初二数学下册期末考试题及答案
2024年全新八年级数学下册期末试卷及答案(人教版)
2024年全新八年级数学下册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)²=a²+2ab+b²C. (a+b)²=a²+b²+2abD. (a+b)²=a²+b²2ab3. 已知x²+y²=1,则x²y²的最大值为()A. 1B. 2C. 1D. 04. 若一个等腰三角形的底边长为6,腰长为5,则其周长为()A. 16B. 15C. 14D. 125. 若一个圆柱的底面半径为2,高为3,则其体积为()A. 12πB. 18πC. 24πD. 36π6. 下列各式中,不正确的是()A. (a+b)³=a³+b³B. (a+b)³=a³+3a²b+3ab²+b³C. (a+b)³=a³+b³+3a²b+3ab²D. (a+b)³=a³+b³+3a²b3ab²7. 若一个正方形的边长为a,则其面积为()A. a²B. a³C. a⁴D. a⁵8. 若一个球的半径为r,则其表面积为()A. 4πr²B. 4πr³C. 4πr⁴D. 4πr⁵9. 若一个圆锥的底面半径为r,高为h,则其体积为()A. πr²hB. πr³hC. πr⁴hD. πr⁵h10. 下列各式中,正确的是()A. (a+b)⁴=a⁴+b⁴B. (a+b)⁴=a⁴+4a³b+6a²b²+4ab³+b⁴C. (a+b)⁴=a⁴+b⁴+4a³b+6a²b²+4ab³D. (a+b)⁴=a⁴+b⁴+4a³b6a²b²+4ab³二、填空题11. 若a²+b²=1,则a+b的最大值为_________。
八年级数学(下)期末试卷含答案
ABCDEF八年级数学(下)期末试卷考生注意:本试卷共120分,考试时间100分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项选择题(每题3分,本大题共30分)1、下列根式中,与3 是同类二次根式的是( ) A 、8 B 、0.3 C 、23D 、12 2、 若2(3)3a a -=-,则a 与3的大小关系是( )A 、 3a <B 、3a ≤C 、3a >D 、3a ≥3.、若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )A .B .C .D .4、已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是( )A 、12y y =B 、12y y <C 、12y y >D 、不能确定 5、平行四边形, 矩形,菱形,正方形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分 C 、对角线平分一组对角 D 、对角线互相垂直6、2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数 51 50 51 50 方差根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择A. 队员1B. 队员2C. 队员3 D. 队员47、如图,直线l 1 : y = 4x - 2 与l 2 : y = x +1的图象相交于点 P ,那么关于 x ,y 的二元一次方程组 4x - y = 2的解是 ( ) x-y=-18. 在平面直角坐标系中,一次函数 y = kx + b 的图象与直线 y = 2x 平行,且经过点A (0,6).则一次函数的解析式为 ( )A 、y=2x-3B 、y=2x+6C 、y=-2x+3D 、y=-2x-6 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A 、75︒B 、60︒C 、55︒D 、45︒10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h )之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是( ) A .甲队开挖到30 m 时,用了2 h B .开挖6 h 时,甲队比乙队多挖了60 mC .乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D .当x 为4 h 时,甲、乙两队所挖河渠的长度相等 二、填空题(每题3分,本大题共24分) 11、函数y=12xx-+中,自变量x 的取值范围为 . 12、若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.243221323+⨯-÷13、 如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 .14.、一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是______,方差是______.15、将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则FC = .16、如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于 x 的不等式kx +6<x +b 的解集是_____________.17、如图所示,四边形OABC 是正方形,边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为 (1,0),P 是OB 上一动点,则PA +PD 的最小值为 .18.、如图,平行四边形 ABCD 的周长是 52cm ,对角线 AC 与 BD 交于点 O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比 △AOB 的周长多 6cm ,则 AE 的长度为 .三、解答题(本大题共66分) 19、计算.(每小题4分,共计8分)(1)(2)20、(7分)已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0. (1)求a ,b ,c 的值;并求出以a,b,c 为三边的三角形周长; (2)试问以a ,b ,c 为边能否构成直角三角形?请说明理由。
八年级下册数学期末试卷及答案
八年级下册数学期末测试题三一、选择题每题2分,共24分 1、下列各式中,分式的个数有31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115-A 、2个B 、3个C 、4个D 、5个 2、如果把223y x y-中的x 和y 都扩大5倍,那么分式的值A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3、已知正比例函数y =k 1xk 1≠0与反比例函数y =2k xk 2≠0的图象有一个交点的坐标为-2,-1,则它的另一个交点的坐标是 A. 2,1 B. -2,-1 C. -2,1 D. 2,-14、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行,并且对角线互相垂直且相等的四边形是A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xxx 的两边同时乘以x -2, 约去分母,得A .1-1-x=1B .1+1-x=1C .1-1-x=x -2D .1+1-x=x -27、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC 是D A B C A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、 以上答案都不对第7题 第8题第9题8、如图,等腰梯形ABCD 中,AB ∥DC,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是A 、1516B 、516C 、1532D 、17169、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是 A 、x <-1 B 、x >2 C 、-1<x <0,或x >2 D 、x <-1,或0<x <210、在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为2S 172甲=,2S 256乙=;下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好;其中正确的共有 .分数 50 60 70 80 90 100 人 数 甲组 2 5 10 13 14 6 乙组441621212ABC11、小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为 千米/时 A 、2n m + B 、n m mn + C 、 n m mn +2 D 、mnnm + 12、李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期;收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价格为每千克15元;用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为A. 2000千克,3000元B. 1900千克,28500元C. 2000千克,30000元D. 1850千克,27750元 二、填空题每题2分,共24分 13、当x 时,分式15x -无意义;当m = 时,分式2(1)(3)32m m m m ---+的值为零 14、各分式222111,,121x x x x x x ---++的最简公分母是_________________ 15、已知双曲线xk y =经过点-1,3,如果A 11,b a ,B 22,b a 两点在该双曲线上, 且1a <2a <0,那么1b 2b .16、梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B 直线MN 为梯形ABCD的对称轴,P 为MN 上一点,那么PD PC +的最小值 ;AB C D E GF l321S 4S 3S 2S 1第16题 第17题 第19题 已知任意直线l 把□ABCD 分成两部分,要使这两17、部分的面积相等,直线l 所在位置需满足的条件是 _________18、如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G处,若∠CFE=60°,且DE=1,则边BC 的长为 .19、如图,在□ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于G 、H,试判断下列结论:①ΔABE ≌ΔCDF ;②AG=GH=HC ;③EG=;21BG ④S ΔABE =S ΔAGE ,其中正确的结论是__个20、点A 是反比例函数图象上一点,它到原点的距离为10,到x 轴的距离为8,则此函数表达式可能为_________________ 21、已知:24111A Bx x x =+--+是一个恒等式,则A =______,B=________;22、如图,11POA 、 212P A A 是等腰直角三角形,点1P 、2P 在函数4(0)y x x=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________.