2013奥数决赛试题及解答MicrosoftOfficeWord文档
2013年6年级数学世界奥林匹克竞赛试题与详细答案
1.设集合M={x∣x2+2x=0,x∈R},N={x∣x2-2x=0,x∈R},则M∪N=A. {0}B. {0,2}C. {-2,0} D {-2,0,2}2.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是A. 4B.3C. 2D.13.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是A. (2,4)B.(2,-4)C. (4,-2) D(4,2)4.已知离散型随机变量X的分布列为X P1 2 3P则X的数学期望E(X)=A. B. 2 C. D 35.某四棱太的三视图如图1所示,则该四棱台的体积是A.4 B. C.D.66.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A.若α⊥β,m α,n β,则m⊥ n B.若α∥β,m α,n β,则m∥nC.若m⊥ n,m α,n β,则α⊥β D.若m α,m∥n,n∥β,则α⊥β7.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是A.= 1 B.= 1 C.= 1 D.= 18.设整数n≥4,集合X={1,2,3……,n}。
令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立},若(x,y,z)和(z,w,x)都在s中,则下列选项正确的是A.(y,z,w)∈s,(x,y,w) SB.(y,z,w)∈s,(x,y,w)∈SC. (y,z,w) s,(x,y,w)∈SD. (y,z,w) s,(x,y,w) S二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
(一)必做题(9~13题)9.不等式x2+x-2<0的解集为。
10.若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k= 。
11.执行如图2所示的程序框图,若输入n的值为4,则输出s的值为。
2013六年级奥数竞赛试题_(含答案)
一.计算:⑴. =⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 ⑵. 13471711613122374⨯+⨯+⨯=⑶. 222345567566345567+⨯⨯+= ⑷. 4513612812111511016131+++++++=二.填空:⑴.甲、乙两数是自然数,如果甲数的65恰好是乙数的41.那么甲、乙两数之和的最小值是 .⑵.某班学生参加一次考试,成绩分优、良、及格、不及格四等.已知该班有21的学生得优,有31的学生得良,有71的学生得及格.如果该班学生人数不超过60人,则该班不及格的学生有 人.⑶.一条公路,甲队独修24天完成,乙队独修30天完成.甲乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了 天.⑷. 用0,1,2,3,4,5,6,7,8,9十个数字,能够组成 个没有重复数字的三位数. ⑸.“IMO ”是国际数学奥林匹克的缩写,把这三个字母写成三种不同颜色,现有五种不同颜色的笔,按上述要求能写出 种不同颜色搭配的“IMO ”.⑹不定方程172112=+y x 的整数解是 .⑺一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 .⑻. 把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.⑼.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距 千米.⑽.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有 人.⑾.从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),李楠从学校出发,步行到少年宫(只许向东或向南行进),最多有 种走法.⑿.算出圆内正方形的面积为 .⒀.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周 长是 厘米.)14.3(=π⒁.一付扑克牌共有54张(包括大王、小王),至少从中取 张牌,才能保证其中必有3 种花色. ⒂.规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5= .⒃.甲、乙、丙、丁四位学生在广场上踢足球,打碎了玻璃窗,有人问他们时,他们这样说: 甲:“玻璃是丙也可能是丁打碎的”; 乙:“是丁打碎的”;丙:“我没有打坏玻璃”; 丁:“我才不干这种事”;深深了解学生的老师说:“他们中有三位决不会说谎话”。
2013年中国西部数学奥林匹克试题及其解答
次操作,变为状态
1, 0,0,0, … ,0 ,且第一步操作是将最右边的一枚硬币翻面。此时再经一次操作变
个
为 0, 1,1,1, … ,1 ,这种状态可以看作2m枚硬币的状态。根据归纳假设,再经
个
次操作,可以调整为状态 0,0,0, … ,0 ,即所有硬币都正面朝下。这种情况共
个
计经过
+1+
=
次操作。命题成立。
二、设整数n ≥ 2,且实数x 、x 、x 、 … 、x ∈ 0,1 ,求证:∑ < kx x ≤ · ∑ kx 。 证明:我们用数学归纳法。 当n = 2时,命题即为x x ≤ (x + 2x ) ⇔ 3x x ≤ x + 2x 。而注意到x 、x ∈ 0,1 ,所以3x x = x x + 2x x ≤ x + 2x ,不等式成立。 假设当n = t时,命题成立,即∑ < kx x ≤ · ∑ kx 。下面我们证明,当 n = t + 1时,命题也成立,即∑ < kx x ≤ · ∑ kx 。 根据归纳假设,并注意到x 、x 、x 、 … … 、x ∈ 0,1 ,所以 ∑ < kx x = ∑ < kx x + (∑ kx )x ≤ · ∑ kx + (∑ kx )x = · ∑ kx + (∑ kx )x + (∑ kx )x ≤ · ∑ kx + (∑ kx ) + (∑ k)x = · ∑ kx + ( ) · x = · ∑ kx 当n = t + 1时,不等式也成立。根据数学归纳法知,不等式恒成立。 三、如图,⊙P、⊙Q、⊙R 为△ABC 的三个旁切圆,⊙P 切 BC 于点 D,E、F 分别为 AC、 AB 中点,点 Q 关于点 E 的对称点为点 M,点 R 关于点 F 的对称点为点 N,求证:AD⊥MN。 (2013 年中国西部数学奥林匹克试题)
2013年四年级奥林匹克数学竞赛复赛真题(含答案)
校: 学科: 班级: 姓名: 考号: 密 封 线 第十届世界奥林匹克数学竞赛(中国区)选拔赛考生须知:1.每位考生将获得考题一份。
考试期间,不得使用计算工具或手机。
2.本卷共120分,填空题每小题5分,解答题每题10分,综合素质题10分,数学与生活题10分。
3.请将答案写在本卷上。
考试完毕时,所有考题及草稿纸会被收回。
四年级地方晋级复赛B 卷(本试卷满分120分,考试时间90分钟)一、填空题。
