河南省濮阳市2021届新高考数学三模考试卷含解析

合集下载

2021年高三第三次模拟考试数学理试题 Word版含答案

2021年高三第三次模拟考试数学理试题 Word版含答案

2021年高三第三次模拟考试数学理试题 Word版含答案精华教考中心 xx年5月班级姓名考号分数一、选择题:(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1. 已知集合, , 则()A. B. C. D.2. 复数的虚部为()A. B. C. D.3. 设,则大小关系为()A. B. C. D.4. 已知命题:,使得,命题:,,下列结论正确的是()A.命题“”是真命题 B. 命题“”是真命题C. 命题“”是真命题D. 命题“”是真命题5.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()6.一排个座位坐了个三口之家.若每家人坐在一起,则不同的坐法种数为()A. B. C.D.7.在中,内角,,的对边分别是,若,,则角大小为()A. B. C. D.8.设直线与函数的图像分别交于点,则当达到最小时的值为()A.1 B. C. D.二、填空题:(本大题共6小题,每小题5分,共30分)。

9. 若抛物线的焦点与双曲线的一个焦点相同,则该抛物线方程为___.10. 在极坐标系中,点到圆的圆心的距离为________.11.设等比数列的公比为,前项和为,则 .12. 如图所示,在平行四边形中,,垂足为,且,则______.13. 设,且满足,则的最小值为___ ;若又满足,则的取值范围是_______.14.如图,在正方体中,分别是棱,,的中点,点在四边形的四边及其内部运动,则当只需满足条件________时,就有;当只需满足条件________时,就有∥平面.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数,且.(Ⅰ)求的值;(Ⅱ)当时,求函数的值域.16.(本小题满分13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取件和件,测量产品中的微量元素的含量(单位:毫克).下表是乙厂的件产品的测量数据:编号 1 2 3 4 5169 178 166 175 18075 80 77 70 81(1)已知甲厂生产的产品共有件,求乙厂生产的产品数量;(2)当产品中的微量元素满足,且时,该产品为优等品。

2021年高三三模试题 数学理 含答案

2021年高三三模试题 数学理 含答案

2021年高三三模试题数学理含答案本试卷分第І卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22题~第24题为选考题,其他题为必考题。

考生作答时将答案答在答题卡上,在本试卷上答题无效。

注意事项:1、答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号,并将条形码粘贴在答题卡指定的位置上。

2、选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。

3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卡面清洁,不折叠、不破损。

第 I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 复数A. B. C. D.2. 给出下列函数①②③④,其中是奇函数的是A. ①②B. ①④C. ②④D. ③④3. 集合,集合,则A. B.C. D.4. 已知点在不等式组表示的平面区域上运动,则的取值范围是A. B. C. D.5. 若程序框图如下图所示,则该程序运行后输出的值是A. 5B. 6C. 7D. 86题图6.某几何体的三视图如图所示,其正视图,侧视图,俯视图均为全等的正方形,则该几何体的体积为A. B. C. D.7.若直线始终平分圆的周长,则的最小值为A.B.C.D.8. 为了得到函数的图象,可以将函数的图象A.向右平移个单位长度B. 向右平移个单位长度C.向左平移个单位长度D. 向左平移个单位长度9. 中心为, 一个焦点为的椭圆, 截直线所得弦中点的横坐标为,则该椭圆方程是A. B. C. D.10.下列说法错误..的是A. 是或的充分不必要条件B.若命题,则C. 已知随机变量,且,则D. 相关指数越接近,表示残差平方和越大.11. 已知,并设:,至少有3个实根;当时,方程有9个实根;当时,方程有5个实根。

河南省濮阳市2021届新高考第三次大联考数学试卷含解析

河南省濮阳市2021届新高考第三次大联考数学试卷含解析

河南省濮阳市2021届新高考第三次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足|3|2z -=,z 在复平面内对应的点为(,)M a b ,则M 不可能为( )A .B .(3,2)C .(5,0)D .(4,1)【答案】D【解析】【分析】依题意,设z a bi =+,由|3|2z -=,得22(3)4a b -+=,再一一验证. 【详解】设z a bi =+,因为|3|2z -=,所以22(3)4a b -+=,经验证(4,1)M 不满足,故选:D.【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.2.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2π C .76π D .π【答案】B【解析】【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可.【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.3.如图,在直三棱柱111ABC A B C -中,1AB AC ==,1BC AA ==,E O 分别是线段1,C C BC的中点,1113A F A A =u u u u r u u u r ,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>>【答案】D【解析】【分析】 过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.【详解】解:因为1AB AC ==,12BC AA ==222AB AC BC +=,即AB AC ⊥ 过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系, 则(1F ,022),1(2O ,12,0),(0E ,02),1(1B ,12), 111(,2)22OB =u u u u r ,112(,22OE =--u u u r , 1122(,,)223OF =-u u u r ,12)2EB =u u u r ,2)6EF =u u u r , 设平面1OB E 的法向量(),,m x y z =u r , 则111·2022112·0222m OB x y z m OE x y z ⎧=++=⎪⎪⎨⎪=--+=⎪⎩u u u v v u u u v v ,取1x =,得()1,1,0m →=-, 同理可求平面1OB F 的法向量(52,2,3)n =-r ,平面OEF 的法向量272(p =u r ,平面1EFB 的法向量2(2,3)q =-r . ∴461cos ||||m n m n α==u r r g u r r g ,434cos ||||m p m p β==u r u r g u r u r g 46cos ||||m q m q γ==u r r g u r r g γαβ∴>>.故选:D .【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.4.已知函数()(2)3,(ln 2)()32,(ln 2)x x x e x f x x x ⎧--+≥⎪=⎨-<⎪⎩,当[,)x m ∈+∞时,()f x 的取值范围为(,2]e -∞+,则实数m 的取值范围是( )A .1,2e -⎛⎤-∞ ⎥⎝⎦ B .(,1]-∞ C .1,12e -⎡⎤⎢⎥⎣⎦ D .[ln 2,1]【答案】C【解析】【分析】求导分析函数在ln2x ≥时的单调性、极值,可得ln2x ≥时,()f x 满足题意,再在ln2x <时,求解()2f x e ≤+的x 的范围,综合可得结果.【详解】当ln2x ≥时,()()()'12x f x x e =---, 令()'0f x >,则ln21x <<;()'0f x <,则1x >,∴函数()f x 在()ln2,1单调递增,在()1,+∞单调递减.∴函数()f x 在1x =处取得极大值为()12f e =+,∴ln2x ≥时,()f x 的取值范围为(],2e -∞+,∴ln2m 1≤≤又当ln2x <时,令()322f x x e =-≤+,则12e x -≥,即1x ln22e -≤<, ∴1e 22m ln -≤< 综上所述,m 的取值范围为1,12e -⎡⎤⎢⎥⎣⎦. 故选C.本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.5.已知条件:1p a =-,条件:q 直线10x ay -+=与直线210x a y +-=平行,则p 是q 的( ) A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】C【解析】【分析】先根据直线10x ay -+=与直线210x a y +-=平行确定a 的值,进而即可确定结果. 【详解】因为直线10x ay -+=与直线210x a y +-=平行,所以20a a +=,解得0a =或1a =-;即0q a =:或1a =-;所以由p 能推出q ;q 不能推出p ;即p 是q 的充分不必要条件.故选C【点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.6.集合{}|M y y x ==∈Z 的真子集的个数为( ) A .7B .8C .31D .32 【答案】A【解析】【分析】计算{}M =,再计算真子集个数得到答案.【详解】 {}{}|M y y x ==∈=Z ,故真子集个数为:3217-=.故选:A .【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.7.正四棱锥P ABCD -,侧棱长为球的表面积为( )A .4πB .8πC .16πD .20π 【答案】C【分析】如图所示,在平面ABCD 的投影为正方形的中心E ,故球心O 在PE 上,计算长度,设球半径为R ,则()222PE R BE R -+=,解得2R =,得到答案.【详解】 如图所示:P 在平面ABCD 的投影为正方形的中心E ,故球心O 在PE 上, 223BD AB ==,故132BE BD ==,223PE PB BE =-=, 设球半径为R ,则()222PE R BE R -+=,解得2R =,故2416S R ππ==.故选:C .【点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.8.如图,四边形ABCD 为正方形,延长CD 至E ,使得DE CD =,点P 在线段CD 上运动.设AP x AB y AE =+u u u r u u u r u u u r ,则x y +的取值范围是( )A .[]1,2B .[]1,3C .[]2,3D .[]2,4 【答案】C【解析】以A 为坐标原点,以,AB AD 分别为x 轴,y 轴建立直角坐标系,利用向量的坐标运算计算即可解决.【详解】以A 为坐标原点建立如图所示的直角坐标系,不妨设正方形ABCD 的边长为1,则(1,0)B ,(1,1)E -,设(,1)(01)P t t ≤≤,则(,1)(1,0)(1,1)t x y =+-,所以t x y =-,且1y =, 故2x y t +=+[]2,3∈.故选:C.【点睛】本题考查利用向量的坐标运算求变量的取值范围,考查学生的基本计算能力,本题的关键是建立适当的直角坐标系,是一道基础题.9.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为176,320,则输出的a 为( )A .16B .18C .20D .15【答案】A【解析】【分析】 根据题意可知最后计算的结果为a b ,的最大公约数.【详解】输入的a ,b 分别为176,320,根据流程图可知最后计算的结果为a b ,的最大公约数,按流程图计算320-176=144,176-144=32,144-32=112,112-32=80,80-32=48,48-32=16,32-16=16,易得176和320的最大公约数为16,故选:A.【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.10.已知函数()ln 2f x x ax =-,()242ln ax g x x x=-,若方程()()f x g x =恰有三个不相等的实根,则a 的取值范围为( )A .(]0,eB .10,2e ⎛⎤ ⎥⎝⎦C .(),e +∞D .10,e ⎛⎫ ⎪⎝⎭ 【答案】B【解析】【分析】 由题意可将方程转化为ln 422ln x ax a x x -=-,令()ln x t x x=,()()0,11,x ∈+∞U ,进而将方程转化为()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,即()2t x =-或()2t x a =,再利用()t x 的单调性与最值即可得到结论.【详解】由题意知方程()()f x g x =在()()0,11,+∞U 上恰有三个不相等的实根, 即24ln 22ln ax x ax x x-=-,①. 因为0x >,①式两边同除以x ,得ln 422ln x ax a x x -=-. 所以方程ln 4220ln x ax a x x--+=有三个不等的正实根. 记()ln x t x x=,()()0,11,x ∈+∞U ,则上述方程转化为()()4220a t x a t x --+=. 即()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,所以()2t x =-或()2t x a =.因为()21ln x t x x-'=,当()()0,11,x e ∈U 时,()0t x '>,所以()t x 在()0,1,()1,e 上单调递增,且0x →时,()t x →-∞.当(),x e ∈+∞时,()0t x '<,()t x 在(),e +∞上单调递减,且x →+∞时,()0t x →. 所以当x e =时,()t x 取最大值1e,当()2t x =-,有一根.所以()2t x a =恰有两个不相等的实根,所以102a e<<. 故选:B.【点睛】 本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.11.如图是2017年第一季度五省GDP 情况图,则下列陈述中不正确的是( )A .2017年第一季度GDP 增速由高到低排位第5的是浙江省.B .与去年同期相比,2017年第一季度的GDP 总量实现了增长.C .2017年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个D .去年同期河南省的GDP 总量不超过4000亿元.【答案】C【解析】【分析】利用图表中的数据进行分析即可求解.【详解】对于A 选项:2017年第一季度5省的GDP 增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A 正确;对于B 选项:与去年同期相比,2017年第一季度5省的GDP 均有不同的增长,所以其总量也实现了增长,故B 正确;对于C 选项:2017年第一季度GDP 总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP 增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C 错误;对于D 选项:去年同期河南省的GDP 总量14067.43815.5740001 6.6%⨯≈<+,故D 正确. 故选:C.【点睛】本题考查了图表分析,学生的分析能力,推理能力,属于基础题.12.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则A .{|0e}AB x x =<<IB .{|e}A B x x =<IC .{|0e}A B x x =<<UD .{|1e}A B x x =-<<U 【答案】D【解析】【分析】【详解】因为2{|1}{|11}A x x x x =<=-<<,{|ln 1}{|0e}B x x x x =<=<<,所以{|01}A B x x =<<I ,{|1e}A B x x =-<<U ,故选D .二、填空题:本题共4小题,每小题5分,共20分。

2021年高三数学第三次模拟考试 理(含解析)

2021年高三数学第三次模拟考试 理(含解析)

2021年高三数学第三次模拟考试理(含解析)【试卷综析】本卷为高三模拟训练卷,注重基础知识考查与基本技能训练,重点考查考纲要求的知识与能力,覆盖全面,难度适中,全面的考查了学生的综合能力,对常用方法,解题技巧,解题思路全面考查,对数量关系,空间形式,数形结合,类比,推广,特殊化等都有涉及,注重通性通法,.完全符合高考题型和难度,试题的题型比例配置与高考要求一致,侧重于知识交汇点的考查是一份优质的考前训练卷第I卷(选择题共5 0分)一、选择题:本大题共1 0小题,每小题5分,共50分。

在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合M ={x|x2 -x<0},N={x||x|<2},则A.M N= B.MN'=R C. MN=M D.MN=M【知识点】集合的概念;交集、并集的概念.【答案解析】D解析:解:由题可知,所以【思路点拨】分别求出两个集合的取值范围,求交集与并集后找到正确选项. 2.复数z=(i为虚数单位)在复平面内对应点的坐标是A.(3,3)B.(-l,3)C.(3,-1)D.(2,4)【知识点】复数概念;复数分母实数化;复平面内的点.【答案解析】B解析:解:,所以z在复平面内对应的点的坐标是【思路点拨】对复数进行分母实数化化简可得实部与虚部,即可求出对应点的坐标.3.下列函数中,既是偶函数又在区间(1,2)上单调递增的是A.y=log2 |x| B.y=cos 2x C.y= D.y=lo【知识点】函数的奇偶性;函数的单调性.【答案解析】A解析:解:由题可知C、D为奇函数,排除C、D,再根据余弦函数的图像可知在上不单调,所以排除B,在上递减,在上递增,函数为偶函数,且在上单调递增,所以A正确.【思路点拨】分别对函数的奇偶性进行验证,对单调区间时行分析即可得到正确选项. 4.如图,程序框图所进行的求和运算是A.B.C.D.【知识点】程序框图.【答案解析】A解析:解:由程序框图可知第一次运行,第二次运行,按执行过程可知程序为.【思路点拨】可按程序框图进行运算,累计各次结果即可求出.5.已知某几何体的三视图如下,则该几何体体积为A.B.C.D.【知识点】三视图;圆柱的体积公式;长方体的体积公式.【答案解析】C解析:解:由题意可知几何体的体积为圆柱体积加长方体体积再减去的与长方体等高的圆柱的体积,【思路点拨】作出与三视图对应的几何体,按分割法求出各部分的体积.6.函数f(x)=sin()(其中.(>0,)的图象如图所示,为了得到g(x)=sin的图象,则只要将f(x)的图象A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【知识点】y=Asin(ωx+φ)的图象变换;识图与运算能力.【答案解析】A解析:解:由图知,17122 41234T T Tππππππωω=-=∴===∴=又又A=1,∴,g (x )=sin2x ,∵()sin 2sin 2663f x x x g x πππ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ∴为了得到g (x )=sin2x 的图象,则只要将的图象向右平移个单位长度.【思路点拨】由,可求得其周期T ,继而可求得ω,再利用函数y=Asin (ωx+φ)的图象变换及可求得答案.7.下列四个图中,函数y=的图象可能是【知识点】函数的图象变换及函数性质;排除法、特殊值法;定义域、值域、单调性、奇偶性以及特殊点的函数值.【答案解析】C 解析:解:∵是奇函数,向左平移一个单位得∴ 图象关于(-1,0)中心对称,故排除A 、D ,当x <-2时,y <0恒成立,排除B .故选:C【思路点拨】.根据的图象由奇函数左移一个单位而得,结合对称性特点判断.8.两名学生参加考试,随机变量x 代表通过的学生数,其分布列为那么这两人通过考试的概率最小值为A .B .C .D .【知识点】概率;相互独立事件;分布列.【答案解析】B 解析:解:设第一个学生通过的概率为,第二个学生为,所以所以通过概率最小值为【思路点拨】按题意可设出两人分别通过的概率,知只有一人通过的概率,两人都通过的概率,根据关系式可求出两人分别通过的概率.9.设△ABC 中,AD 为内角A 的平分线,交BC 边于点D ,,∠BAC=60o ,则·=A .B .C .D .【知识点】角平分线定理;向量的计算;余弦定理.【答案解析】C 解析:解:由图可知向量的关系,根据角平分线定理可得,根据余弦定理可知,所以()23321555AD BC AB BC BC AB BC BC AB AC AB ⎛⎫⋅=+⋅=⋅+=⋅-+ ⎪⎝⎭22121932cos609555AB AC AB =⋅-+=⨯⨯︒-+=- j 2DBCA【思路点拨】可根据角平分线定理和余弦定理,可求出的模等向量,再通过向量的计算法则对向量进行转化.10.定义在R 上的函数f (x )满足:f (x)+(x)>l ,f (0)=4,则不等式e x f(x)>e x +3(其中e 为自然对数的底数)的解集为( )A .B .C .D .【知识点】导数;函数的单调性与导数;解不等式.【答案解析】A 解析:解:由题意可知不等式为,设()()()()()()()310x x x x x x g x e f x e g x e f x e f x e e f x f x '''=--∴=+-=+->⎡⎤⎣⎦所以函数在定义域上单调递增,又因为,所以的解集为【思路点拨】把不等式转化成函数问题,利用函数的导数判断函数的单调性,根据函数性质可求出解集.第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.对某种电子元件的使用寿命进行跟踪调查,所得样本的频率分布直方图如图所示,由图可知,这一批电子元件中使用寿命在100~300 h 的电子元件的数量与使用寿命在300~600 h 的电子元件的数量的比是。