第24题23、小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算,那么小林该学期数学书面测验的总评成绩应为_____________分;24、在直线l 上依次摆放着七个正方形如图所示;已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是第22题D AB MN CS 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______; 三、解答题共52分 25、5分已知实数a 满足a2+2a -8=0,求22213211143a a a a a a a +-+-⨯+-++的值. 26、5分解分式方程:22416222-+=--+x x x x x - 27、6分作图题:如图,Rt ΔABC 中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形;保留作图痕迹,不要求写作法和证明 28、6分如图,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G ;1求证:AF=GB ;2请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.29、6分张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次 王军 68807879817778848392张成86807583857779808075利用表中提供的数据,解答下列问题: 1填写完成下表: 2张老师从测验成绩记录表中,求得王军10次测验成绩的方差老师计算张成102S 王=,请你帮助张次测验成绩的方差2S 张;3请根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由;30、8分制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y ℃,从加热开始计算的时间为x 分钟.据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系如图.已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.1分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;2根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间31、6分甲、乙两个工程队合做一项工程,平均成绩中位数 众数 王军 80张成8080需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务;甲、乙两队独做各需几天才能完成任务32、10分E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC,EG ⊥CD,垂足分别是F 、G.求证:FG AE =.参考答案一、选择题1、C2、B3、A4、B5、B6、D7、A8、A9、D 10、D 11、C 12、C 二、填空题13、5x =,3 14、2(1)(1)x x x +- 15、< 1617、经过对角线的交点 18、3 19、3 20、48y x =或48y x=- 21、A =2,B =-2 22、,0 23、88分 24、4三、解答题25、解:22213211143a a a a a a a +-+-⨯+-++=213(1)1(1)(1)(1)(3)a a a a a a a +--⨯++-++ =21(1)1(1)a a a --++=2221a a ++ ∵a 2+2a -8=0,∴a 2+2a =8 ∴原式=281+=29 26、解:22(2)16(2)x x --=+经检验:2x =-不是方程的解ADC BEG F∴原方程无解27、1°可以作BC边的垂直平分线,交AB于点D,则线段CD将△ABC 分成两个等腰三角形2°可以先找到AB边的中点D,则线段CD将△ABC分成两个等腰三角形3°可以以B为圆心,BC长为半径,交BA于点BA与点D,则△BCD 就是等腰三角形;28、1证明:∵四边形ABCD为平行四边形∴AB∥CD,AD∥BC,AD=BC∴∠AGD=∠CDG,∠DCF=∠BFC∵DG、CF分别平分∠ADC和∠BCD∴∠CDG=∠ADG,∠DCF=∠BCF∴∠ADG=∠AGD,∠BFC=∠BCF∴AD=AG,BF=BC∴AF=BG2∵AD∥BC ∴∠ADC+∠BCD=180°∵DG、CF分别平分∠ADC和∠BCD∴∠EDC+∠ECD=90°∴∠DFC=90°∴∠FEG=90°因此我们只要保证添加的条件使得EF=EG就可以了;我们可以添加∠GFE=∠FGD,四边形ABCD为矩形,DG=CF等等;29、178,802133选择张成,因为他的成绩较稳定,中位数和众数都较高30、1915(05)300(5)x x y x x+≤<⎧⎪=⎨≥⎪⎩ 220分钟31、解:设甲、乙两队独做分别需要x 天和y 天完成任务,根据题意得:111169301x y x y⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:24x =,48y = 经检验:24x =,48y =是方程组的解;答:甲、乙两队独做分别需要24天和28天完成任务; 32、证明:连接CE∵四边形ABCD 为正方形∴AB =BC,∠ABD =∠CBD =45°,∠C =90° ∵EF ⊥BC,EG ⊥CD ∴四边形GEFC 为矩形 ∴GF =EC在△ABE 和△CBE 中 ∴△ABE ≌△CBE ∴AE =CE ∴AE =CF八年级下册数学期末测试题四一、选择题 1. 当分式13-x 有意义时,字母x 应满足 A. 0=x B. 0≠x C. 1=x D. 1≠xo yx y x o yxoyx o 2.若点-5,y 1、-3,y 2、3,y 3都在反比例函数y= -错误!的图像上,则A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 1>y 3>y 23.如图,在直角梯形ABCD 中,AD BC ∥,点E 是边CD 的中点,若52AB AD BC BE =+=,,则梯形ABCD 的面积为 A .254B .252C .258D .25 4.函数k y x=的图象经过点1,-2,则k 的值为 A. 12B. 12- C. 2 D. -2 5.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致 AB C D6.顺次连结等腰梯形各边中点所得四边形是A .梯形 B.菱形 C.矩形 D.正方形7.若分式34922+--x x x 的值为0,则x 的值为A .3 或-3 C.-38.甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的 A.bb a +倍 B.ba b+倍 C.ab a b -+倍 D.ab a b +-倍9.如图,把一张平行四边形纸片ABCD 沿BD 对折;使C 点落在E 处,BE 与AD 相交于点D .若∠DBC=15°,则∠BOD=A D ECBA .130 ° ° ° °10.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米A .4 .5 C 二、填空题11.边长为7,24,25的△ABC 内有一点P 到三边距离相等,则这个距离为 12. 如果函数y=222-+k k kx 是反比例函数,那么k=____, 此函数的解析式是__ ______ 13.已知a1-b1=5,则bab a bab a ---+2232的值是14.从一个班抽测了6名男生的身高,将测得的每一个数据单位:cm都减去165.0cm,其结果如下:,,,,,这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ 结果保留到小数点后第一位 15.如图,点P 是反比例函数2y x=-上的一点,PD⊥x 轴于点D,则△POD的面积为 三、计算问答题 16.先化简,再求值:112223+----x x xx x x ,其中x =217.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级1班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款元1015305060人数 3 6 11 13 6因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.1根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.2该班捐款金额的众数、中位数分别是多少18.已知如图:矩形ABCD 的边BC 在X 轴上,E 为对角线BD 的中点,点B 、D 的坐标分别为B1,0,D3,3,反比例函数y =k x1写出点A 和点E 的坐标; 2求反比例函数的解析式;3判断点E 19.已知:CD 为ABC Rt ∆如图;求证:222111hb a =+参考答案1.D 2.B 3. A 4.D 5.C 6.B 7.C 8.C 9.C 10.B12. -1或21 y=-x -1或y=121-x14.19.1cm,164.3cm16. 2x -1 ,317.解:1 被污染处的人数为11人;设被污染处的捐款数为x 元,则11x +1460=50×38 解得 x =40答:1被污染处的人数为11人,被污染处的捐款数为40元.2捐款金额的中位数是40元,捐款金额的众数是50元.18.解:1A1,3,E2,错误!2设所求的函数关系式为y =错误! 