初一数学期末复习典型题答案

合集下载

初一期末数学试题及答案

初一期末数学试题及答案

初一期末数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 计算下列哪个表达式的结果为正数?A. 3 - 5B. 2 + (-4)C. 7 × (-2)D. 9 ÷ 3答案:D4. 一个长方形的长是8厘米,宽是5厘米,那么它的面积是:A. 40平方厘米B. 20平方厘米C. 30平方厘米D. 50平方厘米5. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C6. 下列哪个选项表示的是正比例关系?A. 速度×时间=路程B. 总价=单价×数量C. 单价=总价÷数量D. 面积=边长×边长答案:B7. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C8. 一个圆的半径是3厘米,那么它的周长是:A. 18.84厘米B. 9.42厘米C. 6.28厘米D. 3.14厘米答案:A9. 计算下列哪个表达式的结果为负数?B. -2 - 3C. 4 × 2D. 5 ÷ 2答案:B10. 一个三角形的三个内角分别是40°、60°和80°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:A二、填空题(每题3分,共30分)1. 一个数的平方根是3,那么这个数是______。

答案:92. 一个数的立方是-27,那么这个数是______。

答案:-33. 一个数的倒数是2,那么这个数是______。

答案:0.54. 一个数的绝对值是8,那么这个数可能是______。

答案:8或-85. 一个数的平方是16,那么这个数可能是______。

答案:4或-46. 一个数的平方根是-2,那么这个数是______。

初一数学期末考试题附答案

初一数学期末考试题附答案

【点评】此题考查了平移中点的改变规律,横坐标右移加,左移
组的解集是解答此题的关键.
减;纵坐标上移加,下移减.左右移动转变点的横坐标,上下移动转
18.△DEF〔三角形〕是由△ABC 平移得到的,点 A〔﹣1,﹣4〕的
变点的纵坐标.
对应点为 D〔1,﹣1〕,则点 B〔1,1〕的对应点 E,点 C〔﹣1,4〕的
④假如 b⊥a,c⊥a,那么 b∥c,是真命题.
20.已知三条不同的直线 a,b,c 在同一平面内,以下四个命题:
本文格式为 Word 版,下载可任意编辑
初一数学期末考试题附答案
【分析】先由已知条件得出∠1+∠2=90°,再依据平角的定义得 出∠1+∠DCE+∠2=180°,则∠DCE=90°,由垂直的定义可知 CD 与 CE
相互垂直.
1. 的算术平方根是 2 .
【解答】解:∵∠1=53°,∠2=37°,
【考点】算术平方根.
行,同位角相等. 10.如图,用同样规格的黑、白两色正方形瓷砖铺设地面,请观看
图形回答下列问题:第 n 个图形中需用黑色瓷砖 4n+4 块.〔用含 n
的代数式表示〕 【考点】规律型:图形的改变类. 【分析】由题意可知:第 n 个图形的瓷砖的总数有〔n+2〕2 个,
白瓷砖的数量为 n2 个,用总数减去白瓷砖的数量即为黑瓷砖的数量. 【解答】解:∵第 1 个图形中需用黑色瓷砖 32﹣12=8 块, 第 2 个图形中需用黑色瓷砖 42﹣22=12 块, 第 3 个图形中需用黑色瓷砖 52﹣32=16 块, … ∴第 n 个图形中需用黑色瓷砖〔n+2〕2﹣n2=4n+4 块. 故答案为:4n+4. 【点评】此题考查图形的改变规律,找出图形之间的联系,得出