2021年高三数学第三次模拟考试试题 理(含解析)

2021年高三数学第三次模拟考试试题 理(含解析)

2021年高三数学第三次模拟考试试题理(含解析)【试卷综析】这套试题基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,体现了稳中求进的精神.,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移.以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能.第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上).【题文】1.已知集合,若,则()A.【知识点】交集及其运算.A1【答案解析】B 解析:∵集合M={3,log2a},N={a,b},M∩N={0},∴log2a=0,解得a=1,∴b=0,∴M∪N={0,1,2}.故选:B.【思路点拨】由已知得log2a=0,解得a=1,从而b=0,由此能求出M∪N.【题文】2.等差数列的前 n项和为,若,则( )A. -2B.0C.2D.4【知识点】等差数列的前n项和.D2【答案解析】A 解析:∵等差数列{an}的前n项和为{Sn},S8﹣S4=36,a6=2a4,∴,解得a1=﹣2,d=2.故选:A.【思路点拨】等差数列{an}的前n项和为{Sn},由已知得,由此能求出结果.【题文】3.设随机变量ξ服从正态分布N(2,σ2),若P(ξ>c)=, 则P(ξ>4-c)等于A. B.2 C. 1- D. 1-2【知识点】正态分布曲线的特点及曲线所表示的意义.I3【答案解析】B 解析:∵随机变量X服从正态分布N(2,σ2),对称轴是:μ=2,又4﹣c与c关于μ=2对称,由正态曲线的对称性得:∴p(ξ>4﹣c)=1﹣p(ξ>c)=1﹣a.故选B.【思路点拨】根据随机变量X服从正态分布N(2,σ2),看出这组数据对应的正态曲线的对称轴x=2,根据正态曲线的特点,得到p(ξ>4﹣c)=1﹣p(ξ>c),得到结果.【题文】4.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()(A) 30 (B) 50 (C) 75 (D) 150【知识点】由三视图求面积、体积.G2【答案解析】B 解析:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.【思路点拨】由三视图可知:该几何体是四棱锥.【题文】5.一个棱柱的底面是正六边形,侧面都是正方形,用至少过该棱柱三个顶点(不在同一侧面或同一底面内)的平面去截这个棱柱,所得截面的形状不可以是()等腰三角形 (B)等腰梯形(C)五边形 (D)正六边形【知识点】棱柱的结构特征.G7【答案解析】D 解析:如图,由图可知,截面ABC为等腰三角形,选项A可能,截面ABEF为等腰梯形,选项B可能,截面ADE为五边形,选项C都有可能,选项D不可能,故选D.【思路点拨】由题意作出简图分析.【题文】6.函数在区间的最大值为()(A)1 (B) (C) (D)2【知识点】复合三角函数的单调性. C3 B3【答案解析】C 解析:f(x)=cos2x+sinxcosx==.∵x∈[,],∴2x+∈.∴.∴函数f(x)=cos2x+sinxcosx在区间[,]的最大值为.故选:C.【思路点拨】利用三角函数倍角公式化简,然后结合已知x的范围求得原函数值域,则答案可求.【题文】7.设f(x)是定义在R上的奇函数,其f(x)=f(x-2),若f(x)在区间单调递减,则()(A) f(x)在区间单调递增 (B) f(x)在区间单调递增(C) f(x)在区间单调递减 (D) f(x)在区间单调递减【知识点】奇偶性与单调性的综合.B4 B3【答案解析】D 解析:由f(x)=f(x﹣2),则函数的周期是2,若f(x)在区间[2,3]单调递减,则f(x)在区间[0,1]上单调递减,∵f(x)是定义在R上的奇函数,∴f(x)在区间[﹣1,0]上单调递减,且f(x)在区间[1,2]上单调递减,故选:D【思路点拨】根据函数奇偶性和单调性之间的关系即可得到结论.【题文】8.双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( )(A) (B) (C) (D)【知识点】双曲线的简单性质.H6【答案解析】B 解析:如图在Rt△MF1F2中,∠MF1F2=30°,F1F2=2c∴,∴∴,故选B.【思路点拨】先在Rt△MF1F2中,利用∠MF1F2和F1F2求得MF1和MF2,进而根据双曲线的定义求得a,最后根据a和c求得离心率.【题文】9.已知外接圆的半径为,且.,从圆内随机取一个点,若点取自内的概率恰为,则的形状为( )(A)直角三角形 (B)等边三角形 (C)钝角三角形 (D)等腰直角三角形【知识点】几何概型.K3【答案解析】B 解析:∵•=﹣,圆的半径为1,∴cos∠AOB=﹣,又0<∠AOB<π,故∠AOB=,又△AOB为等腰三角形,故AB=,从圆O内随机取一个点,取自△ABC内的概率为,即=,∴S,设BC=a,AC=b.∵C=,∴,得ab=3,…①由AB2=a2+b2﹣2abcosC=3,得a2+b2﹣ab=3,a2+b2=6…②联立①②解得a=b=.∴△ABC为等边三角形.故选:B.【思路点拨】根据向量的数量积求得∠AOB=,进而求得AB的长度,利用几何概型的概率公式求出三角形ABC的面积,利用三角形的面积公式即可求出三角形各边的长度即可得到结论.【题文】10.已知数列满足,,则A. 143B. 156C. 168D. 195【知识点】数列递推式. D1【答案解析】C 解析:由an+1=an+2+1,得,∴,又a1=0,∴{}是以1为首项,以1为公差的等差数列,则,∴.则a13=169﹣1=168.故选:C.【思路点拨】把已知的数列递推式变形,得到{}是以1为首项,以1为公差的等差数列,求出其通项公式后得到an,则a13可求.【题文】11.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为()A.432 B.288 C.216 D.144【知识点】排列、组合及简单计数问题.J1 J2【答案解析】B解析:从2,4,6三个偶数中任意选出2个看作一个“整体”,方法有•=6种.先排3个奇数:①若1排在左端,方法有种;则将“整体”和另一个偶数中选出一个插在1的左边,方法有种,另一个偶数插在2个奇数形成的3个空中,方法有种,根据分步计数原理求得此时满足条件的六位数共有6×××=72种.②若1排在右端,同理求得满足条件的六位数也有72种,③若1排在中间,方法有种,则将“整体”和另一个偶数插入3个奇数形成的4个空中,根据分步计数原理求得此时满足条件的六位数共有6××=144种.综上,满足条件的六位数共有 72+72+144=288种,故选B.【思路点拨】从2,4,6三个偶数中任意选出2个看作一个“整体”,方法有•=6种.先排3个奇数:分1在左边、1在右边、1在中间三种情况,分别用插空法求得结果,再把这3个结果相加,即得所求.【题文】12.函数在区间上单调递增,则的取值范围是()A. B. C. D.【知识点】指数函数单调性的应用;函数单调性的性质.B3 B6【答案解析】C 解析:当a>0时,y=在(﹣∞,]上为减函数,在[,+∞)上为增函数,且y=>0恒成立若函数在区间[0,1]上单调递增,则y=在[0,1]上单调递增则≤0解得a∈(0,1]当a=0时,在区间[0,1]上单调递增,满足条件当a<0时,在R单调递增,令=0,则x=ln则在(0,ln]为减函数,在[ln,+∞)上为增函数则ln≤0,解得a≥﹣1综上,实数a的取值范围是[﹣1,1],故选C【思路点拨】结合对勾函数,指数函数单调性及单调性的性质,分别讨论a>0,a=0,a<0时,实数a的取值范围,综合讨论结果可得答案.【题文】第Ⅱ卷(非选择题共90分)二、填空题:把答案填在相应题号后的横线上(本大题共4小题,每小题5分,共20分)【题文】13.甲、乙、丙、丁四人商量去看电影.甲说:乙去我才去;乙说:丙去我才去;丙说:甲不去我就不去;丁说:乙不去我就不去。

河南省濮阳市2021届新高考数学模拟试题(2)含解析

河南省濮阳市2021届新高考数学模拟试题(2)含解析

河南省濮阳市2021届新高考数学模拟试题(2)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知实数x,y满足约束条件2202202x yx yx+-≥⎧⎪-+≥⎨⎪≤⎩,则22x y+的取值范围是()A.25,22⎡⎤⎢⎥⎣B.4,85⎡⎤⎢⎥⎣⎦C.2,85⎡⎤⎢⎥⎣⎦D.[]1,8【答案】B【解析】【分析】画出可行域,根据可行域上的点到原点距离,求得22x y+的取值范围.【详解】由约束条件作出可行域是由(2,0)A,(0,1)B,(2,2)C三点所围成的三角形及其内部,如图中阴影部分,而22x y+可理解为可行域内的点到原点距离的平方,显然原点到AB所在的直线220x y+-=的距离是可行域内的点到原点距离的最小值,此时222245OA OBx y ODAB⋅⎛⎫+===⎪⎝⎭,点C到原点的距离是可行域内的点到原点距离的最大值,此时2222228x y+=+=.所以22x y+的取值范围是4,85⎡⎤⎢⎥⎣⎦.故选:B【点睛】本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识. 2.将函数()sin(2)f x xϕ=-的图象向右平移18个周期后,所得图象关于y轴对称,则ϕ的最小正值是()A.8πB.34πC.2πD.4π【答案】D【解析】【分析】由函数()sin y A ωx φ=+的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于ϕ的方程,对k 赋值即可求解. 【详解】由题意知,函数()sin(2)f x x ϕ=-的最小正周期为22T ππ==,即88T π=, 由函数()sin y A ωx φ=+的图象平移变换公式可得, 将函数()sin(2)f x x ϕ=-的图象向右平移18个周期后的解析式为 ()sin 2sin 284g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=--=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为函数()g x 的图象关于y 轴对称, 所以,42k k z ππϕπ--=+∈,即3,4k k z πϕπ=-+∈, 所以当1k =时,ϕ有最小正值为4π. 故选:D 【点睛】本题考查函数()sin y A ωx φ=+的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型. 3.若21i iz =-+,则z 的虚部是A .3B .3-C .3iD .3i -【答案】B 【解析】 【分析】 【详解】因为1i 2i 13i z =--=-,所以z 的虚部是3-.故选B . 4.抛物线22y x =的焦点为F ,则经过点F 与点()2,2M 且与抛物线的准线相切的圆的个数有( )A .1个B .2个C .0个D .无数个【答案】B 【解析】 【分析】圆心在FM 的中垂线上,经过点F ,M 且与l 相切的圆的圆心到准线的距离与到焦点F 的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆. 【详解】因为点(2,2)M 在抛物线22y x =上, 又焦点1(2F ,0),由抛物线的定义知,过点F 、M 且与l 相切的圆的圆心即为线段FM 的垂直平分线与抛物线的交点, 这样的交点共有2个,故过点F 、M 且与l 相切的圆的不同情况种数是2种. 故选:B . 【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.5.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积2136V L h ≈的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式23112V L h ≈相当于将圆锥体积公式中的圆周率近似取为( ) A .227B .15750C .289D .337115【答案】C 【解析】 【分析】将圆锥的体积用两种方式表达,即213V r h π==23(2)112r h π,解出π即可. 【详解】设圆锥底面圆的半径为r ,则213V r h π=,又2233(2)112112V L h r h π≈=, 故23(2)112r h π213r h π≈,所以,11228369π≈=. 故选:C. 【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.6.已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO x AB y AC z AD =++u u u r u u u r u u u r u u u r ,,,x y z ∈R ,则x y z ++=( )A .34B .13C .12D .14【答案】A 【解析】 【分析】如图设AF ⊥平面BCD ,球心O 在AF 上,根据正四面体的性质可得34AO AF =,根据平面向量的加法的几何意义,重心的性质,结合已知求出x y z ++的值. 【详解】如图设AF ⊥平面BCD ,球心O 在AF 上,由正四面体的性质可得:三角形BCD 是正三角形,222131()32BF =⨯-=,22361()3AF =-=,在直角三角形FOB 中, 222222636()()OB OF BF OA AO AO =+⇒=-+⇒=, 34AO AF =,=+u u u r u u u r u u u r AF AB BF ,AF AD DF =+u u u r u u u r u u u r ,AF AC CF =+u u u r u u u r u u u r ,因为F 为重心,因此0FB FC FD ++=u u u r u u u r u u u r r ,则3AF AB AC AD=++u u u r u u u r u u u r u u u r ,因此()14AO AB AC AD =++u u u r u u u r u u u r u u u r ,因此14x y z ===,则34x y z ++=,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题. 7.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据题意得到充分性,验证得出不必要,得到答案.【详解】,当时,,充分性;当,取,验证成立,故不必要.故选:. 【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力. 8.如图是一个几何体的三视图,则该几何体的体积为( )A .23B .43C .233D .433【答案】A 【解析】 【分析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积. 【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,2AD =,3AE =2AB =.∴该几何体的体积为1232232V =⨯= 故选:A. 【点睛】本题考查三视图及棱柱的体积,属于基础题.9.已知函数()cos sin 2f x x x =,下列结论不正确的是( ) A .()y f x =的图像关于点(),0π中心对称 B .()y f x =既是奇函数,又是周期函数C .()y f x =的图像关于直线2x π=对称D .()y f x =的最大值是2【答案】D 【解析】 【分析】通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果. 【详解】解::(2)cos(2)sin 2(2)cos sin 2()A f x x x x x f x πππ-=--=-=-,正确; :()cos()sin 2()cos sin 2()B f x x x x x f x -=--=-=-,为奇函数,周期函数,正确; :()cos()sin 2()cos sin 2()C f x x x x x f x πππ-=--==,正确;D : 232sin cos 2sin 2sin y x x x x ==-,令sin t x =,[]1,1t ∈-则()322g t t t =-,()226g t t '=-,[1t ∈-,1],则t <<时()0g t '>,1t -<<1t >>()0g t '<,即()g t 在⎛ ⎝⎭上单调递增,在1,3⎛-- ⎝⎭和,13⎛⎫⎪ ⎪⎝⎭上单调递减;且39g ⎛= ⎝⎭,()10g -=,max y g ∴==<⎝⎭,故D 错误. 故选:D . 【点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.10.双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线交两渐近线于,M N 两点,与双曲线的其中一个交点为P ,若(,)OP OM ON R λμλμ=+∈u u u r u u u u r u u u r ,且625λμ=,则该双曲线的离心率为( )A .4B .12C .12D .12【答案】D 【解析】 【分析】根据已知得本题首先求出直线与双曲线渐近线的交点,再利用OP OM ON λμ=+u u u r u u u u r u u u r,求出点()()bc P c a λμλμ⎛⎫+- ⎪⎝⎭,,因为点P 在双曲线上,及c e a =,代入整理及得241e λμ=,又已知625λμ=,即可求出离心率. 【详解】由题意可知bc bc M c N c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,代入OP OM ON λμ=+u u u r u u u u r u u u r 得:()()bc P c a λμλμ⎛⎫+- ⎪⎝⎭,, 代入双曲线方程22221x y a b -=整理得:241e λμ=,又因为625λμ=,即可得到56e =,故选:D . 【点睛】本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于a ,b ,c 的方程或不等式,由此计算双曲线的离心率或范围,属于中档题. 11.函数2|sin |2()61x f x x=-+的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】用偶函数的图象关于y 轴对称排除C ,用()0f π<排除B ,用()42f π>排除D .故只能选A .【详解】 因为22|sin()||sin |22()66()1()1x x f x f x x x--===+-+ ,所以函数()f x 为偶函数,图象关于y 轴对称,故可以排除C ;因为2|sin |242()61111f πππππ==++11101122<-=-=+,故排除B ,因为2|sin|22()2()621()2fππππ=-=+426164ππ-+42616444>-+46662425=->-=-=由图象知,排除D.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.12.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A.66f sin f cosππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭>B.f(sin3)<f(cos3)C.4433f sin f cosππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<D.f(2020)>f(2019)【答案】B【解析】【分析】根据函数的周期性以及x∈[﹣3,﹣2]的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【详解】由f(x+2)=f(x),得f(x)是周期函数且周期为2,先作出f(x)在x∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,130sin cos1626ππ<=<=<,所以66f sin f cosππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭,选项A错误;选项B,因为334ππ<<,所以203312sin cos-<<<,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),选项B正确;选项C,434144sin,1033233cos sin cosππππ==->->->,所以4433f sinf cos ππ⎛⎫⎛⎫->- ⎪⎪⎝⎭⎝⎭,即4433f sinf cos ππ⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭, 选项C 错误;选项D ,(2020)(0)(1)(2019)f f f f =<=,选项D 错误. 故选:B. 【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