把x =1,y =3代入, 得:k =3×1=3 ∴ y =错误! 为所求的解析式 3当x =2时,y =错误!∴ 点E2,错误!在这个函数的图象上;19.证明:左边2211ba +=2222b a b a +=∵ 在直角三角形中,222c b a =+ 又∵ch ab 2121= 即ch ab = ∴ ===+222222221hh c c b a b a 右边即证明出:222111h b a =+人教版八年级下册数学期末测试题五一、选择题1、第五次全国人口普查结果显示,我国的总人口已达到1 300 000 000人,用科学记数法表示这个数,结果正确的是A .×108B .×109C .×1010D .13×1092、不改变分式的值,将分式20.020.23x x a b-+中各项系数均化为整数,结果为A 、2223x x a b -+B 、25010150x x a b -+C 、2502103x x a b-+ D 、2210150x x a b-+3、如果一定值电阻R 两端所加电压5 V 时,通过它的电流为1A ,那么通过这一电阻的电流I 随它两端电压U 变化的大致图像是 提示:UI R=4、如果把分式yx xy+中的x 和y 都扩大2倍,则分式的值A 、扩大4倍;B 、扩大2倍;C 、不变;D 缩小2倍5、如图,有一块直角三角形纸片,两直角边6,8AC cm BC cm ==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合;则CD 等于A 、2cmB 、3cmC 、4cmD 、5cm6、矩形ABCD 中的顶点A 、B 、C 、D 按顺时针方向排列,若在平面直角坐标系内, B 、D 两点对应的坐标分别是2, 0, 0, 0,且 A 、C 两点关于x 轴对称.则C 点对应的坐标是 A1, 1 B 1, -1 C 1, -2 D 错误!, -错误!7、下列图形中,是中心对称图形,但不是轴对称图形的是 . A 正方形 B 矩形 C 菱形 D 平行四边形 8、如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是 . A 一组对边平行而另一组对边不平行 B 对角线相等DCBA HGFEC 对角线互相垂直D 对角线互相平分 9、下列命题错误的是A .平行四边形的对角相等B .等腰梯形的对角线相等C .两条对角线相等的平行四边形是矩形D .对角线互相垂直的四边形是菱形10、若函数y =2 x +k 的图象与y 轴的正半轴...相交,则函数y =xk的图象所在的象限是A 、第一、二象限B 、 第三、四象限C 、 第二、四象限D 、第一、三象限 11、若13+a 表示一个整数,则整数a 可以值有A .1个B .2个 C.3个 D.4个12、如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是A 、2B 、4C 、8D 、10二、填空题13、已知正比例函数y kx =的图像有一个交点的横坐标是1-,坐标分别为 ; AB C DEF剪拼14. 对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:x 甲=10,2S 甲=;机床乙:x 乙=10,2S 乙=,由此可知:________填甲或乙机床性能好.15、有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断未折断,则小孩至少离开大树 米之外才是安全的;16、写一个反比例函数,使得它在所在的象限内函数值y 随着自变量x的增加而增加,这个函数解析式可以为 ;只需写一个17、如图是阳光公司为某种商品设计的商标图案,图中阴影部分为红色,若每个小长方形的面积都是1,则红色部分的面积为 5 ; 18、如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 只需写出一个即可,图中不能再添加别的“点”和“线”.19、已知:在等腰梯形ABCD 中,AD ∥BC,对角线AC ⊥BD,AD=3cm,BC=7cm,则梯形的高是_______cm20、如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点点P 不与点A 、C 重合,且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______.三、解答与证明题BCDAE P FABC DEF(第15题)21、⑴计算:230120.125200412-⎛⎫-⨯++- ⎪⎝⎭⑵化简:mx m m m m -+---+-21232222、已知函数y=y 1+y 2,其中y 1与x 成正比例,y 2与x -2成反比例,且当x=1时,y=-1;当x=3时,y=5,求出此函数的解析式;23、先化简()()222222a b a b ab a b a b a b a b ⎛⎫+--÷ ⎪-+-+⎝⎭,然后请你自取一组,a b 的值代入求值; 24、解方程2227161x x x x x +=+-- 25、如图,在正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,CE=CF,∠FDC=30°,求∠BEF 的度数. 26、如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域;⑴A 城是否受到这次台风的影响为什么⑵若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间27、如图,一次函数y=kx+b 的图像与反比例函数y= 错误!的图像交于A 、B 两点,与x 轴交于点C,与y 轴交于点D,已知OA=错误!,点B 的坐标为错误!,m,过点A 作AH ⊥x 轴,垂足为H,AH= 错误!HO1求反比例函数和一次函数的解析式; 2求△AOB 的面积;28、如图,四边形ABCD 中,AC=6,BD=8且AC ⊥BD 顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1;再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……如此进行下去得到四边形A n B n C n D n .1证明:四边形A 1B 1C 1D 1是矩形;2写出四边形A 1B 1C 1D 1和四边形A 2B 2C 2D 2的面积; 3写出四边形A n B n C n D n 的面积; 4求四边形A 5B 5C 5D 5的周长.参考答案一、选择题1、B2、B3、D4、B5、B6、B7、D8、C9、D 10、D 11、D 12、B 13、-1,214.甲15、4 16、y=-错误!答案不唯一17、518、AE=AF 答案不唯一19、125 20、21、解:⑴原式=4-8×+1+1 =4-1+2 =5 ⑵-m -2 22、解:设()()2111220;02k y k x k y k x =≠=≠- ()2122k y k x x ∴=+-分;∵当1x =时,1y =-;当3x =时,5y =, 23、解:原式()()()()()()()22222212a b a b a b a ab b a b a b a b a b ab ⎛⎫-++-+=- ⎪ ⎪+-+-⎝⎭分 求值:自取一组,a b 的值代入求值; 24、解:()()()()7161111x x x x x x +=+-+-在方程两边同时乘以()()11x x x +-得()()71162x x x -++=分 解得:()33x =分 检验:当3x =时,()()110x x x +-≠3x ∴=是原分式方程的解;25、105° 先证△BCE ≌△DCF 得∠EBC=∠FDC=30°,可得∠BEC=60°,从而可求.26、解:⑴会受到台风的影响,因为P 到BF 的距离为160km<200km ;⑵影响时间是6小时;27、解:()222211,2AH HO AO AH HO ===+而∵点A 在反比例函数ky x=的图像上1,2;2k k ∴=∴=-∴-反比例函解析式为2y x =-将12,42B m y m x ⎛⎫=-=-⎪⎝⎭代入中得,,142B ⎛⎫∴- ⎪⎝⎭,∴一次函数解析式为23y x =--281证明∵点A 1,D 1分别是AB 、AD 的中点,∴A 1D 1是△ABD 的中位线∴A 1D 1∥BD ,1112A D BD =,同理:B 1C 1∥BD ,1112B C BD = ∴11A D ∥11B C ,11A D =11B C , ∴四边形1111A B C D 是平行四边形 ∵AC ⊥BD ,AC ∥A 1B 1,BD ∥11A D ,∴A 1B 1⊥11A D 即∠B 1A 1D 1=90° ∴四边形1111A B C D 是矩形2四边形1111A B C D 的面积为12;四边形2222A B C D 的面积为6; 3四边形n n n n A B C D 的面积为1242n⨯;4方法一:由1得矩形1111A B C D 的长为4,宽为3;∵矩形5555A B C D ∽矩形1111A B C D ;∴可设矩形5555A B C D 的长为4x ,宽为3x ,则解得14x =;∴341,34x x ==;∴矩形5555A B C D 的周长=372(1)42+=.