(每题5分,共60分)1. 计算:=⨯⨯⨯⨯÷⨯⨯⨯)87654(35323028 140 。
2. 规定运算“Θ”为:)2()1(-⨯+=Θb a b a 。
如果Θ6(□Θ5)70=,那么方格内应该填入 4 。
3. 数一数,右图有 12 个三角形。
4. 同学们排队做操,每行人数和每列人数同样多,从前往后数,乐乐是第3个,从后往前数,乐乐是第5个,做操的同学共有 49 人。
5. 一根绳子先减去一半多4米,再减去余下的一半少2米,还剩下43米,这根绳子原来长 172 米。
6. 希望小学有100名学生参加数学考试,平均分是64分,其中男生的平均分是60分,女生的平均分是70分,男生比女生多 20 人。
7. 把8拆成若干自然数的和,设这些自然数的乘积最大。
这个最大的乘积是 16 。
8. 在下面的8个中填入同一个相同的整数,使得四个算式□+□,□-□,□⨯□,□÷□的结果之和恰好等于100,则填入的整数是 9 。
9. 有一个长方形纸片,长比宽多2厘米,周长是36厘米。
用剪刀剪4下(如图),这9个长方形的周长之和是 72 厘米。
10. 12年前,父亲的年龄是女儿的11倍,今年,父亲的年龄是女儿的3倍, 15 年后父亲的年龄是女儿的2倍。
11. 有长度分别是1厘米、2厘米、3厘米、4厘米、5厘米、6厘米、7厘米、8厘米、9厘米、10厘米的木棒各一根,从中选择若干根拼成一个正方形(不允许这段木棒),共有 种不同的拼法。
世少赛2013-2014四年级广东选区决赛
2013—2014赛季世界少年奥林匹克数学竞赛(中国区)选拔赛小学四年级决赛全国统一试题(答题时间为60分钟,每题10分,满分140分)1、计算:15×213÷27+15×327÷272、下面三个正方形内的数有相同的规律,请你找出它们的规律,并填出B 、C ,然后确定A ,那么A 是多少?3、把如图所示的乘法算式中缺少的数字补上。
4、王老师要给学校四年级4个班的美术兴趣班的同学讲课,这4个班每相邻2个班都相距6米,参加兴趣班的人数:一班8人,二班4人,三班3人,四班7人。
王老师应该在 班的教室上课,才能使所有参加美术兴趣班的同学所走路程的和最小。
5、如图,有一块草地,长16米,宽8米,中间留有2米宽的小路把草地分成了四块。
草地中有草的部分(阴影部分)的面积是多少平方米?6、剧院共有15排座位。
第一排有16个,以后每排都比前一排多2个座位。
问剧院共有多少个座位?7、用2050张白纸装订甲、乙两种练习本共70本,其中甲种练习本每本35页,乙种练习本9 231 4202 3BA 3C1233 2 5一班四班三班二班每本25页。
甲、乙两种练习本各订了多少本?8、有六个数排成一列,它们的平均数是27,前四个数的平均数是23,后三个数的平均数是34,则第四个数是多少?9、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛。
甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛赶一头牛过河。
要把四头牛都赶到对岸去,最少需要多少分钟?10、某次竞赛共有5道题。
A只做对了①②③④题,得26分;B只做对了①②③⑤题,得25分;C只做对①②④⑤题,得26分;D只做对①③④⑤题,得27分;E只做对了②③④⑤题,得28分;F五题全做对了,他应该得多少分?11、如果每一个长椅坐4个学生,就有3个学生没有地方坐;如果每一个长椅坐5个学生,就有2个空座位。
有多少个学生?12、已知一本童话小说的页码在排版时一共用了1689个数码。
2013奥数决赛B卷真题及详细解答
2013年小学数学竞赛决赛试卷2013年4月13日上午10:00—11:30(本卷共14个题,每题10分,总分140分。
第1至12题为填空题,只需要将答案填入空内;13题和14题为解答题,需写出解题过程。
)1、计算(0.125×17 +0.75×114 +128 )÷(12 -17 )=( )=3102、计算14 +14+8 +14+8+12 +…14+8+12+…+96 =( ) =14 (1+11+2 +11+2+3 +…11+2+3+…+24) =14 ×(1+11+2 +11+2+3 +…11+2+3+…+24 )×12 ×2 =12253、将数字3,4,5,6,7,8,9填入下列算式的□中,使得等式成立。
(每个数字只能用一次)2×□□=□×□□=1□□2×78=4×39=1564、五边形ABCDE 由边长为8的正方形ACDE 和等腰△ABC 组成,AB=BC 。
ABCDE 的面积是90,那么,阴影部分的面积=( )。
90-8×8÷2-8×3÷2=365、已知一个二位数S ,把它的十位上数字与各位上数字交换后得到的二位数比原来的二位数S 大20%,那么S=( )设原数为xy ----新数为yx ----,(10x+y )(1+15 )=10y+x ,整理后得到:5x=4yX:y=4:5,所以:45另解:个位数字和十位数字交换后大小相差9的倍数。
如果相差一个9,那么那么原数是45,如果相差18,那么原数大于了两位数。
6、A B C D 为四个不同的二位数。
两两配对可以配成六对,这六对数的平均数分别是12,13,15,17,19,20.那么这四个数中,最大的数是( ),最小的数是( )两两之和为:24、26、30、34、38、40令:A <B <C < D ABCD 的和为(12+13+15+17+19+20)×2÷3=64A+B=24,C+D=40, B+D=38 那么:A+C=26, 若 B+C=30那么通过A+B=24,与B+C=30可以知道B=14,那么A=10 B=14. C=16, D=24.若:B+C=34 A+B=24,与B+C=34可以知道B=16 A=8, C=18,D=22 ( 不满足四个两位数这个条件),7、一群人到三亚去旅游。
小学五年级数学奥林匹克竞赛试卷及答案2013
小学五年级数学奥林匹克竞赛试卷及答案2013小学五年级数学奥林匹克竞赛试卷2013同学们,本份试卷共4页。
别紧张,认真思考,相信你们能交上一份满意的答卷。
一、填空(共30分,每小题3分)1.两个数的和是61.6,其中一个数的小数点向右移动一位,就与另一个数相同。
两个数分别是(28.8、32.8)。
2.有三根木料,打算把每根锯成3段,每锯开一处需要3分钟,全部锯完需要(9)分钟。
3.XXX同学的家住在5楼,每层楼梯有16级,她从1楼走到5楼,共要走(64)级楼梯。
4.把一张边长24厘米的正方形纸对折4次后得到一个小正方形,这个小正方形的面积是(3)平方厘米。
5.一副扑克牌有54张,至少抽取(5)张扑克牌,方能使其中至少有两张牌有相同的点数。
6.一个长方形的长为9厘米,把它的长的一边减少3厘米,另一边不变,面积就减少9平方厘米,这时变成的梯形面积是(54)平方厘米。
7.XXX和XXX两人同时从甲、乙两地相向而行,XXX每分钟行a米,XXX每分钟行b米,行了4分钟两人相遇。
甲、乙两地的路程是(4a+4b)米。
8.街道上有一排路灯,共40根,每相邻两根距离原来是45米,现在要改成30米,可以有(60)根路灯不需要移动。
9.XXX计算20道题目,规定做对一道题得5分,做错一道题反扣3分。
结果XXX20道题都做,却只得了60分,问他做对了(12)题。
10.五(1)班的同学去划船。
他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。