2021年高三第三次模拟考数学(理)试题 含答案

2021年高三第三次模拟考数学(理)试题 含答案

2021年高三第三次模拟考数学(理)试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24小题,共150分,考试时间120分钟。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集,集合,集合,则图中阴影部(A)(B)(C)(D)2.已知i为虚数单位,则(A)(B)(C)(D)3.已知是第四象限角,且,则(A)(B)(C)(D)4.已知实数满足,则目标函数的最大值为(A )-4 (B )1 (C )2 (D )35. 已知随机变量ξ服从正态分布N (1,σ2),若P (ξ>3)=0.023,则P (-1≤ξ≤3)等于 (A )0.977(B )0.954(C )0.628(D )0.4776.等于 (A )(B )(C )(D )7.现有三个函数:①,②,③的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是 (A )①②③(B )③①②(C )②①③(D )③②①8.已知执行如下左图所示的程序框图,输出的,则判断框内的条件可以是 (A )(B ) (C ) (D )OyxOyxOyx开始k=1 S =1S = 3S +2k = k +1 否输出S 结束是(第9题图)(第8题图)9.一个几何体的三视图如上右图,则其表面积为(A)20 (B)18 (C)(D)10.边长为4的正方形ABCD的中心为O,以O为圆心,1为半径作圆,点M是圆O上的任意一点,点N是边AB、BC、CD上的任意一点(含端点),则的取值范围是(A)(B)(C)(D)11.已知边长为1的等边三角形与正方形有一公共边,二面角的余弦值为,若A、B、C、D、E在同一球面上,则此球的体积为(A)(B)(C)(D)12.若存在直线l与曲线和曲线都相切,则称曲线和曲线为“相关曲线”,有下列四个命题:①有且只有两条直线l使得曲线和曲线为“相关曲线”;②曲线和曲线是“相关曲线”;③当时,曲线和曲线一定不是“相关曲线”;④必存在正数使得曲线和曲线为“相关曲线”.其中正确命题的个数为(A)1 (B)2 (C)3 (D)4第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二.填空题:本大题共4个小题,每小题5分。

河南省濮阳市2021届新高考数学考前模拟卷(3)含解析

河南省濮阳市2021届新高考数学考前模拟卷(3)含解析

河南省濮阳市2021届新高考数学考前模拟卷(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫ ⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4 B .6C .3D .8【答案】A 【解析】 【分析】根据所给函数解析式满足的等量关系及指数幂运算,可得()()m f f n f m n ⎛⎫+=⎪⎝⎭;利用定义可证明函数()f x 的单调性,由赋值法即可求得函数()f x 在[]1,16上的最大值.【详解】函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,则()()m f f n f m n ⎛⎫+=⎪⎝⎭; 任取()12,0,x x ∈+∞,且12x x <,则1201x x <<, 故120x f x ⎛⎫<⎪⎝⎭, 令1m x =,2n x =,则()()1212x f f x f x x ⎛⎫+= ⎪⎝⎭, 即()()11220x f x f x f x ⎛⎫-=<⎪⎝⎭, 故函数()f x 在()0,∞+上单调递增, 故()()max 16f x f =, 令16m =,4n =,故()()()44164f f f +==, 故函数()f x 在[]1,16上的最大值为4. 故选:A. 【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.2.设(),1,a b ∈+∞,则“a b > ”是“log 1a b <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分条件和必要条件的定义结合对数的运算进行判断即可. 【详解】∵a ,b ∈(1,+∞), ∴a >b ⇒log a b <1, log a b <1⇒a >b ,∴a >b 是log a b <1的充分必要条件, 故选C . 【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.3.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不.正确的是( )A .深圳的变化幅度最小,北京的平均价格最高B .天津的往返机票平均价格变化最大C .上海和广州的往返机票平均价格基本相当D .相比于上一年同期,其中四个城市的往返机票平均价格在增加 【答案】D 【解析】 【分析】根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.4.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩:55 57 59 61 68 64 62 59 80 8898 95 60 73 88 74 86 77 79 9497 100 99 97 89 81 80 60 79 6082 95 90 93 90 85 80 77 99 68如图的算法框图中输入的i a为上表中的学生的数学竞赛成绩,运行相应的程序,输出m,n的值,则-=()m nA.6 B.8 C.10 D.12【答案】D【解析】【分析】根据程序框图判断出,n m的意义,由此求得,m n的值,进而求得m n-的值.【详解】由题意可得n 的取值为成绩大于等于90的人数,m 的取值为成绩大于等于60且小于90的人数,故24m =,12n =,所以241212m n -=-=.故选:D 【点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识. 5.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种. A .360 B .240 C .150 D .120【答案】C 【解析】 【分析】可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可. 【详解】分成两类,一类是3个新教师与同一个老教师结对,有335360C A =种结对结对方式,第二类两个老教师各带两个新教师,有223533902!C C A =.∴共有结对方式60+90=150种. 故选:C . 【点睛】本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为22532!C C .6.已知函数()sin()f x x ωθ=+,其中0>ω,0,2πθ⎛⎫∈ ⎪⎝⎭,其图象关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min 2x x π-=,将函数()f x 的图象向左平移6π个单位长度得到函数()g x 的图象,则函数()g x 的单调递减区间是()A .()2,6k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】B 【解析】 【分析】根据已知得到函数()f x 两个对称轴的距离也即是半周期,由此求得ω的值,结合其对称轴,求得θ的值,进而求得()f x 解析式.根据图像变换的知识求得()g x 的解析式,再利用三角函数求单调区间的方法,求得()g x 的单调递减区间. 【详解】解:已知函数()sin()f x x ωθ=+,其中0>ω,00,2π⎛⎫∈ ⎪⎝⎭,其图像关于直线6x π=对称,对满足()()122f x f x -=的1x ,2x ,有12min1222x x ππω-==⋅,∴2ω=. 再根据其图像关于直线6x π=对称,可得262k ππθπ⨯+=+,k ∈Z .∴6πθ=,∴()sin 26f x x π⎛⎫=+⎪⎝⎭. 将函数()f x 的图像向左平移6π个单位长度得到函数()sin 2cos 236g x x x ππ⎛⎫=++= ⎪⎝⎭的图像. 令222k x k πππ≤≤+,求得2k x k πππ≤≤+,则函数()g x 的单调递减区间是,2k k πππ⎡⎤+⎢⎥⎣⎦,k ∈Z ,故选B. 【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.7.已知函数2()e (2)e x x f x t t x =+--(0t ≥),若函数()f x 在x ∈R 上有唯一零点,则t 的值为( ) A .1 B .12或0 C .1或0 D .2或0【答案】C 【解析】 【分析】求出函数的导函数,当0t >时,只需(ln )0f t -=,即1ln 10t t -+=,令1()ln 1g t t t=-+,利用导数求其单调区间,即可求出参数t 的值,当0t =时,根据函数的单调性及零点存在性定理可判断; 【详解】 解:∵2()e (2)e xx f x t t x =+--(0t ≥),∴()()2()2e(2)e 1e 12e 1xx x x f x t t t '=+--=-+,∴当0t >时,由()0f x '=得ln x t =-,则()f x 在(),ln t -∞-上单调递减,在()ln ,t -+∞上单调递增, 所以(ln )f t -是极小值,∴只需(ln )0f t -=, 即1ln 10t t -+=.令1()ln 1g t t t =-+,则211()0g t t t'=+>,∴函数()g t 在(0,)+∞上单 调递增.∵(1)0g =,∴1t =;当0t =时,()2e x f x x =--,函数()f x 在R 上单调递减,∵(1)2e 10f =--<,2(2)22e 0f --=->,函数()f x 在R 上有且只有一个零点,∴t 的值是1或0. 故选:C 【点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.8.一艘海轮从A 处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .62海里B .3C .2海里D .3海里【答案】A 【解析】 【分析】先根据给的条件求出三角形ABC 的三个内角,再结合AB 可求,应用正弦定理即可求解. 【详解】由题意可知:∠BAC =70°﹣40°=30°.∠ACD =110°,∴∠ACB =110°﹣65°=45°, ∴∠ABC =180°﹣30°﹣45°=105°.又AB =24×0.5=12.在△ABC 中,由正弦定理得4530AB BCsin sin =︒︒,1222BC=,∴62BC =故选:A. 【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.9.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( ) A .235B .835C .635D .37【答案】B 【解析】 【分析】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种,由古典概型的概率公式即得解. 【详解】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种 由古典概型,取的3个球的编号的中位数恰好为5的概率为:114237835C C P C ==故选:B 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.10.函数()2ln xf x x x=-的图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】根据函数()f x 的奇偶性和单调性,排除错误选项,从而得出正确选项. 【详解】因为()()f x f x -=,所以()f x 是偶函数,排除C 和D.当0x >时,()2ln x x f x x =-,()332ln 1'x x f x x =+-,令()'0f x <,得01x <<,即()f x 在()0,1上递减;令()'0f x >,得1x >,即()f x 在()1,+∞上递增.所以()f x 在1x =处取得极小值,排除B. 故选:A 【点睛】本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题. 11.设01p <<,随机变量ξ的分布列是ξ1-0 1P1(1)3p - 2313p 则当p 在(,)34内增大时,( ) A .()E ξ减小,()D ξ减小 B .()E ξ减小,()D ξ增大 C .()E ξ增大,()D ξ减小 D .()E ξ增大,()D ξ增大【答案】C【解析】 【分析】1121()(1)(1)3333E p p p ξ=-⨯-+=-,22()()()D E E ξξξ=-,判断其在23(,)34内的单调性即可.【详解】解:根据题意1121()(1)(1)3333E p p p ξ=-⨯-+=-在23,34p ⎛⎫∈ ⎪⎝⎭内递增, 22111()(1)(1)333E p p ξ=-⨯-+=222221121442411()()()(1)()3333999923D E E p p p p p p ξξξ⎛⎫=-=-+--=-++=-- ⎪+⎝⎭,是以12p =为对称轴,开口向下的抛物线,所以在23,34⎛⎫⎪⎝⎭上单调递减,故选:C . 【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题. 12.已知:cos sin 2p x y π⎛⎫=+ ⎪⎝⎭,:q x y =则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据诱导公式化简sin cos 2y y π⎛⎫+= ⎪⎝⎭再分析即可. 【详解】 因为cos sin cos 2x y y π⎛⎫=+= ⎪⎝⎭,所以q 成立可以推出p 成立,但p 成立得不到q 成立,例如5cos cos 33ππ=,而533ππ≠,所以p 是q 的必要而不充分条件. 故选:B 【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

