人教版八年级数学下册总复习专项测试题附答案解析(六)

合集下载

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。

人教版八年级数学下册专题训练(含参考答案与解析)

人教版八年级数学下册专题训练(含参考答案与解析)

人教版八年级数学下册专题训练(附答案与解析)说明:本套训练习题包含12个专题:类比归纳专题:二次根式求值的常用方法考点综合专题:一次函数与几何图形的综合问题解题技巧专题:利用一次函数解决实际问题解题技巧专题:正方形中特殊的证明(计算)方法思想方法专题:矩形中的折叠问题核心素养专题:四边形中的探究与创新类比归纳专题:有关中点的证明与计算解题技巧专题:特殊平行四边形中的解题方法思想方法专题:勾股定理中的思想方法解题技巧专题:勾股定理与面积问题难点探究专题:特殊四边形中的综合性问题解题技巧专题:函数图象信息题考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y =-2x +3与x 轴相交于点A ,与y 轴相交于点B.【易错7】(1)求A ,B 两点的坐标;(2)过B 点作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.3.如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),点P(x ,y)是在第一象限内直线y =-x +10上的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)当△OPA 的面积为10时,求点P 的坐标.◆类型二 一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限,若点B 在直线y =kx +3上,则k 的值为________.第4题图 第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB =90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x-6上,∴2x-6=4,解得x=5.即OA′=5,∴CC′=AA′=5-1=4.∴S▱BCC′B′=CC′·CA=4×4=16.即线段BC扫过的面积为16.2.解:(1)令y=0,则-2x+3=0,解得x=32;令x=0,则y=3,∴点A的坐标为⎝ ⎛⎭⎪⎫32,0,点B 的坐标为(0,3). (2)由(1)得点A ⎝ ⎛⎭⎪⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB =12×32×3=94.综上所述,△ABP 的面积为274或94.3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x +10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A 的面积为10时,点P 的坐标为⎝ ⎛⎭⎪⎫152,52. 4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B 2的坐标为(2,3),同理可得点B 3的坐标为(4,7).∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴点B n 的坐标为(2n -1,2n -1).难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC 到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图②,点P 是四边形ABCD 内一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB =∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE =90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EEF =3 3 .在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP=90°.∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP =10,∴PM =12E AP =5.由勾股定理得AM =P A 2-PM 2=5 3 .在△ANP 和△AMP 中,⎩⎨⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3 .∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF=10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°.3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎨⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH是菱形,∴四边形EFGH 是正方形.解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.(2016·攀枝花中考)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.(2016·荆州中考)为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A 点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有( )A .1个B .2个C .3个D .4个四、分类讨论思想4.(2017·天门中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?◆类型二路程类问题一、两个一次函数图象结合的问题5.(2017·青岛中考)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5km?二、分段函数问题6.(2016·新疆中考)暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5h后离目的地有多远?◆类型三工程类问题一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x =2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.(2016·绍兴中考)根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m 3)和开始排水后的时间t(h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎨⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎨⎧m =2,n =3.5.答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎨⎧2x (0≤x ≤14),3.5x -21(x >14).(3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎨⎧20k +b =160,40k +b =288,解得⎩⎨⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎨⎧8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎨⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元). 3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎨⎧2000m +n =2000,4000m +n =3400,解得⎩⎨⎧m =0.7,n =600,所以y乙=⎩⎨⎧x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3h 或1.5h 两人恰好相距5km. 6.解:(1)从小刚家到该景区乘车一共用了4h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎨⎧k +b =80,3k +b =320,解得⎩⎨⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km. 7.①②④ 8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎨⎧2k +b =450,3.5k +b =0,解得⎩⎨⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.类比归纳专题:二次根式求值的常用方法——明确计算便捷渠道◆类型一 利用二次根式的非负性求值1.若a ,b 为实数,且|a +1|+b -1=0,则(ab )2018的值是( ) A .0 B .1 C .-1 D .±12.已知a +1+b 2-2b +1=0,则a 2018+b 2017的值是________.3.若a 2-3a +1+b 2-2b +1=0,则a 2+1a 2-|b |=________. 4.若y =x -3+3-x +2,求x y 的值.【方法1②】◆类型二利用乘法公式进行计算5.计算:(1)(5+3)2; (2)(25-2)2;(3)(3+2)2-(3-2)2.6.已知x+1x=5,求x2x4+x2+1的值.◆类型三整体代入求值7.已知x=2-10,则代数式x2-4x-6的值为()A.-1 B.0 C.1 D.28.(2017·安顺中考)已知x+y=3,xy=6,则x2y+xy2的值为________.9.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.10.已知x=13-22,y=13+22,求xy+yx-4的值.参考答案与解析: 1.B 2.23.6 解析:∵a 2-3a +1+b 2-2b +1=0,∴a 2-3a +1+(b -1)2=0,∴a 2-3a +1=0,b =1,∴a -3+1a =0,∴a +1a =3,∴⎝ ⎛⎭⎪⎫a +1a 2=32,∴a 2+1a 2=7.∴a 2+1a2-|b |=6. 4.解:由题意有x -3≥0,3-x ≥0,∴x =3,∴y =2,∴x y =32=9. 5.解:(1)原式=8+215.(2)原式=22-410. (3)原式=4 6.6.解:原式取倒数得x 4+x 2+1x 2=x 2+1x 2+1=⎝ ⎛⎭⎪⎫x +1x 2-1=(5)2-1=4.∴原式=14.7.B 8.329.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2 )(1+ 2 )=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2 2 )2-2×(-22)+(-1)=7+4 2.方法点拨:根据原式以及字母取值的特点,将原式配方、整合成含有x -y 和xy 的形式,利用整体思想代入求值.10.解:由已知得x =3+22,y =3-2 2.∴x +y =6,xy =1,∴原式=x 2+y 2xy -4=(x +y )2-6xy xy=62-6×1=30.思想方法专题:矩形中的折叠问题——体会折叠中的方程思想及数形结合思想◆类型一 折叠中求角度1.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF .若∠EFC ′=125°,那么∠ABE 的度数为( )A .15°B .20°C .25°D .30°第1题图 第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;(2)再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN .观察探究可以得到∠ABM 的度数是( )A .25°B .30°C .36°D .45° ◆类型二 折叠中求线段长3.(2017·安顺中考)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( ) A .6cm B .7cm C .8cm D .9cm第3题图 第4题图4.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89165.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF的长为________.◆类型三折叠中求面积6.(2017·鄂州中考)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.7.★(2016·福州中考)如图,矩形ABCD中,AB=4,AD=3,M是边CD上的一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B 解析:由折叠可知∠EFC =∠EFC ′=125°.∵在矩形ABCD 中,AD ∥BC ,∴∠DEF =180°-125°=55°.根据折叠可知∠BEF =∠DEF =55°,∴∠BED =110°.∵四边形ABCD 为矩形,∠A =90°,∴∠ABE =110°-90°=20°.故选B. 2.B 3.C 4.C5. 185 解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,∴AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12E B C =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝ ⎛⎭⎪⎫2452=185.6.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.∵将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,∴∠F =∠B ,AB =AF ,∴AF =CD ,∠F=∠D .在△AFE 与△CDE 中,⎩⎨⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵AB =4,BC =8,∴CF =AD =8,AF =CD =AB =4.∵△AFE ≌△CDE ,∴EF =DE .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即DE 2+42=(8-DE )2,∴DE =3,∴AE =8-3=5,∴S 阴影=12×4×5=10.7.解:(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN =∠DAM .∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB .∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴AM =2DM .在Rt △ADM 中,∵AD =3,∴由勾股定理得AM 2-DM 2=AD 2,即(2DM )2-DM 2=32,解得DM = 3.(2)延长MN 交AB 的延长线于点Q ,如图所示.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA=∠MAQ,由折叠性质得△ANM≌△ADM,∴∠ANM=∠D=90°,∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=MN+NQ=1+x.∵∠ANM=90°,∴∠ANQ=90°.在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ=5,∴S△NAB =45S△NAQ=45×12×AN·NQ=45×12×3×4=245.解题技巧专题:正方形中特殊的证明(计算)方法——解决正方形中的最值及旋转变化模型问题◆类型一利用正方形的旋转性质解题1.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若四边形ABCD的面积是18,则DP的长是__________.2.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.3.如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,P 为正方形ABCD 外一点,且BP ⊥CP . 求证:BP +CP =2OP .◆类型二 利用正方形的对称性解题4.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( ) A. 3 B .23 C .2 6 D.6第4题图 第5题图5.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为________.6.如图,在正方形ABCD 中,点E 是CD 的中点,AC ,BE 交于点F ,MF ∥AE 交AB 于M . 求证:DF =MF .参考答案与解析1.322.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH=∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合.∴AH=AF,∠BAH=∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF =S△AEH=S△ABE+S△ABH=S△ABE+S△ADF.3.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.4.B解析:连接PB.∵点P在正方形ABCD的对角线AC上,∴PD=PB,∴PD +PE的最小值就是PB+PE的最小值,∴PD+PE的最小值就是BE.∵△ABE是等边三角形,∴BE=AB.∵S正方形ABCD=12,∴BE2=AB2=12,即BE=23,故选B.5.176.证明:∵B,D关于AC对称,点F在AC上,∴BF=DF.∵四边形ABCD是正方形,∴AD=BC,∠ADE=∠BCE.∵点E是CD的中点,∴DE=CE.在△ADE 和△BCE中,∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE,∴AE =BE,∴∠BAE=∠ABE.∵MF∥AE,∴∠BAE=∠BMF,∴∠BMF=∠ABE,∴MF=BF.∵BF=DF,∴DF=MF.解题技巧专题:函数图象信息题——数形结合,快准解题◆类型一 根据实际问题判断函数图象1.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗.下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )2.(2017·牡丹江中考)下列图象中,能反映等腰三角形顶角度数y(度)与底角度数x(度)之间的函数关系的是( )◆类型二 获取实际问题中图象的信息3.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(m 2)与工作时间t(h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是【方法12】( )A .300m 2B .150m 2C .330m 2D .450m 2第3题图 第4题图4.(2017·河南中考)如图①,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图②是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.5.(2017·西宁中考)首条贯通丝绸之路经济带的高铁线——宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y 与x 之间的函数关系,根据图象进行一下探究:【方法12】 【信息读取】(1)西宁到西安两地相距________千米,两车出发后________小时相遇;(2)普通列车到达终点共需________小时,普通列车的速度是________千米/时. 【解决问题】(3)求动车的速度;(4)普通列车行驶t 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安.◆类型三 一次函数图象与字母系数的关系6.若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )7.在一次函数y =12ax -a 中,y 随x 的增大而减小,则其图象可能是( )参考答案与解析 1.A 2.C3.B 解析:设点A (4,1200),点B (5,1650),直线AB 的解析式为y =kx +b,则⎩⎨⎧4k +b =1200,5k +b =1650,解得⎩⎨⎧k =450,b =-600,故直线AB 的解析式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故选B.4.12 解析:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 运动到C 的过程中,BP 的最大值为5,即BC =5.点P 运动到点A 时,BP =AB =5.∴△ABC 是等腰三角形.∵M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC 时,BP =4,∴由勾股定理得PC =3,∴AC =6,∴△ABC 的面积为12×4×6=12,故答案为12. 5.解:(1)1000 3(2)12 2503(3)设动车的速度为x 千米/时,根据题意,得3x +3×2503=1000,解得x =250. 答:动车的速度为250千米/时.(4)∵t =1000250=4(小时),∴4×2503=10003(千米),∴1000-10003=20003(千米),∴此时普通列车还需行驶20003千米到达西安. 6.B 7.B思想方法专题:勾股定理中的思想方法◆类型一 分类讨论思想一、直角边与斜边不明需分类讨论1.一直角三角形的三边长分别为2,3,x ,那么以x 为边长的正方形的面积为【易错3】( ) A .13 B .5C .13或5D .42.直角三角形的两边长是6和8,则这个三角形的面积是____________. 二、锐角或钝角三角形形状不明需分类讨论3.★(2016·东营中考)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则BC 的长为【易错4】( ) A .10 B .8C .6或10D .8或104.在等腰△ABC中,已知AB=AC=5,△ABC的面积为10,则BC=____________.【易错4】◆类型二方程思想一、实际问题中结合勾股定理列方程求线段长5.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为________.二、折叠问题中结合勾股定理列方程求线段长6.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF的长.【方法4】三、利用公共边相等结合勾股定理列方程求线段长7.(2016·益阳中考)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC 的面积.◆类型三 利用转化思想求最值8.(2017·涪陵区期末)一只蚂蚁从棱长为4cm 的正方体纸箱的A 点沿纸箱外表面爬到B 点,那么它的最短路线的长是________cm .【方法5】9.如图,A ,B 两个村在河CD 的同侧,且AB =13km ,A ,B 两村到河的距离分别为AC =1km ,BD =3km .现要在河边CD 上建一水厂分别向A ,B 两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W(元).【方法5】参考答案与解析 1.C 2.24或673.C 解析:根据题意画出图形,如图所示,图①中,AB =10,AC =210,AD =6.在Rt △ABD 和Rt △ACD 中,根据勾股定理得BD =AB 2-AD 2=102-62=8,CD =AC 2-AD 2=(210)2-62=2,此时BC =BD +CD =8+2=10;图②中,同理可得BD =8,CD =2,此时BC =BD -CD =8-2=6.综上所述,BC 的长为6或10.故选C.4.25或45 解析:如图①,△ABC 为锐角三角形,过点C 作CD ⊥AB ,交AB 于点D .∵S △ABC =10,AB =5,∴12AB ·CD =10,解得CD =4.在Rt△ACD 中,由勾股定理得AD=AC2-CD2=52-42=3,∴BD=AB-AD=5-3=2.在Rt△CBD中,由勾股定理得BC=BD2+CD2=22+42=25;如图②,△ABC为钝角三角形,过点C作CD⊥AB,交BA的延长线于点D.同上可得CD=4.在Rt△ACD中,AC=5,由勾股定理得AD=AC2-CD2=52-42=3.∴BD=BA+AD=5+3=8.在Rt△BDC中,由勾股定理得BC=BD2+CD2=82+42=4 5.综上所述,BC的长度为25或4 5.5.17m6.解:∵折叠前后两个图形的对应线段相等,∴CF=C′F.设BF=x.∵BC=9,∴C′F=CF=BC-BF=9-x.∵C′是AB的中点,AB=6,∴BC′=12E A B=3.在Rt△C′BF中,由勾股定理得C′F2=BF2+C′B2,即(9-x)2=x2+32,解得x=4,即BF的长为4.7.解:过A作AD⊥BC交BC于点D.在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=BC-BD=14-x.在Rt△ABD和Rt△ACD中,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,即152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,由勾股定理得AD=AB2-BD2=152-92=12.∴S△ABC =12BC·AD=12×14×12=84.8.459.解:如图,作点A关于CD的对称点A′,连接BA′交CD于O,点O即为水厂的位置.过点A′作A′E∥CD交BD的延长线于点E,过点A作AF⊥BD于点F,则AF=A′E,DF=AC=1km,DE=A′C=1km.∴BF=BD-FD=3-1=2(km).在Rt△ABF中,AF2=AB2-BF2=13-22=9,∴AF=3km.∴A′E=3km.在Rt△A′BE中,BE=BD+DE=4km,由勾股定理得A′B=A′E2+BE2=32+42=5(km).∴W=3000×5=15000(元).故铺设水管的总费用为15000元.解题技巧专题:勾股定理与面积问题——全方位求面积,一网搜罗◆类型一 三角形中利用面积法求高1.直角三角形的两条直角边的长分别为5cm ,12cm ,则斜边上的高线的长为( ) A.8013cm B .13cm C.132cm D.6013cm2.(2017·乐山中考)点A 、B 、C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是________. ◆类型二 结合乘法公式巧求面积或长度3.已知Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积是( )A .48cm 2B .24cm 2C .16cm 2D .11cm 24.若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( )A .7cmB .10cmC .(5+37)cmD .12cm5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6◆类型三巧妙利用割补法求面积6.如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD 的面积.7.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD的面积.【方法6】◆类型四利用“勾股树”或“勾股弦图”求面积8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为________cm2.9.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是将图①放入长方形内得到的,∠BAC =90°,AB =3,AC =4,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,那么长方形KLMJ 的面积为________.参考答案与解析 1.D2. 355 解析:如图,连接AC ,BC ,设点C 到线段AB 所在直线的距离是h .∵S △ABC =3×3-12×2×1-12×2×1-12×3×3-1=9-1-1-92-1=32,AB =12+22=5,∴12×5h =32,∴h =355.故答案为355.3.D 4.D 5.C6.解:连接AC ,过点C 作CE ⊥AD 交AD 于点E .∵AB ⊥BC ,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=52+122=13.∵CD =13,∴AC =CD .∵CE ⊥AD ,∴AE =12AD =12×10=5.在Rt △ACE 中,由勾股定理得CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △ABC +S △CAD =12E A B ·BC +12E A D ·CE =12×5×12+12×10×12=90.7.解:延长AD ,BC 交于点E .∵∠B =90°,∠A =60°,∴∠E=30°.∴AE =2AB。