人教版初中数学七年级上期末复习专题卷(1-4及答案

人教版初中数学七年级上期末复习专题卷(1-4及答案

第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.如果+20%表示增加20%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%2.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.98mm3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.452.010010001…中,有理数有()4.在-,3.1415,0,-0.333…,-,-,A.2个B.3个C.4个D.5个5.10月7日,铁路局“十一”黄金周运输收官,累计发送旅客640万人,640万用科学计数法表示为()A.6.4×102B.640×104C.6.4×106D.6.4×1056.若向北走27米记为-27米,则向南走34米记为()A.34米B.+7米C.61米D.+34米7.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大是()A.aB.bC.cD.d8.比较,,的大小,结果正确的是()A. B.C. D.9.如果,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<010.已知ab≠0,则+的值不可能的是()A.0B.1C.2D.﹣211.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若+=3,则原点是().A.M或NB.M或RC.N或PD.P或R12.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示-1的点B,则点A所表示的数是()A.-3或5B.-5或3C.-5D.313.已知=3,=4,且x>y,则2x-y的值为()A.+2B.±2C.+10D.-2或+1014.有理数a,b,c在数轴上的位置如图所示,则()A.-2bB.0C.2cD.2c-2b15.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣116.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、9517.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第6个图形中火柴棒根数是()A.60B.61C.62D.6318.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-719.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0B.2C.4D.820.计算(﹣2)2016+(﹣2)2015的结果是()A.﹣1B.﹣22015C.22015D.﹣22016二填空题:21.把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.(1)非负数集合:{,…};(2)负数集合:{,…};(3)正整数集合:{,…};(4)负分数集合:{,…}.22.近似数3.06亿精确到___________位.23.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.24.已知(x﹣2)2+|y+4|=0,则2x+y=_______.25.绝对值不大于5的整数有个.26.小韦与同学一起玩“24点”扑克牌游戏,即从一幅扑克牌(去掉大、小王)中任意抽出4张,根据牌面上的数字进行有理数混合运算(每张牌只能用一次)使运算结果等于24或-24,小韦抽得四张牌如图,“哇!我得到24点了!”他的算法是__27.有理数在数轴上的对应点如图所示,化简:.28.观察下列各题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…根据上面各式的规律,请直接写出1+3+5+7+9+…+99=________.29.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)30.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是三计算题:31.32.33.34.35.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).37.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?38.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=.(2)若|x﹣2|=5,则x=.(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是.39.阅读材料:求1+2+22+23+24+…+2200的值.解:设S=1+2+22+23+24+…+2199+2200,将等式两边同时乘以2得2S=2+22+23+24+25+…+2200+2201,将下式减去上式得2S-S=2201-1,即S=2201-1,即1+2+22+23+24+…+2200=2201-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n.(其中n为正整数)40.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.第一学期七年级数学期末复习专题有理数参考答案1、C2、C3、B4、D5、C6、D7、A8、D9、C10、B11、B12、B13、D14、B15、A16、A17、D18、B19、C20、C21、(1)15,0,0.15,,+20(2)-,-30,-128,-2.6(3)15,+20(4)-,-2.622、百万;23、5524、0.25、1126、23(1+2)__.27、-b+c+a;28、502.29、30、4.31、32、.33、;34、原式=-1×[-32-9+]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36.35、(1)抽取;(2)抽取;(3)抽取;(4)答案不唯一;例如抽取-3,-5,3,4;36、37、(1)4_7__(2)1_2__(3)—92__88__(4)m+n-p_38、【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.39、解:(1)211-1(2)设S=1+3+32+33+34+…+3n ,将等式两边同乘以3得3S=3+32+33+34+35+…+3n+1,所以3S-S=3n+1-1,即2S=3n+1-1,所以S=2131-+n ,即1+3+32+33+34+ (3)=2131-+n 40、【解答】解:(1)∵动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒,∴P 到点A 的距离为:PA=t,P 到点C 的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P 点在Q 点右侧,且Q 点还没有追上P 点时,3t+2=14+t 解得:t=6,∴此时点P 表示的数为﹣4,当P 点在Q 点左侧,且Q 点追上P 点后,相距2个单位,3t﹣2=14+t 解得:t=8,∴此时点P 表示的数为﹣2,当Q 点到达C 点后,当P 点在Q 点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P 表示的数为3,当Q 点到达C 点后,当P 点在Q 点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P 表示的数为4,综上所述:点P 表示的数为﹣4,﹣2,3,4.第一学期七年级数学期末复习专题整式的加减姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法中错误的是()A.-x2y的系数是-B.0是单项式C.xy的次数是1D.-x是一次单项式2.下列说法:①最大的负整数是;②的倒数是;③若互为相反数,则;④=;⑤单项式的系数是-2;⑥多项式是关于x,y的三次多项式。