河南省濮阳市2021届新高考适应性测试卷数学试题(3)含解析

河南省濮阳市2021届新高考适应性测试卷数学试题(3)含解析

河南省濮阳市2021届新高考适应性测试卷数学试题(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,在三棱锥D ABC -中,DC ⊥平面ABC ,AC BC ⊥,2AC BC CD ===,E ,F ,G 分别是棱AB ,AC ,AD 的中点,则异面直线BG 与EF 所成角的余弦值为A .0B .6 C .33D .1【答案】B 【解析】 【分析】 【详解】根据题意可得BC ⊥平面ACD ,EF BC ∥,则CBG ∠即异面直线BG 与EF 所成的角,连接CG ,在Rt CBG △中,cos BCCBG BG∠=,易得22BD AD AB ===,所以6BG =,所以cos CBG ∠=66=,故选B .2.一物体作变速直线运动,其v t -曲线如图所示,则该物体在1s~6s 2间的运动路程为( )m .A .1B .43C .494D .2【答案】C 【解析】 【分析】由图像用分段函数表示()v t ,该物体在1s~6s 2间的运动路程可用定积分612()d s v t t =⎰表示,计算即得解【详解】 由题中图像可得,2,01()2,1311,363t t v t t tt ⎧⎪≤<⎪=≤≤⎨⎪⎪+<≤⎩由变速直线运动的路程公式,可得61311132621()d 22d 1d 3s v t t tdt t t t ⎛⎫==+++ ⎪⎝⎭⎰⎰⎰⎰6132211231492(m)64tt t t ⎛⎫=+++= ⎪⎝⎭.所以物体在1s~6s 2间的运动路程是49m 4. 故选:C 【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题. 3.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=u u u r u u u r u u u r,则AOB ∠的最小值为( )A .6π B .3π C .2π D .23π 【答案】D 【解析】 【分析】由题意得2212cos m n mn AOB =++∠,再利用基本不等式即可求解. 【详解】将OC mOA nOB =+u u u r u u u r u u u r平方得2212cos m n mn AOB =++∠,222211()2331cos 1122222()2m n m n mn AOB m n mn mn mn ---++∠===-+≤-+=-+⨯(当且仅当1m n ==时等号成立),0AOB π<∠<Q ,AOB ∴∠的最小值为23π, 故选:D . 【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.4.设复数121,1z i z i =+=-,则1211z z +=( )A .1B .1-C .iD .i -【答案】A 【解析】 【分析】根据复数的除法运算,代入化简即可求解. 【详解】复数121,1z i z i =+=-,则1211z z + 1111i i=++- ()()()()111111i ii i i i -+=++--+11122i i-+=+= 故选:A. 【点睛】本题考查了复数的除法运算与化简求值,属于基础题.5.由实数组成的等比数列{a n }的前n 项和为S n ,则“a 1>0”是“S 9>S 8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若{a n }是等比数列,则89891,0S a a S q q -==≠, 若10a >,则898910S a a S q -==>,即98S S >成立, 若98S S >成立,则898910S a a S q -==>,即10a >,故“10a >”是“98S S >”的充要条件, 故选:C. 【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.6.已知z 的共轭复数是z ,且12z z i =+-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】设(),z x yi x y R =+∈,整理12z z i =+-得到方程组120x y =++=⎪⎩,解方程组即可解决问题.【详解】设(),z x yi x y R =+∈,因为12z z i =+-()()1212x yi i x y i =-+-=+-+,所以120x y =++=⎪⎩,解得:322x y ⎧=⎪⎨⎪=-⎩,所以复数z 在复平面内对应的点为3,22⎛⎫- ⎪⎝⎭,此点位于第四象限. 故选D 【点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题.7.如图网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )A .2B .22C .23D .1【答案】C 【解析】 【分析】利用正方体将三视图还原,观察可得最长棱为AD ,算出长度. 【详解】几何体的直观图如图所示,易得最长的棱长为23AD =故选:C. 【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.8.如图,ABC V 中260A B ∠=∠=︒,点D 在BC 上,30BAD ∠=︒,将ABD △沿AD 旋转得到三棱锥B ADC '-,分别记B A ',BD '与平面ADC 所成角为α,β,则α,β的大小关系是( )A .2αβα<≤B .23αβα≤≤C .2βα≤,23αβα<≤两种情况都存在D .存在某一位置使得3a β> 【答案】A【解析】 【分析】根据题意作出垂线段,表示出所要求得α、β角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案. 【详解】由题可得过点B 作BE AD ⊥交AD 于点E ,过B ′作CD 的垂线,垂足为O ,则易得B AO α=∠',B DO β=∠'.设1CD =,则有2BD AD ==,1DE =,3BE =∴可得23AB AB '==,2B D BD '==.sin ,sin OB OB AB DB αβ''==''Q , sin 3sin βαα∴=>,βα∴>;Q 3]OB '∈,∴1sin [0,]2α∈; Q 2sin 22sin cos 2sin 1sin αααα==-,21[3,2]sin α-,∴sin 23sin ααβ=…,2αβ∴….综上可得,2αβα<„. 故选:A . 【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.9.已知四棱锥E ABCD -,底面ABCD 是边长为1的正方形,1ED =,平面ECD ⊥平面ABCD ,当点C 到平面ABE 的距离最大时,该四棱锥的体积为( )A.26B.13C.23D.1【答案】B【解析】【分析】过点E作EH CD⊥,垂足为H,过H作HF AB⊥,垂足为F,连接EF.因为//CD平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离h.设(0)2CDEπθθ∠=<≤,将h表示成关于θ的函数,再求函数的最值,即可得答案.【详解】过点E作EH CD⊥,垂足为H,过H作HF AB⊥,垂足为F,连接EF.因为平面ECD⊥平面ABCD,所以EH⊥平面ABCD,所以EH HF⊥.因为底面ABCD是边长为1的正方形,//HF AD,所以1HF AD==.因为//CD平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面EFH⊥平面ABE,所以点H到平面ABE的距离,即为H到EF的距离h.不妨设(0)2CDEπθθ∠=<≤,则sinEHθ=,21sinEFθ=+.因为1122EHFS EF h EH FH=⋅⋅=⋅⋅V,所以21sin sinhθθ⋅+=,所以222211sin1sinhθθ==≤++,当2πθ=时,等号成立.此时EH与ED重合,所以1EH=,2111133E ABCDV-=⨯⨯=.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用. 10.若2m >2n >1,则( ) A .11m n> B .πm ﹣n >1 C .ln (m ﹣n )>0 D .1122log m log n >【答案】B 【解析】 【分析】根据指数函数的单调性,结合特殊值进行辨析. 【详解】若2m >2n >1=20,∴m >n >0,∴πm ﹣n >π0=1,故B 正确; 而当m 12=,n 14=时,检验可得,A 、C 、D 都不正确, 故选:B . 【点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.11.已知数列{}n a 是以1为首项,2为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,设n n b c a =,12n n T c c c =+++L ()*n ∈N ,则当2020n T <时,n 的最大值是( )A .8B .9C .10D .11【答案】B 【解析】 【分析】根据题意计算21n a n =-,12n n b -=,122n n T n +=--,解不等式得到答案.【详解】∵{}n a 是以1为首项,2为公差的等差数列,∴21n a n =-. ∵{}n b 是以1为首项,2为公比的等比数列,∴12n nb -=.∴2112n n n b b b T c c c a a a =++⋅⋅⋅+=++⋅⋅⋅+11242n a a a a -=+++⋯+()1(211)(221)(241)221n -=⨯-+⨯-+⨯-+⋅⋅⋅+⨯-()121242n n -=+++⋅⋅⋅+-11222212nn n n +-=⨯-=---.∵2020n T <,∴1222020n n +--<,解得9n ≤.则当2020n T <时,n 的最大值是9.故选:B . 【点睛】本题考查了等差数列,等比数列,f 分组求和,意在考查学生对于数列公式方法的灵活运用. 12.已知()5x a +展开式的二项式系数和与展开式中常数项相等,则2x 项系数为( ) A .10 B .32 C .40 D .80【答案】D 【解析】 【分析】根据二项式定理通项公式1r r n rr n T C a b -+=可得常数项,然后二项式系数和,可得a ,最后依据1r r n rr n T C a b -+=,可得结果.【详解】由题可知:515r r r r T C x a -+=当0r =时,常数项为51T a =又()5x a +展开式的二项式系数和为52 由5522a a =⇒=所以5152r r rr T C x -+=当2r =时,223235280T C x x ==所以2x 项系数为80 故选:D 【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题. 二、填空题:本题共4小题,每小题5分,共20分。

河南省濮阳市2021届新高考第三次适应性考试数学试题含解析

河南省濮阳市2021届新高考第三次适应性考试数学试题含解析

河南省濮阳市2021届新高考第三次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设m ,n 是空间两条不同的直线,α,β是空间两个不同的平面,给出下列四个命题: ①若//m α,//n β,//αβ,则//m n ; ②若αβ⊥,m β⊥,m α⊄,则//m α; ③若m n ⊥,m α⊥,//αβ,则//n β;④若αβ⊥,l αβ=I ,//m α,m l ⊥,则m β⊥.其中正确的是( ) A .①② B .②③C .②④D .③④【答案】C 【解析】 【分析】根据线面平行或垂直的有关定理逐一判断即可. 【详解】解:①:m 、n 也可能相交或异面,故①错 ②:因为αβ⊥,m β⊥,所以m α⊂或//m α, 因为m α⊄,所以//m α,故②对 ③://n β或n β⊂,故③错 ④:如图因为αβ⊥,l αβ=I ,在内α过点E 作直线l 的垂线a , 则直线a β⊥,a l ⊥又因为//m α,设经过m 和α相交的平面与α交于直线b ,则//m b 又m l ⊥,所以b l ⊥因为a l ⊥,b l ⊥,,b a αα⊂⊂所以////b a m ,所以m β⊥,故④对. 故选:C 【点睛】考查线面平行或垂直的判断,基础题.2.如果0b a <<,那么下列不等式成立的是( ) A .22log log b a < B .1122b a⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .33b a >D .2ab b <【答案】D 【解析】 【分析】利用函数的单调性、不等式的基本性质即可得出. 【详解】∵0b a <<,∴22log log b a >,1122b a⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,33b a <,2ab b <. 故选:D. 【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.3.设函数()f x 的定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =--.若对任意(,]x m ∈-∞,都有40()9f x ≤,则m 的取值范围是( ). A .9,4⎛⎤-∞ ⎥⎝⎦ B .19,3⎛⎤-∞ ⎥⎝⎦ C .(,7]-∞D .23,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】求出()f x 在(2,22]x n n ∈+的解析式,作出函数图象,数形结合即可得到答案. 【详解】当(2,22]x n n ∈+时,2(0,2]x n -∈,()2(2)2(2)(22)n nf x f x n x n x n =-=----,max ()2n f x =,又40489<<,所以m 至少小于7,此时3()2(6)(8)f x x x =---, 令40()9f x =,得3402(6)(8)9x x ---=,解得193x =或233x =,结合图象,故193m ≤. 故选:B. 【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.4.已知函数()[]010x x f x x x ⎧≥⎪=⎨⎪⎩,,<([]x 表示不超过x 的最大整数),若()0f x ax -=有且仅有3个零点,则实数a 的取值范围是( ) A .12,23⎛⎤⎥⎝⎦B .12,23⎡⎫⎪⎢⎣⎭C .23,34⎡⎫⎪⎢⎣⎭D .23,34⎛⎤⎥⎝⎦【答案】A 【解析】 【分析】根据[x]的定义先作出函数f (x )的图象,利用函数与方程的关系转化为f (x )与g (x )=ax 有三个不同的交点,利用数形结合进行求解即可. 【详解】当01x ≤<时,[]0x =, 当12x ≤<时,[]1x =, 当23x ≤<时,[]2x =, 当34x ≤<时,[]3x =,若()0f x ax -=有且仅有3个零点,则等价为()=f x ax 有且仅有3个根, 即()f x 与()g x ax =有三个不同的交点, 作出函数()f x 和()g x 的图象如图,当a=1时,()g x x =与()f x 有无数多个交点,当直线()g x 经过点21A (,)时,即()221g a ==,12a =时,()f x 与()g x 有两个交点, 当直线()g x 经过点()32B ,时,即()332g a ==23a =,时,()f x 与()g x 有三个交点, 要使()f x 与()g x ax =有三个不同的交点,则直线()g x 处在过12y x =和23y x =之间,即1223a ≤<, 故选:A .【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤ 【答案】B 【解析】 【分析】根据计算结果,可知该循环结构循环了5次;输出S 前循环体的n 的值为12,k 的值为6,进而可得判断框内的不等式. 【详解】因为该程序图是计算11111246810++++值的一个程序框圈 所以共循环了5次所以输出S 前循环体的n 的值为12,k 的值为6, 即判断框内的不等式应为6k ≥或5k > 所以选C 【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.6.已知正项等比数列{}n a 中,存在两项,m n a a 13a =,65423a a a =+,则14m n+的最小值是( ) A .32B .2C .73D .94【答案】C 【解析】 【分析】由已知求出等比数列{}n a 的公比,进而求出4m n +=,尝试用基本不等式,但*,m n ∈N 取不到等号,所以考虑直接取,m n 的值代入比较即可. 【详解】65423a a a =+Q ,2230q q ∴--=,3q ∴=或1q =-(舍).13a =Q ,2221139m n m n a a a a +-∴⋅=⋅=,4m n ∴+=.当1m =,3n =时1473m n +=; 当2m =,2n =时1452m n +=;当3m =,1n =时,14133m n +=,所以最小值为73. 故选:C. 【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题. 7.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -【答案】A 【解析】 【分析】由()1i z i +=得1z ii=+,然后分子分母同时乘以分母的共轭复数可得复数z ,从而可得z 的虚部. 【详解】 因为(1)i z i +=,所以22(1)1111(1)(1)11221i i i i i i z i i i i i --+=====+++-+-, 所以复数z 的虚部为12. 故选A. 【点睛】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.8.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件【答案】D 【解析】 【分析】由题意列出约束条件和目标函数,数形结合即可解决. 【详解】设购买甲、乙两种商品的件数应分别x ,y 利润为z 元,由题意*4750,,,x y x y N +≤⎧⎨∈⎩ 1.8z x y =+, 画出可行域如图所示,显然当5599y x z =-+经过(2,6)A 时,z 最大. 故选:D. 【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断x ,y 是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.9.已知直线y =k (x ﹣1)与抛物线C :y 2=4x 交于A ,B 两点,直线y =2k (x ﹣2)与抛物线D :y 2=8x 交于M ,N 两点,设λ=|AB|﹣2|MN|,则( ) A .λ<﹣16 B .λ=﹣16C .﹣12<λ<0D .λ=﹣12【答案】D 【解析】 【分析】分别联立直线与抛物线的方程,利用韦达定理,可得244AB k =+,244AB k=+,然后计算,可得结果. 【详解】设()()1122,,,A x y B x y , 联立()2222212404y k x k x k x k y x=-⎧⇒-++=⎨=⎩() 则212222442k x x k k ++==+, 因为直线()1y k x =-经过C 的焦点, 所以12244x x k A p B =++=+. 同理可得228MN k =+, 所以41612λ=-=- 故选:D.【点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。

2021-2022年高三第三次模拟考试数学理试题 含答案

2021-2022年高三第三次模拟考试数学理试题 含答案

2021年高三第三次模拟考试数学理试题 含答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设是虚数单位,若为纯虚数,则实数的值为 A. B. 2 C. D.2.设集合{}{}22430,log 1,M x x x N x x M N =-+≤=≤⋃=则 A.B.C.D.3.已知是偶函数,且 A.4B.2C.D.4.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集经检验,这组样本数据具有线性相关关系,那么对于加工零件的个数与加工时间这两个变量,下列判断正确的是 A .成正相关,其回归直线经过点(30,76) B .成正相关,其回归直线经过点(30,75) C .成负相关,其回归直线经过点(30,76)D .成负相关,其回归直线经过点(30,75)5.已知数列满足: 当()*11,,p q p q N p q +=∈<时,,则的前项和6..已知直线和平面、,则下列结论一定成立的是( )A .若,,则B .若,,则C .若,,则D .若,,则7.若点满足线性约束条件020,0y x y -≤+≥⎨⎪≥⎪⎩点,为坐标原点,则的最大值为A. B. C. D.8.已知集合,定义函数,且点,,,(其中).若△ABC 的内切圆圆心为,满足,则满足条件的有( )A .10个B .12个C .18个D . 24个 二、填空题(本大题共7小题,考生作答6题,每小题5分,满分30分。

) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.不等式的解集为 . 10. 已知向量,,则________.11已知双曲线两条渐近线的夹角是,则 .12.设是公比不为1的等比数列,其前n 项和为,若成等差数列,则 .13.设6260126(32)(21)(21)(21)x a a x a x a x -=+-+-++-,则(二)选做题:第14、15题为选做题,考生只选做其中一题.15.(极坐标与参数方程选做题)在极坐标系中,直线与曲线C:相交于A 、B 两点,O 为极点.则∠AOB 的大小是 .14.(几何证明选讲选做题)如图,、是圆上的两点,,是弧的中点.延长至使得,连接,设圆的半径,则的长是 .三、解答题。

