、环保等优点而受到世界各大汽车公司和企业的青睐, 它将逐步取代传统的液压助力转向系统(Hydraulic Power Steering, 简称HPS) 。

本文以传统的转向柱助力式EPS 为研究对象, 建立EPS系统数学模型,给出了汽车电动助力系统的动力学方程。

根据电动助力转向系统的工作原理及控制器可靠设计的关键技术,设计了以P87C591 单片机为主控单元的EPS系统,系统采用闭环电流控制方案, 利用目标电流技术调节电机端电压达到控制电机电流力矩的目的。

EPS 控制器采用模块化设计,把信号处理电路和功率驱动电路进行分层设计,以增强系统的抗干扰能力和可靠性。

在进行PWM 驱动频率的选择时,考虑开关时电流脉峰对开关管及电动机安全的影响。

最后通过研究分析了EPS系统的经济性、系统硬件电路板空间与发热功耗及可靠性合理地选择散热片及其参数,提高了驱动效率和稳定运行能力。

实验表明, 该系统具有良好的电动助力特性, 满足电动助力转向要求,证明了这种系统在实际应用中的有效性。

关键词电动助力转向; 单片机; H桥驱动; PWM斩波; 控制系统Hardware Design of the Electric Power Assisted Steering System050607337 Zhangqiang Instructor:Helinlin Associate professorAbstractElectric power steering is a new power steering technology for vehicles. Merit such as energy conservation , environmental protectionthat the person has accepts the respectively big automobiles of world company and the enterprise favour , home and abroad developing trend is to use electric power-assistance to change to the hydraulic pressure power-assistance vergence substituting tradition step by step.The mathematic model the main body of a book is established systematically with dyadic EPS of the tradition vergence post power-assistance for the object of study,has given an automobile out electric systematic power-assistance dynamics equation , has combined classics control theory and the optimization algorithm, the parameter carries out validity in applying to reality having studied , testifying this system on systematic power-assistance.This paper presents an elect ricpower steering system controlled by P87C591 microp rocessor. The motor given torque is computed by expertcontrol system. The practical output torque is closed-loop controlled. The working principle and key technologies for reliable design of EPS controller were analyzed.The signal processing circuit and the power drive circuit were hierarchically designed to improve theanti jamming capability and reliability. The PWM frequency was selected considering the influence of switching currentpulse on the safety of the transistors and the motor should be taken into account . Besides paralleled for the economy , the heat dissipation and the reliability.It srelevant parameters were selected to improve the drive efficiency and the stableoperation capability.The results of the experiment show thesystem designed has good steering characteristics and meets the request of electric power steering.Key wordsElectric Power Steering; Microprocessor; The bridge drives H ;PWM chopped wave; Control System目录第1章概述 (1)1.1 EPS系统简介 (1)1.2 转向系统的发展概况 (2)1.3 EPS系统的特点 (3)第2章 EPS系统模型 (7)2.1 EPS系统的结构及原理 (7)2.2 建立EPS动力学模型 (8)2.3 EPS的动力学方程 (8)2.4 直流电动机 (11)第3章基于高性能P87C591单片机控制方案制定 (12)3.1 单片机控制方案 (12)3.1.1 P87C591单片机芯片简介 (12)3.1.2 单片机控制系统 (14)3.2 EPS工作流程图 (16)3.3 助力电流控制系统 (17)3.3.1 控制策略 (17)3.3.2 电机目标助力电流算法 (17)3.3.3 助力电流闭环控制 (18)第4章 EPS控制系统设计 (21)4.1 EPS 控制器模块化设计 (21)4.2电机控制电路设计 (22)4.2.1 H桥驱动芯片IR2110功能简介 (22)4.2.2 H 桥功率驱动电路 (24)4.2.3 电机保护电路 (25)4.3 PWM斩波 (26)4.3.1 PWM控制原理 (26)4.3.2 PWM斩波电路 (27)4.3.3驱动频率的选择 (28)第5章汽车转向技术的发展趋势 (32)5.1 线性转向系统 (32)5.2 转向技术发展趋势 (32)结束语 (33)致谢 (34)参考文献 (35)汽车电动助力转向系统(EPS)硬件设计第1章概述1.1 EPS系统简介电动助力转向系统是于20世纪80年代中期提出来的。

汽车电动助力转向系统的设计(DOC41页)

汽车电动助力转向系统的设计(DOC41页)

汽车电动助力转向系统的设计第1章绪论1.1汽车转向系统简介汽车转向系是用来维持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

它由转向操纵机构、转向器和转向传动机构组成。

转向系统作为汽车的一个重要组成局部,其性能的好坏将直截了当碍事到汽车的转向特性、稳定性、和行驶平安性。

目前汽车转向技术要紧有七大类:手动转向技术〔MS〕、液压助力转向技术〔HPS〕、电控液压助力转向技术〔ECHPS〕、电动助力转向技术〔EPS〕、四轮转向技术〔4WS〕、主动前轮转向技术〔AFS〕和线控转向技术〔SBW〕。

转向系统市场上以HPS、ECHPS、EPS应用为主。

电动助力转向具有节约燃料、有利于环境、可变力转向、易实现产品模块化等优点,是一项紧扣当今汽车开展主题的新技术,他是目前国内转向技术的研究热点。

转向系的设计要求(1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。

不满足这项要求会加速轮胎磨损,并落低汽车的行驶稳定性。

(2)汽车转型行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

(3)汽车在任何行驶状态下,转向轮都不得产生共振,转向盘没有摆动。

(4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。

(5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。

(6)操纵轻便。

(7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。

(8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。

(9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻损害的防伤装置。

(10)进行运动校核,保证转向轮与转向盘转动方向一致。

1.2EPS的特点及开展现状EPS与其他系统比立关于电动助力转向机构(EPS),电动机仅在汽车转向时才工作并消耗蓄电池能量;而关于常流式液压动力转向机构,因液压泵处于长期工作状态和内泄漏等缘故要消耗较多的能量。