人教版七年级数学上册期末专项复习四套含答案

人教版七年级数学上册期末专项复习四套含答案

人教版七年级数学上册 期末专项复习01—有理数一、选择题(每小题3分,共30分)1.如果气温上升5℃记为5+℃,则8-℃表示( ) A .下降3℃B .上升3℃C .下降8℃D .上升8℃2.12020的相反数是( ) A .12020-B .12020C .2020-D .20203.下列说法中,正确的是( ) A .0是最小的整数B .最大的负整数是1-C .有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列各组数中,相等的一组是( ) A .2-和()2--B .2--和()2--C .2和2-D .2-和2-5.若a 是有理数,则下列说法正确的是( ) A .a 一定是正数 B .a -一定是正数 C .a --一定是负数D .1a +一定是正数6.表示a ,b 两数的点在数轴上的位置如图所示,则下列判断错误的是( )A .0a b +<B .0a b ->C .0a b ⨯>D .a b <7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片,现在中国高速铁路营运里程将达到22 000公里,将22 000用科学记数法表示应为( ) A .42.210⨯B .32210⨯C .32.210⨯D .50.2210⨯8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( ) A .它精确到千分位B .它精确到0.01C .它精确到万位D .它精确到十位9.()()1352013201524620142016+++++-+++++L L =( ) A .0B .1-C .1008D .1008-10.若()212102x y -++=,则23x y +的值是( ) A .38B .18C .18-D .38-二、填空题(每小题2分,共16分)11.数轴上与表示数1的点的距离为8个单位长度的点所表示的数是________. 12.已知7a =,3b =,且0a b +>,则a =________. 13.有理数 3.7-,2,243,23-,0,0.83中,属于正数的有________,属于负数的有________. 14.若a 、b 互为倒数,c 、d 互为相反数,则式子()343ab c d -+=________.15.已知()23a -与1b -互为相反数,则式子a b b a ⎛⎫- ⎪⎝⎭的值为________.16.计算()()()20202019202020201101-+-++-=________.17.A 点为数轴上表示4-的对应点,B 点对应的数为1-的相反数,若固定A 点不动,将B 点________个单位后,B 与A 相距1个单位.(请填上移动方向和距离)18.用“●”“○”定义新运算:对于实数a ,b ,都有a b a =●和a b b =d .例如323=●,322=d ,则()()2200920100210009=d d ●________.三、解答题(共54分)19.(12分)计算.(尽可能用简便方法)(1)()31664 5.66577⎡⎤++--⎢⎥⎣⎦;(2)()11731348126424⎛⎫-+-⨯- ⎪⎝⎭;(3)()2413111421412⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭;(4)()()()()23220202231-----÷-20.(5分)若3x -与2y +互为相反数,求3x y ++的值.21.(6分)按下列程序进行计算(如图),如果第一次输入的数是20,而结果不大于100时,那么就把结果作为输入的数再进行第二次运算,直到符合要求为止,当输入值为20时,请计算输出结果.22.(6分)小明家与学校相距2.5千米,小华家与学校相距32千米.请你想一下,小明家和小华家处在学校什么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科学记数法表示)24.(9分)某天晚上,一辆治安巡逻车从A地出发,在东西方向的马路上巡逻,第七次巡逻到达B地后结束,如果规定向东行驶为正,向西行驶为负,七次巡逻的纪录如下:(单位:千米)(1)在第________次巡逻时离开A地最远.(2)求第七次巡逻结束时B地与A地的距离与方向.(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.25.(10分)观察下列一组有规律的数,解答下列问题.第1个数记为:1111 2122 ==-⨯;第2个数记为:1111 62323 ==-⨯;第3个数记为:1111 123434==-⨯;(1)第7个数记为________,190是第________个数;(2)计算:①1111 12233420192020 ++++⨯⨯⨯⨯L;②1111 13355720172019 ++++⨯⨯⨯⨯L;期末专项复习—有理数答案解析一、1.【答案】C 【解析】由题意,得8-℃表示下降8℃.故选C .2.【答案】A 【解析】12020的相反数是12020-.故选A . 3.【答案】B 【解析】没有最小的整数,故A 错误;B 正确;有理数包括0、正有理数和负有理数,C 错误;有理数的平方是非负数,D 错误.故选B .4.【答案】C5.【答案】D 【解析】A 选项,0a =时,0a =,不是负数,故本选项错误;B 选项,0a =时,0a -=,不是正数,故本选项错误;C 选项,0a =时,0a --=,不是正数,故本选项错误;D 选项,11a +≥,一定是正数,故本选项正确.故选D .6.【答案】C 【解析】由图可知,a ,b 异号,故0a b ⨯<,C 错误,符合题意,其他选项都正确,不符合题意.故选C .7.【答案】A 【解析】422000 2.210=⨯.故选A .8.【答案】D 【解析】4.609万中的9在原数46090中的十位上,所以4.609万精确到了十位.故选D . 9.【答案】D【解析】()()1352013201524620142016+++++-+++++=L L ()()()123420152016-+-++-=L()()()1111008-+-++-=-L .故选D .10.【答案】B 二、11.【答案】7-或912.【答案】713.【答案】2,243,0.83 3.7-,23- 14.【答案】3b 15.【答案】22316.【答案】117.【答案】向左移动4个单位或6个单位 18.【答案】2010 三、19.【答案】(1)31664 5.6657731664 5.665773166 5.646577512751.7⎡⎤++-⎢⎥⎣⎦⎡⎤=+--⎢⎥⎣⎦⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=+- ⎪⎝⎭=-()- (2)117313481264241173134848484812642444+5636+262⎛⎫-+-⨯- ⎪⎝⎭=⨯-⨯-⨯-⨯-==()()-()+()-()--(3)421311142141213111014121⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭⎛⎫=---⨯ ⎪⎝⎭=-() (4)232202022314891489=3.-----÷-=--÷=+-()()()()()- 20.【答案】解:因为3x -与2y +互为相反数,所以320x y -++=.因为30x -≥,20y +≥,所以30x -=,20y +=.即30x -=,20y +=.所以3x =,2y =-.所以()33234x y ++=+-+=.21.【答案】解:当输入20时,211201044010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入40-时, 211402048010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入80时,2118040416010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入160-时,21116080432010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()>,故输出的结果为320. 22.【答案】解:当小明家和小华家处在学校两侧,且在一条直线上时相距最远,最远为()2.5 1.54+=千米;当小明家和小华家处于学校同侧,且在一条直线上时相距最近,最近为()2.5 1.51-=千米.23.【答案】解:1个草履虫每天吞食细菌:()460302443200 4.3210⨯⨯==⨯个,100个草履虫每天吞食细菌:()46100 4.3210 4.3210⨯⨯=⨯个.24.【答案】解:(1)Q 第一次:()044+-=-, 第二次:()43-=+7, 第三次:()396+-=-, 第四次:()682-=+, 第五次:268+=, 第六次:()853+-=, 第七次:()321+-=, ∴第五次巡逻时离开A 地最远.(2)第七次巡逻结束后,B 地在A 地东边1千米处.(3)()()4798652100124110012 4.92-+++-+++++-+-÷⨯=÷⨯=升,故该晚巡逻车共耗油4.92升.25.