方法二:矩形5555A B C D 的面积/矩形1111A B C D 的面积=矩形5555A B C D 的周长2/矩形1111A B C D 的周长2即34∶12 =矩形5555A B C D 的周长2∶142∴矩形5555A B C D 的周长72=八年级下册数学期末测试题六一、细心填一填,一锤定音每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并将正确选项填入答题卡中1、同学们都知道,蜜蜂建造的蜂房既坚固又省料;那你知道蜂房蜂巢的厚度吗 事实上,蜂房的蜂巢厚度仅仅约为0.000073m;此数据用科学计数法表示为A 、m 4103.7-⨯B 、m 5103.7-⨯C 、m 6103.7-⨯D 、m 51073-⨯ 2、若一个四边形的两条对角线相等,则称这个四边形为对角线四边形;下列图形不是对角线四边形的是A 、平行四边形B 、矩形C 、正方形D 、等腰梯形3、某地连续10天的最高气温统计如下:最高气温℃22 23 24 25 天数1234这组数据的中位数和众数分别是A 、24,25B 、,25C 、25,24D 、,244、下列运算中,正确的是 A 、b a b a =++11 B 、a b b a =⨯÷1 C 、b a a b -=-11 D 、01111=-----x xx x 5、下列各组数中以a,b,c 为边的三角形不是Rt △的是A 、a=2,b=3, c=4B 、a=5, b=12, c=13C 、a=6, b=8, c=10D 、a=3, b=4, c=5 6、一组数据 0,-1,5,x,3,-2的极差是8,那么x 的值为A 、6B 、7C 、6或-3D 、7或-37、已知点3,-1是双曲线)0(≠=k xk y 上的一点,则下列各点不在该双曲线上的是A 、 ),(931- B 、 ),(216- C 、-1,3 D 、 3,18、下列说法正确的是A 、一组数据的众数、中位数和平均数不可能是同一个数B 、一组数据的平均数不可能与这组数据中的任何数相等C 、一组数据的中位数可能与这组数据的任何数据都不相等D 、众数、中位数和平均数从不同角度描述了一组数据的波动大小 9、如图1,已知矩形ABCD 的对角线AC 的长为10cm ,连结各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为A 、20cm B、 C、 D 、25cm10、若关于x 的方程3132--=-x mx 无解,则m 的取值为A 、-3B 、-2C 、 -1D 、3八年级数学共6页11、在正方形ABCD 中,对角线AC=BD=12cm,点P 为AB 边上的任一点,则点P 到AC 、BD 的距离之和为A 、6cmB 、7cmC 、26cm D 、212cm12、如图2所示,矩形ABCD 的面积为102cm ,它的两条对角线交于点1O ,以AB 、1AO 为邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为邻边作平行四边形22O ABC ,……,依次类推,则平行四边形55O ABC 的面积为 A 、12cm B 、22cm C 、852cm D 、1652cm 二、细心填一填,相信你填得又快又准13、若反比例函数xk y 4-=的图像在每个象限内y 随x 的增大而减小,则k 的值可以为_______只需写出一个符合条件的k 值即可 14、某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为79=甲x 分,79=乙x 分,23520122==乙甲,S S ,则成绩较为整齐的是________填“甲班”或“乙班”;15、如图3所示,在□ABCD 中,E 、F 分别为AD 、BC 边上的一点,若添加一个条件_____________,则四边形EBFD 为平行四边形; 16、如图4,是一组数据的折线统计图,这组数据的平均数是 ,极差是 .17、如图5所示,有一直角梯形零件ABCD,AD ∥BC,斜腰DC=10cm,∠D=120°,则该零件另一腰AB 的长是_______cm; 18、如图6,四边形ABCD 是周长为20cm 的菱形,点A 的坐标是(4,0),则点A BCDEF 图3第15题图O D C BAy x图4图6ACD图556BDCA 图2……图1 第9题图F BB 的坐标为 .19、如图7所示,用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形不包括矩形、菱形、正方形;②矩形不包括正方形;③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形有__________只填序号;20、任何一个正整数n 都可以进行这样的分解:t s n ⨯=s 、t 是正整数,且s ≤t,如果q p ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称q p ⨯是最佳分解,并规定qpF n =)(;例如:18可以分解成1×18,2×9,3×6,这是就有2163)==n F (;结合以上信息,给出下列)n F (的说法:①212=)(F ;②8324=)(F ;③327=)(F ;④若n 是一个完全平方数,则1)=n F (,其中正确的说法有_________.只填序号三、开动脑筋,你一定能做对解答应写出文字说明、证明过程或推演步骤21、解方程482222-=-+-+x x x x x 22、先化简,再求值11)1113(2-÷+--x x x ,其中x=2;23、某校八年级1班50名学生参加2007年济宁市数学质量监测考试,全班学生的成绩统计如下表:成绩分 71 74 78 80 82 83 85 86 88 90 91 92 94 人数1235453784332请根据表中提供的信息解答下列问题: 1该班学生考试成绩的众数和中位数分别是多少图72该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中偏上水平 试说明理由.24、如图8所示,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在图8-1、图8-2、图8-3中分别画出满足以下要求的图形.用阴影表示1使所得图形成为轴对称图形,而不是中心对称图形; 2使所得图形成为中心对称图形,而不是轴对称图形; 3使所得图形既是轴对称图形,又是中心对称图形.25、某青少年研究机构随机调查了某校100名学生寒假零花钱的数量钱数取整数元,以便研究分析并引导学生树立正确的消费观.现根据调查数据制成了如下图所示的频数分布表.1请将频数分布表和频数分布直方图补充完整;2研究认为应对消费150元以上的学生提出勤俭节约合理消费的建议.试估计应对该校1200名学生中约多少名学生提出该项建议3你从以下图表中还能得出那些信息 至少写出一条 分组元组中值元 频数 频率~ ~20图8-1图8-2图8-3寒假消费元频数分布表图826、如图所示,一次函数b kx y +=的图像与反比例函数xm y =的图像交于M 、N 两点;1根据图中条件求出反比例函数和一次函数的解析式;2当x 为何值时一次函数的值大于反比例函数的值27、 如图所示,折叠矩形ABCD 的一边已知AB=8cm,BC=10cm;求CE 的长28、如图所示,在梯形ABCD 中,AD ∥BC,动点P 从点A 出发沿AD 方向向点D 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动;1经过多长时间,四边形PQCD 是平行四边形 2经过多长时间,四边形PQBA 是矩形 3经过多长时间,四边形PQCD 是等腰梯形参考答案一、选择题3分×12=36分 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BAADACDCABAD二、填空题3分×8=24分~~ 30 ~ 10 ~5合计100QP D CB A13、k>4的任何值答案不唯一; 14、___甲班___; 15、答案不唯一; 16、 , 31 ; 17、35cm; 18、 0,3 ; 19、__①③⑤__; 20、 __①③④__.三、开动脑筋,你一定能做对共60分21、6分解:方程两边同乘)2)(2(-+x x 得:8)2()2(2=+--x x x解得:2-=x检验:把2-=x 代入)2)(2(-+x x =0 所以-2是原方程的增根, 原方程无解. 22、6分解: 原式=42+x把x=2 代入原式=823、8分1众数为88,中位数为86;2不能,理由略.24、6分 25、9分1略 25401200%451200%10010045=⨯=⨯⨯名 3略26、8分解: 1反比例函数解析式为:xy 6=一次函数的解析式为:33-=x y2 当01<<-x 或3>x 时一次函数的值大于反比例函数的值. 27、8分CE=328、9分13分设经过xs ,四边形PQCD 为平行四边形,即PD=CQ,图8-1 图8-2 图8-34分6分6分4分7分6分8分所以x x 324=- 得6=x23分 设经过ys ,四边形PQBA 为矩形, 即A P=B Q,所以x x 326-= 得213=x 33分 设经过ts ,四边形PQCD 是等腰梯形.过程略。
数学八年级下册数学期末试卷测试卷附答案
数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
初二数学下册期末考试题及答案
初二数学下册期末考试题及答案数学试卷一、选择题(每小题4分,共40分,每小题只有一个正确答案)1、下列运算中,正确的是()A.$\frac{y^2}{a}·\frac{a}{y}=y$B.$\frac{y^2}{2x}·\frac{2x}{y}=y$C.$\frac{2x}{x+a}+\frac{y}{a+b}=1$D.$\frac{2x+xy}{x+y}+\frac{a+b}{a}=\frac{a+b+2x}{a}$2、下列说法中,不正确的是()A.为了解一种灯泡的使用寿命,宜采用抽样的方法B.众数在一组数据中不一定唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差3、能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等4、反比例函数$y=\frac{k}{x}$,在第一象限的图象如图所示,则$k$的值可能是()A.1 B.2 C.3 D.45、在平面直角坐标系中,已知点$A(1,2)$,$B(-2,3)$,$C(4,-2)$,$D(2,-1)$,则以这四个点为顶点的四边形$ABCD$是()A.矩形 B.菱形 C.正方形 D.梯形6、某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10、8、12、15、10、12、11、9、10、13,则这组数据的()A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.97、一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为()A.15cmB.20cmC.25cmD.12cm8、已知,反比例函数的图像经过点$M(1,1)$和$N(-2,-3)$,则这个反比例函数是()A。
$y=\frac{11}{6x}$ B。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
新人教版八年级数学下册期末考试卷及答案【必考题】
新人教版八年级数学下册期末考试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.21273=___________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B5、D6、C7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、7或-123、2x (x ﹣1)(x ﹣2).415、36、20三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、x+2;当1x =-时,原式=1.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、略5、(1)2;(2)60︒ ;(3)见详解6、(1)2元;(2)至少购进玫瑰200枝.。