某款纯电动汽车电动助力转向系统设计开发

某款纯电动汽车电动助力转向系统设计开发

汽车设计培训--某款纯电动汽车电动助力转向系统设计开发
15
汽车设计培训-
汽车设计培训--某款纯电动汽车电动助力转向系统设计开发
16
汽车设计培训-
为了改善驻车及低速行驶时人手操纵力重的问题,增加了驻车状态和低 速曲线的斜率,增大了电机助力;为了改善中高速转向时人手操纵力轻的问 题,减小了中高速曲线的斜率,减少电机助力,增大车辆高速行驶时人手操 纵力;为了增加转向响应的灵敏度,调整了曲线横坐标起始点,增强中心感; 为了增加转向线性感,对不同车速曲线的间隔进行调整,使全车速的驾驶力 均匀增加。优化后曲线如图1(b)所示。
汽车设计培训--某款纯电动汽车电动助力转向系统设计开发
19
汽车设计培训-
5总结 介绍了某款汽油车改制为纯电动车过程中,转向系统由液压助力改为电 动助力的设计开发方案。 1)技术方案研讨。在选择电动助力方案时,需要综合考虑功能实现、 成本优化、批量生产等因素,为实现成本最低、开发周期最短、可靠性强, 最终选择借用公司现有车型的助力模块,采用管柱式电动助力方案。 2)结构设计及安装方案。考虑到使整车布置的变化量最小,则在硬点 不变的原则下进行转向系统的结构设计。转向管柱增加助力模块,体积和重 量相应增加,需要变更安装方式。同时转向传动轴的直径增大,实现传递更 大扭矩。转向器由液压式变为机械式,为提高转向响应,增大齿轮齿条的传 动比。
原地转向阻力矩,根据半经验公式(2)得到
汽车设计培训--某款纯电动汽车电动助力转向系统设计开发
9
汽车设计培训-
式中:f 为轮胎和路面的滑动摩擦系数,取值0.7;G1 为满载前轴载荷, kg;P 为轮胎气压,MPa。
回正力矩为
式中:R 为轮胎静半径,mm;σ为主销内倾角,°;rs 为主销偏移距, mm;δ为轮胎内转角,°。

电动助力转向系统设计

电动助力转向系统设计

学号:常州大学毕业设计(论文)(2012届)题目学生学院专业班级校内指导教师专业技术职务校外指导老师专业技术职务二○一二年六月电动助力转向系统设计摘要:随着科学技术的进步,人们越来越乐于享受科技带来的美好生活。

作为现代生活的一部分,汽车也越来越与人们的生活紧密不分,与此同时,更舒服的驾驶体验,成为新宠。

首先就是本文将研究的:电动助力转向系统,它将给我们带来更加轻松方便的驾驶体验。

电动助力转向系统即:EPS 就是英文Electric Power Steering的缩写。

电动助力转向系统是汽车转向系统的发展方向。

该系统由电动助力电机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。

另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。

正是有了这些优点,电动助力转向系统作为一种新的转向技术,将挑战大家都非常熟知的,已具有50多年历史的液压转向系统。

本文分析了汽车电动助力转向系统的基本原理,对构成系统的总体方案和控制方法进行了仿真分析,并利用DSP F2812实现控制系统的全数字化,在此基础上完成了EPS 系统控制器的软、硬件系统的开发,最后又进行了EPS系统模拟台架试验。

由于国外技术壁垒,目前国内研究EPS系统尚处在初级阶段,技术还不是很成熟,需要更多的研发人员投入到这项工作中。

所以需要更多人的努力来攻克这个技术难题,早日成熟我国的EPS设备,不再受限于国外设备,从而达到国产化。

关键词:电动助力转向系统控制系统实验控制器软件开发Design of electric power steering systemAbstract:Along with science and technology progress, the people more and more are glad enjoy the happy life which the science and technology brings.As a part of modern life, cars are more and more closely with people living without, at the same time, more comfortable driving experience, become a new favorite. First of all is that this study: electric power steering systems, it will bring us even more easy and convenient driving experience.The electric power steering system: EPS is the English abbreviation of the electric power steering. The electric power steering system is the development direction of the steering system. The system is provided directly by the electric power motor power steering, eliminating the need for a hydraulic power steering system necessary for the power steering pump, hoses, hydraulic fluids, belts and engine pulley, not only save energy, protect the environment. In addition, a simple adjustment, flexible assembly and can provide the characteristics of the power steering in a variety of conditions. It is precisely because of these advantages, the electric power steering system as a new steering technology, the challenges we are very well known, and has 50 years of history hydraulic steering system.T his paper analyzes the basic principles of automotive electric power steering system, constitute the system's overall program and controls methodology, simulation analysis, and the use of DSP F2812 all-digital control system, the EPS system controller soft on this basis, The hardware system development, and finally the EPS system simulation bench.Due to technical barriers to foreign, domestic research on EPS system is still at an early stage, technology is not mature, need more developers to join in such efforts. More efforts are needed to overcome the technical difficulties, early maturing EPS devices in China, is no longer limited to equipment in foreign countries, so as to achieve localization.Keywords: Electric power steering system Control system Experiment Controller Software development目录摘要 (I)目录 (III)1绪论 (1)1.1前言 (1)1.2汽车转向系统的发展 (1)机械液压助力 (1)电子液压助力 (2)电动助力转向系统 (2)1.3国内外电动助力转向系统的研究现状和发展趋势 (2)系统的优点 (3)课题研究的意义 (4)课题的研究目标和内容 (4)1.4EPS系统会遇到的主要问题 (4)2 电动助力转向系统的硬件设计 (4)2.1EPS系统结构及其工作原理 (5)2.2电动助力转向系统的类型 (5)转向柱助力式 (5)小齿轮助力式 (6)齿条助力式 (6)2.3本系统所用的关键器件 (7)扭矩传感器 (7)电动机 (8)车速传感器 (8)电子控制单元(ECU) (8)电流传感器 (9)控制器的芯片简介 (9)2.4本系统控制器的组成 (9)2.5EPS控制系统硬件电路设计 (10)模数转换电路设计 (10)DSP F2812 PWM输出电路设计 (10)模拟信号滤波电路设计 (11)电动机反馈电流信号输入电路设计 (11)车速信号捕获电路设计 (12)电动机正反转判定电路设计 (13)电机驱动电路设计 (13)电机电流采样电路设计 (14)2.6ECU总体架构 (15)3电动助力转向系统的控制策略分析 (17)3.1转向驱动力矩与助力矩关系 (17)3.2EPS典型助力曲线 (17)直线型助力算法 (18)折线型助力算法 (18)曲线型助力算法 (18)3.3转向系统受力分析 (19)4对电动助力转向系统的建模及仿真 (21)4.1EPS系统的动力学模型 (21)建立转向系统动力学模型 (21)建立系统状态空间模型 (22)4.2EPS系统稳定性分析 (23)5转向系统的软件设计 (24)5.1主程序模块设计 (24)5.2主程序初始化模块 (26)口初始化 (26)初始化 (27)初始化 (28)5.3信号采集模块设计 (28)扭矩和电流信号采集设计 (28)车速信号采集设计 (29)6电动助力转向系统的台架试验及结果分析 (30)6.1EPS系统试验台架简介 (30)6.2EPS系统试验台的组成 (31)6.3汽车EPS性能试验台测控系统 (32)6.4试验结果分析 (33)7.结论 (36)参考文献 (38)致谢 (39)1绪论1.1前言随着世界经济的不断发展,人们的生活水平也不断提高。