这个班共有(27)名同学。
二、判断(正确的在括号里画“√”,错误的画“×”。
共15分,每小题3分)11.用10张同样长的纸条接成一条长31厘米的纸带,如果每个接头都重叠1厘米,那么每张纸条长4.1厘米。
(√)12.用三个长3厘米、宽2厘米,高1厘米的长方体,拼成一个大长方体,有3种拼法。
(√)13.把一批圆木自上而下按1、2、3……14、15根放在一起,这批圆木共有240根。
2013奥数决赛试题及解答Microsoft Office Word 文档
2013年小学数学竞赛决赛试卷2013年4月13日上午10:00—11:30(本卷共14个题,每题10分,总分140分。
第1至12题为填空题,只需要将答案填入空内;13题和14题为解答题,需写出解题过程。
)1、计算[13 (0.75-14 )+(14 -0.125)]÷135 =( )=651922、计算15 +15+10 +15+10+15 +15+10+15+20 +15+10+15+20+25 =( )=133、用○a 表示正整数a 的不同约数的个数。
如4的不同约数有1,2,4共3个,所以○a =3.那么,(○12-○6)÷○5=( ) 定义新运算=14、有图是9棱长为1米的正方体堆成的一个立体。
那么,这个立体的表面积是( )平方米。
上面看:6 前面看6个,左面看:4个,共(6+6+4)×2=32。
5、五个不同的整数,他们两两之和为6,7,8,10,13,14,15,16,17,18.那么,这五个整数中,最大数是( ),最小数是( )。
假设这五个数分别为:a <b <c <d <e (6+7+8+10+13+14+15+16+17+18)÷4=31那么a+b=6 d+e=18 c :31-18—6=7 a+c=7 所以a=0 ,a+e=10所以e=10.6、取π=3,则右图中阴影部分的面积是( )。
347,一群人到三亚去旅游。
首先出发的人数是总人数的12 又3人,第二批出发的人数是第一批走后剩下人数的13 又4人;第三排出发的人数是第二批走后剩下人数的34 又6人,正好全部去完。
那么,这群人总人数是( )人。
还原倒推:6÷14 =24人,(24+4)÷23 =42(人)(42+3)÷12 =90(人)8、一个两位数,满足条件:所有两位数这和正好在此两位数的100倍和200倍之间,且此两位数是所有两位数之和的因数。
2013六年级奥数竞赛试卷(二)附参考答案
2013六年级奥数竞赛试卷(二)成绩___________一.填空题(每小题4分)1.如果384×540×875×1875×( )的积的最后十个数字都是零,那么括号内填入的自然数最小是______.2.某学校四、五、六三个年级组织了一场文艺演出,共演出18个节目.如果每个年级至少演出四个节目,那么,这三个年级演出节目数的所有不同情况共有______种.3.有一根长240厘米的绳子,从一端开始每4厘米作一个记号,每6厘米也作一记号,然后将标有记号的地方剪断,绳子共被剪成______段.4.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.上的这个数是______. 6.印刷某一本书的页码时,所用数码的个数是975个(如第23页用2个数码,第100页用3个数码),那么这本书应有的页数是______.8.有一楼梯共12级,如规定每次只能跨上一级或两级,要登上第12级,共有______不同的走法.学校___________姓名__________9.某班有26个女生,在期末考试中全班有34人超过95分,问:男生中超过95分的比女生中未超过95分的多_____人.10.一个整数a与7920的乘积是一个完全平方数,则a的最小值是_______,这个平方数是______.11.学校组织秋游活动,小英买了二个汉堡包,小燕买了三个汉堡包,她俩看见小萌没有吃的,就将五个汉堡包平分了,经过计算,小萌应给小英1.5元,问小萌应给小燕_______元. 12.某进修学习班有学员30多人,班主任已经50多岁,其中男学员比女学员多,如果将班主任的年龄、男学员人数、女学员人数相乘,等于15606,问:共有学员_____人,班主任年龄是_____岁.13.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老帅住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.14.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.15.姐妹俩今年的年龄和是40岁,当姐姐像妹妹现在这样大时,妹妹的年龄恰好是姐姐年龄的一半.则姐姐今年______岁.16.某班有学生45人,其中有28人学习钢琴,有35人学习电脑,有37人学习美术,有40人上奥校,那么可以肯定,这个班至少有_____个学生以上四项内容都学了.17.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了____天.18.在一次国际象棋的比赛中,每两个人都要赛一场,胜者得2分,平局两人各得1分,负者得0分.现有五位同学统计了全部选手的总分,分别是551,552,553,554,555,但只有一个统计是正确的,则共有______选手参赛.19.471除以一个两位数,余数是37,则这个两位数是______.20.一水库存水量一定,河水均匀流入水库内.5台抽水机连续抽10天可以抽干;6台同样的抽水机连续抽8天可以抽干。
(完整word)2013全国数学联赛初中数学试题及答案-打印版,推荐文档
2013年全国初中数学竞赛试题班级 姓名 成绩 供稿人:李锦扬一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )12.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--=(D )2222(2)0c x b ac x a ---=3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8(第3题)(第4题)5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967(B )1821967(C )5463967 (D )16389967二、填空题6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 .7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.(第7题)三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC -∠CBE .12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.(第11题)13.设a ,b ,c 是素数,记x b c a y c a b z a b c =+-=+-=+-,,,当2,2z y ==时,a ,b ,c 能否构成三角形的三边长?证明你的结论.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.2013全国数学联赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ).(A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b acx x x x c+--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ). (A )OD (B )OE (C )DE(D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有(第3题答题)(第3题)理数,而AC =·AD AB 不一定是有理数. 4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=L ,则()20132012433m ****=*L 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*L 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,(第4题答题)(第4题)(第7题)解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC -∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B . 将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分 因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.…………15分所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形. 因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(第11题答题)(第11题)△ABC 为钝角三(ii )若角形.90A ∠>︒时,因为当()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
最新奥数决赛试题及解答Microsoft-Office-Word-文档
2013年小学数学竞赛决赛试卷2013年4月13日上午10:00—11:30(本卷共14个题,每题10分,总分140分。
第1至12题为填空题,只需要将答案填入空内;13题和14题为解答题,需写出解题过程。
)1、计算[13 (0.75-14 )+(14 -0.125)]÷135 =( )=651922、计算15 +15+10 +15+10+15 +15+10+15+20 +15+10+15+20+25 =( )=133、用○a 表示正整数a 的不同约数的个数。
如4的不同约数有1,2,4共3个,所以○a =3.那么,(○12-○6)÷○5=( ) 定义新运算=14、有图是9棱长为1米的正方体堆成的一个立体。
那么,这个立体的表面积是( )平方米。
上面看:6 前面看6个,左面看:4个,共(6+6+4)×2=32。
5、五个不同的整数,他们两两之和为6,7,8,10,13,14,15,16,17,18.那么,这五个整数中,最大数是( ),最小数是( )。
假设这五个数分别为:a <b <c <d <e (6+7+8+10+13+14+15+16+17+18)÷4=31那么a+b=6 d+e=18 c :31-18—6=7 a+c=7 所以a=0 ,a+e=10所以e=10.6、取π=3,则右图中阴影部分的面积是( )。
347,一群人到三亚去旅游。
首先出发的人数是总人数的12 又3人,第二批出发的人数是第一批走后剩下人数的13 又4人;第三排出发的人数是第二批走后剩下人数的34 又6人,正好全部去完。
那么,这群人总人数是( )人。
还原倒推:6÷14 =24人,(24+4)÷23 =42(人)(42+3)÷12 =90(人)8、一个两位数,满足条件:所有两位数这和正好在此两位数的100倍和200倍之间,且此两位数是所有两位数之和的因数。
13届数学竞赛试题及答案
13届数学竞赛试题及答案一、选择题(每题5分,共20分)1. 若a和b是两个非零实数,且a + b = 5,求a² + b²的最小值。
A. 5B. 10C. 25D. 502. 一个圆的半径为r,其面积与半径平方的比值是多少?A. πB. 2πrC. πrD. r²3. 一个等差数列的首项是2,公差是3,第10项是多少?A. 23B. 29C. 32D. 354. 如果一个函数f(x) = ax² + bx + c,其中a ≠ 0,且f(0) = 1,f(1) = 2,f(-1) = 0,求a的值。
A. -1B. 1C. 2D. 3二、填空题(每题5分,共30分)5. 若一个多项式P(x) = x³ - 6x² + 11x - 6可以被分解为(x -1)(x - 2)(x - 3),那么P(4)的值是______。
6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是______。
7. 一个正六边形的内角是______度。
8. 如果一个数列的前三项分别为1, 1, 2,且每一项都是前两项的和,那么第5项的值是______。
三、解答题(每题25分,共50分)9. 证明:对于任意正整数n,n³ - n 总是能被6整除。
10. 解不等式:|x - 1| + |x - 4| ≥ 5。
答案一、选择题1. B(根据平方和公式a² + b² = (a + b)² - 2ab,代入得25 -10 = 15)2. A(圆的面积公式为πr²,所以面积与半径平方的比值为π)3. C(等差数列的通项公式为an = a1 + (n - 1)d,代入得2 + 9*3= 29)4. B(根据函数值代入求得a = 1)二、填空题5. 10(将x=4代入多项式P(x)中计算)6. 5(根据勾股定理3² + 4² = 5²)7. 120(正六边形的内角和为(n-2)*180°,代入n=6得720°,除以6得120°)8. 5(根据数列规律1, 1, 2, 3, 5...)三、解答题9. 证明:n³ - n = n(n² - 1) = n(n + 1)(n - 1),因为n, n+1, n-1是三个连续的整数,根据连续整数的性质,其中必有一个是6的倍数,所以n³ - n能被6整除。
2013年5年级世奥赛试题与详细答案