【人教版】数学八年级下册《期末检测试题》附答案

【人教版】数学八年级下册《期末检测试题》附答案
5.如图所示是 个大小相同的正方形相连,共有正方形的项点 个,从中任取 个点为顶点构成正方形,共可以组成正方形的个数为( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据正方形的判定,画出正方形即可解决问题;
【详解】解:如图所示:一共有11个正方形.故选D.
【点睛】本题考查正方形的判定和性质,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
22.小慧根据学习函数的经验,对函数 的图像与性质进行了探究.下面是小慧的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是;
(2)列表,找出 与 的几组对应值.
-1
0
1
2
3
1
0
1
2
其中, ;
(3)在平面直角坐标系xOy中,描出上表中以各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,解决下列问题.
2020-2021学年第二学期期末测试
人教版数学八年级试题
学校________班级________姓名________成绩________
一、选择题
1.下列格式中,属于最简二次根式的是()
A. B. C. D.
2.下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()
A. B.
C. D.
16.如图,过点A(2,0)的两条直线 , 分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB= .
(1)求点B 坐标;
(2)若△ABC的面积为4,求 的解析式.
17.如图,矩形ABCD中,点E为边CD上的一点,将矩形ABCD沿BE翻折,点A,D分别落在 处, 与 相交于点P,请用无刻度的直尺分别按下列要求画图(保留画图痕迹)

人教版八年级数学下册《二次根式化简》专项练习(附带答案)

人教版八年级数学下册《二次根式化简》专项练习(附带答案)

人教版八年级数学下册《二次根式化简》专项练习(附带答案)类型一、利用被开方数的非负性化简二次根式例. )A .1x ≥B .1x ≥-C .1x ≥或1x ≤-D .1x ≠±【变式训练1】已知m n 为实数 且3n -= =________.【详解】依题意可得m -2≥0且2-m ≥0 ∴m =2 ∴n -3=0∴n =3【变式训练2】已知a b c 是ABC 的三边长 ||0b c -=ABC 的形状是_______.【详解】解:2220a b c b c 2220a b c 0b c222a b c ∴=+ 且b c =∴ABC 为等腰直角三角形故答案为:等腰直角三角形.【变式训练3】3x =- 则x 的取值范围是( )A .3x >B .3x ≥C .3x <D .3x ≤【变式训练4】已知a 、b 、c 为一个等腰三角形的三条边长 并且a 、b 满足7b = 求此等腰三角形周长.【答案】17 【详解】解:由题意得:3030a a -≥⎧⎨-≥⎩ 解得:a =3 则b =7 若c =a =3时 3+3<7 不能构成三角形.若c =b =7 此时周长为17.类型二、利用数轴化简二次根式例.实数a b c ,,在数轴上的对应点如图所示 化简a b a -+-的结果是是( )A .b c --B .c b -C .222b c -+D .2b c ++ 【答案】A【详解】解:由数轴知:00c b a <,<<∴0b a -<∴原式=a b a c ----()=a b a c --+-=b c --.故选:A .【变式训练1】已知实数m n 、在数轴上的对应点如图所示 ||m n +=_____【变式训练2】实数a b 在数轴上对应点的位置如图所示 化简||a 的结果是( )A .2a b -+B .2a b -C .b -D .b 【答案】A【解析】根据数轴上点的位置得:a <0<b ∴a -b <0则原式=|a |+|a -b |=-a +b -a = -2a +b .故选:A .【变式训练3】已知实数a 、b 、c 表示在数轴上如图所示 a b -【变式训练4】如图 a b c 是数轴上三个点A 、B 、C 所对应的实数.a b b c ++.类型三、利用字母的取值范围化简二次根式例1.已知 化简:25m -<<5m -=__________.【答案】23m -##32m -+【详解】解:2m -<<例2.ABC 的三边长分别为1、k 、3 则化简723k -=_____. ∴ABC 的三边长分别为90-<812k +-()23k --A B C .D .【详解】解:20b a -≥0ab > 所以a 和b 同号22b b b a a a a a---=-【变式训练2】若35x << _______; 【答案】【变式训练3】化简:2-=_______. 【答案】0【解析】由题意可知:3-x ≥0 ∴23x -=33x x ---=33x x -+-=0故答案为:0.【变式训练4】7=-b .(1)求a 的值;(2)若a 、b 分别为一直角三角形的斜边长和一直角边长 求另一条直角边的长度. )解:25a -+2525≥≤ a ∴)解:25225a -+-a 、b 分别为一直角三角形的斜边长和一直角边长∴另一条直角边的长度为:类型四、双重二次根式的化简例.阅读下列材料 然后回答问题.在进行二次根式的化简与运算时其实我们还可以将其进===1=以上这种化简的步骤叫做分母有理化.(1;(2【答案】(1(2【详解】(13133333333;(2222(53)2(53)5353(53)(53)53.【变式训练1】阅读理解“分母有理化”7==+除此之外我们也可以用平方之后再开方的方式来化简一些有特点的无理数设x=故0x>由22x=33=-2=解得x==根据以上方法【答案】5-【详解】解:设x∴0x<∴266x =-+ ∴212236x =-⨯= ∴x =2532==-- ∴原式55=--【变式训练2】先阅读材料 然后回答问题.(1)小张同学在研究二次根式的化简时经过思考 小张解决这个问题的过程如下:①===④在上述化简过程中 第 步出现了错误 化简的正确结果为 ;(2)请根据你从上述材料中得到的启发 化简【变式训练3】先阅读下列解答过程 然后再解答:437+= 4312⨯= 即:227+= 所以2==+问题:(1=__________ =____________﹔(2)进一步研究发现: 只要我们找到两个正数a b (a b >)使a b m += ab n = 即22m += =__________.(3【答案】(11 (2)a b >;(3【详解】解:(11;(2)a b =>;(3. 【变式训练4】阅读材料:小明在学习二次根式后 发现一些含根号的式子可以写成另一个式子的平方 如(231+ 善于思考的小明进行了以下探索:设()2a m +=(其中a 、b 、m 、n 均为正整数) 则有222a m n =++∴a =m 2+2n 2 b =2mn .这样小明就找到了一种把部分a 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时 若()2a m =+ 用含m 、n 的式子分别表示a 、b 得:a = b = ;(2)若()2a m ++ 且a 、m 、n 均为正整数 求a 的值;(3课后作业120b -= 那么这个等腰三角形的周长为( ) A .8B .10C .8或10D .9 【答案】B【详解】解:20b -=∴40a -= 20b -= 解得4a = 2b =当腰长为2 底边为4时 ∴224+= 不满足三角形三边条件 不符合题意; 当腰长为4 底边为2时 ∴2464+=> 4402-=< 满足三角形三边条件 此时等腰三角形的周长为44210++=.故选:B2.化简二次根式- )A BC .D .x x x -=--3.已知a 、b 、c 在数轴上的位置如图所示 则||a c b ++ )A .2b c -B .2b a -C .2a b --D .2c b -4.若()230a -= 则a b +的平方根是______. 【详解】解:(5.设a b 是整数 方程20x ax b ++= 则a b +=___________.∴113060a b a ++=⎧⎨+=⎩解得67a b =-⎧⎨=⎩∴671a b +=-+=.故答案为:16.已知x 、y 为实数 4y = 则x y 的值等于______.7.已知实数a b c 、、在数轴上的位置如图所示 且a b = 化简a a b ++8.阅读:根据二次根式的性质 a b =+.根据这一性质 我们可以将一些“双重二次根式”去掉一层根号 达到化简效果.解:设24+=(a b 为非负有理数) 则4a b +++ ∴43a b ab +=⎧⎨=⎩①② 由①得 4b a =- 代入②得:()43a a -= 解得11a = 23a =∴13b = 21b =∴224(1+=+1=请根据以上阅读理解 解决下列问题:(1)的化简结果是__________;(2)(3) 如果能化简 请写出化简后的结果 如果不能 请说明理由.9.在二次根式的计算和比较大小中有时候用“平方法”会取得很好的效果例如比较a=b=的大小我们可以把a和b分别平方∴a2=12 b2=18 则a2<b2∴a<b.请利用“平方法”解决下面问题:(1)比较c=d=c d(填写><或者=).(2)猜想m=n=并证明.(3)=(直接写出答案).10.(1)已知a、b为实数4b+求a、b的值.(2)已知实数a 满足2021a a -= 求22021a -的值.。

人教版八年级下《第16章二次根式》单元测试题((有答案))-(数学)

人教版八年级下《第16章二次根式》单元测试题((有答案))-(数学)