【答案】解:(1)1111567878==-⨯ 9 (2)①原式1111111111223342018201920192020111111111122334201820192019202020192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-+-+-+-+-=…+…+ ②原式11111111111123235257220172019111111111233557201720191112201910092019⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=⨯-+-+-+- ⎪⎝⎭⎛⎫=⨯- ⎪⎝⎭=…+…+人教版七年级数学上册 期末专项复习02—整式的加减一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习03—一元一次方程一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习04—几何图形初步一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A .平角是一条直线 B .周角是一条射线C .用2倍的放大镜看1cm 长的线段,这条线段变成了2cmD .用2倍的放大镜看°30的角,这个角变成了°602.如图所示,在AOB ∠的内部有4条射线,则图中角的个数为( )A .10B .15C .5D .203.下面说法:①若线段AC BC =,C 是线段AB 的中点;②两点之间直线最短;③延长直线AB ;④若一个角既有余角又有补角,则它的补角一定比它的余角大.正确的有( ) A .0个B .1个C .2个D .3个4.如图所示,小于平角的角有( )A .9个B .8个C .7个D .6个5.如图,C ,D 是线段AB 上两点,4cm CB =,7cm DB =,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm6.小明由点A 出发向正东方向走10m 到达点B ,再由点B 向东南方向走10m 到达点C ,则下列结论正确的是( ) A .°22.5ABC ∠= B .°45ABC ∠= C .°67.5ABC ∠=D .°135ABC ∠=7.如图所示,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式正确的是( )A .12COD AOB ∠=∠ B .23AOD AOB ∠=∠C .13BOD AOB ∠=∠D .23BOC AOD ∠=∠8.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A .遇B .见C .未D .来9.射线OA 上有B 、C 两点,若8OB =,2BC =,线段OB 、BC 的中点分别为D 、E ,则线段DE 的长为( ) A .5B .3C .1D .5或310.如图,AOB COD ∠=∠,若°110AOD ∠=,°70BOC ∠=,则以下结论正确的有( )①°90AOC BOD ∠=∠=;②°20AOB ∠=;③AOB AOD AOC ∠=∠-∠;④211AOB BOD ∠=∠ A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.用度、分、秒表示:°35.12=________°________′________″. 12.已知°4231α∠=′,则α∠的余角的补角是________. 13.延长线段AB 到点C ,使12BC AB =,反向延长线段AC 到点D ,使12AD AC =.若8cm AB =,则CD =________cm .14.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于________.15.如图所示,C 是线段AB 外一点,那么AC BC +________AB (填“>”“<”或“=”),理由是________.16.如图所示,A 、O 、B 在一条直线上,°1302AOC BOC ∠=∠+,OE 平分BOC ∠,则BOE ∠=________.17.有公共顶点的两条射线分别表示南偏东°15与北偏东°25,则这两条射线组成的角的度数为________. 18.延长线段AB 到C ,使13BC AB =,D 为AC 的中点,且6cm DC =,则AB 的长是________cm . 三、解答题(共46分)19.(8分)已知平面上的三点,如图所示. (1)按下列要求画出图形:①画直线AC ;②画射线BC ;③画线段AB .(2)指出图中有几条线段,并表示出来.(3)图中有哪些线段?用图中的字母表示出来.(4)图中有哪些直线?并用图中的字母表示出来.20.(6分)如图所示的平面展开图折叠成正方体后,相对面上的两个数之和为5,求x y z ++的值.21.(6分)若:::1234134:1::∠∠∠∠=,而且°1231048∠∠∠∠=+++,那么这四个角分别为多少度?22.(8分)如下图,某轮船上午8时在A 处,测得灯塔S 在北偏东°60的方向上,向东行驶至中午12时,轮船到达B 处,在B 处测得灯塔S 在北偏西°30的方向上,已知轮船行驶速度为20千米/时. (1)在图中画出灯塔S 的位置;(2)量出船在B 处时,离灯塔S 的图上距离,并求出它的实际距离.23.(8分)如图所示,点C 是线段AB 上一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果0cm 1AB =,3cm AM =,求NC 的长.(2)如果6cm MN =,求AB 的长.24.(10分)如图所示,从一点O 出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引n (n 为大于等于2的整数)条射线,则会得到多少个角?如果8n =时,检验你所得的结论是否正确.期末专项复习—几何图形初步答案解析一、 1.【答案】C 2.【答案】B 3.【答案】B【解析】①如图,C 不是线段AB 的中点,故①不正确;②两点之间线段最短,故②不正确;③直线向两边无限延伸,不能延长,故③不正确;④正确.故选B . 4.【答案】C【解析】符合条件的角中以A 为顶点的角有1个,以B 为顶点的角有2个,以C 为顶点的角有1个,以D 为顶 点的角有1个,以E 为顶点的角有2个,共有121127++++=(个)角,故选C . 5.【答案】B【解析】因为7cm DB =,4cm CB =所以743cm DC DB CB =-=-=.根据D 是AC 的中点,得2236cm AC DC ==⨯=.6.【答案】D【解析】由题意作图如下:由图可得°°°9045135ABC ∠=+=. 7.【答案】D【解析】设COD x ∠=,因为OD 平分BOC ∠, 所以BOD COD x ∠=∠=,2BOC x ∠=. 又OC 平分AOB ∠, 所以2AOC BOC x ∠=∠=,则4AOB x ∠=,所以14COD AOB ∠=∠,34AOD AOB ∠=∠,14BOD AOB ∠=∠,23BOC AOD ∠=∠,故 选D . 8.【答案】D【解析】根据正方体的表面展开图的特征,易知与“你”字所在面相对的面上标的字是“来”,与“遇” 字所在面相对的面上标的字是“的”,与“见”字所在面相对的面上标的字是“未”,故选D .9.【答案】D【解析】如图1,3DE =;如图2,5DE =.图1图210.【答案】C【解析】因为°110AOD ∠=,°70BOC ∠=,所以°40COD AOB ∠+∠=,又因为AOB COD ∠=∠,所以°20AOB COD ∠=∠=,所以°90AOC BOD ∠=∠=,故①②正确;AOD AOC COD AOB ∠-∠=∠=∠,故③正确;29AOB BOD ∠=∠,故④不正确.所以正确的有3个. 二、11.【答案】35 7 12 12.【答案】°13231′ 13.【答案】18 14.【答案】2415.【答案】>两点之间线段最短 16.【答案】°50 17.【答案】°140 18.【答案】9 三、19.【答案】解:(1)如图所示:(2)图中有3条线段,分别是线段AB 、AC 、BC .(3)图中的射线有:射线CE 、CF 、AG 、AF 、CG 、BE . (4)图中的直线有:直线AC 20.【答案】421.【答案】°120∠=,°260∠=,°380∠=,°420∠=. 22.【答案】解:(1)灯塔S 的位置如下图:(2)量得图中2cm BS =,轮船上午8时到中午12时行驶了4小时,则行驶的路程为20480⨯=(千米).而图 中AB 的距离为4cm ,故该图的比例为418010001002000000=⨯⨯.所以轮船离灯塔S 的实际距离为 20000002400000040⨯==(厘米)千米.23.【答案】(1)因为M 为AC 的中点,所以2AC AM =.因为3cm AM =,所以236cm AC =⨯=.因为10cm AB =,所以10cm 6cm 4cm BC AB AC =-=-=,又因为N 为BC 的中点,所以12cm 2NC BC ==. (2)因为M 为AC 的中点,所以12MC AC =.因为N 为CB 的中点,所以12CN CB =,所以 111222MC CN AC CB AC CB +=+=+(),即12MN AB =,而6cm MN =,所以12cm AB =. 24.【答案】解:当2n =时,角的个数为1;当3n =时,角的个数为123+=;当4n =时,角的个数为1236++=; 当5n =时,角的个数为123410+++=;当射线的条数为n 时,角的个数为112342112n n n n ++++-+-=-…()()().当8n =时,1118182822n n -=⨯-⨯=()().所以n 条射线可 得到112n n -g ()个角的结论也是正确的.。