2021年高三第三次高考模拟考试 数学文 含答案

2021年高三第三次高考模拟考试 数学文 含答案

2021年高三第三次高考模拟考试数学文含答案考试说明:本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集,集合,,那么集合(A)(B)(C)(D)2.复数等于(A)(B)(C)(D)3.已知,,,则(A)(B)(C)(D)4.已知直线和平面,则的一个必要条件是(A),(B),(C),(D)与成等角5.已知与之间的一组数据:已求得关于与的线性回归方程为=2.1+0.85,则的值为 (A ) (B ) (C ) (D ) 6. 在数列中,已知,则等于(A ) (B ) (C ) (D ) 7. 执行如图所示的程序框图,若输出,则框图中①处 可以填入(A ) (B ) (C )(D )8. 已知,其中实数满足,且的最大值是最小值的4倍,则的值是 (A ) (B ) (C )4 (D )9. 已知双曲线的右焦点为,过的直线交双曲线的渐近线于A , B 两点,且与其中一条渐近线垂直,若,则该双曲线的离心率是(A ) (B ) (C ) (D )10. 已知函数,则下列结论正确的是 (A )若,则(B )函数的图象与的图象相同 (C )函数的图象关于对称(D )函数在区间上是增函数11. 已知一个正四面体的俯视图如图所示,其中四边形是边长为的正方形,则该正四面体的内切球的表面积为 (A ) (B ) (C ) (D )12. 定义在上的函数满足下列两个条件:(1零点,则实数的取值范围是(A)(B)(C)(D)xx年哈尔滨市第三中学第三次高考模拟考试数学试卷(文史类)第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.从1,2,3,4,5,6这六个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是 .14.若等边的边长为,平面内一点满足,则 .15.已知,则 .16.若在由正整数构成的无穷数列中,对任意的正整数,都有,且对任意的正整数,该数列中恰有个,则= .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)设的内角的对边分别为,满足)32(sin2(2-=.-+sin)cbCBca sinAb3(Ⅰ)求角的大小;(Ⅱ)若,,求的面积.18.(本小题满分12分)某校从参加某次知识竞赛的同学中,选取名同学将其成绩(百分制,均为整数)分成,,,,,六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;(Ⅱ)从频率分布直方图中,估计本次考试成绩的中位数;(Ⅲ)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.19.(本小题满分12分)如图,在三棱柱中,,,为的中点,.A(Ⅰ)求证:平面平面; (Ⅱ)求三棱锥的体积.20. (本小题满分12分)已知椭圆()的左,右焦点分别为,上顶点为.为抛物线的焦点,且,0. (Ⅰ)求椭圆的标准方程;(Ⅱ)过定点的直线与椭圆交于两点(在之间),设直线的斜率为(),在轴上是否存在点,使得以为邻边的平行四边形为菱形?若存在,求出实数的取值范围;若不存在,请说明理由.21. (本小题满分12分)已知函数().(Ⅰ)求函数的最大值;(Ⅱ)若,且关于的方程在上恰有两个不等的实根, 求实数的取值范围;(Ⅲ)设各项为正数的数列满足,(), 求证:.请考生在第22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-1如图,是⊙的一条切线,切点为,都是⊙的割线,. (Ⅰ)证明:; (Ⅱ)证明:.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标平面内,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是(为参数).(Ⅰ)过极点作直线的垂线,垂足为点,求点的极坐标;(Ⅱ)若点分别为曲线和直线上的动点,求的最小值.24.(本小题满分10分)选修4—5:不等式选讲已知函数.(Ⅰ)若关于的不等式的解集为,求实数的值;(Ⅱ)若对于任意的恒成立,求实数的取值范围.xx年哈尔滨市第三中学第三次高考模拟考试数学答案(文史类)选择题:1B 2A 3A 4D 5D 6D 7B 8B 9D 10D 11A 12D填空题:13.14. 15. 16.45解答题:17.解:(Ⅰ)由已知及正弦定理可得,整理得,…………………………2分所以.…………………………4分又,故.…………………………5分(Ⅱ)由正弦定理可知,又,,,所以.…………………………6分又,故或.………………………… 8分若,则,于是;………………………… 10分若,则,于是.………………………… 12分18.解:(Ⅰ)………………………………2分(Ⅱ)………………………………6分(Ⅲ)第1组:人(设为1,2,3,4,5,6)第6组:人(设为A,B,C)共有36个基本事件,满足条件的有18个,所以概率为…………12分19.解:(Ⅰ)取中点为,连接,.因为,所以.又,,所以平面,因为平面,所以.…3分 由已知,,又, 所以,因为, 所以平面.又平面,所以平面平面. (6)分 (Ⅱ)三棱锥的体积=三棱锥的体积 由(Ⅰ)知,平面平面,平面平面, , 平面 所以,即,即点到的距离, …………………………9分 ………………………… 11分 所以 ………………………… 12分 20. 解:(Ⅰ)由已知,,,所以. ……… 1分 在中,为线段的中点, 故,所以.……… 2分 于是椭圆的标准方程为.…4分 (Ⅱ)设(), ,取的中点为.,,又,所以. ………………………… 6分 因为,所以,. ……… 8分 因为,所以,即,整理得. ………………………… 10分 因为时,,,所以. ……… 12分21.解:(Ⅰ)函数的定义域为, ,当时,取最大值 ……………………………………4分 (Ⅱ),由得在上有两个不同的实根, 设 ,时,,时, ,O02ln 21312ln 232)4()1(<-=+-=-g g ,得 则 ……………………………………8分(Ⅲ)由(1)知当时,。

新高考2021年高三数学高考三模试题卷三附答案解析

新高考2021年高三数学高考三模试题卷三附答案解析

2.已知复数 z 满足 z z 2i ,则 z 的虚部是( )
A. 1
B.1
C. i
3.“ m 0 ”是“函数 f (x) ln x mx 在 0,1 上为增函数”的(
D.i )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件
4.函数 y 2sin2 x 2 cos x 3 的最大值是( )
(2)企业产品的质量是企业的生命,该企业为了生产优质的产品投放市场,对于生产的每一件产品必须
要经过四个环节的质量检查,若每个环节中出现不合格产品立即进行修复,且每个环节是相互独立的,前
三个环节中生产的产品合格的概率为
1 2
,每个环节中不合格产品所需要的修复费用均为100 元,第四个
环节中产品合格的概率为 3 ,不合格产品需要的修复费用为 50 元,设每件产品修复的费用为 元,写出 4
6
所以,四边形
AODC
为平行四边形,所以,
AD
AO
AC
1
a
b

2
故选 D.
7.【答案】D
【解析】由于函数
y
1 a
x
(a
0
,且
a
1
)向右平移两个单位得
y
1 a
x2
(a
0
,且
a
1
),
即为函数 y a2x (a 0 ,且 a 1 ),所以定点 A2,1 ,
由于点 A 在椭圆 x2 y2 1,所以 4 1 1,且 m 0 , n 0 ,
12.已知函数
f
(x)
ln x ,
x
1,
()
x0 x0
,若函数
y
f

2021年高三三模数学试卷含解析

2021年高三三模数学试卷含解析

2021年高三三模数学试卷含解析一、填空题(共14小题,每小题6分,满分84分)1.设集合A={3,m},B={3m,3},且A=B,则实数m的值是.2.已知复数z=(1+i)(1﹣2i)(i为虚数单位),则z的实部为.3.已知实数x,y满足条件则z=2x+y的最小值是.4.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在中,其频率分布直方图如图所示.已知在考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、实部的定义即可得出.解答:解:复数z=(1+i)(1﹣2i)=1﹣2i+i+2=3﹣i,∴z的实部为3.故答案为:3.点评:本题考查了复数的运算法则、实部的定义,属于基础题.3.已知实数x,y满足条件则z=2x+y的最小值是﹣3 .考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.解答:解:由约束条件作出可行域如图,化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(﹣1,﹣1)时,直线在y轴上的截距最小,z有最小值为2×(﹣1)﹣1=﹣3.故答案为:﹣3.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.4.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在中,其频率分布直方图如图所示.已知在故答案为:﹣4点评:本题主要考查了程序框图和算法,属于基本知识的考查.6.从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x,则log2x为整数的概率为.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:本题是一个古典概型,试验发生包含的事件是从9个数字中任选一个有9种结果,满足条件的事件是对数log2x是一个正整数,可以列举x,有1,2,4,8,共有4种结果,根据概率公式得到结果解答:解:从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x,共有9种基本事件,其中log2x为整数的x=1,2,4,8共4种基本事件,故则log2x为整数的概率为,故答案为:.点评:本题考查古典概型,考查对数的性质,是一个比较简单的综合题,解题的关键是看清楚有几个数字使得对数的值是一个正整数.7.在平面直角坐标系xOy中,点F为抛物线x2=8y的焦点,则F到双曲线的渐近线的距离为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求得抛物线的焦点和双曲线的渐近线方程,再由点到直线的距离公式计算即可得到所求值.解答:解:抛物线x2=8y的焦点F(0,2),双曲线的渐近线方程为y=±3x,则F到双曲线的渐近线的距离为d==.故答案为:.点评:本题考查双曲线和抛物线的方程和性质,主要考查焦点和渐近线方程的求法,考查点到直线的距离公式的运用,属于基础题.8.在等差数列{a n}中,若a n+a n+2=4n+6(n∈N*),则该数列的通项公式a n= 2n+1 .考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由已知条件易得数列的首项和公比,可得通项公式.解答:解:设等差数列{a n}的公差为d,∵a n+a n+2=4n+6,①∴a n+2+a n+4=4(n+2)+6,②②﹣①可得a n+4﹣a n=8,即4d=8,解得d=2,把n=1代入a n+a n+2=4n+6可得2a1+4=10,解得a1=3,∴通项公式a n=3+2(n﹣1)=2n+1故答案为:2n+1点评:本题考查等差数列的通项公式,求出数列的首项和公比是解决问题的关键,属基础题.9.给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cosα<cosβ”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为③.考点:命题的真假判断与应用.专题:简易逻辑.分析:①“a>b”⇔“3a>3b”,即可判断正误;②取α=,β=,则cosα=cosβ;反之取α=,β=2π,满足cosα<cosβ,即可判断出正误;③函数f(x)=x3+ax2(x∈R)为奇函数⇔f(﹣x)+f(x)=0⇔2ax2=0,∀x∈R,⇔a=0.即可判断出正误.解答:解:①“a>b”⇔“3a>3b”,因此“a>b”是“3a>3b”的充要条件,故不正确;②取α=,β=,则cosα=cosβ;反之取α=,β=2π,满足cosα<cosβ,因此“α>β”是“cosα<cosβ”的既不必要也不充分条件,不正确;③函数f(x)=x3+ax2(x∈R)为奇函数⇔f(﹣x)+f(x)=0⇔2ax2=0,∀x∈R,⇔a=0.因此“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.因此其中正确命题的序号为③.故答案为:③.点评:本题考查了函数的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.10.已知一个空间几何体的所有棱长均为1cm,其表面展开图如图所示,则该空间几何体的体积V= cm3.考点:由三视图求面积、体积.专题:立体几何.分析:三视图复原几何体分两部分,下面是一个边长为1的正方体、上面是一个棱长为1的正四棱锥,分别计算出边长为1的正方体及棱长为1的正四棱锥的体积即可.解答:解:由三视图可知,该几何体下面是一个边长为1的正方体,其体积为1,上面是一个棱长为1的正四棱锥,其体积为=,故答案为:.点评:本题考查三视图与几何体的关系,考查空间想象能力、逻辑思维能力,注意解题方法的积累,属于基础题.11.如图,已知正方形ABCD的边长为2,点E为AB的中点.以A为圆心,AE为半径,作弧交AD于点F.若P为劣弧上的动点,则的最小值为5﹣2 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:首先以A为原点,直线AB,AD分别为x,y轴,建立平面直角坐标系,可设P(cos θ,sinθ),从而可表示出,根据两角和的正弦公式即可得到=5﹣2sin(θ+φ),从而可求出的最小值.解答:解:如图,以A为原点,边AB,AD所在直线为x,y轴建立平面直角坐标系,则:A(0,0),C(2,2),D(0,2),设P(cos θ,sinθ);∴•(﹣cosθ,2﹣sinθ)=(2﹣cosθ)(﹣cosθ)+(2﹣sinθ)2=5﹣2(cosθ+2sinθ)=sin(θ+φ),tanφ=;∴sin(θ+φ)=1时,取最小值.故答案为:5﹣2.点评:考查建立平面直角坐标系,利用向量的坐标解决向量问题的方法,由点的坐标求向量坐标,以及数量积的坐标运算,两角和的正弦公式.12.已知函数若函数f(x)的图象与x轴有且只有两个不同的交点,则实数m的取值范围为(﹣5,0).考点:利用导数研究函数的极值;根的存在性及根的个数判断.专题:计算题;函数的性质及应用;导数的综合应用.分析:由分段函数知,分段讨论函数的单调性,从而求导可知f(x)在上是增函数,从而化为函数f(x)在与(1,+∞)上各有一个零点;从而求实数m的取值范围.解答:解:当0≤x≤1时,f(x)=2x3+3x2+m,f′(x)=6x2+6x=6x(x+1)≥0;故f(x)在上是增函数,故若使函数f(x)的图象与x轴有且只有两个不同的交点,则函数f(x)在与(1,+∞)上各有一个零点;故m<0,故,解得,m∈(﹣5,0);故答案为:(﹣5,0).点评:本题考查了导数的综合应用及分段函数的应用,属于中档题.13.在平面直角坐标系xOy中,过点P(﹣5,a)作圆x2+y2﹣2ax+2y﹣1=0的两条切线,切点分别为M(x1,y1),N(x2,y2),且+=0,则实数a的值为3或﹣2 .考点:圆的切线方程.专题:计算题;直线与圆.分析:两者的和实质上是一个斜率与另一个斜率的倒数和,进而可得两斜率乘积为﹣1,可得P,Q,R,T共线,即可求出实数a的值.解答:解:设MN中点为Q(x0,y0),T(1,0),圆心R(a,﹣1),根据对称性,MN⊥PR,===,∵k MN=,+=0∴k MN•k TQ=﹣1,∴MN⊥TQ,∴P,Q,R,T共线,∴k PT=k RT,即,∴a2﹣a﹣6=0,∴a=3或﹣2.故答案为:3或﹣2.点评:本题考查实数a的值,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.14.已知正实数x,y满足,则xy的取值范围为.考点:基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:设xy=m可得x=,代入已知可得关于易得一元二次方程(2+3m)y2﹣10my+m2+4m=0,由△≥0可得m的不等式,解不等式可得.解答:解:设xy=m,则x=,∵,∴++3y+=10,整理得(2+3m)y2﹣10my+m2+4m=0,∵x,y是正实数,∴△≥0,即100m2﹣4(2+3m)(m2+4m)≥0,整理得m(3m﹣8)(m﹣1)≤0,解得1≤m≤,或m≤0(舍去)∴xy的取值范围是故答案为:点评:本题考查基本不等式求最值,涉及换元的思想和一元二次方程根的存在性,属中档题.二、解答题(共5小题,满分76分)15.如图,在三棱柱ABC﹣A1B1C1中,B1C⊥AB,侧面BCC1B1为菱形.(1)求证:平面ABC1⊥平面BCC1B1;(2)如果点D,E分别为A1C1,BB1的中点,求证:DE∥平面ABC1.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)根据面面垂直的判定定理即可证明平面ABC1⊥平面BCC1B1;(2)根据线面平行的判定定理进行证明即可.解答:解:(1)因三棱柱ABC﹣A1B1C1的侧面BCC1B1为菱形,故B1C⊥BC1.…2分又B1C⊥AB,且AB,BC1为平面ABC1内的两条相交直线,故B1C⊥平面ABC1.…5分因B1C⊂平面BCC1B1,故平面ABC1⊥平面BCC1B1.…7分(2)如图,取AA1的中点F,连DF,FE.又D为A1C1的中点,故DF∥AC1,EF∥AB.因DF⊄平面ABC1,AC1⊂平面ABC1,故DF∥面ABC1.…10分同理,EF∥面ABC1.因DF,EF为平面DEF内的两条相交直线,故平面DEF∥面ABC1.…12分因DE⊂平面DEF,故DE∥面ABC1.…14分.点评:本题主要考查空间直线和平面平行以及面面垂直的判定,利用相应的判定定理是解决本题的关键.16.已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若,求的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的恒等变换及化简求值.专题:三角函数的求值;三角函数的图像与性质.分析:(1)由图可知A的值,由T=2=2π,可求ω==1,又,且,即可求得φ的值,从而可求函数f(x)的解析式.(2)由,得.从而由再根据二倍角公式即可求值.解答:解:(1)由图可知,A=2,…2分由T=2=2π,故ω==1,所以,f(x)=2sin(x+φ).…4分又,且,故.于是,f(x)=.…7分(2)由,得.…9分所以,…12分=.…14分.点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的恒等变换及化简求值,属于基本知识的考查.17.如图,在平面直角坐标系xOy中,椭圆(a>b>0)的两焦点分别为F1(,0),F2(,0),且经过点(,).(1)求椭圆的方程及离心率;(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称.设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4.①求k1k2的值;②求OB2+OC2的值.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)依题意,c=,a2=b2+3,(,)代入椭圆方程,求出a,b,即可求椭圆的方程及离心率;(2)①利用斜率公式,即可求k1k2的值;②由①知,k3k4=k1k2=,故x1x2=﹣4y1y2.利用OB2+OC2=,求OB2+OC2的值.解答:解:(1)依题意,c=,a2=b2+3,…2分由,解得b2=1(b2=,不合,舍去),从而a2=4.故所求椭圆方程为:,离心率e=.…5分(2)①设B(x1,y1),C(x2,y2),则D(﹣x1,﹣y1),于是k1k2===.…8分②由①知,k3k4=k1k2=,故x1x2=﹣4y1y2.所以(x1x2)2=(﹣4y1y2)2,即(x1x2)2==,所以,=4.…11分又2==,故.所以,OB2+OC2==5.…14分点评:本题考查椭圆方程与性质,考查斜率公式的运用,考查学生的计算能力,属于中档题.18.为丰富市民的文化生活,市政府计划在一块半径为200m,圆心角为120°的扇形地上建造市民广场.规划设计如图:内接梯形ABCD区域为运动休闲区,其中A,B分别在半径OP,OQ上,C,D在圆弧上,CD∥AB;△OAB区域为文化展示区,AB长为m;其余空地为绿化区域,且CD长不得超过200m.(1)试确定A,B的位置,使△OAB的周长最大?(2)当△OAB的周长最大时,设∠DOC=2θ,试将运动休闲区ABCD的面积S表示为θ的函数,并求出S的最大值.考点:解三角形的实际应用.专题:应用题;导数的综合应用;解三角形.分析:(1)设OA=m,OB=n,m,n∈(0,200],在△OAB中,利用余弦定理,结合基本不等式,即可得出结论;(2)利用梯形的面积公式,结合导数,确定函数的单调性,即可求出S的最大值.解答:解:(1)设OA=m,OB=n,m,n∈(0,200],在△OAB中,,即,…2分所以,,…4分所以m+n≤100,当且仅当m=n=50时,m+n取得最大值,此时△OAB周长取得最大值.答:当OA、OB都为50m时,△OAB的周长最大.6分(2)当△AOB的周长最大时,梯形ACBD为等腰梯形.过O作OF⊥CD交CD于F,交AB于E,则E、F分别为AB,CD的中点,所以∠DOE=θ,由CD≤200,得.8分在△ODF中,DF=200sinθ,OF=200cosθ.又在△AOE中,,故EF=200cosθ﹣25.10分所以,==,.…12分令,,,,又y=及y=cos2θ在上均为单调递减函数,故f'(θ)在上为单调递减函数.因>0,故f'(θ)>0在上恒成立,于是,f(θ)在上为单调递增函数.…14分所以当时,f(θ)有最大值,此时S有最大值为.答:当时,梯形ABCD面积有最大值,且最大值为m2.…16分.点评:本题考查余弦定理,考查基本不等式的运用,考查利用导数知识解决最值问题,考查学生分析解决问题的能力,属于中档题.19.已知数列{a n},{b n},a1=1,b n=(1﹣),n∈N+,设数列{b n}的前n项和为S n(1)若a n=2n﹣1,求S n(2)是否存在等比数列{a n},使b n+2=S n对任意n∈N+恒成立?若存在,求出所有满足条件的数列{a n}的通项公式;若不存在,说明理由(3)若a1≤a2≤…≤a n≤…,求证:0≤S n<2.考点:数列与不等式的综合;数列的求和.专题:等差数列与等比数列;点列、递归数列与数学归纳法.分析:(1)通过an=2n﹣1可得bn=,利用等比数列的求和公式计算即可;(2)设an=q n﹣1,通过b n+2=S2,令n=1即b3=b1计算可得q=±1,进而可得结论;(3)通过1=a1≤a2≤…≤an≤…,易得Sn≥0,利用放缩法可得b n≤2(﹣),并项相加即得结论.解答:(1)解:当an=2n﹣1时,bn=(1﹣)•=.∴Sn=(1+++…+)=﹣;(2)结论:满足条件的数列{an}存在且只有两个,其通项公式为an=1和an=(﹣1)n﹣1.证明:在b n+2=S2中,令n=1,得b3=b1.设an=q n﹣1,则bn=,由b3=b1,得=•.若q=±1,则bn=0,满足题设条件.此时an=1和an=(﹣1)n﹣1.若q≠±1,则=,即q2 =1,矛盾.综上,满足条件的数列{an}存在,且只有两个,一是an=1,另一是an=(﹣1)n﹣1.(3)证明:∵1=a1≤a2≤…≤an≤…,∴a n>0,0<≤1,于是0<≤1.∴b n=(1﹣)≥0,n=1,2,3,…∴Sn=b1+b2+…+bn≥0,又b n=(1﹣)=(1+)(1﹣)•=(1+)(﹣)•≤2(﹣).∴Sn=b1+b2+…+bn≤2(﹣)+2(﹣)+…+2(﹣)=2(﹣)=2(1﹣)<2,∴0≤Sn<2.点评:本题考查求数列的通项,考查求数列的和,利用放缩法及并已改项相加法是解决本题的关键,注意解题方法的积累,属于中档题.29807 746F 瑯K6V34634 874A 蝊)33741 83CD 菍36143 8D2F 贯234719 879F 螟25342 62FE 拾I340608 9EA0 麠37844 93D4 鏔。