人教版八年级下册数学《第16章二次根式》单元测试题一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥33.化简的结果是()A.B.C.D.4.下列二次根式,最简二次根式是()A.B.C.D.5.下列式子一定成立的是()A.﹣2B.+2C.D.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式7.下列各式中,与是同类二次根式的是()A.B.C.D.8.计算的值等于()A.B.4C.5D.2+29.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=210.现将某一长方形纸片的长增加3cm,宽增加6cm,就成为一个面积为128cm2的正方形纸片,则原长方形纸片的面积为()A.18cm2B.20cm2C.36cm2D.48cm2二.填空题(共8小题)11.若a、b为实数,且b=+4,则a+b=.12.若有意义,则a的取值范围为13.已知,化简的结果是.14.计算:3﹣(﹣1)﹣1+1=.15.化简(﹣1)2017(+1)2018的结果为.16.如果最简二次根式和是同类二次根式,则a=,b=.17.二次根式:①,②,③,④中,能与合并的是(填序号).18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为.三.解答题(共7小题)19.计算:﹣3+2.20.计算:4×2÷.21.已知:a=+1,求代数式a2﹣2a﹣1的值.22.已知实数a,b,c在数轴上的位置如图,且|a|=|b|,化简|a|+|b|+|c|﹣﹣223.已知=b+1(1)求a的值;(2)求a2﹣b2的平方根.24.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.25.化简求值:已知:x=,y=,求(x+3)(y+3)的值.人教版八年级下册数学《第16章二次根式》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.【分析】根据二次根式的定义判断即可.【解答】解:A、x+y不是二次根式,错误;B、是二次根式,正确;C、不是二次根式,错误;D、不是二次根式,错误;故选:B.【点评】本题考查了二次根式的定义:形如(a≥0)叫二次根式.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥3【分析】根据二次根式的被开方数为非负数,可得出关于x的一元一次不等式,解出即可得出答案.【解答】解:∵无意义,∴3﹣x<0,解得:x>3.故选:C.【点评】此题考查了二次根式有意义的条件,关键是掌握二次根式有意义则被开方数为非负数.3.化简的结果是()A.B.C.D.【分析】本题应先判断与1的大小,再对原式进行开方.【解答】解:∵>1,∴﹣1>0,∴==﹣1.故选:B.【点评】本题考查的是二次根式的化简,解此类题目时要先讨论根号内的数的正负性,再开方.4.下列二次根式,最简二次根式是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.下列式子一定成立的是()A.﹣2B.+2C.D.【分析】根据二次根式的性质,二次根式的乘除法法则计算,判断即可.【解答】解:=|a2﹣2|,A不一定成立;=a2+2,B一定成立;当a≥﹣1时,=•,C不一定成立;当a≥0,b>0时,=,D不一定成立;故选:B.【点评】本题考查的是二次根式的化简,二次根式的乘除法,掌握二次根式的乘除法法则是解题的关键.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式【分析】根据二次根式的运算法则即可求出答案.【解答】解:由于a+b≠0,ab≠±1,∴a与b不是互为相反数,倒数、负倒数,故选:D.【点评】本题考查二次根式,解题的关键是正确理解倒数、相反数、负倒数的概念,本题属于基础题型.7.下列各式中,与是同类二次根式的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=2与是同类二次根式,故本选项正确;B、=2与不是同类二次根式,故本选项错误;C、=2与不是同类二次根式,故本选项错误;D、=3与不是同类二次根式,故本选项错误;故选:A.【点评】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.8.计算的值等于()A.B.4C.5D.2+2【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=2+3=5故选:C.【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.9.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.现将某一长方形纸片的长增加3cm ,宽增加6cm ,就成为一个面积为128cm 2的正方形纸片,则原长方形纸片的面积为( ) A .18cm 2B .20cm 2C .36cm 2D .48cm 2【分析】利用算术平方根求出正方形的边长,进而求出原矩形的边长,即可得出答案.【解答】解:∵一个面积为128cm 2的正方形纸片,边长为:8cm ,∴原矩形的长为:8﹣3=5(cm ),宽为:8﹣6=2(cm ),∴则原长方形纸片的面积为:5×2=20(cm 2).故选:B .【点评】此题主要考查了二次根式的应用,根据题意得出原矩形的边长是解题关键. 二.填空题(共8小题)11.若a 、b 为实数,且b =+4,则a +b = 5或3 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案. 【解答】解:由被开方数是非负数,得,解得a =1,或a =﹣1,b =4, 当a =1时,a +b =1+4=5, 当a =﹣1时,a +b =﹣1+4=3, 故答案为:5或3.【点评】本题考查了二次根式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.12.若有意义,则a 的取值范围为 a ≤4且a ≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零. 【解答】解:依题意得:4﹣a ≥0且a +2≠0, 解得a ≤4且a ≠﹣2. 故答案是:a ≤4且a ≠﹣2.【点评】考查了二次根式的意义和性质.概念:式子(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.已知,化简的结果是2.【分析】由于,则=x﹣2,|x﹣4|=4﹣x,先化简,再代值计算.【解答】解:已知,则=x﹣2+4﹣x=2.【点评】根据x的取值,确定x﹣2和x﹣4的符号是解此题的关键.14.计算:3﹣(﹣1)﹣1+1=2.【分析】根据分母有理化解答即可.【解答】解:原式==,故答案为:2【点评】此题考查分母有理化,关键是根据分母有理化计算.15.化简(﹣1)2017(+1)2018的结果为+1.【分析】利用积的乘方得到原式=[(﹣1)(+1)]2017•(+1),然后利用平方差公式计算.【解答】解:原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.如果最简二次根式和是同类二次根式,则a=0,b=1.【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【解答】解:依题意得:,解得.故答案是:0;1.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.17.二次根式:①,②,③,④中,能与合并的是①④(填序号).【分析】与是同类二次根式即可合并.【解答】解:=2,=3,=,=3,∴、能与合并,故答案为:①④.【点评】本题考查二次根式,解题的关键是正确理解同类二次根式与最简二次根式的定义,本题属于基础题型.18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为3﹣3.【分析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形的边长是x、y(x<y),则x2=3,y2=9,x=,y=3,则阴影部分的面积是(y﹣x)x=(3﹣)×=3﹣3,故答案为:3﹣3.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.三.解答题(共7小题)19.计算:﹣3+2.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=4﹣3×3+2×2=﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.20.计算:4×2÷.【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式=8÷=8×3 =24.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键. 21.已知:a =+1,求代数式a 2﹣2a ﹣1的值.【分析】利用完全平方公式得到原式=(a ﹣1)2﹣2,再有已知条件得到a ﹣1=,然后利用整体代入的方法计算. 【解答】解:原式=(a ﹣1)2﹣2,因为a =+1,所以a ﹣1=,所以原式=()2﹣2=5﹣2=3.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.22.已知实数a ,b ,c 在数轴上的位置如图,且|a |=|b |,化简|a |+|b |+|c |﹣﹣2【分析】根据数轴上点的位置判断出实数a ,b ,c 的符号,然后利用二次根式与绝对值的性质求解即可求得答案.【解答】解:由题意得:c <a <0<b , 又∵|a |=|b |, ∴c ﹣a <0,∴|a |+|b |+|c |﹣﹣2=﹣a +b ﹣c ﹣a +c +2c =﹣2a +b +2c .【点评】此题考查了实数与数轴,二次根式以及绝对值的性质,合并同类项,熟练掌握各自的意义是解本题的关键.23.已知=b +1(1)求a 的值;(2)求a 2﹣b 2的平方根.【分析】(1)根据二次根式的被开方数是非负数解答; (2)结合(1)求得a 、b 的值,然后开平方根即可.【解答】解:(1)∵,有意义,∴,解得:a =5;(2)由(1)知:b +1=0, 解得:b =﹣1,则a 2﹣b 2=52﹣(﹣1)2=24,则平方根是:.【点评】考查了二次根式有意义的条件,平方根.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.24.求+的值解:;设x =+,两边平方得:x 2=()2+()2+2,即x 2=3++3﹣+4,x 2=10∴x =±.∵+>0,∴+=请利用上述方法,求+的值.【分析】根据题意给出的解法即可求出答案.【解答】解:设x =+,两边平方得:x 2=()2+()2+2,即x 2=4++4﹣+6,x 2=14∴x =±.∵+>0,∴x =【点评】本题考查二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.25.化简求值:已知:x =,y =,求(x +3)(y +3)的值.【分析】将x 和y 的值分母有理化,再代入到原式xy +3x +3y +9=xy +3(x +y )+9计算可得.【解答】解:当x ===,y ===时,原式=xy +3x +3y +9 =xy +3(x +y )+9..=×+3×(+)+9=+3×+9=+3+9=+3. 【点评】此题考查了二次根式的化简求值与分母有理化,正确选择两个二次根式,使它们的积符合平方差公式及二次根式的混合运算顺序与运算法则是解答问题的关键.。

人教版数学八年级下册《期末检测题》附答案

人教版数学八年级下册《期末检测题》附答案
9.如图,一次函数 与一次函数 的图象相交于点 ,则关于 的不等式 的解集是()
A. B. C. D.
【答案】D
【解析】
【分析】结合函数图象,写出一次函数y1=x+b图象在一次函数y2=kx+4的图象上方所对应的自变量的范围即可.
【详解】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,−2),
解得 ,
【答案】B
【解析】
【分析】根据勾股定理 逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】解:A、 ,故不是直角三角形,错误;
B、 ,故是直角三角形,正确;
C、 故不是直角三角形,错误;
D、 故不是直角三角形,错误.
故选:B.
【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
故选:B.
【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.
7.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()
A. 中位数B. 众数C. 平均数D. 不能确定
21.如图,在四边形 中, , ,点 在 上,且 ,将 沿 折叠,点 恰好与点 重合.
(1)求线段 的长;
(2)求线段 的长.
22.甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶,甲同学到达山顶休息1小时后再沿原路下山,他们离山脚的距离 (千米)随时间 (小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:

2024-2025学年人教版(2024)八年级数学下册阶段测试试卷813

2024-2025学年人教版(2024)八年级数学下册阶段测试试卷813

2024-2025学年人教版(2024)八年级数学下册阶段测试试卷813考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、若分式的值为零,则x的值为()A. ±2B. -2C. 2D. 不存在2、如图,在下列条件中,不能判断△ABD≌△BAC的条件是( )(A)∠BAD=∠ABC,∠ABD=∠BAC (B)AD=BC,BD=AC(C)BD=AC,∠BAD=∠ABC (D)∠D=∠C,∠BAD=∠ABC3、20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是().A.B.C.D.4、如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.5、三角形的一个外角为36°,则这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形6、下列运算正确的是()A. (a2b2)2=a2b2B. a5b2÷b2=a5C. (3xy2)2=6x2y4D. a3•a2=a67、若a为方程x2+x-5=0的解,则a2+a+1的值为()A. 16B. 12C. 9D. 68、如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有()个.A. 7个B. 8个C. 9个D. 10个评卷人得分二、填空题(共5题,共10分)9、如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为8cm,则平行四边形ABCD的周长为.10、函数[y=kx−b <]的图象如图所示,则关于[x <]的不等式[k(x−3)−b <][>0> 0<]的解集是.11、▱[ABCD <]中,[∠A=50∘ <],则[∠D= <] ______ .12、分解因式:3x2-12= .13、据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用统计图表示收集到的数据.评卷人得分三、判断题(共6题,共12分)14、数轴上任何一点,不表示有理数就表示无理数.(判断对错)15、3m2-6m=m(3m-6).(判断对错)16、-0.01是0.1的平方根.( )17、判断对错:关于中心对称的两个图形全等。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当x __________7.化简-158= .8.a 的有理化因式是____________.9.当1<x <4时,|x -4|=________________.10(x -1)=x +1的解是____________. 11.已知a 、b 、c 为正数,d 22=______.12_________13.化简:(7-2018·(-7-2017=______________.140,则(x -1)2+(y +3)2=____________.15.x ,y 分别为82xy -y 2=____________. 三、选择题:(每小题3分,共15分)16………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1………………………( )(A )2x (B )-2x(C )-2x (D )2x19(a <0)得………………………………………………………………( )(A (B (C (D20.当a <0,b <0时,-a +b 可变形为………………………………………( )(A )2 (B )-2 (C )2 (D )2四、计算题:(每小题6分,共24分)21.; 22;23.(a abm+nm÷a 2b24)÷)(a≠b).五、求值:(每小题7分,共14分)25.已知x y32432232x xyx y x y x y-++的值.26.当x=1六、解答题:(共20分)27.(8分)计算(+1)+…).28.(12分)若x ,y 为实数,且y +12参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9.7、【答案】-2【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a (________)=a 2-2.a .【答案】a . 9、【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10、【提示】把方程整理成ax =b 的形式后,a 、b 11.【答案】x =3+11、|cd |=-cd .cd .【点评】∵ ab =2(ab >0),∴ ab -c 2d 2cd )cd ).12、【提示】【答案】<.【点评】的大小,的大小.13、【提示】(-7-2001=(-7-)2000·(_________)[-7-.](7-·(-7-)=?[1.]【答案】-7- 【点评】注意在化简过程中运用幂的运算法则和平方差公式.14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.|x+y|=-x-y.【答案】C.|a|.18、【提示】(x-1x)2+4=(x+1x)2,(x+1x)2-4=(x-1x)2.又∵0<x<1,∴x+1x>0,x-1x<0.【答案】D.【点评】本题考查完全平方公式和二次根式的性质.(A)不正确是因为用性质时没有注意当0<x<1时,x-1x<0.19、|a【答案】C.20、【提示】∵a<0,b<0,∴-a>0,-b>0.并且-a=2,-b=2.【答案】C.【点评】本题考查逆向运用公式2=a(a≥0)和完全平方公式.注意(A)、(B)不正确是因为a<0,b<0都没有意义.(四)计算题:(每小题6分,共24分)21、看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.+【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值:(每小题7分,共14分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2=5+,y 2=5-∴ x +y =10,x -y =,xy =52-)2=1.32432232x xy x y x y x y -++=22()()()x x y x y x y x y +-+=()x y xy x y -+.【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷.26、【提示】注意:x 2+a 2=2,∴ x 2+a 2--x ),x 2-=-x -x ).=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)【提示】先将每个部分分母有理化后,再计算.【解】原式=(+1)+…)=(+1)[1--…]=(+1)1)=9(+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、(14分)【提示】要使y有意义,必须满足什么条件?140[]410.xx-≥⎧⎨-≥⎩你能求出x,y的值吗?14[]1.2xy⎧=⎪⎪⎨⎪=⎪⎩【解】要使y有意义,必须140[410xx-≥⎧⎨-≥⎩,即141.4xx⎧≤⎪⎪⎨⎪≥⎪⎩∴x=14.当x=14时,y=12.又∵11x y∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积. 13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

知识点详解人教版八年级数学下册第二十章-数据的分析专项测试试题(含解析)

知识点详解人教版八年级数学下册第二十章-数据的分析专项测试试题(含解析)