毕业设计73电子动力转向系统的研究与设计

毕业设计73电子动力转向系统的研究与设计

1 引言1.1 汽车电动助力转向系统的特点由于动力转向系统具有转向操纵灵活、轻便、并可吸收路面对前轮产生的冲击等优点,自20世纪50年代以来在各国汽车上开始普遍应用。

现今液压助力转向器(HPS)是以内燃机作为动力的汽车助力转向器的主流。

但是传统的HPS需要持续的能量消耗,降低了汽车的燃油经济性。

同时其复杂的液压系统具有助力特性不可调整、污染环境、维修不便等缺点。

20世纪80年代开始研究的汽车上电能为动力的电动助力转向系统(EPS)。

和HPS相比,它具有更为突出的优点:1.EPS能在各种行驶工况下提供最佳助力,减少由路面不平所引起的对转向系统的扰动,改善汽车的转向特性,减少汽车低速行驶时的转向操纵力,提高汽车高速行驶时的转向稳定性,进而提高汽车的主动安全性。

并且可通过设置不同的转向手力特性来满足不同对象使用的需要。

2.提高了汽车的燃油经济性。

液压动力转向系统需要发动机带动液压油泵,使液压油不停地流动,浪费了部分能量。

相反电动转向系的EPS需要转向操作时才需要电机提供的能量,是真正的―按需供能型‖(on demand)系统。

装有电动转向系统的车辆和装有液压助力转向系统的车辆对比实验表明,在不转向情况下、装有电动转向系统的车辆燃油消耗降低2.5%;在使用转向情况下,燃油消耗降低了5.5% 。

]1[3.增强了转向跟随性。

在EPS中,电动机与助力机构直接相连以使其能量直接用于车轮的转向。

这样增加了系统的转动惯量,电机部分的阻尼也使得车轮的反转和转向前轮摆振大大减小。

因此转向系统的抗扰动能力大大增强。

和HPS相比,旋转力矩产生于电机,没有液压助力系统的转向迟滞效应,增强了转向车轮对转向盘的跟随性能。

4.该系统由电动机直接提供转向助力,在停车时,也可获得最大的转向动力。

同时省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、密封件、传送带和装于发动机上的皮带轮等,其零件比HPS大大减少,因而其质量更轻、结构更紧凑,在安装位置的选择方面也更容易,装配自动化程度更高,维修更简单。

汽车电动助力转向系统的设计

汽车电动助力转向系统的设计

汽车电动助力转向系统的设计概述汽车电动助力转向系统是一种电子辅助转向系统,为驾驶员提供操纵方向盘的力量辅助,以改善驾驶操控性和舒适性。

该系统通过电动助力装置来替代传统的液压助力转向系统,具有更高的效率和响应性。

本文将详细介绍汽车电动助力转向系统的设计原理和关键技术。

设计原理汽车电动助力转向系统的设计基于电动助力装置和转向控制单元的协同工作。

电动助力装置负责提供对转向系统的力量辅助,转向控制单元那么负责监测车辆的转向情况并根据驾驶员的输入进行控制。

电动助力装置电动助力装置由电机、减速器、传感器和控制单元组成。

电机负责提供动力,减速器那么用于降低电机的转速并增加转力。

传感器用于监测转向力和转向角度,并向控制单元提供反应信息。

控制单元根据传感器的反应信号来确定输出力的大小和方向。

转向控制单元转向控制单元由微处理器和控制算法组成。

微处理器负责处理传感器的数据和执行控制算法。

控制算法根据驾驶员的转向输入,计算出相应的助力输出指令,并通过电动助力装置将助力传递给转向系统。

关键技术功率电子技术汽车电动助力转向系统需要提供足够的力量辅助,因此需要采用功率电子技术来实现高效能的能量转换和控制。

功率电子技术包括电机驱动技术、功率开关技术和电源管理技术,它们的协同工作可以有效提高电动助力转向系统的效率和可靠性。

传感器技术传感器技术在汽车电动助力转向系统中起到了至关重要的作用。

传感器可以实时监测转向力和转向角度,从而提供准确的反应信息给控制单元。

常用的传感器包括转向力传感器和转向角度传感器,它们需要具有高精度和可靠性,以确保系统的准确性和稳定性。

控制算法控制算法是汽车电动助力转向系统的核心局部,它决定了系统的性能和操控性。

控制算法根据传感器的反应信息和驾驶员的转向输入,计算出相应的助力输出指令。

常用的控制算法包括比例-积分-微分〔PID〕控制算法和模糊控制算法,它们能够确保系统的稳定性和响应性。

设计考虑功率和效率汽车电动助力转向系统需要提供足够的助力,同时也要确保系统的功率和效率。

电动助力转向系统设计解析

电动助力转向系统设计解析

电动助力转向系的设计1 引言电动助力转向系统(EPS,Electric Power Steering)是未来转向系统的发展方向。

该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。

另外,还具有调整简单、装配灵活以及在多种工况下都能提供转向助力的特点。

正是这些优点,电动助力转向系统作为一种新的转向技术,将挑战大家都非常熟知的、已具有50多年历史的液压转向系统。

电动助力转向系统是于20世纪80年代中期提出来的。

该技术发展最快、应用较成熟的当属TRW转向系统和Delphi Sagiaw (萨吉诺)转向系统,而Delphi Sagiaw (萨吉诺)转向系统又代表着转向系统发展的前沿。

她是一个于20世纪50年代把液压助力转向系统推向市场的,从此以后,Delphi转向发展了技术更加成熟的液压助力系统,使大部分的商用汽车和约50%的轿车装备有该系统。

现在,Delphi转向系统又领导了汽车转向系统的一次新革命--电动助力转向系统。

电动助力转向系统符合现代汽车机电一体化的设计思想,该系统由转向传感装置、车速传感器、助力机械装置、提供转向助力电机及微电脑控制单元组成。

该系统工作时,转向传感器检测到转向轴上转动力矩和转向盘位置两个信号,与车速传感器测得的车速信号一起不断地输入微电脑控制单元,该控制单元通过数据分析以决定转向方向和所需的最佳助力值,然后发出相应的指令给控制器,从而驱动电机,通过助力装置实现汽车的转向。