参考答案(六六老师详解版本)一、填空题1、2×(99+97+……+3+1)=2×250=50002、4.6×4.9=22.543、设6次的平均分为a ,则后4次的平均分为a +4.8,第一、二、六次的平均分为a -3.2 第一、二次的总分为6a -4×(a+4.8)=2a -19.2 第六次的得分为3×(a -3.2)-(2a -19.2)=所以,前五次的总分为6a -(a +9.6)=5a -9.6,平均分为a -1.92 于是,前五次的平均分比六次的平均分低了1.92分4、f (13)=40 次数 01234567891011 12 13 …… f 40 20 10 ^5 16 8 4 2 1 4 2 142……从第六次开始,每三次一个周期,4→2→1循环,所以,第2013次的结果是45、这个三位数加1就能被2和5同时整除,所以个位数字是9, 这个数被3整除余1,所以最大的三位数为9796、分类计数:一个三角形构成,19个 四个三角形构成,10个, 九个三角形构成,3个, 总共19+10+3=32(个)7、(鸡兔同笼)两个大人的家庭可以节约20元,两个大人一个小孩的家庭可以节约10元, 假设9个全是两个大人的家庭,则共可以节约20×9=180(元)所以两个大人一个小孩的家庭有(180-120)÷(20-10)=6(个) 所以共有游客3×2+6×3=24(人)8、8(124)232EFC EFO FOC AFO FOB AOB S S S S S S ∆∆∆∆∆∆=+=+==⨯-÷=(平方厘米)9、这个数除以21余2,这样的数可以排列如下:2、23、44、65、86、……另外除以5余1,所以最小的数为86.10、先将另三个人排好队共3×2×1=6(种) 然后小美和欧欧插空,共有4×3=12(种) 所以一共有6×12=72(种)11、(牛吃草问题)骑车人的速度为(1100×5-1500×3)÷(5-3)=500(米/分) 开始时的距离为(1100-500)×5=(1500-500)×3=3000(米) 所以快车的速度为500+3000÷2=2000(米/分)12、设长方形的长为a ,宽为b ,图中六个长方形的周长和为24+26+28+34+32+30=174 所以6a +4b=174长方形的周长为2a +2b=87-a要使周长最小,则要求a 最大,所以要求b 最小。
2013年第54届国际数学奥林匹克竞赛真题中文版(官方)
(iii) 存在有理数 a > 1, 使得 f (a) = a. 证明: 对所有的 x ∈ Q>0, 都有 f (x) = x.
第 6 题. 设整数 n ≥ 3 , 在圆周上有 n + 1 个等分点. 用数 0, 1, . . . , n 标记这些点, 每个数字恰好用一 次. 考虑所有可能的标记方式; 如果一种标记方式可以由另一种标记方式通过圆的旋转得到, 那么认为 这两种标记方式是同一个. 一种标记方式称为是 漂亮的, 如果对于任意满足 a + d = b + c 的四个标记 数 a < b < c < d, 连接标 a 和 d 的点的弦与连接标 b 和 c 的点的弦都不相交.
设 M 是漂亮的标记方式的总数, 又设 N 是满足 x + y ≤ n , 且 gcd(x, y) = 1 的有序正整数对 (x, y) 的个数. 证明:
M = N + 1.
Language: Chinese(Simplified)
时间: 4 小时 30 分 每题 7 分
三角形 ABC 的顶点 A 所对的 旁切圆 是指与边 BC 相切,并且与边 AB, AC 的延长线相切的圆. 顶点 B,C 所对的旁切圆可类似定义.
Language: Chinese(Simplified)
时间: 4 小时 30 分 每题 7 分
2013年全国数学竞赛试题详细参考答案
(第3题)一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B )12+ (C )72+ (D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得21x ==2y ==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x xy y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736(D )12【答】(C )解:基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )E12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ). (A(B )1 (C (D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=5.将1,2,3,4,5三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要(第4题)(第8题)接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,,解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 因此 1122FC FN NC AB AC =+=+=9.(第8题答案)(第9题答案)另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF 交 AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以a r ah a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,因此a a h r DEh BC-=, 所以 (1)(1)a a a h r r a DE a a a h h a b c -=⋅=-=-++()a b c a b c+=++, 故 879168793DE ⨯+==++().另解:ABC S rp ∆===(这里2a b cp ++=)所以12r ==2ABC a S h a ===△ 由△ADE ∽△ABC ,得23a a h r DE BC h -===, 即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6; 当22,a b 的个位数是1和1时,则,a b 的个位数字可以为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。
2013年全国初中数学联赛试题与详细讲解
2013年全国初中数学联合竞赛试题及详解第一试一、选择题(本题满分42分,每小题7分)1.计算=( )(A 1 (B )1 (C (D )2【答案】(B )【解析】原式=1)3)1=-=,故选(B ). 2.满足等式()2221m m m ---=的所有实数m 的和为( )(A )3 (B )4(C )5 (D )6 【答案】(A )【解析】分三种情况进行讨论:(1)若21m -=,即1m =时,满足已知等式;(2)若21m -=-,即3m =时,()2242(1)1m m m ---=-=满足已知等式;(3)若21m -≠±,即1m ≠且3m ≠时,由已知,得22020m m m -≠⎧⎨--=⎩解得,1m =- 故满足等式()2221m m m ---=的所有实数m 的和13(1=3++-),故选(A ).3.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠=,ABC ∠的平分线交圆O于点D ,若CD =,则AB =( )(A )2 (B(C ) (D )3【答案】(A )【解析】连接OC ,过点O 作ON CD ⊥于点N ,则2CN DN ==,OC OA =,从而15OCA CAB ∠=∠=,由AB 是圆O 的直径,得90ACB ∠=,因CD 平分ACB ∠,故45ACD ∠=,30OCN ACD OCA ∠=∠-∠=,在Rt ONC ∆中,∵cos CN OCN OC ∠==,1OC =∴,∴22AB OC ==,故选(A ). 4.