人教版八年级数学下册第二十章-数据的分析专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差2、如图所示是根据某地某月10天的每天最高气温绘成的折线统计图,那么这段时间该地最高气温的平均数、众数、中位数依次是()A.4,5,4 B.4.5,5,4.5 C.4,5,4.5 D.4.5,5,43、抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码):则鞋厂最感兴趣的是这组数据的()A.平均数B.中位数C.众数D.方差4、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差s2.根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=185、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,则这四名学生的数学成绩最稳定的是()A.甲B.乙C.丙D.丁6、某中学七(1)班的6位同学在课间体育活动时进行一分钟跳绳比赛,成绩(单位:个)如下:122,146,134,146,152,121.这组数据的众数和中位数分别是()A.152,134 B.146,146 C.146,140 D.152,1407、每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是该校某班班长统计的全班50名学生一学期课外图书的阅读量(单位本),则这50名学生图书阅读数量的中位数和平均数分别为()A.18,12 B.12,12 C.15,14.8 D.15,14.58、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是()A.60,30 B.30,30 C.25,45 D.60,459、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是()A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;10、一组数据分别为a,b,c,d,e,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是()A.中位数B.方差C.平均数D.众数第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、学校“校园之声”广播站要选拔一名英语主持人,小聪参加选拔的各项成绩如下:读:92分,听:80分,写:90分,若把读,听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为____分.2、一组数据﹣1、2、3、4的极差是________.3、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为160.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)4、某学校决定招聘数学教师一名,一位应聘者测试的成绩如表:将笔试成绩,面试成绩按6:4的比例计入总成绩,则该应聘者的总成绩是______分.5、已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是__________.三、解答题(5小题,每小题10分,共计50分)1、2012年8月6日,我国选手吴敏霞、何姿分别获得伦敦奥运会女子三米板跳水冠军和亚军,获得前6名的选手的决赛成绩如下:试计算各个选手5次跳水成绩的平均分和方差,并比较这6名选手的表现.2、某厂用罐头分装机分装某种鱼罐头(每只罐头的标准质量为207g).为了监控分装质量,该厂决定定期对罐头的质量进行抽样检查,并规定抽检产品的平均质量与标准质量相差大于5g或罐头质量的标准差大于8g时,就认为该分装机运行不正常,将对它进行检修,现抽取了20只罐头,它们的质量(单位:g)如下:200,205,208,212,223,199,193,208,204,200,208,201,215,190,193,206,215,198,206,216,该分装机运行是否正常?3、如图是某月的日历,在此日历上用一个正方形圈出9个数(如6,7,8,13,14,15,20,21,22).(1)图中圈出的9个数的平均数是多少?直接写结果.(2)若用正方形圈出此日历中的任意9个数中,位于中心位置的数是m,那么这9个数的和是多少?这9个数的平均数是多少?(3)若用正方形圈出此日历中的9个数,这9个数的和有可能是225吗?试说明理由.4、甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):甲:10,7,8,7,8,8乙:5,6,10,8,9,10(1)甲成绩的众数_________,乙成绩的中位数_________.(2)计算乙成绩的平均数和方差;(3)已知甲成绩的方差是1环2,则_________的射击成绩离散程度较小.(填“甲”或“乙”)5、为响应“双减”政策,老师们都精心设计每天的作业,兴华学校调查了部分学生每天完成作业所用时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:(1)将条形统计图补充完整;(2)抽查学生完成作业所用时间的众数是______;(3)求所有被抽查学生完成作业所用的平均时间.---------参考答案-----------一、单选题1、B【解析】【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.2、C【解析】【分析】根据平均数的计算公式、众数的定义、中位数的定义解答.【详解】解:平均数=2556454621410+++++++++=,数据有小到大排列为1、2、2、4、4、5、5、5、6、6,则这组数据的众数为5,中位数为454.52+=,故选:C.【点睛】此题考查平均数的计算公式,众数的定义、中位数的定义,熟记公式及各定义是解题的关键.3、C【解析】【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.【详解】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.故选:C.【点睛】本题考查学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用.4、A【解析】【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.5、A【解析】【分析】根据方差的意义求解即可.【详解】解:∵S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,∴S甲2<S乙2<S丙2<S丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.6、C【解析】【分析】根据众数和中位数的定义求解即可.【详解】解:146出现了2次,出现的次数最多,∴这组数据的众数是146个;把这些数从小到大排列为:121,122,134,146,146,152, 则中位数是1341461402+=(个). 故选:C . 【点睛】本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键. 7、C 【解析】 【分析】根据中位数和平均数的定义求解即可. 【详解】解:由折线统计图知,第25、26个数据分别为12、18, ∴这50名学生图书阅读数量的中位数为1218152+= (本), 平均数为7812171815211014.850⨯+⨯+⨯+⨯=(本),故选:C . 【点睛】本题主要考查中位数和平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标. 8、D【解析】【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【详解】解:60出现了3次,出现的次数最多,则众数是60元;把这组数据从小到大排列为:25,25,30,30,60,60,60,65,则中位数是30602+=45(元).故选:D.【点睛】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),熟记定义是解题关键.9、D【解析】【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:360︒乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:74017.5%=,A选项正确;60~80分钟的人数为:40451678----=人,先对数据排序后可得:最中间的数在第20,21之间,459+=,91625+=,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:7815+=人,估算全校人数中每天超过1小时的人数为:1580030040⨯=人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:43603640︒⨯=︒,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.10、B【解析】【分析】根据方差的意义及平均数、众数、中位数的定义求解可得.【详解】解:一组数据a,b,c,d,e的每一个数都加上同一数m(m>0),则新数据a+m,b+m,…e+m的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;故选:B.【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.二、填空题1、88【解析】【分析】利用加权平均数按照比例求得小莹的个人总分即可.【详解】解:根据题意得:53292+80+90=88⨯⨯⨯(分),5+3+25+3+25+3+2答:小聪的个人总分为88分;故答案为:88.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.2、5【解析】【分析】--即可.极差是最大值减去最小值,即4(1)【详解】--=.解:4(1)5故答案是:5.【点睛】本题考查了极差,极差反映了一组数据变化范围的大小,解题的关键是掌握求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.3、变大【解析】【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0, ∴这组数据的平均数是()7.867.68.07.88m ⨯++=, ∴这8次跳远成绩的方差是:()()()()()222222127.67.827.87.87.77.828.07.87.97.88S ⎡⎤=⨯-+⨯-+-+⨯-+-⎣⎦ 0.0225= ∵0.0225>160, ∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键. 4、84【解析】【分析】根据求加权平均数的方法求解即可解:6480904836841010⨯+⨯=+= 故答案为:84【点睛】 本题考查了求加权平均数,掌握加权平均数计算公式是解题的关键.加权平均数计算公式为:1122()1k k x x f x f x f n=++⋯+,其中12k f f f ⋯,,,代表各数据的权. 5、16.5,17【解析】【分析】根据众数和中位数的定义求解即可,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】将18,17,13,15,17,16,14,17从小到大排列为:13,14,15,16,17,17,17,18 其中17出现的次数最多,则众数为17, 中位数为:161716.52+=. 故答案为:16.5;17【点睛】本题考查了求众数和中位数,理解众数和中位数的定义是解题的关键.三、解答题1、这6名选手5次跳水成绩的平均数分别为(从上到下):82.8分、75.84分、72.48分、72.44分、69.13分、68.6分;方差分别为:6.985,39.1824,9.0216,12.5944,3.7876,56.14;因此可以认为吴敏霞的水平比较高且发挥比较稳定,阿贝尔发挥最不稳定.根据表格结合方差、平均数可直接进行求解.【详解】 解:吴敏霞:79.5079.7585.2584.0085.5082.85x ++++==(分), ()()()()()22222279.5082.879.7582.885.2582.884.0082.885.5082.8 6.9855S ⎡⎤-+-+-+-+-⎣⎦==; 何姿:76.5083.7078.0076.5064.5075.845x ++++==(分), ()()()()()22222276.5075.8483.7075.8478.0075.8476.5075.8464.5075.8439.18245S ⎡⎤-+-+-+-+-⎣⎦==; 劳拉桑切斯:70.5067.5075.0074.4075.0072.485x ++++==(分), ()()()()()22222270.5072.4867.5072.4875.0072.4874.4072.4875.0072.489.02165S ⎡⎤-+-+-+-+-⎣⎦==; 卡格诺托:76.5069.0068.2072.0076.5072.445x ++++==(分), ()()()()()22222276.5072.4469.0072.4468.2072.4472.0072.4476.5072.4412.59445S ⎡⎤-+-+-+-+-⎣⎦==; 沙林斯特拉顿:70.5067.5066.6569.0072.0069.135x ++++==(分), ()()()()()22222270.5069.1367.5069.1366.6569.1369.0069.1372.0069.13 3.78765S ⎡⎤-+-+-+-+-⎣⎦==; 阿贝尔:66.0077.5055.5072.0072.0068.65x ++++==(分), ()()()()()22222266.0068.677.5068.655.5068.672.0068.672.0068.656.145S ⎡⎤-+-+-+-+-⎣⎦==;∴由以上数据可知吴敏霞的水平比较高且发挥比较稳定,阿贝尔发挥最不稳定.【点睛】本题主要考查平均数及方差,熟练掌握求一组数据的平均数及方差是解题的关键.2、该分装机运行不正常,理由见解析【分析】先根据平均数公式求得抽取的20只罐头质量的平均数,再根据方差公式求得它们的方差,进而可求得标准差,再用所求得的标准差与8g比较大小即可求得答案.【详解】解:抽取的20只罐头质量的平均数=(200+205+208+212+223+199+193+208+204+200+208+201+215+190+193+206+215+198+206+216)÷20=4100÷20=205(g),∴抽取的20只罐头质量的方差=[(200-205)2+(205-205)2+(208-205)2+(212-205)2+(223-205)2+(199-205)2+(193-205)2+(208-205)2+(204-205)2+(200-205)2+(208-205)2+(201-205)2+(215-205)2+(190-205)2+(193-205)2+(206-205)2+(215-205)2+(198-205)2+(206-205)2+(216-205)2]÷20=1388÷20=69.4,8,∴该分装机运行不正常.【点睛】本题考查了平均数和方差、标准差的计算和应用,熟练掌握平均数、方差以及标准差的计算公式是解决本题的关键.3、(1)14;(2)9m ,m ;(3)不能,见解析【分析】(1)直接计算图中圈出的9个数的平均数即可;(2)中间一个数为m ,则其中8个数为:8m -,7m -,6m -,1m -,m ,1m +,6m +,7m +,8m +,相加即可得到这9个数的和是多少,9个数的和除以9即可得到这9个数的平均数;(3)用2259÷,结合日历可得结果.【详解】解:(1)9个数的平均数为:678131415202122149++++++++=; (2)中间一个数为m ,则其中8个数为:8m -,7m -,6m -,1m -,m ,1m +,6m +,7m +,8m +,它们的和为:876116789m m m m m m m m m m ,这9个数的平均数为99m m =. (3)不能,理由如下:若圈出的数和为225,则225925÷=,则位于中心位置的数是25,由图观察发现,无以25为中心的能圈出9个数的正方形,故不能.【点睛】本题考查了列代数式以及整式的加减,读懂题意,根据题意得出日历中的任意9个数的代数式是解本题的关键.4、(1)8,8.5;(2)乙的平均数8=,方差113=;(3)甲 【分析】(1)根据众数的定义可得甲成绩的众数,将乙成绩重新排列,再根据中位数的定义求解即可;(2)根据算术平均数和方差的定义求解即可;(3)比较甲乙成绩的方差,比较大小后,依据方差的意义可得答案.【详解】解:(1)甲打靶的成绩中8环出现3次,次数最多,所以甲成绩的众数是8环;将乙打靶的成绩重新排列为5、6、8、9、10、10, 所以乙成绩的中位数为898.52+=, 故答案为:8、8.5;(2)乙成绩的平均数为5689101086+++++=, 方差为22222111[(58)(68)(88)(98)2(108)]63⨯-+-+-+-+⨯-=; (3)甲成绩的方差为1环2,乙成绩的方差为113环2, ∴甲成绩的方差小于乙,∴甲的射击成绩离散程度较小. 【点睛】本题主要考查方差,解题的关键是掌握算术平均数、众数、中位数及方差的意义.5、(1)见解析;(2)1.5;(3)1.32小时【分析】(1)根据每天完成作业所用的平均时间为1小时的占30%,共30人,即可求得总人数;根据总数减去其他三项即可求得每天完成作业所用的平均时间为1.5小时的人数进而补充条形统计图;(2)根据条形统计图可知完成作业所用的平均时间为1.5小时的人数最多;(3)根据求平均数的方法,求得100个完成作业所用时间的平均数【详解】(1)总人数为:3030%100÷=(人);每天完成作业所用的平均时间为1.5小时的人数为:10012301840---=(人)补充条形统计图如下:(2)根据条形统计图可知完成作业所用的平均时间为1.5小时的人数最多,故学生每天完成作业所用的平均时间的众数为1.5,(3)被抽查学生完成作业所用的平均时间为()10.512130 1.540182 1.32100⨯⨯+⨯+⨯+⨯=小时 【点睛】本题考查了条形统计图与扇形统计图信息关联,求众数、平均数,从统计图中获取信息是解题的关键.。

人教版八年级数学下册单元复习:第20章 数据的分析单元综合检测+答案

人教版八年级数学下册单元复习:第20章 数据的分析单元综合检测+答案

第20章数据的分析单元综合检测(五)一、选择题(每小题4分,共28分)1.(岳阳中考)某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A.12,13B.12,14C.13,14D.13,162.(天水中考)一组数据:3,2,1,2,2的众数、中位数、方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.23.四个数据:8,10,x,10的平均数与中位数相等,则x等于( )A.8B.10C.12D.8或124.某次射击训练中,一小组的成绩如下表所示:环数7 8 9人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A.5人B.6人C.4人D.7人5.(雅安中考)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,36.八年级一、二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一50 84 80 186二50 85 80 161某同学分析后得到如下结论:①一、二班学生的平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( )A.①②B.①③C.①②③D.②③7.某校A,B两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:队员1号2号3号4号5号A队176 175 174 171 174B队170 173 171 174 182设两队队员身高的平均数分别为,,身高的方差分别为,,则正确的选项是( ) A.=,> B.<,<C.>,>D.=,<二、填空题(每小题5分,共25分)8.(重庆中考)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:h) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是h.9.(营口中考)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为=0.56,=0.45,=0.61,则三人中射击成绩最稳定的是.10.某学生数学的平时成绩、期中考试成绩、期末考试成绩分别是:84分、80分、90分.如果按平时成绩∶期中考试成绩∶期末考试成绩=3∶3∶4进行总评,那么他本学期数学总评分应为分.11.某班同学进行知识竞赛,将所得成绩进行整理后,如图,竞赛成绩的平均数为分.12.某农科所在8个试验点对甲,乙两种玉米进行对比试验,这两种玉米在各个试点的亩产量如下:(单位:kg)甲:450 460 450 430 450 460 440 460乙:440 470 460 440 430 450 470 440在这些试验点中, 种玉米的产量比较稳定(填“甲”或“乙”).三、解答题(共47分)13.(11分)某市2018年的一次中学生运动会上,参加男子跳高比赛的有17名运动员,通讯员在将成绩表送组委会时不慎用墨水将成绩表污染掉一部分(如下表),但他记得这组运动员的成绩的众数是 1.75m,表中每个成绩都至少有一名运动员.根据这些信息,计算这17名运动员的平均跳高成绩(精确到0.01m).14.(11分)(扬州中考)为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生.(填“甲”或“乙”)(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.15.(12分)(威海中考)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩(分) 85 92 84 90 84 80面试成绩(分) 90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.16.(13分)(黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:t),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整.(2)求这100个样本数据的平均数、众数和中位数.(3)根据样本数据,估计黄冈市市直机关500户家庭中月平均用水量不超过12t的约有多少户?答案解析1.【解析】选B.在这组数据中,12出现了2次,出现的次数最多,因此,这组数据的众数是12,把这组数据从小到大排列为:12,12,13,14,16,17,18,最中间的数是14,因此这组数据的中位数是14.2.【解析】选B.从大到小排列此数据为:3,2,2,2,1;数据2出现了三次,次数最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.4,即中位数是2,众数是2,方差为0.4.3.【解析】选D.①x最小时,数据为x,8,10,10,中位数是(8+10)÷2=9,则(8+10+x+10)÷4=9,所以x=8;②x最大时,数据为8,10,10,x,中位数是(10+10)÷2=10,则(8+10+x+10)÷4=10,所以x=12;③当8≤x≤10时,中位数是(x+10)÷2,则(x+10)÷2=(8+10+x+10)÷4,可求得x=8.故选D.4.【解析】选A.设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得x=5.5.【解析】选A.∵一组数据2,4,x,2,4,7的众数是2,∴x=2,∴中位数为3,==3.5.6.【解析】选A.由平均数都是80知①正确;由二班的中位数大于一班的中位数知②正确;一班的方差大,其成绩相对不稳定,故③不正确.7.【解析】选D.∵=(176+175+174+171+174)=174(cm),=(170+173+171+174+182)=174(cm).=[(176-174)2+(175-174)2+(171-174)2+(174-174)2+(174-174)2]=2.8(cm2);=[(170-174)2+(173-174)2+(174-174)2+(171-174)2+(182-174)2]=18(cm2),∴=,<.8.【解析】由题意,可得这10名学生周末利用网络进行学习的平均时间是:(4×2+3×4+2×2+1×1+0×1)=2.5(h).答案:2.59.【解析】∵=0.56,=0.45,=0.61,∴<<,∴三人中射击成绩最稳定的是乙.答案:乙10.【解析】本学期数学总评分=84×30%+80×30%+90×40%=85.2(分).答案:85.211.【解析】==74(分).答案:7412.【解析】两种玉米的平均数都是450 kg,而=100,=200,所以甲种玉米的产量比较稳定.答案:甲13.【解析】设成绩是1.75m的有x人,1.80m的有y人,由题意得x+y=5,又x>3,y≠0,所以x=4,y=1.=≈1.69(m).答:这17名运动员的平均跳高成绩约是1.69m.14.【解析】(1)从条形统计图上看,甲组的成绩分别为3,6,6,6,6,6,7,8,9,10,因此甲组中位数为6,乙组成绩分别为5,5,6,7,7,8,8,8,8,9,平均分为×(5×2+6+7×2+8×4+9)=7.1(分),故填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,甲组的中位数是6,乙组的中位数是7.5,小明是7分,超过甲组的中位数,低于乙组的中位数,所以小明应该是甲组的学生.答案:甲(3)从统计图和表格中可以看出:乙组的平均分、中位数都高于甲组,方差小于甲组,且集中在中上游,所以支持乙组同学的观点,即乙组成绩好于甲组.15.【解析】(1)先将六位选手的笔试成绩按照大小顺序进行排序,位于第三位和第四位选手的平均分为中位数,笔试成绩出现次数最多的为众数.答案:84.5 84(2)设笔试成绩和面试成绩所占的百分比分别为x,y,由题意得解这个方程组得∴笔试成绩和面试成绩所占的百分比分别为40%和60%.(3)2号选手的综合成绩=92×0.4+88×0.6=89.6(分),3号选手的综合成绩=84×0.4+86×0.6=85.2(分),4号选手的综合成绩=90×0.4+90×0.6=90(分),5号选手的综合成绩=84×0.4+80×0.6=81.6(分),6号选手的综合成绩=80×0.4+85×0.6=83(分),∴综合成绩最高的两名选手是4号和2号.16.【解析】(1)100户家庭中月平均用水量为11t的家庭数量为:100-(20+10+20+10)=40(户).条形图补充完整如下:(2)平均数:==11.6.中位数:11.众数:11.(3)×500=350(户).答:估计不超过12t的用户约有350户.。