数学初一期末考试卷答案

数学初一期末考试卷答案

数学初一期末考试卷答案一、选择题(每题2分,共10分)1. 下列哪一项是正数?A. -3B. 0C. 5D. -1答案:C2. 如果a + b = 7,a - b = 3,那么a和b的值分别是多少?A. a=5, b=2B. a=4, b=3C. a=3, b=4D. a=2, b=5答案:A3. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C4. 一个圆的半径是5厘米,那么它的周长是多少?A. 10πB. 15πC. 20πD. 25π答案:C5. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,当且仅当这个数____。

答案:非负7. 一个数的相反数是它本身,这个数只能是__。

答案:08. 一个数的立方根是3,这个数是__。

答案:279. 一个数的平方是25,这个数可以是__。

答案:±510. 一个数的倒数是1/4,这个数是__。

答案:4三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) (-2) × 3 + 4 × (-1) = -6 - 4 = -10(2) 8 ÷ (-2) - 3 × (-1) = -4 + 3 = -112. 解下列方程:(1) 3x - 7 = 8,3x = 15,x = 5(2) 2y + 5 = 3y - 2,y = 713. 化简下列代数式:(1) 4a - 3b + 2a - b = (4 + 2)a - (3 + 1)b = 6a - 4b(2) (x + 2)(x - 3) = x^2 - 3x + 2x - 6 = x^2 - x - 6四、解答题(每题10分,共20分)14. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。

周长= 2 × (长 + 宽) = 2 × (15 + 10) = 50厘米面积 = 长× 宽= 15 × 10 = 150平方厘米15. 一个班级有40名学生,其中男生人数是女生人数的2倍,求男生和女生各有多少人。