新人教版八年级数学下册期末考试题(及参考答案)
新人教版八年级数学下册期末考试题(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3x2-x的取值范围是________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD 的周长为_____________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、A6、D7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、x2≥4、10.5、96、15.三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、-3.3、(1)见解析;(2)经过,理由见解析4、(1)y=x+5;(2)272;(3)x>-3.5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个无理数相加都是无理数。
()3. 两条平行线的斜率相等。
()4. 一次函数的图像是一条直线。
()5. 任意两个等腰三角形的面积相等。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。
3. 若x^2 5x + 6 = 0,则x的值为_______或_______。
4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。
5. 平行四边形的对边_______且_______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是正比例函数?请举例说明。
八年级数学下学期期末测试卷(含答案)
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
八年级数学下册期末试卷(附含答案)
八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M 和方程N 有一个相同的实数根,那么这个跟必是x=110、△ABC 中,∠C=30°,AC=6,BD 是△ABC 的中线,∠ADB=45°,则AB=( )A 32B 22C 6D 6二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
初二数学下册期末试卷及答案
初二数学下册期末试卷及答案招贤乡一中 陈艳慧一、选择题(每小题3分,共24分)1. 若a<0,则下列不等式不成立的是( )A . a+5<a+7B .5a >7aC .5-a <7-aD .75a a >2.下列从左到右的变形是因式分解的是( )A.(x+1)(x-1)=x 2-1B.(a-b)(m-n)=(b-a)(n-m)C.ab-a-b+1=(a-1)(b-1)D.m 2-2m-3=m(m-2-m 3) 3.方程132+=x x 的解为( ) A .2 B .1 C .-2 D .-1 4.不等式3(2x+5)> 2(4x+3)的解集为( )A.x>4.5B.x<4.5C.x=4.5D.x>96.在△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB,交BC 于点D,DE⊥AB 于点E ,且AB=10,则△EDB 的周长是( )A.4B.6C.8D.10B A7.在△ABC 中,∠ACB=90° ,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D ,E ,F 分别为垂足,且AB=10,BC=8,则点O 到三边AB,AC,BC 的距离分别是( )A.2,2,2B.3,3,3C.4,4,4D.2,3,5CB O AEF8.如图,平行四边形ABCD 的对角线相交于点O ,且AB≠AD,过O 作OE⊥BD 交BC 于点E .若△CDE 的周长为10,则AB+AD 的值是( )A.10B.15C.25D.30二.填空题(每题3分,共24分)9.分解因式: x 2y-y 3= .10.当x 时,分式112-x x 值为0. 11.如图,已知函数y = 3x + b 和y = a19.-1-a 1 代入求值略. 20.x=-3.(注意:分式方程要检验)21.PD=PE.(提示:作PF ⊥OA 于点F ,PG ⊥OB 于点G.)22. 解:设至少涨到每股x 元时才能卖出.1000x-(5000+1000x )×0.5%≥5000+1000,解那个不等式x ≥1991205,x ≥6.06 答:至少要涨到每股6.06时才能卖出.23. (1)提示证明:∴△B 1CQ ≌△BCP 1(ASA ).(2)提示作如下辅助线:。
八年级数学下册期末试卷(附答案解析)
八年级数学下册期末试卷(附答案解析)学校:___________姓名:___________班级:_____________一、单选题(每题3分,共27分)1( )A B .C D 2.下列图形中,不是中心对称图形的是( )A .B .C .D .3.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-4.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 5.下列运算中正确的是( )AB =C 2±D =6.下列说法不正确的是( )A .数据0、1、2、3、4、5的平均数是3B .选举中,人们通常最关心的数据是众数C .数据3、5、4、1、2的中位数是3D .甲、乙两组数据的平均数相同,方差分别是S 甲2=0.1,S 乙2=0.11,则甲组数据比乙组数据更稳定 7.如图①,正方形ABCD 在平面直角坐标系中,其中AB 边在y 轴上,其余各边均与坐标轴平行,直线:1l y x =-沿y 轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m (米),平移的时间为t (秒),m 与t 的函数图象如图①所示,则图①中b 的值为( )A .B .C .D .8.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AD BC ,AD BC = D .AB AD =,CD BC =9.下列哪个点在一次函数34y x =-上( ).A .(2,3)B .(-1,-1)C .(0,-4)D .(-4,0)10.如图,菱形ABCD 的对角线AC 、BD 交于点O ,将①BOC 绕着点C 旋转180°得到B O C '',若AC =2,AB ='AB 的长是( )A .4B .C .5D .二、填空题(每题5分,共25分)11在实数范围内有意义,则x 应满足的条件是_____.12.一个正方形的面积是5,那么这个正方形的对角线的长度为_______.13.新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1111x m+=-的解为____. 14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.在平面直角坐标系中,若点P(x﹣2,x+1)关于原点的对称点在第四象限,则x的取值范围是_____.三、解答题16.(6分)计算:;)031+;17.在数轴上表示a、b、c三数点的位置如下图所示,化简:|c||a-b|.18.(6分)如图,四边形ABCD是平行四边形,AE①BC于E,AF①CD于F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF,若①CEF=30°,BE=2,直接写出四边形ABCD的周长.19.(10分)2019年10月1日是新中国成立七十周年,某校为庆祝国庆,组织全校学生参加党史知识竞赛,从中抽取200名学生的成绩(得分取正整数,满分100分)进行统计,绘制了如图尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表请结合表中所给的信息回答下列问题:(1)频数表中,a = ,b = ,c = ;(2)将频数直方图补充完整;(3)若该校共有1500名学生,请估计本次党史知识竞赛成绩超过80分的学生人数.20.(10分)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角①ABC =45°,坡长AB =2m ,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD ,使①ADC =30°.(1)求舞台的高AC (结果保留根号);(2)求DB 的长度(结果保留根号).21.(10分)如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由. 22.(10分)如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作//CE BD 、//DE AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形;(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若10AC =,24BD =,则OE 的长为多少?23.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 24.(10分)如图,ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE ①AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形:(2)若4BC =,45CAB ∠=︒,AC =AB 的长.参考答案与解析:1.D=故答案为:D .【点睛】本题考查了无理数化简的问题,掌握无理数化简的方法是解题的关键.2.B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【分析】根据函数的定义:在某一变化过程中有两个变量x 与y ,如果对x 的每一个值,y 都有唯一确定的值与之对应,那么就说x 是自变量,y 是x 的函数,进行求解即可.