通过精确的控制算法,可任意改变电机的转矩大小,使传动机构获得所需的任意助力值。

EPS在日本最先获得实际应用,1988年日本铃木公司首次开发出一种全新的电子控制式电动助力转向系统,并装在其生产的Cervo车上,随后又配备在Alto上。

此后,电动助力转向技术得到迅速发展,其应用范围已经从微型轿车向大型轿车和客车方向发展。

转向柱式电动助力转向系统设计

转向柱式电动助力转向系统设计


电动助力转向系统就是在机械转向系统中,用电池作为能源, 电动机为动力, 以 转向盘的转速和转矩以及车速为输入信号, 通过电子控制装置, 协助人力转向, 并获 得最佳转向力特性的伺服系统。EPS 汽车转向系统的性能直接影响到汽车的操纵稳定 性, 对于确保车辆的安全行驶、减少交通事故以及保护驾驶员的人身安全、改善驾驶 员的工作条件起着重要的作用。 电动助力转向系统主要由减速机构和转向机构组成,减速机构把电动机的输出经 过减速增扭传递到动力辅助单元,实现助力。由于蜗轮蜗杆传动比大,传动平稳噪声 低故减速机构选为蜗轮蜗杆式。由于齿轮齿条式转向器,传动平稳,结构简单故转向 机构选为齿轮齿条式。 本文设计研究了电动助力转向系统,对其工作原理做了阐述,对蜗轮蜗杆减速器 中的蜗轮与蜗杆做了详细的设计计算,并进行了选型。设计计算与强度校核。
1. 1 汽车的发 展趋势 … … … … … … … … … … … … … … … … … … … … … … … … … … 1 1.2 汽车转向技术的发展 … … … … … … … … … … … … … … … … … … … … … … … … 1 1.3 电动助力转向系统研究的状况及发展趋势 … … … … … … … … … … … … … … 2 1. 4 电动助力转向系统设计的目的和意义 … … … … … … … … … … … … … … … … 3 1. 5 研究的主要内容 … … … … … … … … … … … … … … … … … … … … … … … … … … 3
关键字:减速器;转向器;设计;齿轮;轴;校核
ABSTRACT
Electric power steering system is in mechanical steering system, use battery as energy, motor as a driving force, the steering dish speed and torque and speed of the input signal, through the electronic control unit, to help the human steering, and get the best to force characteristics of servo system. EPS automobile steering system performance directly influence to the car's steering stability, to ensure that the vehicle's safety driving, reduce the number of traffic accidents and protecting the personal safety of the driver, improve the working conditions of the driver plays an important role. Electric power steering system mainly consists of deceleration institutions and steering mechanism composition, slowing institutions to increase the output after slowing motor relay to the power auxiliary units twisted, realize the power. Because worm transmission large and stable transmission low noise so slow institutions elected worm type. Because rack-and pinion steering gear-component with simple structure, stable transmission, is steering mechanism selected for rack-and pinion type. The paper presents the design of electric power steering system was studied, the principle of work of worm gear and worm reducer elaboration, the worm gear and worm to do a detailed design calculation, and a selection. Meanwhile to the structure of rack-and pinion steering gear-component are analyzed, and the important parts of the design calculation and strength check.

基于DSP的汽车电动助力转向系统的设计的开题报告

基于DSP的汽车电动助力转向系统的设计的开题报告

基于DSP的汽车电动助力转向系统的设计的开题报告一、选题的背景和意义随着汽车技术的不断提升和人们对环保和节能的日益关注,电动汽车正在快速发展。

传统的汽车助力转向系统采用液压助力转向系统,存在液压油漏、换油周期较短、污染环境等缺点。

而电动汽车电动助力转向系统具有节能、环保的优点,因此已成为汽车助力转向系统的发展趋势。

本课题将以DSP为基础,设计电动助力转向系统,并利用数字信号处理技术对转向系统进行控制,实现更加精准的转向效果,提高驾驶体验和安全性。

二、选题的研究目的本课题的研究目的是基于DSP的汽车电动助力转向系统的设计,旨在:1. 建立电动助力转向系统的数学模型,分析系统的特性和影响因素;2. 设计电动助力转向系统的硬件和软件模块,并进行系统集成;3. 利用数字信号处理技术对电动助力转向系统进行控制,实现更加精准的转向效果;4. 评估电动助力转向系统的性能和稳定性,并分析改进方案。

三、选题的研究内容和方法1. 电动助力转向系统数学模型的建立基于转向系统的结构和运动学原理,建立电动助力转向系统的数学模型,分析系统的特性和影响因素。

2. 电动助力转向系统的硬件和软件设计设计电动助力转向系统的硬件和软件模块,包括转向电机的选择、功率放大器的设计、转向系统控制算法的设计等。

3. 利用数字信号处理技术进行控制利用DSP的高速计算能力和精确控制能力,对电动助力转向系统进行控制,实现更加精准的转向效果。

4. 系统性能评估和改进方案分析评估电动助力转向系统的性能和稳定性,在实际测试中发现存在的问题,并分析改进方案。

四、选题的预期结果1. 基于DSP的电动助力转向系统的设计设计基于DSP的电动助力转向系统,包括硬件和软件模块的设计、系统集成和优化。

2. 电动助力转向系统的控制算法的设计设计电动助力转向系统的控制算法,利用数字信号处理技术实现更加精准的转向效果,并提高汽车的安全性和驾驶体验。

3. 系统性能评估和改进方案通过对系统性能和稳定性的评估,在实际测试中发现存在的问题,并提出改进方案,为电动助力转向系统的进一步优化提供参考。

汽车电动助力转向系统的设计

汽车电动助力转向系统的设计

前言随着近年来电子控制技术的成熟和成本的降低,EPS越来越受到人们的重视,并以其具有传统动力转向系统不可比拟的优点,迅速迈向了应用领域,部分取代了液压动力转向系统(Hydraulic Power Steering,简称HPS)。

电子控制技术在汽车动力转向系统中的应用,使汽车的驾驶性能达到令人满意的程度。

电动助力转向系统( EPS) 在汽车低速行驶转向时减轻转向力使转向轻便、灵活;在汽车高速行驶转向时,适当加重转向力,从而提高了高速行驶时的操纵稳定性,增强了“路感”。