2020-2021学年河南省高考数学三模试卷(理科)及答案解析

2020-2021学年河南省高考数学三模试卷(理科)及答案解析

河南省高考数学三模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=()2(其中i为虚数单位),则=()A.1 B.﹣i C.﹣1 D.i2.已知集合M={x|+=1},N={y|+=1},M∩N=()A.∅B.{(3,0),(0,2)} C.D.3.已知a、b∈R,则“ab=1”是“直线“ax+y﹣l=0和直线x+by﹣1=0平行”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分又不必要条件4.利用如图算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为()A.2 B.3 C.4 D.55.已知数列{a n}为等差数列,且a2016+a2018=dx,则a2017的值为()A.B.2πC.π2D.π6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h2)7.已知随机变量Z~N(1,1),其正态分布密度曲线如图所示,若向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为()附:若Z~N(μ,σ2),则P(μ﹣σ<Z≤μ+σ)=0.6826;P(μ﹣2σ<Z≤μ+2σ)=0.9544;P(μ﹣3σ<Z≤μ+3σ)=0.9974.A.6038 B.6587 C.7028 D.75398.已知实数x,y满足若目标函数Z=ax+y的最大值为3a+9,最小值为3a﹣3,则实数a的取值范围是()A.{a|﹣1≤a≤1} B.{a|a≤﹣1} C.{a|a≤﹣1或a≥1} D.{a|a≥1}9.若空间中四个不重合的平面a1,a2,a3,a4满足a1⊥a2,a2⊥a3,a3⊥a4,则下列结论一定正确的是()A.a1⊥a4B.a1∥a4C.a1与a4既不垂直也不平行D.a1与a4的位置关系不确定10.设(2﹣x)5=a0+a1x+a2x2+…+a5x5,则的值为()A.﹣B.﹣C.﹣D.﹣11.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为()A.B.+1 C.D.﹣112.已知函数f(x)=,若在区间(1,∞)上存在n(n≥2)个不同的数x1,x2,x3,…,x n,使得==…成立,则n的取值集合是()A.{2,3,4,5} B.{2,3} C.{2,3,5} D.{2,3,4}二、填空题:本大题共4个小题,每小题5分,共20分.13.已知||=1,||=2,与的夹角为120°,,则与的夹角为.14.等比数列{a n}的前n项和为S n,S n=b(﹣2)n﹣1﹣a,则= .15.已知直三棱柱ABC﹣A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,则该三棱柱内切球的表面积与外接球的表面积的和为.16.已知函数f(x)=,点O为坐标原点,点A n(n,f(n))(n∈N*),向量=(0,1),θn 是向量与的夹角,则使得+++…+<t恒成立的实数t 的最小值为.三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知函数f(x)=cosx(sinx﹣cosx)+m(m∈R),将y=f(x)的图象向左平移个单位后得到g(x)的图象,且y=g(x)在区间[,]内的最小值为.(1)求m的值;(2)在锐角△ABC中,若g()=﹣+,求sinA+cosB的取值范围.18.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.(1)求证:A1B∥平面AEC1;(2)在棱AA1上存在一点M,满足B1M⊥C1E,求平面MEC1与平面ABB1A1所成锐二面角的余弦值.19.某市为了了解全民健身运动开展的效果,选择甲、乙两个相似的小区作对比,一年前在甲小区利用体育彩票基金建设了健身广场,一年后分别在两小区采用简单随机抽样的方法抽取20人作为样本,进行身体综合素质测试,测试得分分数的茎叶图(其中十位为茎,个们为叶)如图:(1)求甲小区和乙小区的中位数;(2)身体综合素质测试成绩在60分以上(含60)的人称为“身体综合素质良好”,否则称为“身体综合素质一般”.以样本中的频率作为概率,两小区人口都按1000人计算,填写下列2×2列联表,甲小区(有健康广场)乙小区(无健康广场)合计身体综合素质良好身体综合素质一般合计并判断是否有97.5%把握认为“身体综合素质良好”与“小区是否建设健身广场”有关?P(K2>k)0.10 0.05 0.025 0.01 0.005k0 1.706 3.841 5.024 6.635 7.879(附:k=)20.已知椭圆C:+=1(a>0,b>0)的离心率为,右焦点为F,上顶点为A,且△AOF 的面积为(O为坐标原点).(1)求椭圆C的方程;(2)若点M在以椭圆C的短轴为直径的圆上,且M在第一象限,过M作此圆的切线交椭圆于P,Q两点.试问△PFQ的周长是否为定值?若是,求此定值;若不是,说明理由.21.已知函数f(x)=asinx+ln(1﹣x).(1)若a=1,求f(x)在x=0处的切线方程;(2)若f(x)在区间22.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(﹣2,﹣4)且倾斜角为的直线l与曲线C 相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|AP|•|BP|=|BA|2,求m的值.23.设不等式0<|x+2|﹣|1﹣x|<2的解集为M,a,b∈M(1)证明:|a+b|<;(2)比较|4ab﹣1|与2|b﹣a|的大小,并说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=()2(其中i为虚数单位),则=()A.1 B.﹣i C.﹣1 D.i【考点】A7:复数代数形式的混合运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:z=()2==i,则=﹣i.故选:B.2.已知集合M={x|+=1},N={y|+=1},M∩N=()A.∅B.{(3,0),(0,2)} C.D.【考点】1E:交集及其运算.【分析】根据椭圆的定义得到集合M,根据直线方程得到集合N,再求交集即可.【解答】解:集合M={x|+=1}=,N={y|+=1}=R,则M∩N=,故选:D.3.已知a、b∈R,则“ab=1”是“直线“ax+y﹣l=0和直线x+by﹣1=0平行”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分又不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由ax+y﹣l=0和直线x+by﹣1=0平行,可得ab=1.反之不成立,例如a=b=1时,两条直线重合.【解答】解:由ax+y﹣l=0和直线x+by﹣1=0平行,可得ab=1.反之不成立,例如a=b=1时,两条直线重合.∴ab=1”是“直线“ax+y﹣l=0和直线x+by﹣1=0平行”的必要不充分条件.故选:C.4.利用如图算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为()A.2 B.3 C.4 D.5【考点】EF:程序框图.【分析】由程序框图知,得出打印的点坐标,判定该点是否在圆内即可.【解答】解:由程序框图知,i=6时,打印第一个点(﹣3,6),在圆x2+y2=25外,i=5时,打印第二个点(﹣2,5),在圆x2+y2=25外,i=4时,打印第三个点(﹣1,4),在圆x2+y2=25内,i=3时,打印第四个点(0,3),在圆x2+y2=25内,i=2时,打印第五个点(1,2),在圆x2+y2=25内,i=1时,打印第六个点(2,1),在圆x2+y2=25内,∴打印的点在圆x2+y2=25内有4个.故选:C.5.已知数列{a n}为等差数列,且a2016+a2018=dx,则a2017的值为()A.B.2πC.π2D.π【考点】84:等差数列的通项公式.【分析】根据定积分的几何意义求出a2016+a2018=dx=π,再根据等差中项的性质即可求出.【解答】解:dx表示以原点为圆心,以2为半径的圆的面积的四分之一,则a2016+a2018=dx=π,∵数列{a n}为等差数列,∴a2017=(a2016+a2018)=,故选:A6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4πB.πh2C.π(2﹣h)2D.π(4﹣h2)【考点】L!:由三视图求面积、体积.【分析】由题意,首先得到几何体为一个圆柱挖去一个圆锥,得到截面为圆环,明确其半径求面积.【解答】解:由已知得到几何体为一个圆柱挖去一个圆锥,底面半径为2高为2,截面为圆环,小圆半径为r,大圆半径为2,设小圆半径为r,则,得到r=h,所以截面圆环的面积为4π﹣πh2=π(4﹣h2);故选D.7.已知随机变量Z~N(1,1),其正态分布密度曲线如图所示,若向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为()附:若Z~N(μ,σ2),则P(μ﹣σ<Z≤μ+σ)=0.6826;P(μ﹣2σ<Z≤μ+2σ)=0.9544;P(μ﹣3σ<Z≤μ+3σ)=0.9974.A.6038 B.6587 C.7028 D.7539【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】求出P阴影=P(0<X≤1)=1﹣×0.6826=1﹣0.3413=0.6587,即可得出结论.【解答】解:由题意P阴影=P(0<X≤1)=1﹣×0.6826=1﹣0.3413=0.6587,则落入阴影部分点的个数的估计值为10000×0.6587=6587.故选:B.8.已知实数x,y满足若目标函数Z=ax+y的最大值为3a+9,最小值为3a﹣3,则实数a的取值范围是()A.{a|﹣1≤a≤1} B.{a|a≤﹣1} C.{a|a≤﹣1或a≥1} D.{a|a≥1}【考点】7C:简单线性规划.【分析】由约束条件作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合分类讨论进行求解.【解答】解:由z=ax+y得y=﹣ax+z,直线y=﹣ax+z是斜率为﹣a,y轴上的截距为z的直线,作出不等式组对应的平面区域如图:则A(3,9),B(﹣3,3),C(3,﹣3),∵z=ax+y的最大值为3a+9,最小值为3a﹣3,可知目标函数经过A取得最大值,经过C取得最小值,若a=0,则y=z,此时z=ax+y经过A取得最大值,经过C取得最小值,满足条件,若a>0,则目标函数斜率k=﹣a<0,要使目标函数在A处取得最大值,在C处取得最小值,则目标函数的斜率满足﹣a≥k BC=﹣1,即a≤1,可得a∈(0,1].若a<0,则目标函数斜率k=﹣a>0,要使目标函数在A处取得最大值,在C处取得最小值,可得﹣a≤k BA=1∴﹣1≤a<0,综上a∈故选:A.9.若空间中四个不重合的平面a1,a2,a3,a4满足a1⊥a2,a2⊥a3,a3⊥a4,则下列结论一定正确的是()A.a1⊥a4B.a1∥a4C.a1与a4既不垂直也不平行D.a1与a4的位置关系不确定【考点】LQ:平面与平面之间的位置关系.【分析】可得平面a1,a3平行或相交,而a3⊥a4,可得a1与a4的位置关系不确定,【解答】解:∵若空间中四个不重合的平面a1,a2,a3,a4满足a1⊥a2,a2⊥a3,a3⊥a4,∴平面a1,a3平行或相交,∵a3⊥a4,∴a1与a4的位置关系不确定,故选D.10.设(2﹣x)5=a0+a1x+a2x2+…+a5x5,则的值为()A.﹣B.﹣C.﹣D.﹣【考点】DB:二项式系数的性质.【分析】利用二项式展开式的通项公式求出a1、a2、a3、a4的值,再计算.【解答】解:由(2﹣x)5=a0+a1x+a2x2+…+a5x5,且二项式展开式的通项公式为T r+1=•25﹣r•(﹣x)r,∴a1=﹣•24=﹣80,a2=•23=80,a3=﹣•22=﹣40,a4=•2=10;∴==﹣.故选C.11.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为()A.B.+1 C.D.﹣1【考点】K8:抛物线的简单性质.【分析】过P作准线的垂线,垂足为N,则由抛物线的定义,结合|PA|=m|PB|,可得=,设PA的倾斜角为α,则当m取得最大值时,sinα最小,此时直线PA与抛物线相切,求出P的坐标,利用双曲线的定义,即可得出结论.