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

人教版 八年级数学下册 期末综合复习(含答案)

人教版 八年级数学下册 期末综合复习(含答案)

人教版 八年级数学下册 期末综合复习一、选择题(本大题共12道小题) 1. 计算(2x +1)(2x -1)的结果为 ( ) A .4x 2-1B .2x 2-1C .4x -1D .4x 2+12. 把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘( ) A .xB .2xC .x +4D .x (x +4)3. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为()A .abB .0C .2abD .3ab4. 如图,△ABE ≌△ACD ,∠A =60°,∠B =25°,则∠DOE 的度数为()A .85°B .95°C .110°D .120°5.(2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°6. 下列哪一个度数可以作为某一个多边形的内角和 () A .240° B .600°C .540°D .2180°7. (2020·天津)计算221(1)(1)x x x +++的结果是( )A.11x+B.21(1)x+C. 1D. 1x+8. 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是A.2 B.3C3D59. 下列长度的三条线段能组成钝角三角形的是( )A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P ,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )11. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于( )A.90°B.120 C.135°D.150°12.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD ,则∠A的度数是( )A.45°B.50°C.55°D.80°二、填空题(本大题共12道小题)13.图中的虚线,哪些是图形的对称轴,哪些不是?是对称轴的是______;不是对称轴的是______.(填写序号)14. (2020·武威)分解因式:a2+a=.15.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).16.如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是____ ____.17.将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC即为∠AOB的平分线,理由是______________________.18.如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM +MN的值最小时,∠OCM的度数为________.19. 将分式1a2-9和a3a-9进行通分时,分母a2-9可因式分解为____________,分母3a-9可因式分解为__________,因此最简公分母是____________.20. 若a-b=3x-y=2则a2-2ab+b2-x+y=________.21.如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC =18,则△AMN的周长为________.22. 计算:1x2-6x+9÷x+3x-3·(9-x2).解:原式=1(x-3)2÷x+3x-3·(3+x)(3-x)……第一步=1(x-3)2·x-3x+3·(3+x)(3-x)……第二步=1.……第三步回答:(1)上述过程中,第一步使用的公式用字母表示为__________________________;(2)由第二步得到第三步所使用的运算方法是____________;(3)以上三步中,从第________步开始出现错误,本题的正确答案是__________.23. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.24. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.三、作图题(本大题共2道小题)25.利用刻度尺和三角尺作图:如图所示,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.26. 如图,在河岸l的同侧有两个居民小区A,B,现欲在河岸边建一个长为a的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图中画出绿化带的位置,并写出画图过程.四、解答题(本大题共6道小题)27. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.28. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+. (1)下列分式中,属于真分式的是()A.B.C.-D.(2)将假分式化成整式与真分式的和的形式.29. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.30.如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E的直线分别交AP,BC于点D,C.求证:AD+BC=AB.31. 在△ABC中,∠A=90°,∠B=30°,AC=6 cm,点D从点A出发以1 cm/s的速度向点C运动,同时点E从点C出发以2cm/s的速度向点B运动,设运动时间为t s,解决以下问题:(1)当t为何值时,△DEC为等边三角形?(2)当t为何值时,△DEC为直角三角形?32. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 八年级数学下册 期末综合复习-答案一、选择题(本大题共12道小题) 1. 【答案】A2. 【答案】D3. 【答案】D4.【答案】C [解析]∵△ABE ≌△ACD ,∴∠B =∠C =25°.∵∠A =60°,∠C =25°,∴∠BDO =∠A +∠C =85°.∴∠DOE =∠B +∠BDO =85°+25°=110°.5. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A【解析】本题考查分式的加减运算,主要运算技巧包括通分,约分,同时常用平方差、完全平方公式作为解题工具.本题可先通分,继而进行因式约分求解本题.221(1)(1)x x x +++21(1)x x +=+,因为10x +≠,故211=(1)1x x x +++.故选:A .8. 【答案】D【解析】由作法得CE ⊥AB ,则∠AEC=90°, AC=AB=BE+AE=2+1=3,在Rt △ACE 中,=.故选D .9.【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B 选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D 选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A 选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C 选项正确.10.【答案】C [解析]如图,作PP′垂直于河岸L ,使PP′等于河宽,连接QP′,与河岸L 相交于点N ,将P′N 沿竖直方向向上平移河宽个单位长度,得到PM ,PM -MN -NQ 即所求.根据“两点之间,线段最短”,QP′最短,即PM +NQ 最短.观察选项,选项C 符合题意.11.【答案】C [解析]在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.12. 【答案】B[解析] 如图,连接AC 并延长交EF 于点M.∵AB ∥CF ,∴∠3=∠1. ∵AD ∥CE ,∴∠2=∠4.∴∠BAD =∠3+∠4=∠1+∠2=∠FCE.∵∠FCE =180°-∠E -∠F =180°-80°-50°=50°,∴∠BAD =∠FCE =50°.二、填空题(本大题共12道小题)13. 【答案】②④⑥①③⑤14. 【答案】a 2+a =a (a +1).故答案为:a (a +1).15. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).16. 【答案】线段垂直平分线上的点与这条线段两个端点的距离相等17. 【答案】角的内部到角的两边距离相等的点在角的平分线上18.【答案】10° [解析]作点C 关于OA 的对称点D ,过点D 作DN ⊥OB 于点N ,交OA 于点M ,则此时CM +MN 的值最小.∵∠OEC =∠DNC =90°,∠DME =∠OMN , ∴∠D =∠AOB =40°.∵MD=MC,∴∠DCM=∠D=40°,∠DCN=90°-∠D=50°.∴∠OCM=10°.19. 【答案】(a+3)(a-3)3(a-3)3(a+3)(a-3)20. 【答案】7[解析] a2-2ab+b2-x+y=(a-b)2-(x-y).把a-b=3x-y=2代入得原式=32-2=7.21. 【答案】30 [解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.22. 【答案】(1)a2-2ab+b2=(a-b)2,a2-b2=(a+b)(a-b)(2)约分(3)三-123. 【答案】 6 [解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.24. 【答案】解:如图.故填3,4,5,6,n.三、作图题(本大题共2道小题)25. 【答案】解:如图,四边形A1B1C1D1即为所求.26. 【答案】解:如图,作线段AP∥l,使AP=a,且点P在点A的右侧;作点P关于直线l的对称点P',连接BP'交l于点D;在l上点D的左侧截取DC=a,则CD就是所求绿化带的位置.四、解答题(本大题共6道小题)27. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.28. 【答案】解:(1)C(2)==+=m-1+.29. 【答案】解:(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab=-4×33+6×32-8×3=-108+54-24=-78.30. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎪⎨⎪⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.31. 【答案】(1)根据题意可得AD =t ,CD =6-t ,CE =2t. ∵△DEC 为等边三角形,∴CD =CE ,即6-t =2t ,解得t =2.∴当t 的值为2时,△DEC 为等边三角形.(2)∵∠A =90°,∠B =30°,∴∠C =60°. ①当∠DEC 为直角时,∠EDC =30°,∴CE =12CD ,即2t =12(6-t),解得t =65;②当∠EDC 为直角时,∠DEC =30°,∴CD =12CE ,即6-t =12·2t ,解得t =3.综上,当t 的值为65或3时,△DEC 为直角三角形.32. 【答案】【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n n n n n n x y z x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪ ⎪⎝⎭⎝⎭.。

专题02 二次根式中规律探究问题(解析版)八年级数学下册期末综合复习专题提优训练(人教版)

专题02 二次根式中规律探究问题(解析版)八年级数学下册期末综合复习专题提优训练(人教版)

2020-2021学年八年级数学下册期末综合复习专题提优训练(人教版)专题02二次根式中规律探究问题【典型例题】1==(1=(2)用字母表示思思发现的规律;(3)请你给出这个结论的一般性的证明.【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用前面三个式子的规律直接写出第4个和第5个等式;(2)写出第n+1个等式即可;(3)根据二次根式的性质进行证明.【详解】解:(1(2n≥2的整数);(3n≥2的整数).【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【专题训练】一、解答题1=;…….(1)请写出第9个式子;(2)你能发现上述式子有什么规律吗?请你将猜想到的规律用含n(n为正整数)的代数式表示出来并验证你所发现的规律.=+【答案】(1(2(n【分析】(1)根据已知的等式即可写出第9个式子;(2)根据已知的等式可用含n(n为正整数)的代数式表示规律,再根据二次根式的运算法则进行验证.【详解】(1)第9=+(2)用含n(n(n=+,证明:左边=(n左边=右边,所以规律正确.【点睛】本题考查了二次根式的性质的应用,解此题的关键是能根据已知得出规律,题目比较好.2===(1=(2)请用字母n 表示小明发现的规律.【答案】(1==;(2=2n ≥). 【分析】(1)利用前面三个式子的规律直接写出第4个和第5个等式;(2)根据题意,直接写出等式即可;【详解】解:(1)====; (2)根据(1)中的规律,可得:=2n ≥). 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3(1;(2)计算(写出计算过程) (3)请用含自然数n (n ≥1)的代数式把你所发现的规律表示出来.【答案】(1)(2=;(3(1n =+ 【分析】(1)先通分,再根据积的算术平方根性质计算,即可得到答案;(2)结合题意和(1)的结论,以此类推计算,即可得到答案;(3)结合(1)和(2)的结论,可得到表示规律的代数式.【详解】(1===,===故答案为:(2===…=(3)结合(1)和(2)的结论,得:(1=+.n【点睛】本题考查了数字规律的知识;解题的关键是熟练掌握二次根式计算、数字规律的性质,从而完成求解.4.根据要求,解答问题.(1)观察下列各式:1112+⨯1123=+⨯1134=+⨯,……= (n 为正整数);(2)当5n = ,并验证5n =时结论的正确性;(3118++ 【答案】(1)1+()1n n 1⨯+;(2)3130,验证见详解;(3)889 【分析】(1)观察所给三个等式即可发现规律;(2)由(1)=1+()1551⨯+,等号两侧同时运算,验证等号是否成立即可; (3)根据以上规律可以进行原式变形,再进行计算即可得结果.【详解】解:(1)观察所给三个等式发现规律:=1+()1n n 1⨯+ (n 为正整数); 故答案为:1+()1n n 1⨯+.(2)由(1)规律可得当n =51+()1551⨯+=3130;左边3130= 右边=1+11311563030=+=⨯ ∵左边=右边,∵等号成立.(32118++=1+1112-+1+1231-+1+1341-+…+1+1189-=(1+1+1…+1)+(1112-+1231-+1341-+…+1189-) =8+1-19 =889. 【点睛】本题考查了规律型-数字的变化类、二次根式的性质与化简,解决本题的关键是根据已知三个等式寻找规律,运用规律.5.观察下列各式及其变形过程:1231a a a ======. (1)按照此规律,写出第五个等式5a =_________.(2)按照此规律,若123n n S a a a a =++++,试用含n 的代数式表示n S .(3)若21x =,试求代数式4322412413x x x x +--+的值.【答案】(1;(2)1;(3)3. 【分析】(1)根据题目表达的规律续写即可;(2)用(1)中总结出的规律首先表示出n a ,然后计算n S 即可;(3)首先通过计算化简x ,再对原式进行配凑,分步代入计算.【详解】(1)121a a =-=,5a ∴= (2)用含字母n (n 为正整数)的等式表示(1)中的一般规律为n a ==, 123n n S a a a a ∴=++++1n =+- 1=. (3)2111S a =-=2111x ∴=,4322412413x x x x ∴+--+2222(1)14413x x x x =+--+222211)14413x x x =+--+221214413x x x =--+224215x x =---+22(1)15x =-++211)15=-++1215=-+3=. 【点睛】 本题主要考查了分母有理化,属于规律型问题,解题关键是找准一般规律转却计算.6.观察下列各式:3111111122122====+=+-⨯71111111662323====+=+-⨯13111111112123434====+=+-⨯ 请你根据上面三个等式提供的信息,解答下列问题:(1=________;(1n ≥,且n 为整数)(直接写出结果)(212019++ 【答案】(1)1111n n +-+;(2)201920192020. 【分析】 (1)观察所给三个等式即可发现规律;(2)根据以上规律可以进行原式变形,再进行计算即可得结果.【详解】解:(1)观察所给三个等式发现规律:1111n n =+-+;(1n ,且n 为整数) 故答案为:1111n n +-+; (2)根据以上规律可得:原式11111111(1)1()1()1()2233420192020=+-++-++-+⋯++- 1111111(1111)(1)2233420192020=+++⋯++-+-+-+⋯+- 12019(1)2020=+-201920192020=. 【点睛】本题考查了规律型-数字的变化类、二次根式的性质与化简,解决本题的关键是根据已知三个等式寻找规律,运用规律.7.观察下列等式:===== ....请解答下列问题:= ;(1(2)用含有n的代数式表示第n(3【答案】(1(2n为正整数);(3)【分析】(1(2(3)根据提示与(1)(2)的计算方法可得答案.【详解】==解:(1==(2n为正整数).(3==+2=【点睛】本题考查的是二次根式的除法,掌握分母有理化完成除法运算是解题的关键. 8.先观察下列等式,再回答问题:11111;1112=+-=+11111;2216=+-=+11111.33112=+-=+(1 (2)请按照上面各等式反映的规律,试写出用n 的式子表示的等式:(3)对任何实数a 可[a ]表示不超过a 的最大整数,如[]44,1==,计算:...的值. 【答案】(1)1120;(2)11(1)n n ++;(3)99. 【分析】(1)利用前面三个等式的规律求解;(2)利用前面三个等式的规律求解;(3)根据(2)中结论得到111111119912233499100=⨯+-+-+-+⋯+-,然后再求出最大整数即可. 【详解】解:(11111144120=+-=+;(2)第n 111111(1)n n n n =+-=+++;(3)...+=1111111126129900+++⋯+⎡⎤⎢⎥⎣⎦ =111111119912233499100⨯+-+-+-+⎡⎤⎢⎥⎣⋯-⎦+ =1991100⎡⎤+-⎢⎥⎣⎦ =9999100⎡⎤⎢⎥⎣⎦=99.【点睛】本题考查了二次根式的性质与化简:灵活应用二次根式的性质进行二次根式的计算.91=== (1=______. (2)从计算结果中找出规律,并将猜想到的规律用含有正整数a (1a ≥)的代数式表示出来.(3)利用这一规律计算下列式子的值:)1.【答案】(1;(2=a 是正整数,且1a ≥);(3)2017 【分析】(1)根据所给式子找出规律解答即可;(2)根据(1)中规律解答即可;(3)根据(2)中规律解答即可.【详解】(1)1===,=(2)由(1=a是正整数,且1a≥);(3)原式=)11⋅⋅⋅+=()11-+=2018-1=2017.【点睛】本题考查了数字类规律探究,以及二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.102111211-====--====--(1)从计算过程中找出规律,;用含有n(n是正整)的等式表示上述变化规律;(2)利用上述变化规律计算:...+++【答案】(1)21(2)9【分析】(1)按照题中给出的形式直接求解即可;(2)结合(1)中总结出的规律,逐项化简,再求和即可.【详解】解:(12 ===-=22=--故答案为:21(2)原式1)...=++++11019==-=【点睛】本题主要考查二次根式分母有理化,能够根据题目所给出的方法进行二次根式的分母有理化是解题关键.11.观察下列各式及其验证过程:====.====(1(2)针对上述各式反映的规律,写出用a(a为自然数,且2a≥)表示的等式,并进行验证;(3)用a(a为任意自然数,且2a≥)写出三次根式的类似规律,并进行验证.【答案】(1)(2)(3)a解析.【分析】(1)利用已知,======值;(2)由(1)根据二次根式的性质可以总结出一般规律;(3)利用已知可得出三次根式的类似规律,进而验证即可.【详解】解答:解:(1=== (2)由(1)中的规律可知3=22−1,8=32−1,15=42−1,=== 正确;(3)a =a 为任意自然数,且a ≥2),验证:a ==【点睛】 此题主要考查二次根式的性质与化简,善于发现题目数字之间的规律,是解题的关键.12.探索规律观察下列各式及验证过程:2n =时,有式①:2=;3n =时,有式②:3=式①验证:2====式②验证:3===()1针对上述式①、式②的规律,请写出4n =时的式子;()2请写出满足上述规律的用(n n 为任意自然数,且2)n ≥表示的等式,并加以验证.【答案】(1)4=(2)=【分析】通过对一些特殊式子进行整理、变形、观察、比较,归纳出一般规律.根据题意可看出【详解】()14∵4==()2=====【点睛】此题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.13.(1)研究规律:先观察几个具体的式子:32==-2173==-6213===12(2)寻找规律:=(1n≥且n为正整数)(3)请完成计算:【答案】(1)12;13;4134-;(2)111nn n+-+;(3)100110011002.【解析】【分析】(1)各式计算得到结果即可;(2)归纳总结得到一般性规律,写出即可;(3)原式各项利用得出的规律变形,计算即可求出值.【详解】解:(1321212 ===-;731623===-;13411234 ===-;(2111 nn n+=-+;(3)原式=21311002111001210001001 12231001100210021002 -+-+⋯+-=+-=.【点睛】此题考查了二次根式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.14.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n个等式:(n为正整数).(2+⋯+(3的大小.【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019===-=;==(3<,∴【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.15.观察下列各式及验证过程:式①:2=验证:2====式②:3=验证:3====(1)针对上述式①、式②的规律,请再写出一条按以上规律变化的式子;∵ 请写出满足上述规律的用n(n为任意自然数,且n≥2)表示的等式,并加以验证.【答案】(1)答案不唯一,如(2)=【解析】试题分析:(1)根据观察,可发现规律,根据规律,可得答案;(2)根据二次根式的性质,可得答案.试题解析:(1)4=(2)=====16.观察下列各式.====根据上述规律回答下列问题.(1)接着完成第⑤个等式:_____;n n≥的式子写出你发现的规律;(2)请用含(1)(3)证明(2)中的结论.=+(3)见解析【答案】(1=(2(n【分析】(1)当n=5==+(2(n(3)直接根据二次根式的化简即可证明.【详解】解:(1=(2(n =+(3=(n ==+ 【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.17===()1= ______ = ______ ;()2计算(写出计算过程); ()3请用含自然数()n n 1≥的代数式把你所发现的规律表示出来.【答案】(1)(2);(311n n =+≥(). 【解析】试题分析:(1)按二次根式的运算法则计算即可求得本题答案;(2)按二次根式的运算法则计算即可;(3)观察、分析可得当n 为自然数且n 1≥(1)n n =+≥. 试题解析:(1)==;==(2)原式===(3(1)n n =+≥.18===…(1=________=________; (2)第2019个式子是:________.(3)请用含自然数()1n n ≥的代数式把你所发现的规律表示出来.【答案】(1)(2=;(3(+1n = 【分析】 (1)根据题意的规律可直接进行解答;(2)由(1)及题意可直接求解;(3)由题意易得当自然数为n 1)(2)的规律可进行求解. 【详解】解:(1=====故答案为 (2)由(1)可得:第2019=;=;(3=====…可知第n (+1n =【点睛】本题主要考查二次根式的规律应用,熟练掌握二次根式的性质及运算是解题的关键.19.观察下列各式,发现规律:==…(1=,=;(2)计算(写出计算过程);(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.【答案】(1)(2(3)(n+1n≥1).【分析】(1)根据已知等式得出规律,写出所求结果即可;(2)利用二次根式性质计算得到结果即可;(3)归纳总结得到一般性规律,写出即可.【详解】=解:(1)根据题意得:=故答案为(2====;(3)归纳总结得:(1n =+(自然数n ≥1). 【点睛】 此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.20.(1)发现规律:特例1特例2特例3 特例4:______(填写一个符合上述运算特征的例子);(2)归纳猜想:如果n 为正整数,用含n 的式子表示上述的运算规律为:______;(3)证明猜想:(4)应用规律:①;②=(m ,n 均为正整数),则m +n 的值为______.【答案】(1=(2(1n =+;(3)见解析;(4)①②m +n =38 【分析】 (1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题; (4)①②根据(2)中的规律即可求解.【详解】解:(1==(2(1n =+,(1n =+;(3)证明:∵左边== ∵n 为正整数,∵n +1>0.∵左边=|n +1(n +1(1n =+,又∵右边=(n +1 ∵左边=右边.(1n =+;(4)故答案为:∵m +1=19,解得m =18,∵n =m +2=20,∵m +n =38.【点睛】本题考查规律型:数字的变化类,二次根式的混合运算,解答本题的关键是明确题意,根据已知等式总结一般规律并应用规律解题.。