不仅如此,EPS的能耗是HPS能耗的1/3以下,且前者比后者使整车油耗下降可达3%~5%。

因而,EPS将成为汽车传统转向系统理想的升级换代产品。

1电动助力转向系统1.1电动助力转向系统1.1.1电动助力转向系统发展历程在汽车的发展历程中,转向系统经历了四个发展阶段:从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助力转向系统(Hydraulic Power Steering,简称HPS),然后又出现了电控液压助力转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助力转向系统(Electric Power Steering,简称EPS)。

装配机械式转向系统的汽车,在泊车和低速行驶时驾驶员的转向操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采用了液压助力转向系统。

但是,液压助力转向系统无法兼顾车辆低速时的转向轻便性和高速时的转向稳定性,因此在1983年日本Kayo公司推出了具备车速感应功能的电控液压助力转向系统。

这种新型的转向系统可以随着车速的升高提供逐渐减小的转向助力,但是结构复杂、造价较高,而且无法克服液压系统自身所具有的许多缺点,是一种介于液压助力转向和电动助力转向之间的过渡产品。

到了1988年,日本Suzuki公司首先在小型轿车Cuervo 上配备了Kayo公司研发的转向柱助力式电动助力转向系统;1990年,日本Honda公司也在运动型轿车NSX上采用了自主研发的齿条助力式电动助力转向系统,从此揭开了电动助力转向在汽车上应用的历史。

电动助力转向系统电机角度信号冗余设计

电动助力转向系统电机角度信号冗余设计

电动助力转向系统电机角度信号冗余设计发布时间:2022-12-05T09:34:45.150Z 来源:《福光技术》2022年23期作者:武国平张克栋张三强[导读] 电动助力转向系统在乘用车以及商用车领域应用十分广泛,转向系统是汽车中对精度要求十分严格的部件,对人的生命安全起着至关重要的作用,转向系统的ECU对设计有着很高的要求,而冗余校验就成为采集电机角度(RPS)一个非常重要的工作,更好的符合功能安全等级Automotive Safety Integrity Level(ASIL)D,一般选择冗余芯片去进行设计。

陕西万方汽车零部件有限公司陕西西安摘要:电动助力转向系统在乘用车以及商用车领域应用十分广泛,转向系统是汽车中对精度要求十分严格的部件,对人的生命安全起着至关重要的作用,转向系统的ECU对设计有着很高的要求,而冗余校验就成为采集电机角度(RPS)一个非常重要的工作,更好的符合功能安全等级Automotive Safety Integrity Level(ASIL)D,一般选择冗余芯片去进行设计。

本文主要介绍在电子助力转向系统中,电机角度的冗余校验。

关键词:电动助力转向EPS(Electric Power Steering);电子控制单元ECU(Electronic Control Unit);转子位置传感器RPS(Rotor Position Sensor)引言近年来,随着微控制器技术和集成电路技术的发展,以及智能汽车的发展,转向系统在汽车中占据越来越重要的地位,随着功能安全的提出,冗余校验就成为一项重要的工作。

因此本文主要针对A1333芯片电机角度冗余校验进行详细描述,分别对SPI读取和ABI读取两种方式进行阐述。

1.电动助力转向系统概述电动助力转向主要由机械、硬件、软件三个部分组成,在下图1展示。

并且图中介绍了控制系统的流程。

本文详细介绍了图1中转子位置的冗余校验。

5.冗余校验在EPS系统中,不进行冗余校验,即信任采集角度,只能达到50%-60%的熔断率。

汽车电动助力转向系统硬件设计

汽车电动助力转向系统硬件设计

收稿日期:2003-11-03 作者简介:李书龙(1979-),男,河南唐河人,东南大学机械工程系硕士研究生,主要从事机电一体化方面的研究。

◇计算机应用◇汽车电动助力转向系统硬件设计李书龙,许 超,杨 智(东南大学机械工程系,江苏南京210096)摘 要:介绍了电动助力转向(EPAS )系统的构成与工作机理,给出了基于80C552的电动助力转向系统的硬件总体框架介绍,并重点介绍了电动助力转向系统的电动机功率驱动电路和保护电路的设计,对所设计硬件系统的台架实验情况进行了介绍与分析。

最后展望了电动助力转向系统设计的发展趋势。

关键词:汽车;电动助力转向(EPAS );单片机;硬件中图分类号:U463.42;T M921.54+1 文献标识码:A 文章编号:1001-4551(2004)01-0005-04H ardw are Design of the E lectric Pow er Assisted Steering SystemLI Shu 2long ,X U Chao ,Y ANG Zhi(Department o f Mechanical Engineering ,Southeast Univer sity ,Nanjing 210096,China )Abstract :The constituents and its operational mechanism of electric power assisted steering system are introduced shortly ,and its hardware framew ork based on the 80C552is presented on the whole ,then the power driver circuit of direct current m otor ,the main component of the electric power assisted steering system ,and circuit to protect the m otor are discussed in detail ,the ex 2periment on the system is introduced and analyzed.Finally the development tendency of the electric power assisted steering system design is expected.K ey w ords :autom obile ;electric power assisted steering (EPAS );single 2chip microcomputer ;hardware1 引 言汽车电动助力转向(Electric P ower Aided Steer 2ing ,EPAS )系统的发展很快,国外不断有新的或改良的系统投入使用。

汽车电动助力转向系统优化

汽车电动助力转向系统优化

汽车电动助力转向系统优化随着汽车工业的不断发展,汽车的操控性和安全性越来越受到人们的关注。

电动助力转向系统作为汽车转向系统的重要组成部分,其性能的优劣直接影响着驾驶者的驾驶体验和行车安全。

因此,对汽车电动助力转向系统进行优化具有重要的现实意义。

一、汽车电动助力转向系统的工作原理汽车电动助力转向系统主要由转矩传感器、车速传感器、电子控制单元(ECU)、电动机和减速机构等组成。

当驾驶者转动方向盘时,转矩传感器会检测到转向转矩的大小和方向,并将其转化为电信号传递给 ECU。

车速传感器则会检测车辆的行驶速度,并将车速信号传递给 ECU。

ECU 根据接收到的转矩信号和车速信号,计算出所需的助力转矩,并控制电动机输出相应的转矩,通过减速机构施加到转向机构上,从而实现助力转向。

二、汽车电动助力转向系统优化的必要性1、提高驾驶舒适性优化后的电动助力转向系统可以根据车速和转向转矩的变化,提供更加平滑和舒适的助力,减少驾驶者在转向过程中的疲劳感。

2、增强操控稳定性通过精确的控制策略,优化后的系统能够在高速行驶时提供适当的阻尼,提高车辆的直线行驶稳定性;在低速行驶时提供较大的助力,使转向更加轻便灵活,增强车辆的操控性。