【解答】解:过P作准线的垂线,垂足为N,则由抛物线的定义可得|PN|=|PB|,∵|PA|=m|PB|,∴|PA|=m|PN|∴=,设PA的倾斜角为α,则sinα=,当m取得最大值时,sinα最小,此时直线PA与抛物线相切,设直线PA的方程为y=kx﹣1,代入x2=4y,可得x2=4(kx﹣1),即x2﹣4kx+4=0,∴△=16k2﹣16=0,∴k=±1,∴P(2,1),∴双曲线的实轴长为PA﹣PB=2(﹣1),∴双曲线的离心率为=+1.故选B.12.已知函数f(x)=,若在区间(1,∞)上存在n(n≥2)个不同的数x1,x2,x3,…,x n,使得==…成立,则n的取值集合是()A.{2,3,4,5} B.{2,3} C.{2,3,5} D.{2,3,4}【考点】5B:分段函数的应用.【分析】由题意可知n为方程f(x)=kx的解的个数,判断f(x)的单调性,作出y=f(x)与y=kx 的函数图象,根据图象交点个数判断.【解答】解:设==…=k,则方程有n个根,即f(x)=kx有n个根,f(x)=,∴f(x)在(1,)上单调递增,在(,2)上单调递减.当x>2时,f′(x)=e x﹣2(﹣x2+8x﹣12)+e x﹣2(﹣2x+8)=e x﹣2(﹣x2+6x﹣4),设g(x)=﹣x2+6x﹣4(x>2),令g(x)=0得x=3+,∴当2时,g(x)>0,当x>3+时,g(x)<0,∴f(x)在(2,3+)上单调递增,在(3+,+∞)上单调递减,作出f(x)与y=kx的大致函数图象如图所示:由图象可知f(x)=kx的交点个数可能为1,2,3,4,∵n≥2,故n的值为2,3,4.故选D.二、填空题:本大题共4个小题,每小题5分,共20分.13.已知||=1,||=2,与的夹角为120°,,则与的夹角为90°.【考点】9P:平面向量数量积的坐标表示、模、夹角.【分析】利用向量的数量积运算和向量垂直与数量积的关系即可得出.【解答】解:∵||=1,||=2,与的夹角为120°,∴===﹣1.∵,∴,∴=,∴﹣(﹣1)=,∴=0.∴.∴与的夹角为90°.14.等比数列{a n}的前n项和为S n,S n=b(﹣2)n﹣1﹣a,则= ﹣.【考点】89:等比数列的前n项和.【分析】利用递推关系、等比数列的定义与通项公式即可得出.【解答】解:n=1时,a1=b﹣a.n≥2时,a n=S n﹣S n﹣1=b(﹣2)n﹣1﹣a﹣,上式对于n=1时也成立,可得:b﹣a=b+.则=﹣.故答案为:﹣.15.已知直三棱柱ABC﹣A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,则该三棱柱内切球的表面积与外接球的表面积的和为33π.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积;LG:球的体积和表面积.【分析】求出外接球的半径、内切球的半径,即可求出该三棱柱内切球的表面积与外接球的表面积的和.【解答】解:将三棱柱扩充为长方体,对角线长为=,∴外接球的半径为,外接球的表面积为29π,△ABC的内切圆的半径为=1,∴该三棱柱内切球的表面积4π,∴三棱柱内切球的表面积与外接球的表面积的和为29π+4π=33π,故答案为:33π.16.已知函数f(x)=,点O为坐标原点,点A n(n,f(n))(n∈N*),向量=(0,1),θn 是向量与的夹角,则使得+++…+<t恒成立的实数t 的最小值为.【考点】9R:平面向量数量积的运算.【分析】根据题意知﹣θn是直线OA n的倾斜角,化==tan(﹣θn)=,再求出+++…+的解析式g(n),利用g(n)<t恒成立求出t的最小值.【解答】解:根据题意得,﹣θn是直线OA n的倾斜角,∴==tan(﹣θn)===﹣,∴+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1+﹣﹣=﹣﹣;要使﹣﹣<t恒成立,只须使实数t的最小值为.故答案为:.三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知函数f(x)=cosx(sinx﹣cosx)+m(m∈R),将y=f(x)的图象向左平移个单位后得到g(x)的图象,且y=g(x)在区间[,]内的最小值为.(1)求m的值;(2)在锐角△ABC中,若g()=﹣+,求sinA+cosB的取值范围.【考点】GL:三角函数中的恒等变换应用;HJ:函数y=Asin(ωx+φ)的图象变换;HT:三角形中的几何计算.【分析】(1)根据二倍角公式化简f(x),利用平移规律得出g(x)的解析式,根据最小值列方程求出m;(2)根据条件求出C,用A表示出B,化简sinA+cosB得出关于A函数,根据A的范围得出正弦函数的性质得出sinA+cosB的范围.【解答】解:(1)f(x)=sinxcosx﹣cos2x+m=sin2x﹣cos2x+m﹣=sin(2x﹣)+m﹣,∴g(x)=sin+m﹣=sin(2x+)+m﹣,∵x∈[,],∴2x+∈[,],∴当2x+=时,g(x)取得最小值+m﹣=m,∴m=.(2)∵g()=sin(C+)+﹣=﹣+,∴sin(C+)=,∵C∈(0,),∴C+∈(,),∴C+=,即C=.∴sinA+cosB=sinA+cos(﹣A)=sinA﹣cosA+sinA=sinA﹣cosA=sin(A﹣).∵△ABC是锐角三角形,∴,解得,∴A﹣∈(,),∴<sin(A﹣)<,∴<sin(A﹣)<.∴sinA+cosB的取值范围是(,).18.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.(1)求证:A1B∥平面AEC1;(2)在棱AA1上存在一点M,满足B1M⊥C1E,求平面MEC1与平面ABB1A1所成锐二面角的余弦值.【考点】MT:二面角的平面角及求法;LS:直线与平面平行的判定.【分析】(1)连结A1C交AC1于点O,连结EO,推导出EO∥A1B,由此能证明A1B∥平面AEC1.(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出平面MEC1与平面ABB1A1所成锐二面角的余弦值.【解答】证明:(1)连结A1C交AC1于点O,连结EO,∵ACC1A1是正方形,∴O为A1C的中点,又E为CB的中点,∴EO∥A1B,∵EO⊂平面AEC1,A1B⊄平面AEC1,∴A1B∥平面AEC1.解:(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,则A(0,0,0),B(2,0,0),B1(2,0,2),C(0,2,0),C1(0,2,2),E(1,1,0),设M(0,0,m),(0≤m≤2),则=(﹣2,0,m﹣2),=(1,﹣1,﹣2),∵B1M⊥C1E,∴=﹣2﹣2(m﹣2)=0,解得m=1,∴M(0,0,1),=(1,1,﹣1),=(0,2,1),设平面MEC1的法向量=(x,y,z),则,取y=﹣1,得=(3,﹣1,2),∵AC⊥平面ABB1A1,∴取平面ABB1A1的法向量为=(0,2,0),∴cos <>==﹣,∴平面MEC1与平面ABB1A1所成锐二面角的余弦值为.19.某市为了了解全民健身运动开展的效果,选择甲、乙两个相似的小区作对比,一年前在甲小区利用体育彩票基金建设了健身广场,一年后分别在两小区采用简单随机抽样的方法抽取20人作为样本,进行身体综合素质测试,测试得分分数的茎叶图(其中十位为茎,个们为叶)如图:(1)求甲小区和乙小区的中位数;(2)身体综合素质测试成绩在60分以上(含60)的人称为“身体综合素质良好”,否则称为“身体综合素质一般”.以样本中的频率作为概率,两小区人口都按1000人计算,填写下列2×2列联表,甲小区(有健康广场)乙小区(无健康广场)合计身体综合素质良好350 300 650身体综合素质一般650 700 1350 合计1000 1000 2000并判断是否有97.5%把握认为“身体综合素质良好”与“小区是否建设健身广场”有关?P(K2>k)0.10 0.05 0.025 0.01 0.005 k0 1.706 3.841 5.024 6.635 7.879(附:k=)【考点】BO:独立性检验的应用.【分析】(1)利用茎叶图,可得甲小区和乙小区的中位数;(2)列出列联表,求出k,与临界值比较,即可得出结论.【解答】解:(1)由题意,甲小区的中位数为55,乙小区的中位数为42.5;(2)2×2列联表,甲小区(有健康广场)乙小区(无健康广场)合计身体综合素质良好350 300 650 身体综合素质一般650 700 1350 合计1000 1000 2000 k=≈5.698>5.024,∴有97.5%把握认为“身体综合素质良好”与“小区是否建设健身广场”有关.20.已知椭圆C:+=1(a>0,b>0)的离心率为,右焦点为F,上顶点为A,且△AOF 的面积为(O为坐标原点).(1)求椭圆C的方程;(2)若点M在以椭圆C的短轴为直径的圆上,且M在第一象限,过M作此圆的切线交椭圆于P,Q两点.试问△PFQ的周长是否为定值?若是,求此定值;若不是,说明理由.【考点】KL:直线与椭圆的位置关系.【分析】(1)由椭圆的离心率为,右焦点为F,上顶点为A,且△AOF的面积为(O为坐标原点),列出方程组,求出a=,b=1,由此能求出椭圆C的方程.(2)设P(x1,y1),Q(x2,y2),,连结OM,OP,求出|PF|+|PM|=|QF|+|QM|=,从而求出△PFQ的周长为定值2.【解答】解:(1)∵椭圆C:+=1(a>0,b>0)的离心率为,右焦点为F,上顶点为A,且△AOF的面积为(O为坐标原点).∴,解得a=,b=1,∴椭圆C的方程为.(2)设点P在第一象限,设P(x1,y1),Q(x2,y2),,∴|PF|=====,连结OM,OP,则|PM|====,∴|PF|+|PM|=,同理,|QF|+|QM|=,∴|PF|+|QF|+|PQ|=|PF|+|QF|+|PM|+|QM|=2,∴△PFQ的周长为定值2.21.已知函数f(x)=asinx+ln(1﹣x).(1)若a=1,求f(x)在x=0处的切线方程;(2)若f(x)在区间;(3)由(2)知,当a=1时,f(x)=sinx+ln(1﹣x)在(0,1)上单调递减,可得f(x)<f(0)=0,即sinx<ln,由<及=ln[]=<ln2.即可证得<ln2.则e<2,(n∈N*).【解答】(1)解:a=1时,f(x)=asinx+ln(1﹣x),f′(x)=cosx﹣,∴f′(0)=0,又f(0)=0,∴f(x)在x=0处的切线方程为y=0;(2)解:∵f(x)在区间;(3)证明:由(2)知,当a=1时,f(x)=sinx+ln(1﹣x)在(0,1)上单调递减,∴f(x)<f(0)=0,即sinx<ln,而∈(0,1),∴<,∴<,而=ln[]=<ln2.∴<ln2.∴e<2,(n∈N*).请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铪笔在答题卡上把所选题目对应的题号涂黑.22.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(﹣2,﹣4)且倾斜角为的直线l与曲线C 相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|AP|•|BP|=|BA|2,求m的值.【考点】Q4:简单曲线的极坐标方程.【分析】(1)曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),即ρ2sin2θ=mρcosθ(m>0),利用互化公式可得直角坐标方程.过点P(﹣2,﹣4)且倾斜角为的直线l参数方程为:(t为参数).相减消去参数化为普通方程.(2)把直线l的方程代入曲线C的方程为:t2﹣(m+8)t+4(m+8)=0.由于|AP|•|BP|=|BA|2,可得|t1•t2|=,化为:5t1•t2=,利用根与系数的关系即可得出.【解答】解:(1)曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),即ρ2sin2θ=mρcosθ(m>0),可得直角坐标方程:y2=mx(m>0).过点P(﹣2,﹣4)且倾斜角为的直线l参数方程为:(t为参数).消去参数化为普通方程:y=x﹣2.(2)把直线l的方程代入曲线C的方程为:t2﹣(m+8)t+4(m+8)=0.则t1+t2=(m+8),t1•t2=4(m+8).∵|AP|•|BP|=|BA|2,∴|t1•t2|=,化为:5t1•t2=,∴20(m+8)=2(m+8)2,m>0,解得m=2.23.设不等式0<|x+2|﹣|1﹣x|<2的解集为M,a,b∈M(1)证明:|a+b|<;(2)比较|4ab﹣1|与2|b﹣a|的大小,并说明理由.【考点】R5:绝对值不等式的解法;72:不等式比较大小.【分析】(1)先求出M,再利用绝对值不等式证明即可;(2)利用作差方法,比较|4ab﹣1|与2|b﹣a|的大小.【解答】(1)证明:记f(x)=|x+2|﹣|1﹣x|=,∴由0<2x+1<2,解得﹣<x<,∴M=(﹣,)∴|a+b|≤|a|+|b|=<;(2)解:由(1)可得a2<,b2<,∴(4ab﹣1)2﹣4(b﹣a)2=(4a2﹣1)(4b2﹣1)>0,∴|4ab﹣1|>2|b﹣a|.。