初一数学上册期末试题及答案

初一数学上册期末试题及答案

初一数学上册期末试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的自然数?A. 0B. 1C. -1D. 2答案:A2. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 计算下列哪个式子的结果为正数?A. -3 + 2B. 5 - 8C. -4 - 6D. 7 - 9答案:A4. 一个数的平方等于16,这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C5. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/9答案:C6. 下列哪个不是同类项?A. 2x^2, 3x^2B. 5y, 7yC. 2ab, 3abD. 4x, 5y答案:D7. 如果一个角的度数是30°,那么它的补角是:A. 30°B. 60°C. 90°D. 120°答案:D8. 下列哪个是等腰三角形?A. 三边长分别为3, 4, 5的三角形B. 三边长分别为2, 2, 3的三角形C. 三边长分别为4, 4, 5的三角形D. 三边长分别为1, 1, 2的三角形答案:C9. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C10. 下列哪个是一次函数的表达式?A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x + 5答案:B二、填空题(每题1分,共10分)11. 一个数的平方根是4,那么这个数是______。

答案:1612. 如果a + b = 10,a - b = 2,那么a = ______。

答案:613. 一个数的立方是-27,这个数是______。

答案:-314. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是______。

答案:515. 一个数的倒数是1/4,这个数是______。

答案:416. 如果一个数的绝对值是3,那么这个数是______或______。

期末初一数学试卷大题答案

期末初一数学试卷大题答案

一、解答题1. 题目:一个长方形的长是它的宽的3倍,如果长方形的长和宽的和是24厘米,求长方形的长和宽。

解答:设长方形的宽为x厘米,则长为3x厘米。

根据题意,长和宽的和为24厘米,可以列出方程:x + 3x = 244x = 24x = 6所以,长方形的宽为6厘米,长为3x = 3 × 6 = 18厘米。

答案:长方形的长为18厘米,宽为6厘米。

2. 题目:一个正方形的边长增加了10%,求新正方形的面积与原正方形面积的比。

解答:设原正方形的边长为a厘米,则新正方形的边长为a × (1+ 10%) = a × 1.1厘米。

原正方形的面积为a²平方厘米,新正方形的面积为(a × 1.1)²平方厘米。

面积比为:(a × 1.1)² / a² = (1.1)² = 1.21所以,新正方形的面积与原正方形面积的比为1.21:1。

答案:新正方形的面积与原正方形面积的比为1.21:1。

3. 题目:一辆汽车从甲地开往乙地,已知甲地到乙地的距离是120千米,汽车行驶了3小时后,离乙地还有90千米。

求汽车的速度。

解答:汽车行驶了3小时后,离乙地还有90千米,说明汽车在3小时内行驶了120 - 90 = 30千米。

汽车的速度为行驶的距离除以时间,即:速度 = 30千米 / 3小时 = 10千米/小时答案:汽车的速度为10千米/小时。

4. 题目:一个等腰三角形的底边长为8厘米,腰长为6厘米,求这个三角形的面积。

解答:等腰三角形的面积可以通过底边和高来计算。

首先,我们需要求出高。

因为等腰三角形的腰长为6厘米,底边长为8厘米,所以高是等腰三角形腰长的一半,即3厘米。

三角形的面积公式为:面积 = 底边× 高 / 2将底边和高代入公式得:面积 = 8厘米× 3厘米 / 2 = 24厘米² / 2 = 12厘米²答案:这个等腰三角形的面积为12厘米²。

初一期末数学试卷附答案

初一期末数学试卷附答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. 0.1010010001...D. √42. 已知 a > b > 0,则下列不等式中正确的是()A. a² > b²B. a³ > b³C. a⁴ > b⁴D. a² < b²3. 下列各图中,是平行四边形的是()(此处应插入四幅图形,每幅图形旁标注选项A、B、C、D)4. 已知一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 32cm²C. 36cm²D. 40cm²5. 下列函数中,y是x的函数的是()A. y = x² + 1B. y = x² + 2x + 1C. y = x² + 2D. y = x² - 2x - 16. 已知一元二次方程x² - 5x + 6 = 0,则方程的两个实数根是()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 4, x₂ = 1D. x₁ = 1, x₂ = 47. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 1.58. 下列各对数中,互为相反数的是()A. 3 和 -3B. 3 和 0.3C. -3 和 0.3D. 3 和 -0.39. 下列各数中,是偶数的是()A. 2B. 3C. 4D. 510. 已知一个长方体的长、宽、高分别为4cm、3cm、2cm,则这个长方体的体积是()A. 24cm³B. 27cm³C. 28cm³D. 30cm³二、填空题(每题5分,共25分)11. 有理数 a 的相反数是 ________。