【详解】解:A 、2y x =,对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±1,y 不是x 的函数,故此选项不符合题意;B 、||1y x =+对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±2,y 不是x 的函数,故此选项不符合题意;C 、||y x =对于一个x ,对于任意的x ,y 都有唯一的值与之对应,y 是x 的函数,故此选项符合题意;D 、221y x =-对于一个x ,存在有两个y 与之对应,例如:当x =0时,y =±1,y 不是x 的函数,故此选项不符合题意;故选C .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟记定义.4.C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键5.D【分析】根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.,故A 选项错误;B.42=-=2,故B 选项错误;C.2=,故C 选项错误;D.故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6.A【详解】试题分析:A 、数据0、1、2、3、4、5的平均数是16×(0+1+2+3+4+5)=2.5,此选项错误; B 、选举中,人们通常最关心的数据是得票数最多的,即众数,此选项正确;C 、数据3、5、4、1、2从小到大排列后为1、2、3、4、5,其中位数为3,此选项正确;D 、①S 甲2<S 乙2,①甲组数据比乙组数据更稳定,此选项正确;故选A .考点:平均数;众数;中位数;方差.7.D【分析】先根据图①分析a 和b 的含义,先求出a 后再利用勾股定理求出b 即可.【详解】解:由图①可知,当直线l 运动a 秒时,m 的值最大为b ,当直线l 运动10秒时,m 的值又变为0,①可以得出直线l 运动到经过A 点时用了a 秒,经过D 点时用了10秒,①55a AB ==,,即正方形边长为5,①AC = ①b =故选:D .【点睛】本题考查了正方形的性质、勾股定理、一次函数的图象与性质等知识,解题关键是理解图象中的点的含义.8.C【分析】根据平行四边形的判定条件判断即可;【详解】根据分析可得当//AD BC ,AD BC =时,根据一组对边平行且相等的四边形是平行四边形能证明;故答案选C .【点睛】本题主要考查了平行四边形的判定,准确判断是解题的关键.9.C【详解】A 选项:①当x=2时,y=3×2-4=2≠3,①点(2,3)不在此函数的图象上,故本选项错误; B 选项:①当x=-1时,y=3×(-1)-4=-7≠-1,①点(-1,-1)不在此函数的图象上,故本选项错误; C 选项:当x=0时,y=0-4=-4,①点(0,-4)在此函数的图象上,故本选项正确;D 选项:当x=-4时,y=3×(-4)-4=-16≠0,①点(-4,0)不在此函数的图象上,故本选项错误. 故选C .10.C【分析】利用菱形的性质求出OB 的长度,再利用勾股定理求出'AB 的长即可.【详解】解:①菱形ABCD ,①BD ①AC ,AB =BC ,AO =OC =1在Rt①OBC 中,4OB =,①旋转,①OB O B ''=,90O '∠=︒,在Rt①AO B ''中,'5AB =,故选:C .【点睛】本题主要考查菱旋转和形的性质,能够利用勾股定理结合性质解三角形是解题关键.11.x ≥5.【分析】直接利用二次根式的定义分析得出答案.x﹣5≥0,解得:x≥5.故答案为:x≥5.【点睛】本题考查二次根式有意义的条件以及绝对值的性质,解题关键是掌握二次根式中的被开方数是非负数.12【详解】解:设正方形的对角线长为x,由题意得,12x2=5,解得13.5 3【详解】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为11112x-=-,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53,经检验x=53是分式方程的解.考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE①①COF,则得图中阴影部分的面积为正方形面积的14,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为14. 故答案为14. 15.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.16.(1)(2)4【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.(1==(2)031+(31=-+31+=4 【点睛】本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.2a【分析】首先根据数轴可以确定,,a b c 的符号,以及各个绝对值数内的数的大小,然后即可去掉绝对值符号,从而对式子进行化简.【详解】解:根据数轴可以得到:0c a b <<<,且a b c <<,①c a b -()(),c c a b b a =-+++--,c c a a =-+++=2a .18.(1)见解析(2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长.(1)证明:①四边形ABCD 是平行四边形①①B =①D ,①AE ①BC ,AF ①CD ,①①AEB =①AFD =90°,在①AEB 和①AFD 中,B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ),①AB =AD ,①四边形ABCD 是菱形.(2)如图,由(1)可知BC =CD ,①BE =DF ,①CE =CF ,①①CFE =①CEF =30°,①①ECF =180°−2①CEF =120°,①①B =180°−①ECF =60°,在Rt①ABE中,①BAE=30°,①24==,AB BE⨯=.①菱形ABCD的周长为4416【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.19.(1)20,80,0.32;(2)补全的频数分布直方图见解析;(3)本次党史知识竞赛成绩超过80分的学生有1080人.【分析】(1)根据频数表可直接进行求解;(2)由(1)可直接进行作图;(3)由(1)、(2)可得成绩超过80分的学生人数的频率,然后直接列式求解即可.【详解】(1)a=200×0.10=20,b=200×0.40=80,c=64÷200=0.32,故答案为:20,80,0.32;(2)由(1)知,a=20,b=20,补全的频数分布直方图见右图;(3)1500×(0.40+0.32)=1500×0.72=1080(人),即本次党史知识竞赛成绩超过80分的学生有1080人.【点睛】本题主要考查频数与频率,熟练掌握频数与频率是解题的关键.20.(2)m【分析】(1)在Rt △ABC 中,根据①ABC =45°,得到AC =BC =AB •sin45°=; (2)根据Rt △ADC 中,①ADC =30°,得到CD=tan AC ADC=∠推出BD =CD ﹣BC =)m . (1)解:①AC ①BC ,①①ACB =90°,①在Rt △ABC 中,AB =2m ,①ABC =45°,①①BAC =90°-①ABC =45°,①AC =BC =AB •sin45°=2×2m ),答:舞台的高ACm ; (2)在Rt △ADC 中,①ADC =30°,则CD=tan AC ADC==∠①BD =CD ﹣BC =)m ,答:DBm . 【点睛】本题考查了解直角三角形,熟练运用含30°角的直角三角形性质和含45°角的直角三角形的性质,是解决本题的关键.21.(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OP A 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y SOA P =, 列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+ ①34k = ①一次函数解析式为364y x =+ (2)如图:①OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形①()6,0A -①6OA = ①1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭ 自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x += 解得132x =-把132x =-代入一次函数364y x =+中,得98y = ①当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278 【点睛】本题考查一次函数综合题、三角形的面积、一元一次方程等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建一次函数或方程解决实际问题.22.(1)见解析;(2)13【分析】(1)先证明四边形OCED 是平行四边形,再根据矩形性质证明OC=OD ,即可证得结论;(2)根据菱形的性质和勾股定理可得到CD =13,再根据矩形的判定和性质即可得到OE 的长.【详解】(1)证明:①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①四边形ABCD 是矩形,①AC BD =,12OC AC =,12OD BD =, ①OC OD =,①四边形OCED 是菱形;(2)解:①四边形ABCD 是菱形,①AC BD ⊥,152OC AC ==,1122OD BD ==,①13CD ,①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①AC BD ⊥,①四边形OCED 是矩形,①13OE CD ==.【点睛】本题考查矩形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.23.1)22800y x =+;(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.