综合复习与测试(计算化简求值100题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(人教版)

综合复习与测试(计算化简求值100题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(人教版)

综合复习与测试(1)(计算化简求值100题)(基础篇)(专项练习)【类型一】二次根式运算1. (1)-(2-2. 计算:(1(2)2+-+.3. 计算:(1++(2)()()(2 11-+-÷4. 计算(1+(2+5. 计算:(1)--.(2)2022 3(1)-+-.6. 计算:(1-+;(2)⨯÷7. 计算:(1)02(3----(2(÷8. 计算:(1-;(2--.9. 计算:(1(2)21)-10. 计算.(1+.(22)(2+-.11. 计算:(12-+;(2)(23+.12. 计算:(1;(2).13. 计算:(1)))20111122π-⎛⎫+---+-- ⎪⎝⎭;(2)1324-.14. 计算:(1)-+(2))32+.15. 计算:(10(3)π-;(2+16. 计算:(1);(2.17. 计算:(1)0()20022π+--;(2)(+-.18. 计算:(1+;(2)202221(3)(6)--+-.19. 计算:(112-;(2)()2771+-+-.20. 计算(1)(-;(2)--.21. 计算:(1⎛-+÷ ⎝(2)((2321+-++22. 计算:(121)-(220220|2|(1)(3)π--+-23. 计算:(1)2||1|5)---++-(2-÷++24. (10(3)|32|π----+;(2)2118844-⨯-÷25. 计算:(1-+;(2+26. 计算(1(2)27. 计算:(1-(2)()022532--+.28. 计算:(1()23--(2)-29. 计算:(1)2+-(2)(222++30. 计算:(1(041-;(2+-31. 计算:(1;(2)((.32. 计算:(1) +(2) (-+33. 计算:(1(2)(+34. 计算(1)(235. 计算:(1;(2))21-.36. 计算:(1)(2)⎛- ⎝37. 计算:(1-;(2.38. 计算:(1+(2)39. 计算:(1+(2(101220233-⎛⎫--+ ⎪⎝⎭40. 计算:(1);(2.41. 计算;(1)-(2)22-42. 计算下列各式.(1)(+-;(2)2-.43. 化简求值:(1)-+⨯;(2)2-÷44. 计算:(1-+(2+45. 计算:(1)+(2))(13+-.46. 计算:(1;(2)()031-+--47. 计算:(1)+;(2)2+.48. 计算:(1)(2+.49. 计算:(1)2(2-50. 计算:(1)1|2|+-;(2|1-.【类型二】二次根式的化简求值51. 若,x y 均为实数,且满足91y x +-=,求:2++52. 先化简,再求值:21211x x ++-,其中1x =+.53. 当2x =-54. ,其中5x =,15y =.55. 已知6x =+,6y =-,求下列各式的值:(1)222x xy y -+(2)22x y -.56. 先化简,再求值:2341211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中1x =-.57. 先化简,再求值:其中222111a aa a a +⎛⎫+÷ ⎪+-+⎝⎭,其中1a =+.58. 已知x =, 1y =,求下列各式的值:(1)222x xy y ++,(2)11x y59. 已知a =+,b =222a ab b -+的值.60. 已知,11a b =+=(2)()()11a b ++61. 先化简,再求值:23139x x x ⎛⎫-÷ ⎪+-⎝⎭,其中3x =+.62. 先化简,再求值:()()()23a b a b ab ab a +---÷,其中a =13b =.63. 先化简,再求值:221111x x x -⎛⎫÷- ⎪--⎝⎭,其中1x =-64. (1)先化简,再求值:2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中1x =.(2)解不等式组:()3122235x x x x -⎧+>⎪⎨⎪--≥⎩①②,并把它们的解集在数轴上表示出来.65. 先化简,再求值:21111x x x ⎛⎫÷- ⎪-+⎝⎭,其中1x =.66.已知x y ==(1)222x xy y -+;(2)y x x y+67.已知2a =+,2b =-,求下列代数式的值:(1)222a ab b -+;(2)22a b -.68.已知2x =,2y =+,求下列代数式的值:(1)22x xy y ++;(2)22x y xy +69.已知22a b ==,求下列式子的值:(2)22a b ab ++70. 已知3x =,3y =,求代数式224x xy y ++的值.71. 已知x =y =(1)求x y +的值;(2)求223x xy y ++的值.72. 若1a =- ,1b =+求下列各式的值:(1)22a b -;(2)222a b ab ++.73. 已知x =y =,试求代数式22252x xy y -+的值.74. 12x =-,8y =-.75. 先化简,再求值:()()22a b b a b -+-,其中a =.76. 先化简,再求值:2231x x x x x +-⎛⎫-÷ ⎪⎝⎭,其中1x =+.77. 已知:2a =+,2b =-(1)直接写出:ab =________,a b +=________;(278. 已知a =,b =,求下列各式的值.(1)a b +和ab ;(2)22a ab b ++.79.先化简,再求值:2221122x x x x x x --⎛⎫--÷ ⎪++⎝⎭,其中x =.80. ()22y x +-=.(1)求a b -的值;(2)求202112x y ⎛⎫-+ ⎪⎝⎭的值.81. 先化简,再求值:221211x x x x -+⎛⎫-÷ ⎪⎝⎭,其中1x =+.82. 已知 2x =+, 2y =(1)求22353x xy y ++的值.(2+的值.83. 先化简,再求值:2111222x x x x x -⎛⎫+÷ ⎪---⎝⎭,其中x =.84. 先化简,再求值:22112()2b a b a b a ab b -÷-+++,其中1,1a b =+=-.85. 化简再求值:若x ,y 是实数,且4y =+,求23⎛- ⎝的值.86. 化简求值:(1)已知x y ==求22x xy y ++的值.(2)先化简,再求值222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭其中3x y ==-87. 先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中a =.88. 先化简,再求值:22111x x x x +-⎛⎫-÷ ⎪⎝⎭,其中1x =+.89. 先化简,再求值:2344214x x x x x ++⎛⎫÷+ ⎪-⎝⎭,其中2x =+.90. 已知22x y ==+.(1)求223x xy y ++的值(2)求y x x y-的值91. 某同学在做这样一道题:“当=a ∙时,试求2”所求得代数式的值为32,该同学的答案是否正确?请说明理由.92. 先化简,再求值:2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭,其中2a =+.93. 先化简,再求值:22295121693x x x x x x ⎛⎫--+÷- ⎪+++⎝⎭,其中x 3=+.94. 在解决问题“已知a =2361a a --的值”时,小明是这样分析与解答的:∵1a ===+,∴1a -=∴()212a -=,∴2212a a -+=,∴221a a -=,∴2363a a -=,∴23612a a --=.请你根据小明的分析过程,解决如下问题.(1)根据小明的解题过程,化简:m ==______;(2)若a =22121a a -+的值;(3)利用(1)中求得的m 的值,求((265m m -+--的值.95. 先化简,再求值:22121222a a a a a a ⎛⎫--÷ ⎪---⎝⎭+,其中196. 先化简,再求值:2(1)11a a a a a --÷--,其中a =97. 先化简,再求值:((3)a a a a ---,其中a =.98. 先化简,再求值:2221(1)x x x x x-+÷--,其中x =99. 先化简,再求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中1m =+.100.先化简,再求值:22242442x x x x x x --÷+++,其中x =.综合复习与测试(1)(计算化简求值100题)(基础篇)(专项练习)【类型一】二次根式运算【1题答案】【答案】(1)12-;(2)1-【解析】【分析】(1)利用乘法分配律进行计算即可;(2)先化简再按照二次根式运算法则计算即可.【详解】(1)-=-=-12(2-==1【点睛】此题考查了二次根式的混合运算,熟练掌握运算法则和顺序是解题的关键.【2题答案】【答案】(1(2)8【解析】【分析】(1)先化简每一个二次根式,然后再合并即可;(2)先利用平方差公式进行计算,然后再进行加减运算即可【小问1详解】==;【小问2详解】解:2+327=-+=.8【点睛】本题考查了二次根式的混合运算,正确的计算是解题的关键.【3题答案】【答案】(1-;(2)19-.【解析】【分析】(1)化简二次根式,然后按照二次根式的加减运算法则进行计算即可;(2)先运用平方差公式、二次根式的除法法则、积的乘方进行去括号、化简,然后进行计算即可.【小问1详解】++-=+-=-;【小问2详解】()()(2-+-÷11(22=---118=--⨯-1213418=-.19【点睛】本题考查了平方差公式,二次根式的化简和计算;正确化简二次根式是解题的关键.【4题答案】【答案】(1)(2)【解析】【分析】(1)根据二次根式的乘法公式和合并同类二次根式法则计算即可;(2)二次根式的乘法公式和合并同类二次根式法则计算即可.【小问1详解】-+=【小问2详解】+2⨯=63【点睛】此题考查的是二次根式的加减运算,掌握二次根式的乘法公式:==和合并同类二次根式法则是解决此题的关键.【5题答案】【答案】(1)(2)π【解析】【分析】(1)去括号、合并同类二次根式即可得出结果;(2)根据绝对值的意义、算术平方根的性质、立方根的意义、乘方的意义进行计算即可得出结果.【小问1详解】--=-【小问2详解】20223(1)-+-3531π=-+-+π=【点睛】本题考查了实数的运算,熟练掌握绝对值的意义、算术平方根的性质、立方根的意义、乘方的意义及同类二次根式的定义是解题的关键.【6题答案】【答案】(1)0;(2)6.【解析】【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先将除变为乘,然后根据二次根式的乘法法则进行计算即可.【小问1详解】-+==-0=【小问2详解】÷=655⨯=6=【点睛】本题考查了二次根式的混合运算;熟练掌握二次根式的混合运算是解题的关键.【7题答案】【答案】(1)(2)2-【解析】【分析】(1)根据绝对值的性质,非零数的零次幂的计算方法,有理数的加减运算法则即可求解;(2)根据二次根式的性质化简,二次根式的混合运算法则,即可求解.【小问1详解】解:02(3---12)1=---=【小问2详解】(+⎛=++ ⎝2=+2=-.【点睛】本题主要考查实数的混合运算,掌握绝对值的性质,非零数的零次幂,二次根式的性质,二次根式的混合法则是解题的关键.【8题答案】【答案】(1)5-;(2).【解析】【分析】(1)先利用算术平方根对二次根式化简,然后利用有理数的加减混合运算法则进行计算按即可;(2)先去括号,然后合并同类二次根式即可.【小问1详解】-()=-+243=-27-;=5【小问2详解】--=+=【点睛】本题主要考查二次根式化简、二次根式和有理数的加减混合运算法则;熟练掌握运算法则,正确计算是解题的关键.【9题答案】【答案】(1)(2)5-【解析】【分析】(1)根据二次根式的乘除法运算法则,先化简二次根式,再计算;(2)根据平方差公式,完全平方公式先展开,再根据实数的运算法则即可求解.【小问1详解】==.【小问2详解】解:21)--22(51)=---+16=-+5=-.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的化简,乘法公式,二次根式的混合运算是解题的关键.【10题答案】【答案】(1(2)0【解析】【分析】(1)先根据二次根式的性质化简,再进行加减运算;(2)根据二次根式的混合运算进行化简计算即可.【小问1详解】+6+-=+=-=【小问2详解】2)(2+(46)=+-22=-0=.【点睛】本题考查二次根式的混合运算,正确计算是解题的关键.【11题答案】【答案】(1)2-(2)2+【解析】【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先用乘法分配律去括号化简,再合并同类二次根式即可.【小问1详解】原式13=-+,=2【小问2详解】原式64=+-,2=+【点睛】本题考查二次根式的计算,解题的关键是掌握二次根式的运算法则.【12题答案】【答案】(1(2)1【解析】【分析】(1)先化简二次根式,再根据二次根式的加减法即可求解;(2)根据乘法分配律,再根据二次根式的乘法,最后根据二次根式的加减法即可求解.【小问1详解】=-=+==.【小问2详解】解:===32=-1=.【点睛】本题主要考查二次根式的加减乘除的混合运算,熟练掌握二次根式的化简,加减,乘除法运算法则是解题的关键.【13题答案】【答案】(12(2【解析】【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据二次根式的混合运算法则计算即可.【小问1详解】解:原式221411=----5142=---2=-;【小问2详解】解:原式===.【点睛】本题考查二次根式的混合运算,平方差公式,零指数幂,负整数指数幂,正确计算是解题的关键.【14题答案】【答案】(1)(2)3-+【解析】【分析】(1)先把各二次根式化为最简二次根式,然后再合并即可.(2)利用多项式乘法展开,然后再合并即可.【小问1详解】解:原式=-=【小问2详解】解:原式26363=+--=+-=-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事倍功半.【15题答案】【答案】(1)2-(2)【解析】【分析】(1)直接利用二次根式的性质化简、零指数幂的性质化简,进而计算得出答案;(2)直接利用二次根式的性质、二次根式的乘法运算法则化简,进而得出答案.【小问1详解】=原式11=-=--11=-;2【小问2详解】原式3=+-=-=【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.【16题答案】【答案】(1(2)4+【解析】【分析】(1)根据二次根式的化简,加减法即可求解;(2)化简二次根式,根据二次根式的乘除法,加减法即可求解.【小问1详解】解:=+-=-=【小问2详解】=+=+4=+4=+.【点睛】本题主要考查二次根式的化简,加减乘除混合运算,掌握二次根式的化简,二次根式的混合运算法则是解题的关键.【17题答案】【答案】(1)3+(2)0【解析】【分析】(1)根据零指数幂、二次根式的加减运算计算即可;(2)运用平方差公式、二次根式的混合运算计算即可.【小问1详解】原式=123++=+【小问2详解】原式=7340--=.【点睛】本题考查实数的混合运算,二次根式的混合运算,零指数幂,正确计算是解题的关键.【18题答案】【答案】(1)2 3(2)38【解析】【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【小问1详解】2=3+(3)+3-2=3;【小问2详解】解:202221(3)(6)-+-+-149(6)(2)=-+⨯+-÷-1363=-++38=.