12. 已知一个等腰三角形的底边长为5cm,腰长为8cm,则这个三角形的周长是________cm。

北师大七年级数学上期末复习经典试题及答案

北师大七年级数学上期末复习经典试题及答案

北师大版七年级上册数学期末复习典型试题一、填空题: 1、-0.5 的绝对值是,相反数是,倒数是。

2、一个数的绝对值是 4,则这个数是 ,数轴上与原点的距离为5 的数是。

3、—2x 与3x —1 互为相反数,则 。

x4、(1)设 、 互为相反数, 、 互为倒数,则 2013( )- 的值是_____________。

a b c d a bcd(2)已知a 、b 互为相反数,c 、d 互为倒数,且 m 3 ,则2a 4m 2b (cd )=_________。

2 2005 a b5、已知 0,则=___________。

ab a b 6、(1)已知a 3 (b 1)2 0,则3a b 。

a b 2012(2)如果| a 1| (b 2)2 0 则的值是______________.。

,2 (3)若 x 2 y5 0 ,则 = x y 3x yx y 2 3 7、(1)单项式 - 的系数是 2 ,次数是;多项式 2xy 1的2 5次数。

(2)单项式3的系数是___________,次数是___________.2 xy38、(1)如果3x 1 2kk 0 4是关于x 的一元一次方程,则k ____。

1(2)如果3y 9-2mm 0 关于 y 的一元一次方程,则 m = .29、(1)已知x=3 是方程ax-6=a+10 的解,则a=_____________。

x(2)若 =2 是方程3x 4 a 的解,则 1 的值是 。

x a2011 2 a 2011 10、将弯曲的河道改直,可以缩短航程,是因为:两点之间, 最短11、小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是____.12、如图所示, ∠AOB 是平角, ∠AOC=30 , ∠BOD=60 , OM 、ON 分别是∠AOC 、∠BOD 的平分0 0 线, ∠MON 等于_________________.14. 如图,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线,则∠AOC 的度数为______,∠COD 的度数为________.13、如图,图中共有 条线段,共有个三角形。

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯苏科版七年级数学第一学期期末复习三一元一次方程一、选择题1. 在①2x+1;②1+7=15-8+1;③1- x=x-1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2. 下列方程是一元一次方程的是()A.-2=0B.2x=1C.x+2y=5D.-1=2x3.某制衣店现购买蓝色、黑色两种布料共138m,共花费540元.其中蓝色布料每米3元,黑色布料每米5元,两种布料各买多少米?设买蓝色布料x米,则依题意可列方程()A.3x+5(138-x)=540B.5x+3(138-x)=540C.3x+5(138+x)=540D.5x+3(138+x)=5404. 若关于x的一元一次方程m(x+4)-3m-x=5的解为x=3,则m的值是()A.-2B.2C.D.-5. 如果与互为倒数,那么x的值为()A.x=B.x=10C.x=-6D.x=6.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A. B.4 C.12 D.27. 方程|2x+1|=7的解是()A.x=3B.x=3或x=-3C.x=3或x=-4D.x=-48. 下列解方程过程正确的是()A.2x=1系数化为1,得x=2B.x-2=0解得x=2C.3x-2=2x-3移项得3x-2x=-3-2D.x-(3-2x)=2(x+1)去括号得x-3-2x=2x+19.解一元一次方程-2= - ,去分母正确的是()A.5(3x+1)-2=(3x-2)-2(2x+3)B.5(3x+1)-20=(3x-2)-2(2x+3)C.5(3x+1)-20=(3x-2)-(2x+3)D.5(3x+1)-20=3x-2-4x+610.某组织去乡村慰问留守儿童,为他们送去一些图书,每人分8本图书,还少5本,每人分7本图书,还多6本,则该村留守儿童有()A.10名B.11名C.12名D.13名11.一艘轮船在A、B两港口之间匀速行驶,顺水航行需要6h,逆水航行需要8h,水流速度为5km/h,则A、B两地之间的路程是()A.200kmB.240kmC.300kmD.320km12.一项工作,甲单独做要20天完成,乙独做要12天完成.若先由甲做若干天,然后由乙继续做完,从开始到完成共用14天,则这项工作由甲先做()天.A. B.5 C.4 D.613. 某市出租车收费标准是:起步价8元(即行驶距离不超过3km,付8元车费),超过3km,每增加1km收1.6元(不足1km按1km计),小梅从家到图书馆的路程为xkm,出租车车费为24元,那么x的值可能是()A.10B.13C.16D.18二、填空题14. 已知5+3=1是关于x的一元一次方程,则m=_____.15.x的3倍与4的和等于x的5倍与2的差,方程可列为_____.16. 某件商品,以原价的出售,现售价是300元,则原价是_____元.17. 有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是_____.18. 由3x=2x-1得3x-2x=-1,在此变形中,方程两边同时_____.19. 当x=_____时,代数式2x+1与5x-6的值互为相反数.20.已知关于x的方程2x+a=x-1的解和方程2x+4=x+1的解相同,则a=_____.21.若x=2是方程3x-4=-a的解,则+的值是_____.22.已知方程|2x-1|=2-x,那么方程的解是_____.23.某项工程,甲单独完成要12天,乙单独完成要18天,甲先做了7天后乙来支援,由甲乙合作完成剩下的工程,则甲共做了_____天.24.小张有三种邮票共18枚,它们的数量之比为1:2:3,则最多的一种邮票有_____枚.三、解答题25. 解方程:(1)2x+3=11-6x;(2)(3x-6)=x-3.26. 已知代数式M=3(a-2b)-(b+2a).(1)化简M;(2)如果(a+1)+4-3=0是关于x的一元一次方程,求M的值.27.列方程解应用题:某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为200元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?28. 列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服.下面是某服装厂给出的运动服价格表:购买服装数量(套)1~3536~6061及61以上每套服装价格(元)605040已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元.问七年级一班和七年级二班各有学生多少人?29. (2分)已知点A在数轴上对应的数为a,点B对应的数为b,且(a+4+|b-11|=0,G为线段AB上一点,M,N两点分别从G,B点沿BA方向同时运动,设M点的运动速度为1cm/s,N点的运动速度为2cm/s,运动时间为ts.(1)A点对应的数为_____,B点对应的数为_____;(2)若AB=2AG,试求t为多少s时,M,N两点的距离为2.5cm;(3)若AB=mAG,点H为数轴上任意一点,且AH-BH=GH,请直接写出的值.期末复习三答案1、B2、B3、A4、B5、B6、B7、C8、 B9、B10、B11、B12、B13、B14、-115、3x+4=5x-216、37517、设这三个数中的第⼀个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-8118、减2X519、720、2x+4=x+1, 2x-x=1-4, x=-3,把x=-3代入解得:a=1021、-222、解:由|2x-1|=2-x,可得:2-x=±(2x-1),当2-x=2x-1,解得:x=1,当2-x=-2x+1,解得:x=-1,所以方程的解为x=±123、1024、解:设数量最少的邮票有x枚,则另两种分别有2x枚和3x枚,依题意,得:x+2x+3x=18,解得:x=3,∴3x=9故答案为:925、(1)2x+3=11-6x,移项,得2x+6x=11-3,合并同类项,得8x=8,系数化1,得x=127、(1)设第⼀季度甲种冰箱销量为x台,根据题意得:(1+10%)x+(1+20%)(x+40)=554解之得:x=220答:第⼀季度甲种冰箱的销量为220台.(2)第⼀季度甲种冰箱的利润为:220×(1+10%)×200=48400(元)第⼀季度⼀种冰箱的利润为:(220+40)×(1+20%)×300=93600(元)所以第⼀季度的总利润为48400+93600=142000(元)28、解:∵67×60=4020(元),4020>3650,∴⼀定有⼀个班的人数大于35人.设大于35人的班有学生x人,则另⼀班有学生(67-x)⼀,依题意,得:50x+60(67-x)=3650,解得:x=37,∴67-x=3029、解:(1)∵(a+4)2+|b-11|=0,∴a+4=0,b-11=0,∴a=-4,b=11,故答案为:-4;11;∴M点对应的数为:3.5-t,N点对应的数为11-2t,∴MN=|(3.5-t)-(11-2t)|=|t-7.5|=2.5,∴t=5或10,答:t为5或10s时,M,N两点的距离为2.5cm(3)①当H在A与B之间时,若H点不在G点左边,如图,∵AH-BH=GH,∴AG+GH-BG+GH=GH,∴AG-BG+GH=0,∴AG-AB+AG+GH=0,∵AB=mAG,∴GH=(m-2)AG若H点在G点左边,如图,∵AH-BH=GH,∴AG-GH-BG-GH=GH,∴AG-BG-3GH=0,∴AG-AB+AG-3GH=0,∵AB=mAG,②当H与B重合时,则BH=0,∵AH-BH=GH,∴AH=GH,即A与G重合,∵AB=mAG=0,与已知AB=15相⼀盾,不合题意,应舍去;③当H在AB的延长线上时,∵AH-BH=GH,∴AB=GH,此时G与B重合一天,毕达哥拉斯应邀到朋友家做客。