不定方程23725170x xy x y +---=的全部正整数解(,)x y 的组数为( )(A )1 (B )2(C )3 (D )4【答案】(B ) 【解析】由23725170x xy x y +---=,得2321775x x y x -++=-,因,x y 为正整数,故1,1x y ≥≥,从而750,x ->于是2321775x x x -++≥-,235220x x +-≤,即 (2)(311)0x x -+≤,由1x ≥,知3110x +>,故20x -≤,2x ≤,故1x =或2x =当1x =时,8y =;当2x =时,1y =.故原不定方程的全部正整数解(,)x y 有两组:(1,8),(2,1),故选(B ).5.矩形A B C D 的边长3,2AD AB ==,E 为AB 的中点,F 在线段BC上,12BF FC =∶∶,AF 分别与DE ,DB 交于点,M N ,则MN =( )(A )7 (B )14 (C )28(D )28【答案】(C )【解析】因12BF FC =,故 13BF BF DA BC ==,113BF AD ==,因BF AD ∥,故BNF DNA ∆∆∽,故13FN BF AN DA ==,故11313344FN AN AF AF ==⋅=.延长,D E C B 交于点G ,则由E 为AB 的中点,知ADE BGE ∆∆≌,故3BG AD ==,134FG BF BG =+=+=,因FG AD ∥,故AMD FMG ∆∆∽,故34AM AD FM FG ==,故3347AM FM AF ==,于是3197428MN AF AM FN AF AF AF AF =--=--===, 故选(C ). 6.设n 为正整数,若不超过n 的正整数中质数的个数等于合数的个数,则称n 为“好数”那么,所有“好数”之和为( )(A )33 (B )34 (C )2013 (D )2014【答案】(B )【解析】因1既不是质数,也不是合数,故“好数”一定是奇数.设不超过n 的正整数中,质数的个数为n a ,合数的个数为n b ,当15n ≤时,列表如下(只考虑n 为奇数的情况):由上表可知,1,9,11,13都是“好数”.因15152b a -=,当16n ≥时,在15n =的基础上,每增加2个数,其中必有一个为偶数,当然也是合数,即增加的合数的个数不会少于增加的质数的个数,故一定有2,n n b a -≥故当16n ≥时,n 不可能是“好数”.因此,所有的“好数”之和为19111334+++=,故选(B ).二、填空题(本题满分28分,每小题7分)1.已知实数,,x y z 满足4,129,x y z xy y +=+=+-则23x y z ++= .【答案】4【解析】由4,x y +=得4x y =-,代入129z xy y +=+-,得221(4)2969(3)0z y y y y y y +=-+-=-+-=--≥,故2(3)0y -≤,又2(3)0y -≥,故2(3)0y -=,故3,1,1y z x ==-=,于是234x y z ++=.2.将一个正方体的表面都染成红色,再切割成3(2)n n >个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n = .【答案】8【解析】只有一个面染成红色的小正方体的总数为26(2)n -个,任何面都不是红色的小正方体的总数为3(2)n -个,依题意有236(2)(2)n n -=-,解得8n =(2n =舍去). 3.在ABC ∆中,60,75,10A C AB ∠=∠==,,,D E F 分别在,,AB BC CA 上,则DEF ∆的周长最小值为 .【答案】【解析】分别作点E 关于,AB AC 的对称的,P Q .则,DE PD EF FQ ==.连接,,,,,AE AP AQ DP FQ PQ ,则120PAQ ∠=,且AP AE AQ ==,从而30APQ ∠=, 故12cos30PQAP =,PQ =,过点A 作AH BC ⊥于点H ,则 sin 10sin 455AH AB B =⋅=⨯=于是DEF ∆的周长为l DE DF EF PD DF FQ PQ =++=++≥==≥=当且仅当点E 与点H 重合,且,,,P D F Q四点共线时取得等号,即DEF ∆的周长min l =4.若实数,,x y z 满足()2228x y z x y y z z x ++-++=,用A 表示,,x y y z --z x -的最大值,则A 的最大值为 .【答案【解析】由已知,得222()()()16x y y z z x -+-+-=,不妨设A x y =-,则[]22222222()()()2()()216()2(16)A x y y x y z z x y z z x x y A ⎡⎤⎡⎤=-=-=-+-≤-+-=--=-⎣⎦⎣⎦解得A ≤.当且仅当x y y z z x -=-=-=时取等号. 故A. 第二试(A )一、(本题满分20分)已知实数,,,a b c d 满足()2222223236,a c b d a d b c +=+=-= 求()()2222a b c d ++的值.解:设2222,m a b n c d =+=+,则222223(23)(23)12.m n a c b d +=+++=因()()2223232424m n m n mn mn +=-+≥,即21224mn ≥,故6mn ≤ ○1 又因为()()()()22222222222222mn a b c d a c b d a d b c ac bd ad bc =++=+++=++- 故()26mn ad bc ≥-= ○2 由○1,○2可得 6.mn =即()()22226a b c d ++=注:符合条件的实数,,,a b c d 存在且不唯一,应满足2222222220(1)2233(2)23236(3)()6(4)ac bd a b c d a c b d ad bc +=⎧⎪+=+⎪⎨+=+=⎪⎪-=⎩ 由(1)得a b d c =-,令a b t d c=-=,则,a dt b ct ==-,代入(2)得t =t =,于是,a b ==或,a b ==,代入(3)或(4),得222c d +=, 故符合条件的实数,,,a b c d 存在且不唯一,如1,a b c d ====就是一组.又如1,122a b c d ==-==也是一组,当然还有很多组. 二、(本题满分25分)已知点C 在以AB 为直径的圆O 上,过点,B C 作圆O 的切线,交于点P ,连接AC ,若92OP AC =,求PB AC的值. 解:连接OC ,因为,PC PB 为圆O 的切线,所以POC POB ∠=∠因为OA OC =,所以OCA OAC ∠=∠,因为COB OCA OAC ∠=∠+∠,所以22POB OAC ∠=∠,所以POB OAC ∠=∠,所以OP AC ∥连接BC ,因AB 为圆O 的直径,PB 为圆O 的切线,故90ACB OBP ∠=∠=又POB OAC ∠=∠,所以BAC POB ∆∆∽,所以AC AB OB OP =. 又92OP AC =,2AB r =,OB r =(r 为圆O 的半径),代入,得23,3OP r AC r ==. 在Rt POB ∆中,由勾股定理,得PB ==,所以23PB AC r ==. 三、(本题满分25分)已知t 是一元二次方程210x x +-=的一个根,若正整数,,a b m 使得等式()()31at m bt m m ++=成立,求ab 的值.解:因为t 是一元二次方程210x x +-=的一个根,显然t 是无理数,且21t t =-.