2021年高三第三次高考模拟考试理数试题 含答案

2021年高三第三次高考模拟考试理数试题 含答案

2021年高三第三次高考模拟考试理数试题 含答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2|13,|680A x x B x x x =-≤≤=-+<,则等于( )A .B .C .D .2.设是虚数单位,若为纯虚数,则实数的值为( )A .2B .-2C .D .3.函数与在上都是递减的,实数的取值范围是( )A .B .C .D .4.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的概率是( )A .B .C .D .5.在如图所示的算法流程图中,输出的值为( )A .11B .12C .13D .156.下列双曲线中,与双曲线的离心率和渐近线都相同的是( )A .B .C .D .7.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,该多面体的体积是( )A .32B .16C .D .8.在约束条件0024x y y x t y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当时,其所表示的平面区域的面积为,与之间的函数关系用下列图像表示,正确的应该是( )A .B .C .D .9.函数的最小正周期为,给出下列四个命题:(1)的最大值为3;(2)将的图像向左平移后所得的函数是偶函数;(3)在区间上单调递增;(4)的图象关于直线对称.其中正确说法的序号是( )A .(2)(3)B .(1)(4)C .(1)(2)(4)D .(1)(3)(4)10.已知()()()()4241220126243111x x a a x a x a x ++=+++++++,则的值为:( ) A . B . C . D .11.已知定义在的函数,若仅有一个零点,则实数的取值范围是( ) A . B . C . D .12.将半径都为1的4个彼此相切的钢球完全装入形状为正三棱台的容器里,该正三棱台的高的最小值为( )A .B .C .D .第Ⅱ卷二、填空题:本大题共四小题,每题5分,满分20分.13.已知向量与的夹角为120°,,则等于___________.14.数列满足1120212112n n n n n a a a a a +⎧⎛⎫≤< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-≤< ⎪⎪⎝⎭⎩,若,则___________. 15.已知是抛物线上的一条动弦,且的中点横坐标为2,则的最大值为___________.16. 的三个内角的对边分别是,其面积.若,则边上的中线长的取值范围是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知各项均为正数的数列的前项和,且.(1)求的通项公式;(2)若数列满足,求的前项和.18.(本小题满分12分)某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者学校高三年级随机抽取了100名学生,调查结果如下表:喜爱不喜爱总计男学生60 80女学生总计70 30(1)完成上表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取10名学生,再从这10名学生中随机抽取5名学生去某古典音乐会的现场观看演出,求正好有个男生去观看演出的分布列及期望.附:0.100 0.050 0.0102.7063.841 6.63519.(本小题满分12分)如图,四棱锥的侧面是正三角形,底面为菱形,点为的中点,若.(1)求证:;(2)若,求二面角的余弦值.20.(本小题满分12分)已知直线与椭圆相交于不同的两点,且线段的中点的坐标为.(1)求椭圆的离心率;(2)设为坐标原点,且,求椭圆的方程.21.(本小题满分12分)已知函数()()()()()()2231,ln 134x f x x e g x a x x a x a a R =+=+++-+∈. (1)若,求函数的单调区间;(2)若恒成立,求的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,是的一条切线,切点为,直线都是的割线,已知.(1)若,求的值;(2)求证:.23. (本小题满分10分)选修4-4:坐标系与参数方程已知直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,两点极坐标分别为.(1)求曲线的参数方程;(2)在曲线上取一点,求的最值.24. (本小题满分10分)选修4-5:不等式选讲设函数.(1)若,求不等式的解集;(2)若不等式的解集为,求的值.参考答案一、选择题CAAC BCDA DBBC二、填空题13. 4 14. 15. 6 16.三、解答题17.(本小题12分)解:(1)由,解得,由假设,因此,故的通项为......................6分(2)由1323133132nb n nn n==+--++............................8分得前项和1111323132233n nii ib i i n===+-=+∑∑................12分18.(本小题12分)解:(1)喜爱不喜爱总计男学生60 20 80女学生10 10 20总计 70 30100将表中的数据代入公式计算,得()2210060102010100 4.7627030802021K ⨯⨯-⨯==≈⨯⨯⨯, 由于,所以有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”...............5分(2)由题意知:这10名学生中有8名男生和2名女生 ,故可取值3,4,5..........6分()()()32415082828255510101056214055623,4,5252925292529C C C C C C P X P X P X C C C ============.........................................................8分故其分布列为:3 4 5.........................................10分该分布满足超几何分布,故其期望.....................12分19.(本小题12分)(1)证明:由得,从而,且,又∵,∴平面,而平面,得,又∵,∴..................................6分(2)解:如图建立直角坐标系,其中为坐标原点,轴平行于,的中点坐标,连结,又知,由此得到:()333331,,,0,,,2,0,04422GA PB BC ⎛⎫⎛⎫=--=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,有, ∴,∵的夹角为等于所求二面角的平面角,20.(本小题12分)解:(1)设,代入椭圆,两式相减:()()()()22121212120b x x x x a y y y y -++-+=,由题意可知:代入上式得,∵,∴,从而所求离心率........................5分(2)由(1)得椭圆的方程为:,与直线联立方程组并化简得:,从而,得,且,................................................7分∵,∴,有得:,解得:(满足).故所求的椭圆的方程为............................12分21.(本小题12分)解:(1)当,,得,或,得.故所求增区间为和,减区间为………………………………4分(2)由,有()()()2231ln 134xx e a x x a x a +≥+++-+, 令()()()()2231ln 134x h x x e a x x a x a =+-+----, ①当时,()()()2323312x a h x x e x a x '=+--+-+, 1°当时,()()()23233012x a h x x e x a x '=+--+-=+, 2°当时,()()()2323312x a h x x e x a x '=+--+-+ ()()()()22123232311011x x a x e x a x e a x x ⎛⎫<+--+-=+-+-< ⎪++⎝⎭, 3°当时,()()()2323312x a h x x e x a x '=+--+-+ ()()()()22123232311011x x a x e x a x e a x x ⎛⎫>+--+-=+-+-> ⎪++⎝⎭, 在递减,在递增,∴,②当时,在时,,即,而对于函数,不妨令,有()()()()4223ln 13ln 123ln 112314a a g x a x x a x a a x a a e a -⎛⎫=+++-+>++-=-+++-= ⎪⎝⎭,故在内存在,使得不恒成立,综上:的取值范围是..................................12分22.(本小题满分10分)(1)证明:由题意可得:四点共圆,∴,∴,∴,又∵......................4分(2)∵为切线,为割线,∴,又∵,∴,∴,又∵,∴,∴,又∵,∴∴................................................10分23.(本小题满分10分)解:(1)由,得,即,故所求参数方程为:(为参数)..............................4分(2)由已知条件知两点直角坐标分别为,令,()()()()222222cos 12sin cos 12sin 8sin 12AP BP t t t t t +=++++-++=+, 故当,有最小值4,,有最大值20............................10分24.(本小题满分10分)解:(1)时,由得,当时,有,得;时,有,解集为空集;时,有,得,综上,所求解集为...........................4分(2)法一:由的解集为知:是方程一个根,得而当时,由解得,合题意;当时,由解得,合题意.综上:..........................10分法二:不等式可化为:,分别作出及的图象由图可知若的解集为,则有:,解得:..........................................10分•f8 31109 7985 禅f=N36467 8E73 蹳 &23880 5D48 嵈K 36298 8DCA 跊。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省濮阳市2021届新高考数学三模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知抛物线C :()220y px p =>,直线()02p y k x k ⎛⎫=-> ⎪⎝⎭与C 分别相交于点A ,M 与C 的准线相交于点N ,若AM MN =,则k =( )A .3B .22C .22D .13【答案】C 【解析】 【分析】根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案. 【详解】显然直线()02p y k x k ⎛⎫=-> ⎪⎝⎭过抛物线的焦点,02p F ⎛⎫⎪⎝⎭如图,过A,M 作准线的垂直,垂足分别为C ,D ,过M 作AC 的垂线,垂足为E根据抛物线的定义可知MD=MF ,AC=AF ,又AM=MN ,所以M 为AN 的中点,所以MD 为三角形NAC 的中位线,故MD=CE=EA=12AC 设MF=t ,则MD=t ,AF=AC=2t ,所以AM=3t ,在直角三角形AEM 中,ME=2222922AM AE t t t -=-=所以22tan 22ME tk MAE AE =∠===故选:C 【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.2.8x⎛- ⎝的二项展开式中,2x 的系数是( )A .70B .-70C .28D .-28【答案】A 【解析】试题分析:由题意得,二项展开式的通项为3882188((1)r r rr r rr T C xC x --+==-,令38242r r -=⇒=,所以2x 的系数是448(1)70C -=,故选A .考点:二项式定理的应用.3.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( ). A .432 B .576 C .696 D .960【答案】B 【解析】 【分析】先把没有要求的3人排好,再分如下两种情况讨论:1.甲、丁两者一起,与乙、丙都不相邻,2.甲、丁一起与乙、丙二者之一相邻. 【详解】首先将除甲、乙、丙、丁外的其余3人排好,共有33A 种不同排列方式,甲、丁排在一起共有22A 种不同方式;若甲、丁一起与乙、丙都不相邻,插入余下三人产生的空档中,共有34A 种不同方式; 若甲、丁一起与乙、丙二者之一相邻,插入余下三人产生的空档中,共有1224C A 种不同方式;根据分类加法、分步乘法原理,得满足要求的排队方法数为33A 22A 34(A +1224)576C A =种.故选:B. 【点睛】本题考查排列组合的综合应用,在分类时,要注意不重不漏的原则,本题是一道中档题.4.已知不同直线l 、m 与不同平面α、β,且l α⊂,m β⊂,则下列说法中正确的是( ) A .若//αβ,则l//mB .若αβ⊥,则l m ⊥C .若l β⊥,则αβ⊥D .若αβ⊥,则m α⊥【答案】C 【解析】 【分析】根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果. 【详解】对于A ,若//αβ,则,l m 可能为平行或异面直线,A 错误; 对于B ,若αβ⊥,则,l m 可能为平行、相交或异面直线,B 错误; 对于C ,若l β⊥,且l α⊂,由面面垂直的判定定理可知αβ⊥,C 正确; 对于D ,若αβ⊥,只有当m 垂直于,αβ的交线时才有m α⊥,D 错误. 故选:C . 【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.5.设函数()()ln 1f x x =-的定义域为D ,命题p :x D ∀∈,()f x x ≤的否定是( ) A .x D ∀∈,()f x x > B .0x D ∃∈,()00f x x ≤ C .x D ∀∉,()f x x > D .0x D ∃∈,()00f x x >【答案】D 【解析】 【分析】根据命题的否定的定义,全称命题的否定是特称命题求解. 【详解】因为p :x D ∀∈,()f x x ≤是全称命题, 所以其否定是特称命题,即0x D ∃∈,()00f x x >. 故选:D 【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.6.数列{}n a 满足:21n n n a a a +++=,11a =,22a =,n S 为其前n 项和,则2019S =( ) A .0 B .1C .3D .4【答案】D【解析】 【分析】用1n +去换21n n n a a a +++=中的n ,得312n n n a a a ++++=,相加即可找到数列{}n a 的周期,再利用2019S =6123336S a a a +++计算.【详解】由已知,21n n n a a a +++=①,所以312n n n a a a ++++=②,①+②,得3n n a a +=-,从而6n n a a +=,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以60S =,2019126123336()01214S a a a a a a =++++++=+++=L .故选:D. 【点睛】本题考查周期数列的应用,在求2019S 时,先算出一个周期的和即6S ,再将2019S 表示成6123336S a a a +++即可,本题是一道中档题.7.若样本1231,1,1,,1n x x x x ++++L 的平均数是10,方差为2,则对于样本12322,22,22,,22n x x x x ++++L ,下列结论正确的是( )A .平均数为20,方差为4B .平均数为11,方差为4C .平均数为21,方差为8D .平均数为20,方差为8【答案】D 【解析】 【分析】由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案. 【详解】样本1231,1,1,,1n x x x x ++++L 的平均数是10,方差为2,所以样本12322,22,22,,22n x x x x ++++L 的平均数为21020⨯=,方差为2228⨯=. 故选:D. 【点睛】样本123,,,,n x x x x L 的平均数是x ,方差为2s ,则123,,,,n ax b ax b ax b ax b ++++L 的平均数为ax b +,方差为22a s .8.已知12,F F 分别为双曲线2222:1x y C a b-=的左、右焦点,点P 是其一条渐近线上一点,且以12F F 为直径的圆经过点P ,若12PF F ∆2,则双曲线的离心率为( )A B .2C D .3【答案】B 【解析】 【分析】根据题意,设点()00,P x y 在第一象限,求出此坐标,再利用三角形的面积即可得到结论. 【详解】由题意,设点()00,P x y 在第一象限,双曲线的一条渐近线方程为by x a=, 所以,00by x a=, 又以12F F 为直径的圆经过点P ,则OP c =,即22200x y c +=,解得0x a =,0y b =,所以,1220122PF F S c y c b ∆=⋅⋅=⋅=,即c =,即()22243c c a =-,所以,双曲线的离心率为2e =. 故选:B. 【点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出a 与c 的关系,属于基础题. 9.已知复数z =(1+2i )(1+ai )(a ∈R ),若z ∈R ,则实数a =( ) A .12B .12-C .2D .﹣2【答案】D 【解析】 【分析】化简z =(1+2i )(1+ai )=()()122a a i -++,再根据z ∈R 求解. 【详解】因为z =(1+2i )(1+ai )=()()122a a i -++, 又因为z ∈R , 所以20a +=, 解得a =-2. 故选:D 【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.10.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的1a ,2a ,3a ,L ,50a 为茎叶图中的学生成绩,则输出的m ,n 分别是( )A .38m =,12n =B .26m =,12n =C .12m =,12n =D .24m =,10n =【答案】B 【解析】 【分析】 【详解】试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故26m =,12n =. 考点:程序框图、茎叶图.11.已知函数2()e (2)e x xf x t t x =+--(0t ≥),若函数()f x 在x ∈R 上有唯一零点,则t 的值为( )A .1B .12或0 C .1或0 D .2或0【答案】C【解析】 【分析】求出函数的导函数,当0t >时,只需(ln )0f t -=,即1ln 10t t -+=,令1()ln 1g t t t=-+,利用导数求其单调区间,即可求出参数t 的值,当0t =时,根据函数的单调性及零点存在性定理可判断; 【详解】 解:∵2()e(2)e xx f x t t x =+--(0t ≥),∴()()2()2e (2)e 1e 12e 1x x x xf x t t t '=+--=-+,∴当0t >时,由()0f x '=得ln x t =-,则()f x 在(),ln t -∞-上单调递减,在()ln ,t -+∞上单调递增, 所以(ln )f t -是极小值,∴只需(ln )0f t -=, 即1ln 10t t -+=.令1()ln 1g t t t =-+,则211()0g t t t '=+>,∴函数()g t 在(0,)+∞上单 调递增.∵(1)0g =,∴1t =;当0t =时,()2e x f x x =--,函数()f x 在R 上单调递减,∵(1)2e 10f =--<,2(2)22e 0f --=->,函数()f x 在R 上有且只有一个零点,∴t 的值是1或0. 故选:C 【点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.12.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3C π=,若()m c a b =-u r ,(,n a b c =-r,且//m n u r r,则ABC ∆的面积为( )A .3B .2C .2D .【答案】C 【解析】 【分析】由//m n u r r ,可得2()(a b c c -=+,化简利用余弦定理可得2221cos 322a b c abπ+-==,解得ab .即可得出三角形面积. 【详解】解:Q ()m c a b =-u r ,(,n a b c =-+r ,且//m n u r r,2()(a b c c ∴-=,化为:22226a b c ab +-=-.222261cos 3222a b c ab ab ab π+--∴===,解得6ab =.11sin 62222ABC S ab C ∆∴==⨯⨯=. 故选:C . 【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

相关文档
最新文档