【详解】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x 的取值范围,再根据y 随着x 的增大而增大,得出x 的值.试题解析:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.(2)依题意得< x . 解得x >10.① 22800y x =+,y 随着x 的增大而增大,x 为整数,① 当x=11时,购车费用最省,为22×11+800="1" 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.考点:一次函数的应用24.(1)证明见解析(2)2【分析】(1)根据平行线的性质得到CAD ACE ∠=∠,ADE CED ∠=∠.根据全等三角形的性质得到AD CE =,于是得到四边形ADCE 是平行四边形;(2)过点C 作CG AB ⊥于点G ,根据等腰三角形的性质和勾股定理即可得到结论.(1)证明:①AB CE ,①CAD ACE ∠=∠,ADE CED ∠=∠.①F 是AC 中点,①AF CF =.在AFD △与CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪=⎩==,①AFD CFE AAS ≌(),①AD CE =.①AB CE ,①四边形ADCE 是平行四边形;(2)解:过点C 作CG AB ⊥于点G ,在ACG 中,=90AGC ∠︒,4BC =,45CAB ∠=︒,AC =由勾股定理得(22228CG AG AC +===,①2CG AG ==,在BCG 中,90BGC ∠=︒,2CG =,4BC =,①BG =①2AB AG BG =+=.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。
八年级数学下册期末考试卷(含有答案)
八年级数学下册期末考试卷(含有答案)(满分:120分;时间120分钟)一、选择题(本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案A超过一个均记零分。
)1. 若式子√2x−4在实数范围内有意义,则x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x≠−22. 下列方程是一元二次方程的是( )=5 D. x2=0A. x2+2y=1B. x3−2x=3C. x2+1x23. 下列说法中正确的有( ) ①四边相等的四边形一定是菱形; ②顺次连接矩形各边中点形成的四边形定是正方形; ③对角线相等的四边形一定是矩形; ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.A. 4个B. 3个C. 2个D. 1个4. 把代数式(a−1)⋅√1中的a−1移到根号内,那么这个代数式等于( )1−aA. −√1−aB. √a−1C. √1−aD. −√a−15. 陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A. B. C. D.6. 已知m是一元二次方程x2−3x+1=0的一个根,则2022−m2+3m的值为( )A. 2023B. 2022C. 2021D. −20207. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B′M=1,则CN的长为( )A. 7B. 6C. 5D. 48. 若最简二次根式√7a+b与√6a−bb+3是同类二次根式,则a+b的值为( )A. 2B. −2C. −1D. 19. 关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A. 0B. ±3C. 3D. −3A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果。
八年级数学(下)期末考试试卷含答案
得分评卷人人八年级数学(下)期末考试试卷(全卷共五个大题,满分150分,考试时间100分钟)题号 一 二 三 四 五总分 总分人 复查人 得分友情提示:答题前先写好自己的学校、姓名、考号等信息;答题时,请你认真审题,做到先易后难;答题后,要注意检查.祝你成功! 一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确选项的字母填在下列括号内.1.下列手机屏幕解锁图案中不是轴对称图形的是( )2.以下列各组线段为边,能组成三角形的是( )A .2 cm ,3 cm ,5 cmB .3 cm ,3 cm ,6 cmC .5 cm , 8 cm , 2 cmD .4 cm ,5 cm ,6 cm3.下列运算正确的是( )A . 235=x x x +B .()222=x y x y ++ C . 236=x x x ⋅ D . ()326=x x4.一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A .32.210m -⨯B .22.210m -⨯C .12.210m -⨯ D .32210m -⨯5.下列各式从左到右的变形是因式分解的是( )A .2)1(3222++=++x x xB .22))((y x y x y x -=-+ C .222()x xy y x y -+=- D .)(222y x y x -=-6.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知∠BAC =60° ,PA=6,则PE长是( )A .3B .4C .5D .67.已知△ABC 的三个内角满足关系:∠A+∠B=∠C ,则此三角形是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形8.“尊老、敬老”是中华民族的传统美德.重阳节当天,我区一中学 “善行文学社”的全体同学租一辆面包车前去“夕阳红”老年公寓看望那里的老年人面包车的租金为180元,出发时又增加了两名同学,结果每个同学比原来少花费了3元车费.若设“善行文学社”有x 人,则所列方程为( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x-=-9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1、P 2、P 3、P 4四个点中找出符合条件的点P ,则点P 有( )A . 1个B .2个C . 3个D . 4个10.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A . 90°B . 100°C . 130°D . 180°11. 分式1x mx --中,当x m =时,下列结论正确的是( )A.分式的值为零B .分式无意义C .若1m ≠时,分式的值为零D .若1m =时,分式的值为零 12.如图所示,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,现有①点P 在∠BAC 的平分线上; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△QSP 四个结论.第10题图第12题图得分评卷人人• 则对四个结论判断正确的是( ).A .仅①和②正确B .仅②③正确C .仅①和③正确D .全部都正确二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.13.若点A (m ,7)与点B (8,n )关于x 轴对称,则m = . 14.因式分解:23aa -= .15.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.(只填一个即可)16.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若 △ABC 的面积为122cm ,则图中阴影部分的面积是____________2cm .17.如图,在△ABC 中,将△ABC 沿DE 折叠,使顶点C 落在△ABC 三边的垂直平分线的交点O 处,若BE=BO ,则∠BOE=____________度.18.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;得分评卷人人得分评卷人人f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++1(2017)()2017f f +++= _.三、解答题:(本大题2个小题,19题10分,20题6分,共16分)下列各题解答时必须给出必要的演算过程或推理步骤.19.计算或化简(每小题5分,共10分)。
初二数学下册期末考试试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()A. 60cm²B. 78cm²C. 84cm²D. 90cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。
()7. 两个等腰直角三角形的面积一定相等。
()8. 一次函数的图像是一条直线。
()9. 二次函数的图像是一个抛物线。
()10. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是______。
12. 一次函数y = 3x 5的图像与y轴的交点是______。
13. 二次函数y = x² 4x + 4的顶点坐标是______。
14. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高是______。
15. 两个相同的数相乘,结果是这个数的______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 什么是等腰三角形?请给出一个例子。
18. 请解释一次函数的图像是一条直线的原理。
19. 什么是二次函数的顶点?如何找到它?20. 请解释无理数的概念,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长度是10cm,宽度是5cm,求这个长方形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学 试 卷
一﹑选择题(每小题4分,共40分,每小题只有一个正确答案)
1、下列运算中,正确的是( )
A .3
26a a a =÷ B .222
2x y x y =⎪⎭⎫ ⎝⎛
C .
1=+++b a b b a a D .y
x x
xy x x +=+22 2、下列说法中,不正确...