由()()31at m bt m m ++=,得()22310abt m a b t m m +++-=,将21t t =-代入,得 ()()21310ab t m a b t m m -+++-=,即()()2310.m a b ab t ab m m +-++-=⎡⎤⎣⎦因为,,a b m 是正整数,t 是无理数,所以()20310m a b a b a b m m ⎧+-=⎪⎨+-=⎪⎩,于是可得23131a b m ab m m+=-⎧⎨=-⎩ 因此,a b 是关于x 的一元二次方程()2231310x m x m m +-+-=的两个正整数根,该方程的判别式()()()()2231431313150.m m m m m ∆=---=--≥又因为,a b 是正整数,所以310a b m +=->,从而可得310.5m <≤又因为判别式∆是一个完全平方数,验证可知,只有6m =符合要求.把6m =代入,得231150.ab m m =-=第二试(B )一、(本题满分20分)已知1t =,若正整数,,a b m ,使()()17at m bt m m ++=成立,求ab 的值.解:因为1t =-,所以23t =-由()()17at m bt m m ++=,得()22170abt m a b t m m +++-=,将23t =-,得(())231170ab m a b m m -+++-=,整理得()()223170m a b ab ab m a b m m ⎡⎤+--++-=⎡⎤⎣⎦⎣⎦因为,,a b m 是正整数是无理数,所以2()203()170m a b ab ab m a b m m +-=⎧⎨-++-=⎩于是可得()221717a b m ab m m⎧+=-⎪⎨=-⎪⎩ 因此,a b 是关于x 的一元二次方程222(17)170x m x m m +-+-=的两个正整数根,该方程的判别式()()()()224174174171720.m m m m m ∆=---=--≥又因为,,a b m 是正整数,所以()2170a b m +=->,从而可得1702m <≤又因为判别式∆是一个完全平方数,验证可知,只有8m =符合要求.把8m =代入,得21772ab m m =-=.二、(本题满分25分)在ABC ∆中,AB AC >,O I 、分别是ABC ∆的外心和内心,且满足2AB AC OI -=, 求证:(1)OI ∥BC ;(2)2AOC AOB AOI S S S ∆∆∆-= .证明:(1)过点O 作OM BC ⊥于M ,过点I 作IN BC ⊥于N ,则OM ∥IN ,设,,BC a AC b AB c ===,由O I 、分别是ABC ∆的外心和内心,得 11,()22CM a CN a b c ==+-,所以1()2MN CM CN c b OI =-=-=, 又MN 恰好是两条平行线,OM IN 之间的垂线段,所以OI 也是两条平行线,OM IN 之间的垂线段,所以OI ∥MN ,所以OI ∥BC .(2)由(1)知OMNI 是矩形,连接,BI CI ,设OM IN r ==(即为ABC ∆的内切圆半径),则()()AOC AOB AOI COI AIC AIB AOI BOI S S S S S S S S ∆∆∆∆∆∆∆∆-=++---11112222221112()2()()2.222AOI BOI COI AIC AIB AOI AOI AOI AOI S S S S S S OI r OI r AC r AB r S r OI b c S r c b b c S ∆∆∆∆∆∆∆∆∆=+++-=+⋅⋅+⋅⋅+⋅⋅-⋅⋅⎡⎤⎡⎤=+⋅+-=+⋅-+-=⎢⎥⎢⎥⎣⎦⎣⎦ 三、(本题满分25分)若正数,,a b c 满足2222222222223222b c a c a b a b c bc ca ab ⎛⎫⎛⎫⎛⎫+-+-+-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求代数式222222222222b c a c a b a b c bc ca ab+-+-+-++的值. 解:由于,,a b c 具有轮换对称性,不妨设0.a b c <≤≤(1)若c a b >+,则0,0c a b c b a ->>->>,从而,得()2222211,22c b a b c a bc bc --+-=+>()2222211,22c a b c a b ca ca --+-=+>()2222211,22a b c a b c ab ab +-+-=-<-故2222222222223222b c a c a b a b c bc ca ab ⎛⎫⎛⎫⎛⎫+-+-+-++> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 这与已知条件矛盾.(2)若c a b <+,则0,0c a b c b a ≤-<≤-<,从而,得 ()22222011,22c b a b c a bc bc --+-<=+<()22222011,22c a b c a b ca ca --+-<=+< ()2222211,22a b c a b c ab ab +-+-=->-()22222011,22a b c a b c ab ab --+-<=+< 故2222222222223222b c a c a b a b c bc ca ab ⎛⎫⎛⎫⎛⎫+-+-+-++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,这与已知条件矛盾. 综合(1)(2)可知,一定有.c a b =+ 于是可得22222222()221,22()22b c a b a b a b ab bc b a b b ab+-++-+===++ 同理可得2221,2c a b ca+-=22212a b c ab +-=-. 故2222222221.222b c a c a b a b c bc ca ab+-+-+-++=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年小学数学竞赛决赛试卷
2013年4月13日上午10:00—11:30
(本卷共14个题,每题10分,总分140分。
第1至12题为填空题,只需要将答案填入
空内;13题和14题为解答题,需写出解题过程。
)
1、计算[13 (0.75-14 )+(14 -0.125)]÷135 =( )
=65192
2、计算15 +15+10 +15+10+15 +15+10+15+20 +15+10+15+20+25 =( )
=13
3、用○
a 表示正整数a 的不同约数的个数。
如4的不同约数有1,2,4共3个,所以○a =3.那
么,(○
12-○6)÷○5=( ) 定义新运算=1
4、有图是9棱长为1米的正方体堆成的一个立体。
那么,这个立体的表面积是( )平方米。
上面看:6 前面看6个,左面看:4个,共(6+6+4)×2=32。
5、五个不同的整数,他们两两之和为
6,7,8,10,13,14,15,16,17,18.那么,这五个整数中,最大数是( ),最小数是( )。
假设这五个数分别为:a <b <c <d <e (6+7+8+10+13+14+15+16+17+18)÷4=31那么a+b=6 d+e=18 c :31-18—6=7 a+c=7 所以a=0 ,a+e=10所以e=10.