【点睛】本题主要考查实数的混合运算,二次根式的运算,掌握相关运算法则是解题的关键.【19题答案】【答案】(1)4-(2)5-【解析】【分析】(1)先算二次根式的乘法,再算加减,即可解答;(2)利用完全平方公式,平方差公式,进行计算即可解答;【小问1详解】解:原式=1432-+⨯=4【小问2详解】解:()2771+-+(222271=-+-+494831=-+-+5=-【点睛】本题考查了二次根式的混合运算,完全平方公式,平方差公式,准确熟练地进行计算是解题的关键.【20题答案】【答案】(1)(2【解析】【分析】(1)先化简二次根式,再计算二次根式的减法,然后计算二次根式的除法即可得;(2)先分母有理化,再化简二次根式,然后再计算二次根式的加减法即可得.【小问1详解】⨯-⨯解:原式=(23=(-===;【小问2详解】解:原式=-+=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题关键.【21题答案】【答案】(1)(2)7+【解析】【分析】(1)先化简,然后去括号,再合并同类二次根式即可.(2)利用完全平方公式,然后去括号,再合并同类二次根式和同类项即可.【小问1详解】⎛-+÷ ⎝132=⨯-=-=【小问2详解】((2321+-++412=-+++7=+【点睛】本题考查了二次根式的性质与化简,混合运算,以及完全平方公式的应用,熟练运用二次根式的混合运算是解题的关键.【22题答案】【答案】(13(2)2【解析】【分析】(1)利用完全平方公式进行二次根式的运算即可.(2)先化简,然后去括号,在合并同类二次根式和同类项即可.【小问1详解】()21=--+原式213=-+-=-【小问2详解】211=+--+原式2112=+--+=-【点睛】本题考查了二次根式的混合运算、零指数幂.【23题答案】【答案】(1)2-(2)1-+【解析】【分析】(1)先算绝对值,去括号,再算加减即可.(2)先进行化简,二次根式的除法运算,二次根式的乘法运算,最后算加减即可.【小问1详解】原式)215=---+-215=+-2.=-【小问2详解】原式32=+-1.=-【点睛】本题主要考查了二次根式混合运算,熟练掌握相应的运算法则是解此题的关键.【24题答案】【答案】(1)3;(2)4【解析】【分析】(1)利用平方根的性质化简,再结合零指数幂的性质以及绝对值的性质化简即可求出答案.(2)利用平方根的性质化简,再根据实数的运算法则即可解答.【详解】解:(10(3)|32|π---+原式51|1|=---511=--3=(2)2118844-⨯-÷原式1188442=-⨯-⨯+⨯8416=--+4=【点睛】本题主要考查了实数的运算,熟练掌握运算法则是解此题的关键.【25题答案】【答案】(1)0(2【解析】【分析】(1)首先化简二次根式,然后再计算加减即可;(2)先算乘法,然后再计算加减即可.【小问1详解】-+==0【小问2详解】=【点睛】此题主要考查了二次根式的混合运算,关键是掌握运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.【26题答案】【答案】(1)+(2)6【解析】【分析】(1)先化简各式,再合并同类二次根式;(2)先化简各式,再进行加减运算.【小问1详解】解:原式=++;【小问2详解】=-+原式523=.6【点睛】本题考查二次根式的性质,二次根式的运算.熟练掌握二次根式的性质,正确的计算,是解题的关键.【27题答案】【答案】(1)-(2)5【解析】【分析】(1)直接利用二次根式的乘法运算法则化简,再化简二次根式,最后利用二次根式的加减运算法则计算得出答案;(2)先计算二次根式、零次幂、负整数指数幂和乘方,再计算加减.【小问1详解】=-+=-;【小问2详解】解:()022532--+-+111499=+-+5=.【点睛】此题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.【28题答案】【答案】(1)6-(2)【解析】【分析】(1)分别计算算术平方根,乘方运算,立方根的运算,再合并即可;(2)先化简绝对值,再合并同类二次根式即可.【小问1详解】()23-+491=--6=-;【小问2详解】==+.【点睛】本题考查的是算术平方根,立方根的含义,化简绝对值,实数的混合运算,二次根式的加减运算,掌握以上基础运算的运算法则是解本题的关键.【29题答案】【答案】(1)5(2)8-【解析】【分析】(1)先算平方和开方,计算乘法,再合并;(2)利用完全平方公式和平方差公式展开,再合并计算.【小问1详解】解:2+53=+-533=+-5=;【小问2详解】(222++22522=+-+-5243=+-+-8=-.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键.【30题答案】【答案】(1(2)2【解析】【分析】(1)先算二次根式乘法和零指数幂,再算二次根式的减法即可;(2)先算二次根式乘除法,再化简,然后计算二次根式的加减法即可.【小问1详解】(0411===【小问2详解】-21=+-+=+-+2132=.2【点睛】本题考查二次根式的混合运算、零指数幂,熟练掌握运算法则是解答本题的关键.【31题答案】【答案】(1)(2)7【解析】【分析】(1)直接利用二次根式的加减运算法则计算即可;(2)先利用二次根式的性质化简,然后计算减法即可.【小问1详解】-+=-=【小问2详解】解:((+.(=2-=203=7【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.【32题答案】【答案】(1)(2)3【解析】【分析】(1)先化简二次根式,再合并即可;(2)利用平方差计算即可.【小问1详解】+=-+=【小问2详解】(-+((22=-=-2724=3【点睛】本题考查二次根式的运算、平方差公式,解题的关键是掌握二次根式的性质.【33题答案】【答案】(1)-(2)6【解析】【分析】(1)先化简各数,计算乘法,分母有理化,再合并;(2)利用平方差公式变形,再计算.【小问1详解】==【小问2详解】(+-((22=-=-12186=-【点睛】本题考查了二次根式的混合运算,解题的关键是准确化简各数.【34题答案】【答案】(1)(2)【解析】【分析】(1)先算乘法,再算除法;(2)把二次根式化为最简二次根式后合并即可.【小问1详解】解:==;【小问2详解】=-=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【35题答案】【答案】(1)152(2)3【解析】【分析】(1)首先计算开平方和开立方,然后从左向右依次计算即可.(2)首先化简绝对值,再去括号,然后从左向右依次计算即可.【小问1详解】解:原式1232=++152=【小问2详解】解:原式25=-+3=【点睛】此题主要考查了实数的运算,平方根与立方根的混合运算,熟练掌握平方根的性质以及正确计算是解题的关键.【36题答案】【答案】(1)(2)49【解析】【分析】(1)先利用乘法分配律计算,最后计算加减可得;(2)先算除法,再化简,最后计算加减可得.【小问1详解】解:-=+-=【小问2详解】解:⎛- ⎝=-=-21432=⨯-⨯-3934=9【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序与运算法则.【37题答案】【答案】(1(2)【解析】【分析】(1)先化简,然后合并同类二次根式即可;(2)先算乘除法,再算减法即可.【小问1详解】--1=-⨯-3=--=【小问2详解】=-=-=.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解答本题的关键.【38题答案】【答案】(1)3-(2)5【解析】【分析】(1)先将原式中的二次根式化为最简二次根式,再进行加减运算;(2)先利用二次根式的乘法和除法运算法则将原式化简,再进行加减运算.【小问1详解】=+3=-3【小问2详解】+÷12=⨯4=+32=.5【点睛】本题考查二次根式的混合运算.掌握相应在的运算法则是解题的关键.【39题答案】【答案】(1)+(2)【解析】【分析】(1)先将二次根式化简,再合并同类二次根式即可;(2)化简二次根式,再根据负整数指数幂,去绝对值,零指数幂的运算法则计算各项,最后进行加减运算.【小问1详解】解:原式=++=+【小问2详解】解:原式321=-+-+=.【点睛】本题考查了二次根式的化简,二次根式的加减运算,负整数指数幂,去绝对值,零指数幂,熟练掌握运算法则及运算顺序是解题的关键.【40题答案】【答案】(1)1 (2)6【解析】【分析】(1)根据平方差公式可进行求解;(2)二次根式的除法可进行求解.【小问1详解】解:原式221=-=;【小问2详解】===.解:原式6【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算是解题的关键.【41题答案】【答案】(1)-(2)3【解析】【分析】(1)先化简二次根式,再合并即可解答;(2)运用完全平方公式和二次根式的乘法进行计算,再合并即可解答.【小问1详解】解:=-=【小问2详解】解:22+5210=-++-3=-.【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式混合运算的法则是解题的关键.【42题答案】【答案】(1)6(2)2--【解析】【分析】(1)先计算二次根式的乘法,再合并同类二次根式即可;;(2)先利用平方差公式和完全平方公式计算乘法和乘方,再合并同类二次根式即可.【小问1详解】(-6=+-6=.【小问2详解】2-2222⎡⎤=--++⎢⎥⎣⎦5232=----2=--【点睛】本题主要考查了二次根式的混合运算,掌握运算法则和利用乘法公式是解题的关键.【43题答案】【答案】(1)(2)13【解析】【分析】(1)利用分配律,根据二次根式的乘法进行计算即可求解.(2)根据二次根式的除法进行计算即可求解.【小问1详解】解:⨯==-;【小问2详解】解:2÷=21=-31=.3【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.【44题答案】【答案】(1(2)【解析】【分析】先根据二次根式的性质化简二次根式,然后合并同类二次根式即可.【小问1详解】-+=-+=【小问2详解】==【点睛】本题考查了二次根式的加减,解题的关键是根据二次根式的性质正确化简二次根式.【45题答案】【答案】(1)-(2)2【解析】【分析】(1)化简二次根式后,合并同类二次根式即可;(2)先计算乘法后,再进行加减运算即可.【小问1详解】解:原式=+=【小问2详解】解:原式532=-+--=-【点睛】此题考查了二次根式的运算,熟练掌握二次根式的运算法则是解题的关键.【46题答案】-【答案】(1)8(2)3【解析】【分析】(1)首先计算开平方和开立方,然后计算除法,最后计算减法,求出算式的值即可;(2)首先计算零指数幂、开平方、开立方和绝对值,然后从左往右依次计算,求出算式的值即可.【小问1详解】()935=÷--35=--8=-;【小问2详解】解:()031-+-+3132=+-+3=.【点睛】本题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.【47题答案】【答案】(1)(2)10-【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【小问1详解】解:+=-+=;【小问2详解】解:2+5353=-++-10=-【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【48题答案】【答案】(1)(2)4+【解析】【分析】(1)先逐项化简,再合并同类二次根式即可;(2)先根据二次根式的乘法和除法法则计算,再合并同类二次根式.【小问1详解】62=+⨯==【小问2详解】==+4【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.【49题答案】【答案】(1)5 (2)3-+【解析】【分析】(1)先算乘方,开方,再算加减即可;(2)先算开方,去绝对的值符号,再算加减即可.【小问1详解】解:2+94=-5=;【小问2详解】++12=--++3=-+【点睛】本题主要考查了实数的混合运算,二次根式加减混合运算,熟练掌握相关运算法则是解题的关键.【50题答案】【答案】(1)5(2)3【解析】【分析】(1)直接利用二次根式的乘法、绝对值的性质化简,再利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的性质以及立方根的性质分别化简,再利用二次根式的加减运算法则计算得出答案.【小问1详解】)12|++32=5=;【小问2详解】|1|-371=-+-+-3=.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.【类型二】二次根式的化简求值【51题答案】【答案】3【解析】【分析】先根据二次根式有意义的条件得出x 的值,继而求得y 的值,将式子2++x 、y 的值代入即可得到最后结果.【详解】4040x x -≥⎧⎨-≥⎩,解得:4x =, 解得:13y =,2++=++,=+,代入结果3=.【点睛】本题主要考查二次根式有意义的条件和二次根式的化简,二次根式被开方数必须是非负数是解答本题的关键.【52题答案】【答案】11x -【解析】【分析】通分后进行分式加法计算,然后代入x 求值即可.【详解】解:原式()()()()121111x x x x x -=++-+-()()111x x x +=+-11x =-,当1x =+时,原式==.【点睛】本题考查分式的化简求值,解题关键是熟知分式加法的计算法则.【53题答案】【答案】1【解析】【分析】根据二次分式的性质即可求解.【详解】解:当2x =-时,1==.【点睛】本题考查了二次分式,解题的关键是熟练运用二次根式的性质进行求解.【54题答案】【答案】-【解析】【分析】根据分母有理化和完全平方公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.===-,当5x =,15y =时,原式=-=【点睛】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.【55题答案】【答案】(1)144(2)【解析】【分析】(1)先计算x y -,然后根据完全平方公式因式分解,然后代入即可求解;(2)计算,x y x y +-,然后根据平方差公式因式分解,代入进行计算即可求解.【小问1详解】解:∵6x =+,6y =-,∴)6612x y -=--=,∴222x xy y -+()2212144x y =-==;【小问2详解】解:∵6x =+,6y =-,∴)6612x y -=--=,66x y +=+-=,∴()()2212x y x y x y -=+-=⨯=.【点睛】本题考查了二次根式的混合运算,公式法因式分解,熟练掌握二次根式的运算法则是解题的关键.【56题答案】【答案】11x +【解析】【分析】化简时先算括号,再算除法,化为最简分式后,将x 的值代入计算即可.【详解】解:2341211x x x x -⎛⎫÷- ⎪+++⎝⎭()2314111x x x x x -+⎛⎫=÷- ⎪++⎝⎭+()23311x x x x --=÷++()23131x x x x -+=⨯-+11x =+,当1x =-时,原式11x ===+【点睛】本题考查分式的化简求值.熟练掌握分式的运算法则,将结果化为最简分式是解题的关键.本题还考查了二次根式的分母有理化,掌握分母有理化的方法是解题的关键.【57题答案】【答案】31a -【解析】【分析】先对分式进行化简,然后代值求解即可.【详解】解:原式()()()()22211111a a a a a a a a⎡⎤-++=+⨯⎢⎥+-+-⎣⎦()()3111a a a a a+=⨯+-31a =-;∵1a =,∴31a ==-.【点睛】本题主要考查分式的化简求值及分母有理化,熟练掌握分式的化简求值及分母有理化是解题的关键.【58题答案】【答案】(1)12(2)-1【解析】【分析】(1)将所求式子因式分解得到222)2(x xy y x y =+++,再将已知代入即可;。