3、降低能耗高效的电动助力转向系统可以在满足助力需求的前提下,降低电动机的能耗,提高能源利用率,延长车辆的续航里程。

4、适应多样化的驾驶需求不同驾驶者对转向助力的需求可能存在差异,优化系统可以提供多种助力模式供选择,满足个性化的驾驶需求。

三、汽车电动助力转向系统优化的关键技术1、传感器技术高精度的转矩传感器和车速传感器是实现精确助力控制的基础。

优化传感器的测量精度、响应速度和可靠性,可以提高系统的性能。

2、控制算法控制算法是电动助力转向系统的核心。

先进的控制算法如模糊控制、神经网络控制等,可以更好地处理复杂的非线性系统,实现更加精准的助力控制。

3、电动机技术选择高效、低噪音、高扭矩的电动机,并优化其驱动电路和控制策略,能够提高系统的助力性能和可靠性。

汽车电动助力转向系统匹配设计计算及验证

汽车电动助力转向系统匹配设计计算及验证
摘 要:转 向系统是汽车重要的组成部分,本文根据实际工作情况,介绍了汽车电动助力转向系统计算匹配,并验证 了该方法的实用可行性。
关键词:电动助力转向系统匹配;齿条力;电机匹配
1 引言 转向系统影响着汽车行驶中的操纵稳定
性以及行车安全,是汽车重要的系统之一。电 动助力转向系统(Electric Power Steering, 简称 EPS)具有节能、环保、高效等诸多优势, 成为目前转向系统发展的主流趋势。
机满足工作运行及安全考虑,考虑高温下的
磁场衰退,一般会要求电机有 10% 扭矩余量,
综合有以下公式:
F 推 >Fmax
(3-5)
Td

1.1·(
Fmax·C 2000π·iw·η1·η2·η3
-
Th iw·η1

(3-6)
其中:
TC— 转 向 管 柱 输 出 扭 矩,N.m;T d— 电 机输出最大转矩,N·m;Th—最大方向盘转矩, N·m,取 5N·m;η1—电机及减速机构传 动效率,取 0.9;η2—转向中间轴传动效率, 取 1;η3—转向器传动效率;
系统内部摩擦阻力,此时最大齿条力计算如
下公式:
TL Fmax= max
+F f=
M r+M G
L
+F f
(2-4)
其中:Fmax—最大齿条力,N;
Ff— 转 向 系 统 内 部 摩 擦 阻 力, 取
Ff=200N;
L—转向节臂有效长度(图 3),mm。
图 2 主销的内倾角和主销偏移距(以左 轮为例)
定转速为:
n=nv·iw 电机额定输出功率计算:
(3-7)
P N=
Td·n 9.549

电动助力转向系统的研究与设计

电动助力转向系统的研究与设计

电动助力转向系统的研究与设计摘要电动助力转向系统(Electric Power Steering System,简称EPS),是汽车工程领域的热门课题之一。

本文在研究了电动助力转向系统工作原理的基础上,设计开发了EPS的电子控制单元ECU (Electronic Control Unit)的硬件电路和相应的控制软件框图。

本文详细分析了电动助力转向系统电子控制单元的功能,研究开发了以89c52单片机为微处理器的电子控制单元。

控制单元具有实时数据信号采集和系统控制功能,根据采集的数据信号,确定电动机输出的目标电流,利用PWM脉宽调制技术,通过H桥式电路控制电动机的输出电流和转动方向,实现助力转向功能。

在研制了实验用ECU装置后,开发了相应的控制软件。

控制软件分为控制策略的实现和数据信号采集与分析两部分。

整个软件系统采用了模块化的设计思想。

在数据信号采集与控制部分,设计了系统主程序、A/D采集程序、车速信号采集程序和PWM控制程序。

本文所设计的EPS电子控制单元性能稳定,结构合理,与整车匹配性能好,可保证EPS实现良好的转向助力效果。

关键词:电动助力转向电子控制单元单片机控制策略Electronic power steering system Research and DesignABSTRACTElectric Power Steering System (EPS) is one of the focuses research in automotive engineering. This paper is based on the principles of EPS to study the operation, designed and developed the Electronic Control Unit (ECU) and the soft ware diagram of the ECU.The thesis Considers the functions of the electronic control unit of EPS, studied and developed the hardware that adopted 89c51as its microprocessor. The control unit was able to realize real-time data/signal acquisition and system control. The target current of motor output could be determined by the obtained data; and utilizing the Pulse-Width Modulation (PWM) technology, power could be provided to the steering system by controlling the output current and rotation direction through H-bridge circuit.The software program, which was divided into the realization of control strategy and the acquisition & control of data/signal, was developed in modular after the design of experimental ECU was completed. And the main program, A/D acquisition program, speed signal acquisition program and PWM control program are developed in the second part.The result showed that the electronic control unit designed was with stable performance, appropriate structure and excellent matching condition, and the excellent power steering effect could be ensured by EPS.Key words: Electric Power Steering System (EPS) Electronic Control Unit Single-Chip Microprocessor Control Strategy目录前言 (1)第1章绪论 (2)1.1汽车电动助力转向系统的特点 (2)1.2电动助力转向系统国内外的研究现状 (4)1.3 EPS的发展趋势和急待解决的核心技术 (5)1.4本课题研究的目的与意义 (6)第2章电动助力转向系统方案确定及工作原理 (7)2.1电动助力转向系统的工作原理 (9)2.1.1电动助力转向系统的组成和工作原理 (9)2.1.2电动助力转向系统的分类 (11)2.1.3电动助力转向系统的技术要求 (12)2.2电动助力转向系统的数学模型 (13)2.2.1转向盘和转向柱输入轴子模型 (14)2.2.2电动机模型 (14)2.2.3输出轴子模型 (16)2.2.4齿轮齿条子模型 (16)2.3电动助力转向系统的主要部分 (17)2.3.1转矩传感器 (18)2.3.2车速传感器 (19)2.3.3直流电动机 (20)2.3.4电磁离合器 (21)2.3.5减速机构 (22)2.3.6电子控制单元ECU (23)第3章电动助力转向系统的硬件设计 (24)3.1电子动力转向系统控制器的总体结构 (24)3.2控制器微处理芯片的选择 (26)3.2.1控制器微处理器常用芯片及选型 (26)3.2.2 89C52芯片及A/D转换芯片介绍 (26)3.2.3 89C52外部总线扩展及片外ROM的连接 (28)3.3控制器输入通道的设计 (30)3.3.1转矩信号的采集 (30)3.3.2电动机电流信号的采集 (31)3.3.3车速信号的采集 (33)3.4控制器输出通道的设计 (34)3.4.1电动机的PWM控制 (34)3.4.2电磁离合器和显示控制电路的设计 (39)3.4.3 电动机保护电路及继电器驱动电路设计 (40)3.5系统供电电源电路设计 (41)3.6系统硬件抗干扰措施 (42)第4章电动助力转向系统的软件设计 (45)4.1 EPS的控制策略 (45)4.1.1 EPS的PID控制 (45)4.2电子动力转向系统各功能模块的软件设计 (48)4.2.1 A/D采集程序 (48)4.2.2 PWM控制程序 (49)4.2.3车速信号采集程序 (51)4.2.4系统主程序 (53)结论 (55)谢辞 (56)参考文献 (57)附录 (59)外文资料翻译 (66)前言转向系统作为汽车的一个重要组成部分,其性能的好坏将直接影响到汽车的转向特性、稳定性和行驶安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车电动助力转向系统的设计第1章绪论1.1 汽车转向系统简介汽车转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