6、取π=3,则右图中阴影部分的面积是( )。
34
7,一群人到三亚去旅游。
首先出发的人数是总人数的12 又3人,第二批出发的人数是第
一批走后剩下人数的13 又4人;第三排出发的人数是第二批走后剩下人数的34 又6人,
正好全部去完。
那么,这群人总人数是( )人。
还原倒推:6÷14 =24人,(24+4)÷23 =42(人)(42+3)÷12 =90(人)
8、一个两位数,满足条件:所有两位数这和正好在此两位数的100倍和200倍之间,且此两位数是所有两位数之和的因数。
那么,这个两位数=( )
设这个两位数是100<4905<200 10+11+12…+99=4905 4905=5×3×3×109 符合条件的两位数是45
9、面粉厂送面粉到食品长加工蛋糕。
第一次送去20袋面粉,其中4袋作为加工费给食品厂还不够,另外补给食品厂160元现金。
第二次送去14袋面粉,其中2袋作为加工费给食品厂也不够,另外补给食品厂180元现金。
那么,每袋面粉值( )元,每袋面粉的加工费是( )元。
排列比较,16加工费:4袋价值+160元
12加工费:2袋价值+180元 (24袋加工费:4袋价值+360元)
对比发现8袋加工费:200 每袋加工费25元, 16袋加工费400元,400-160=240元 240÷4=60元/袋。
10、甲、乙、丙三个工程队共同承包A 、B 两项工程。
工程B 的工作量是工程A 的工作量的45 。
甲、乙、丙单独完成工程B 分别需要40、48、60天。
开始时,先由乙、丙两队共同负责工程A ,甲队单独负责工程B 。
工作若干天后,改由乙队单独负责A,甲、丙两队共同负责工程B 。
结果两项工程共同完成。
那么,丙队到工程B 施工的天数是( )天。
设A 工程的工作量为1,B 工程的工作量为45 ,那么甲的工作效率为:45 ÷40=150 乙的工
作效率为45 ÷48=160
丙的工作效率为:45 ÷60=工作时间为(1+45 )÷(150 +160 +175 )=36天,这36天种,
乙都在A 工作,那么乙一共完成了36×160 =35 ,那么剩下的是甲完成的,丙在A 工作了
(1--35 )÷175 =30(天)丙到B 工程的时间是36-30=6天。
11、某班同学到书店购书。
男生没人够6本,女生没人购书4本,平均每人够4.95本。
已知购书总数不超过300本,那么,该班男生的人数是( )。
浓度问题移多补少:(6—4.95):(4.95—4)=21:19那么男女生人数比为:19:21 19+21=40(人)
40×4.95=198(本)所以该班男生为19人。
12、有2元、5元以及10元的人民币共30张,总计145元。
如果其中5元人民币不超过8张,那么,2元人民币有()张。
由题意可以知道,5元的一定是奇数张,而且,2元的一定是5或10,15张。
有:2×15+5×7+10×8=145 所以 2元的有15张。
13、(此题为解答题,需要写出解题过程)如图,某人从A地出发,经过B地和C地到达D地,AB段路程是CD段路程的2倍。
原计划从A地到B地,B地到C地,C地到D点的速度分别是4千米/小时,5千米/小时和8千米/小时,恰好用时160分钟。
但此人在从B地到C地着一段路程上的实际速度比原计划在着一段路程的速度提高20%,结果比预定时间提前10分钟到达D地。
那么,从A地到达D地的总路程是()千米。
BC这段路上有:计划速度:实际速度=5:6 计划时间:实际时间=6:5 所以原计划这段路上的时间是
10÷(6-5)×6=60分钟。
所以这段路长5千米。
然而,AB:CD=2:1 速度比为1:2所以这两段的时间比是4:1 160-60=100(分钟)AB时间100÷(1+4)×4=80(分钟)AB
长度为:80÷60×4=16/3千米,那么CD的长度为8/3÷2=8/3那么全长为:5+16
3+
8
3=13
千米。
14、(此题为解答题,需写出解题过程)用1,2,3,4,5,6,7,8这八个数字组成有若干个数的数组,(数组中每个数字必须用一次且只能用一次),数组中的所有书之和为117.列如:12,83,4,5,6,7就是合乎要求的一组数。
那么,这样的数组共有()组。
分析与解答:所有组成的数中,一定没有三位数,因为最小的三位数是123大于117.所以只能是两位数和一位数的加法。
如果11个十加上7个一,只有了18个数字和,所以不行
如果是10个十加上17个一,只有27个数字和,所以不行
如果是9个十加上27个一,刚好36个数字和。
所以行。
以后都不行了。
所以一定是十位数字之和为9的加法算式。
然而没有9所以至少有两个两位数。
十位上有1+8,2+7,3+6,4+5和1+2+6,1+3+5,2+3+4.
对于两个两位数的加法,利用乘法原理有6×5=30个。
30×4=120种,
对于三个两位数的加法,利用乘法原理有5×4×3=60个,60×3=180种。
所以一共有120+180=300种。