的是( ) A .为了解一种灯泡的使用寿命,宜采用普查的方法 B .众数在一组数据中若存在,可以不唯一
C .方差反映了一组数据与其平均数的偏离程度
D .对于简单随机样本,可以用样本的方差去估计总体的方差 3、能判定四边形是平行四边形的条件是( ) A .一组对边平行,另一组对边相等 B .一组对边相等,一组邻角相等 C .一组对边平行,一组邻角相等 D .一组对边平行,一组对角相等
4、反比例函数k
y x
=
在第一象限的图象如图所示, 则k 的值可能是( )
A .1
B .2
C .3
D .4
5、在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32,0),则以这四个点为顶点的四边形ABCD 是( ) A .矩形
B .菱形
C .正方形
D .梯形
6、某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动 中,捐款情况如下(单位:元):10、8、12 、15、10、12、11、9、 10、13.则这组数据的( )
A .平均数是11
B .中位数是10
C .众数是10.5
D .方差是3.9
7、一个三角形三边的长分别为15cm ,20cm 和25cm ,则这个三角形最长边上的高为( )
A.15cm
B.20cm
C.25cm
D.12cm
8、已知,反比例函数的图像经过点M (1,1)和N(-2,1
2
-),则这个反比例函数
是( )
A.x y 1=
B.x y 1-=
C.x
y 2
= D.x y 2-=
9、如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )
A.邻边不等的矩形
B.等腰梯形
C.有一角是锐角的菱形
D.正方形
10、甲、乙两班举行跳绳比赛,参赛选手每分钟跳绳的次数经统计计算后填入下表:
某同学根据上表分析得出如下结论:①甲、乙两班学生跳绳成绩的平均水平相同,②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳次数≥170为优秀),③甲班的成绩的波动情况比乙班的成绩的波动大。
上述结论正确的是( ) A. ①②③
B. ①②
C. ②③
D. ①③
二、填空题(每小题4分,共24分,将正确答案直接填在空格的横线上)
11、当x = 时,分式21
1
x x -+的值为零.
12、某种感冒病毒的直径为0.0000000031米,用科学记数法表示为 米.
13、随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:
13=甲x ,13=乙x ,5.72=甲S ,6.212
=乙S ,则小麦长势比较整齐的试验田是 (填“甲”或
“乙”).
14、如图,□
ABCD 中,AE,CF 分别是∠BAD,∠BCD 的角平分线,请添加一个条件 使四边形AECF 为菱形.
15、若一个三角形的三边满足222c b a -=,则这个三角形是 . 16、如图,矩形ABCD 的对角线BD 过O 点 ,BC ∥x 轴,且A (2,-1),则经过C 点的反比例函数的解析式
为 .
A B
C D
F 14题 16题
三、解答题(每小题6分,共24分,写出详细的解题过程)
17、计算:
(1)(
)
()
2011
1
1931521--+-+--⎪⎭
⎫ ⎝⎛-
(2)2411241111x x x
x
+++-+++
18、解分式方程: (1)x x x -+=-2223 (2)23118
339
x x x -=-+-
19、先化简,再求值:4
12)211(2
2-++÷+-x x x x ,其中3-=x
20、一个游泳池长48米,小方和小朱进行游泳比赛,从同一处(A点)出发,小方平均速度为3
米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线(AC方向)
游,而小方直游(AB方向),两人到达终点的位置相距14米.按各人的平均
速度计算,谁先到达终点,为什么?
四、解答题(每小题10分,共40分,写出详细的解答过程)
21、观察下表所给出的三个数,,
a b c其中a b c
(1)观察各组数的共同点:(6分)
①各组数均满足 .
②最小数a是数,其余的两个数b、c是的正整数;
③最小数a的等于另外两个数b、c的和.
a=时,求b、c的值.(4分)
(2)根据以上的观察,当21
22、如图所示,铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度3:4()BF
i i CF
==
,路基高3BF cm =,底CD 宽为18cm ,求路基顶AB 的宽 。
23、张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?
24、已知1y 是关于x 的正比例函数,2y 是关于x 的反比例函数,并且当自变量1x =时,12y y =;当自变量2x =时,129y y -=,求1y 和2y 的表达式.
A F
B C
D
五、解答题(25题10分,26题12分,共22分,写出详细的解题过程)
25、如图,在ABC △中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;
(2)如果AB AC =,试猜测四边形ADCF 的形状,并证明你的结论.
26、如图,在平面直角坐标系中,直线AB 与y 轴和x 轴分别交于点A 、点B ,与反比例函数m
y x
=
在第一象限的图象交于点C(1,6)、点D(3,n).过点C 作CE ⊥y 轴于E ,过点D 作DF ⊥x 轴于F .
(1)求m ,n 的值;
(2)求直线AB 的函数解析式; (3)求:△OCD 的面积。
B A F
C E D
八年级数学答案
一、选择题(每题4分,共40分)
C 、A 、
D 、C 、B A 、D 、A 、D 、A 二、填空题(每题4分,共24分)
11、1x = 12、93.110-⨯ 13、甲
14、AF AE = 15、直角三角形 16、2
y x
=-
三、解答题(每题6分,共24分)
17、(1)8 (2)8
8
1x -
18、(1)7x = (2)无解
19、2
1
x x -+ 52
20、小方先达到终点。
四、解答题(每题10分,共40分)
21、(1)①222a b c += ②奇、连续 ③平方 (2)220b =,221c = 22、10cm
23、解:设张老师每小时走x 千米,则李老师每小时走(1)x -千米. 依题意可列:
15151
12
x x -=- 解得:6x = 15x -=千米
答:张老师每小时走6千米,李老师每小时走5千米.
24、解:设11y k x =,22k
y x
=其中10k ≠,20k ≠
依题意可列:122
1292
k k k k =⎧⎪
⎨-=⎪⎩ 解得:126
6k k =⎧⎨=⎩
即:16y x =,26y x
=
五、解答题 25、(1)证明:∵E 是AD 的中点 ∴AE DE = ∵AF ∥BC
∴FAE BDE ∠=∠ 在AEF ∆和DEB ∆中
FAE BDE AE DE AEF DEB ∠=∠⎧⎪
=⎨⎪∠=∠⎩
∴AEF ∆≌DEB ∆()ASA ∴AF DB = 又∵AF DC = ∴D 是BC 的中点
(2)解:四边形ADCF 是矩形,理由如下: ∵AF ∥DC 且AF DC =
∴四边形ADCF 是平行四边形 ∵AB AC =,D 是BC 的中点 ∴AD BC ⊥ ∴90ADC ︒
∠= ∴ADCF 是矩形
26、解:(1)由图知:(1,6)C 在反比例函数图像上 ∴166m =⋅=
同理 (3,)D n 在反比例函数图像上 ∴36n ⋅= ∴2n =
(2)设:(0)AB y kx b k =+≠
由(1,6),(3,2)C D 在其图像上,得
623k b
k b =+⎧⎨
=+⎩ 解得:2
8k b =-⎧⎨=⎩
∴:28AB y x =-+
(3)由28y x =-+得(0,8),(4,0)A B ∴1
1
1
4816,814,4242
2
2
AOB
ACO
DOB
S S S =⨯⨯==⨯⨯==⨯⨯= ∴16448OCD
S =--=
E
B
D
C
F
A。