它由转向操纵机构、转向器和转向传动机构组成。

转向系统作为汽车的一个重要组成部分,其性能的好坏将直接影响到汽车的转向特性、稳定性、和行驶安全性。

目前汽车转向技术主要有七大类:手动转向技术(MS)、液压助力转向技术(HPS)、电控液压助力转向技术(ECHPS)、电动助力转向技术(EPS)、四轮转向技术(4WS)、主动前轮转向技术(AFS)和线控转向技术(SBW)。

转向系统市场上以HPS、ECHPS、EPS应用为主。

电动助力转向具有节约燃料、有利于环境、可变力转向、易实现产品模块化等优点,是一项紧扣当今汽车发展主题的新技术,他是目前国内转向技术的研究热点。

1.1.1 转向系的设计要求(1) 汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。

不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。

(2) 汽车转型行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

(3) 汽车在任何行驶状态下,转向轮都不得产生共振,转向盘没有摆动。

(4) 转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。

(5) 保证汽车有较高的机动性,具有迅速和小转弯行驶能力。

(6) 操纵轻便。

(7) 转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。

(8) 转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。

(9) 在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

(10) 进行运动校核,保证转向轮与转向盘转动方向一致。

1.2 EPS的特点及发展现状1.2.1 EPS与其他系统比较对于电动助力转向机构(EPS),电动机仅在汽车转向时才工作并消耗蓄电池能量;而对于常流式液压动力转向机构,因液压泵处于长期工作状态和内泄漏等原因要消耗较多的能量。

两者比较,电动助力转向的燃料消耗率仅为液压动力转向的16%~20%。

液压动力转向机构的工作介质是油,任何部位出现漏油,油压将建立不起来,不仅失去助力效能,并对环境造成污染。

当发动机出现故障停止工作时,液压泵也不工作,结果也会丧失助力效能,这就降低了工作可靠性。

电动助力转向机构不存在漏油的问题,只要蓄电池内有电提供给电动助力转向机构,就能有助力作用,所以工作可靠。

若液压动力转向机构的油路进入空气或者贮油罐油面过低,工作时将产生较大噪声,在排除气体之前会影响助力效果;而电动助力转向仅在电动机工作时有轻微的噪声。

电动助力转向与液压动力转向比较,转动转向盘时仅需克服转向器的摩擦阻力,不存在回位弹簧阻力和反映路感的油压阻力。

电动助力转向还有整体结构紧凑、部件少、占用的空间尺寸小、质量比液压动力转向约轻20%~25%以及汽车上容易布置等优点。

1.2.2 EPS的特点(1)EPS节能环保。

由于发动机运转时,液压泵始终处于工作状态,液压转向系统使整个发动机燃油消耗量增加了3%~5%,而EPS以蓄电池为能源,以电机为动力元件,可独立于发动机工作,EPS几乎不直接消耗发动机燃油。

EPS不存在液压动力转向系统的燃油泄漏问题,EPS通过电子控制,对环境几乎没有污染。

(2)EPS装配方便。

EPS的主要部件可以集成在一起,易于布置,与液压动力转向相比减少了许多原件,没有液压系统所需要的油泵、油管、压力流量控制阀、储油罐等,原件数目少,装配方便,节约时间。

(3)EPS效率高。

液压动力转向系统效率一般在60%~70%,而EPS得效率较高,可高达90%以上。

(4)EPS路感好。

传统纯液压动力转向系大多采用固定放大倍数,工作驱动力大,但却不能实现汽车在各种车速下驾驶时的轻便性和路感。

而EPS系统的滞后性可以通过EPS控制器的软件加以补偿,是汽车在各种速度下都能得到满意的转向助力。

(5)EPS回正性好。

EPS系统结构简单,不仅操作简便,还可以通过调整EPS控制器的软件,得到最佳的回正性,从而改善汽车的操纵稳定性和舒适性。

(6)动力性。

EPS系统可随车速的高低主动分配转向力,不直接消耗发动机功率,只在转向时才起助力作用,保障发动机充足动力。

(不像HPS液压系统,即使在不转向时,油泵也一直运转处于工作状态,降低了使用寿命)1.2.3 EPS在国内外的应用状况国外EPS的发展之路:因为微型轿车上狭小的发动机舱空间给液压助力转向系统的安装带来了很大的麻烦,而EPS原件比较少,重量轻,装配方便,比较适合在微型轿车上安装。

因此在国外,EPS系统首先是在微型轿车上发展起来的。

上世纪80年代初期,日本铃木公司首次在其Cervo轿车上安装了EPS系统,随后还应用在其Alto车上。

此后,EPS在日本得到迅速发展。

出于节能环保的考虑,欧、美等国的汽车公司也相继对EPS进行了开发和研究。

虽然比日本晚了十年时间,但是欧美国家的开发力度比较大,所选择的产品类型也有所不同。

日本起初选择了技术相对成熟的有刷电机。

有刷电机比较成熟,在汽车上的应用较广,比如雨刷、车窗等部分,稍作改进就适应了EPS的要求,因此研发周期较短,上世纪80年代末期就开始产业化,主要装配在微型车上。

而欧美则选择了难度较大的无刷电机,但是电子控制系统比较复杂,延长了研发周期。

直到90年代中期欧美才开始量产。

从长远发展看,有刷电机存在一定弊端,比如电机产生的噪声较难克服,磨损较严重,存在电磁干扰等问题。

因此,日本现在国内装配的EPS也逐渐转向无刷电机了。

国内EPS的发展现状:我国汽车电子行业的总体发展相对滞后,但是,随着汽车对环保、节能和安全性要求的进一步提高,代表着现代汽车转向系统的发展方向的EPS电动助力转向系统已被我国列为高新科技产业项目之一,国内各大院校、科研机构和企业在进行EPS技术的研究,也有少数供应商能批量提供转向轴式的EPS系统。