人教版 八年级数学下册二次根式、勾股定理 综合测试卷 (含答案解析)

 人教版 八年级数学下册二次根式、勾股定理 综合测试卷 (含答案解析)
20.(1)已知y= ﹣ +8x,求 的平方根.
(2)当﹣4<x<1时,化简 ﹣2 .
21.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?
22.综合题
(1)试比较 与 的大小;
(2)你能比较 与 的大小吗?其中k为正整数.
A. B. C. D.
2.若式子 在实数范围内有意义,则x的取值范围是( )
A. x>1 B. x<1 C. x≥1 D. x≤1
3.下列变形中,正确的是( )
A.(2 )2=2×3=6 B.
C. D.
4.下列组合哪个不是勾股数()
A.30,40,50 B.7,24,25 C.5,12,13 D.1,2,3
【解析】【分析】(1)先根据二次根式有意义的条件可得x的值,进一步得到y的值,代入 得到它的平方根;
(2)由于﹣4<x<1,根据完全平方公式和二次根式的性质得到 ﹣2 =|x+4|﹣2|x﹣1|,再去绝对值化简即可.
21.【答案】解:不对.
理由:如图,依题意可知
AB=25(米),AO=24(米),∠O=90°,
22.【答案】(1)解: ,

故 <
(2)解: ,

故 <
【考点】二次根式的性质与化简,二次根式的乘除法
【解析】【分析】(1)比较两个二次根式的大小,用分母有理化的法则先将其化为最简二次根式,再比较大小即可;(2)方法同(1).
23.【答案】解:如图,AB=28 ,∠P=45°,∠PAC=90°,∠ABQ=45°,∴∠ACP=45°,
5.下列二次根式中,与 是同类二次根式的是()
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单项选择题(本大题共有15小题,每小题3分,共45分)1、关于的一次函数的图象可能正确的是( )A.B.C.D.2、下列各式中,正确的是( )A.B.C.D.3、下列说法中,正确的是()A. 两点之间线段最短B. 已知直线、、,且,,那么与相交C. 过一点有且只有一条直线与已知直线平行D. 在同一平面内,两条线段不平行,就一定相交4、若等于它的倒数,则分式的值为( )A.B.C. 或D.5、在图形中,由图()仅通过平移得到的是( ).A.B.C.D.6、某企业在生产甲、乙两种节能产品时,需用、两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润(万元)与销售量(吨)之间的函数关系如图所示.已知该企业生产了甲种产品吨和乙种产品吨,共用去原料吨.若为了保证生产的这批甲种、乙种产品售后的总利润不少于万元,则至少要用原料()A. 吨B. 吨C. 吨D. 吨7、不等式组的解集在数轴上表示为( )A.B.C.D.8、在直角坐标平面内,已知在轴与直线之间有一点,如果该点关于直线的对称点的坐标为,那么的值为( )A.B.C.D.9、如图,在平面中直角坐标系中,将沿直线平移后,点的纵坐标为,则点平移的距离为( )A.B.C.D.10、如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是( )A. ①B. ②C. ③D. ④11、若与的关系式为,当时,的值为( )A.B.C.D.12、在某次实验中,测得两个变量和之间的组对应数据如下表:则与之间的关系最接近于下列各关系式中的( )A.B.C.D.13、如图,平行四边形的对角线和相交于点,与面积相等的三角形(不包括自身)的个数是( )A.B.C.D.14、与方程组有相同解的方程组是( )A.B.C.D.15、定义为不超过的最大整数,如,,.对于任意实数,下列式子中错误的是( )A. (为整数)B.C.D. (为整数)二、填空题(本大题共有5小题,每小题5分,共25分)16、在函数中,自变量的取值范围是_______ .17、有下列现象:①水平运输带上砖块的运动;②高楼电梯上上下下迎接乘客;③健身做呼啦圈运动;④火车飞驰在一段平直的铁轨上;⑤沸水中气泡的运动.以上属于平移的是________.18、已知函数,当时,则_______.19、若点在正比例函数的图像上,则此函数的表达式为.20、已知的周长是,斜边上的中线长是,则.(若结果为分数,写成a/b形式,如:1/2)三、解答题(本大题共有3小题,每小题10分,共30分)21、解不等式组,把解集表示在数轴上,并求出不等式组的整数解.22、已知直线与的交点为,试确定方程组的解和的值.23、化简:.总复习专项测试题(六) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、关于的一次函数的图象可能正确的是( )A.B.C.D.【答案】B【解析】解:令,则函数的图象与轴交于点,,图象与轴的交点在轴的正半轴上.故正确答案为:.2、下列各式中,正确的是( )A.B.C.D.【答案】B【解析】解:;故此选项错误;;故此选项正确;;故此选项错误;;故此选项错误.故正确答案为:3、下列说法中,正确的是()A. 两点之间线段最短B. 已知直线、、,且,,那么与相交C. 过一点有且只有一条直线与已知直线平行D. 在同一平面内,两条线段不平行,就一定相交【答案】A【解析】解:线段有长度,不平行也可以不相交.故“在同一平面内,两条线段不平行,就一定相交.”错误;如果点在直线上,则没有过点与已知直线平行的直线.故“过一点有且只有一条直线与已知直线平行.”错误;根据平行线的传递性,,,则与平行.故“已知直线、、,且,,那么与相交 ”错误;两点之间线段最短.正确.故答案为:两点之间线段最短.4、若等于它的倒数,则分式的值为( )A.B.C. 或D.【答案】C【解析】解:∵等于它的倒数,∴,原式=•,当时,原式;当时,原式.故正确答案为:或.5、在图形中,由图()仅通过平移得到的是( ).A.B.C.D.【答案】C【解析】解:平移变换不改变图形的形状、大小和方向.故正确答案为:.6、某企业在生产甲、乙两种节能产品时,需用、两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润(万元)与销售量(吨)之间的函数关系如图所示.已知该企业生产了甲种产品吨和乙种产品吨,共用去原料吨.若为了保证生产的这批甲种、乙种产品售后的总利润不少于万元,则至少要用原料()A. 吨B. 吨C. 吨D. 吨【答案】D【解析】解:∵生产吨甲种产品需用原料吨,∴生产甲种产品吨用去原料吨.∵生产吨乙种产品需用原料吨,∴生产吨乙种产品用去原料吨.又∵生产了甲种产品吨和乙种产品吨,共用去原料吨,∴.∴与满足的关系式为:;由图象得,甲乙产品所获利润同销量的函数关系分别为,.∵,∴,∴甲乙产品所获利润同销量的函数关系分别为,,∵为保证生产的这批甲种、乙种产品售后的总利润不少于万元,∴,∴.设生产甲种产品吨,乙种产品y吨需要用原料吨,则.∴,∵,∴.即.答:至少要用原料吨.7、不等式组的解集在数轴上表示为( )A.B.C.D.【答案】B【解析】解:由,得,由,得,故不等式组的解集为,在数轴上表示为:8、在直角坐标平面内,已知在轴与直线之间有一点,如果该点关于直线的对称点的坐标为,那么的值为( )A.B.C.D.【答案】D【解析】解:该点关于直线的对称点的坐标为,对称点到直线的距离为,点到直线的距离为,.9、如图,在平面中直角坐标系中,将沿直线平移后,点的纵坐标为,则点平移的距离为( )A.B.C.D.【答案】D【解析】解:点的坐标为,沿轴向右平移后得到,点的对应点在直线上,又的纵坐标为,,解得,即的横坐标为,到的距离为,故点与其对应点之间的距离为.10、如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是( )A. ①B. ②C. ③D. ④【答案】B【解析】解:根据中心对称图形的定义,在②处涂黑可使图形为中心对称图形.11、若与的关系式为,当时,的值为( )A.B.C.D.【答案】C【解析】解:由题意得:.12、在某次实验中,测得两个变量和之间的组对应数据如下表:则与之间的关系最接近于下列各关系式中的( )A.B.C.D.【答案】B【解析】解:当时,13、如图,平行四边形的对角线和相交于点,与面积相等的三角形(不包括自身)的个数是( )A.B.C.D.【答案】C【解析】解:在平行四边形中,,,,与面积相等的三角形是个.14、与方程组有相同解的方程组是( )A.B.C.D.【答案】C【解析】由,解得;因为,所以不与方程组有相同解;因为,,所以不与方程组有相同解;因为,所以不与方程组有相同解;因为,,所以与方程组有相同解.15、定义为不超过的最大整数,如,,.对于任意实数,下列式子中错误的是( )A. (为整数)B.C.D. (为整数)【答案】C【解析】解:为不超过的最大整数,当是整数时,,成立;为不超过的最大整数,,成立;例如,,,,,不成立;(为整数),成立.故正确答案是:二、填空题(本大题共有5小题,每小题5分,共25分)16、在函数中,自变量的取值范围是_______ .【答案】【解析】解:根据题意得到:,解得.故答案为:.17、有下列现象:①水平运输带上砖块的运动;②高楼电梯上上下下迎接乘客;③健身做呼啦圈运动;④火车飞驰在一段平直的铁轨上;⑤沸水中气泡的运动.以上属于平移的是________.【答案】①②④【解析】解:①水平运输带上砖块的运动,是平移,故此选项正确;②高楼电梯上上下下迎接乘客,是平移,故此选项正确;③健身做呼啦圈运动,是旋转,故此选项错误;④火车飞驰在一段平直的铁轨上,是平移,故此选项正确;⑤沸水中气泡的运动,是旋转,故此选项错误.故答案为:①②④.18、已知函数,当时,则_______.【答案】【解析】解:将代入函数,则有.19、若点在正比例函数的图像上,则此函数的表达式为.【答案】3【解析】解:因为点在函数图象上,所以有,所以,所以函数的表达式.20、已知的周长是,斜边上的中线长是,则.(若结果为分数,写成a/b形式,如:1/2)【答案】5【解析】解:设两条直角边为,斜边上的中线长是,则斜边长。

则…………①…………②①两边平方得:…………③③-②得,则,的面积为.三、解答题(本大题共有3小题,每小题10分,共30分)21、解不等式组,把解集表示在数轴上,并求出不等式组的整数解.【解析】解:解得,解得,所以不等式组的解集是.其整数解为,,,.22、已知直线与的交点为,试确定方程组的解和的值.【解析】解:直线与的交点为,,解得方程组,即为的解为.因此方程组的解为,的值为,.23、化简:.【解析】解:。

相关文档
最新文档