但总的来讲目前国内EPS技术还不成熟;供应商所提供的EPS系统还未达到产品级的要求,且类型单一,还不能满足整车厂需要。

据悉,自主品牌研发的EPS系统离产业化就差整车厂批量装车认可这一台阶了,相信很快就可以实现量产。

EPS系统是未来动力转向系统的一个发展趋势。

1.3 本课题的研究意义随着科技的发展和人们生活水平及环保意识的提高,汽车转向助力肯定会向更轻便、更节能、更安全的方向发展,而本课题正是沿着这个方向对汽车的转向系统进行了研究。

现存的汽车,大部分都是传统液压助力转向系统,甚至没有助力转向系统,电动助力转向系统能提供比其更安全、更舒适的转向操控性和节能效果。

本课题对该系统的进行了深入的研究,并将其应用于实践,这对于推动该系统的发展和最终的产品化应用,对于推动机械、传感器技术和电子器件制造等相关产业的发展,对于提高我国汽车电子化水平和加快转向系统产业化发展具有十分重要的意义。

在可预见的将来,电动助力转向系统在汽车领域必定会有广泛的应用。

本章小结这一章介绍了现在应用的汽车转向技术,并对电动助力转向系统和液压助力转向系统进行了分析比较。

还阐述了EPS的国内外发展状况。

第2章电动助力转向系统的总体组成2.1 电动助力转向系统的机理及类型近年来,电动助力转向机构在乘用车上得到应用,并有良好的发展前景。

电动助力转向机构,除去应当满足对液压式动力转向机构机构的一些相似要求以外,同时还应当满足:具有故障自诊断和报警功能;有良好的抗振动和抗干扰能力等;当地面与车轮之间有反向冲击力作用时,电动助力转向机构应迅速反应,制止转向盘转动;在过载使用条件下有过载保护功能等。

2.1.1 电动助力转向系统的机理电动助力转向机构由机械转向器与电动助力部分相结合构成。

电动助力部分包括电动机、电池、传感器和控制器(ECU)及线束,有的还有减速机构和电磁离合器等(图2-1)图2-1 电动助力转向机构示意图目前用于乘用车的电动助力转向机构的转向器,均采用齿轮齿条式转向器。

其功能除用来传递来自转向盘的力矩与运动以外,还有增扭、降速作用。

转向过程中,电动机将来自蓄电池的电能转变为机械能向转向系输出而构成转向助力矩,并完成助力作用。

与电动机连接的减速机构有蜗轮蜗杆、滚珠螺杆螺母或行星齿轮机构等,其作用也是降速、增扭。

装在减速机构附近的离合器(通常为电磁离合器)是为了保证电动助力转向机构只在预先设定的行驶速度范围内工作。

在车速达到某一设定值时,离合器分离,并暂时停止电动机的助力作用。

与此同时,转向机构也暂时转为机械式转向机构。

当电动机发生故障时,离合器也自动分离。

离合器分离后再行转向时,可不必因带动电动机而消耗驾驶员体力。

单片式电磁离合器包括主动轮、从动轴、压盘、磁化线圈和滑环等。

1.主动轮2.磁化线圈3.压盘4.花键5.从动轴 6轴承 7滑环 8电动机图2-2 电磁离合器工作原理简图其工作原理如图所示,装有磁化线圈2的主动轮1与电动机轴固定连接,来自控制器的控制电流经滑环7输入磁化线圈,于是主动轮产生电磁吸力,将压盘3吸到主动轮上,然后电动机的动力经主动轮、压盘及压盘毂上的花键传给从动轴5,实现助力作用。

汽车以较高车速转向行驶,作用在转向盘上的力矩将减小,以至于达到无需助力的程度,此时可设定:达到此车速时,电磁离合器停止工作。

还有,在电动机停止工作以后,电磁离合器在控制器的控制下也要分离或者自动分离。

此后,在进行再进行转向将不存在助力作用,直至电动机恢复工作为止。

电动助力转向机构的工作原理如下:当驾驶员对转向盘施力并转动转向盘时,位于转向盘下方与转向轴连接的转矩传感器将经扭杆弹簧连接在一起的上、下转向轴的相对转动角位移信号转变为电信号传至控制器,在同一时刻车速信号也传至控制器。

根据以上两信号,控制器确定电动机的旋转方向和助力转矩的大小。

之后,控制器将输出的数字量经D/A转换器,转换为模拟量,并将其输入电流控制电路。

电流控制电路将来自微机的电流命令值同电动机电流的实际值进行比较后生成一个差值信号,同时将此信号送往电动机驱动电路,该电路驱动电动机,并向电动机提供控制电流,完成助力转向作用。

2.1.2 电动助力转向系统的类型EPS系统依据电动机布置位置的不同可分为转向轴助力式、小齿轮助力式、齿条助力式三个基本类型(图2-3)a) b) c)a) 转向轴助力式 b) 齿轮助力式 c)齿条助力式图2-3 EPS系统的类型(1) 转向轴助力式转向轴助力式电动助力转向机构的电动机布置在靠近转向盘下方,并经蜗轮蜗杆机构与转向轴连接(图2-3a)。

这种布置方案的特点是:由于转向轴助力式电动助力转向的电动机布置在驾驶室内,所以有良好的工作条件;因电动机输出的助力转矩经过减速机构增大后传给转向轴,所以电动机输出的助力转矩相对小些,电动机尺寸也小,这又有利于在车上布置和减轻质量;电动机、转矩传感器、减速机构、电磁离合器等装为一体是结构紧凑,上述部件又与转向器分开,故拆装与维修工作容易进行;转向器仍然可以采用通用的典型结构齿轮齿条式转向器;电动机距驾驶员和转向盘近,电动机的工作噪声和振动直接影响驾驶员;转向轴等零件也要承受来自电动机输出的助力转矩的作用,为使其强度足够,必须增大受载件的尺寸;尽管电动机的尺寸不大,但因这种布置方案的电动机靠近方向盘,为了不影响驾驶员腿部的动作,在布置时仍然有一定的困难。

相关文档
最新文档