初一数学复习题及答案

初一数学复习题及答案

初一数学复习题及答案一、选择题(每题2分,共10分)1. 一个数的平方等于其本身,这个数可能是:A. 0B. 1C. -1D. 以上都是2. 下列哪个选项不是正数?A. 3B. -3C. 2.5D. 03. 一个圆的半径是5厘米,那么它的周长是:A. 31.4厘米B. 62.8厘米C. 15.7厘米D. 94.2厘米4. 如果一个角的度数是30°,那么它的补角是:A. 45°B. 60°C. 75°D. 90°5. 以下哪个代数式是正确的?A. \( 3x + 2y = 5xy \)B. \( 4x^2 - 3x + 1 \)C. \( 2x^2 - 3x + 1 = 0 \)D. \( x + y = xy \)二、填空题(每题1分,共10分)6. 一个数的绝对值是5,这个数可能是______或______。

7. 一个数的相反数是-3,这个数是______。

8. 如果一个三角形的底是4厘米,高是3厘米,那么它的面积是______平方厘米。

9. 一个数的平方根是4,这个数是______。

10. 如果一个数的立方根是2,这个数是______。

三、计算题(每题5分,共15分)11. 计算下列各题,并写出计算过程:- \( 12 - 8 \div 2 \)- \( 5x + 3y - 2x - y \)12. 解下列方程,并写出求解过程:- \( 3x - 7 = 2x + 5 \)- \( 2x + 3 = 5x - 7 \)13. 化简下列代数式,并写出化简过程:- \( 4x^2 - 3x + 5 + 2x^2 - x - 3 \)四、解答题(每题10分,共20分)14. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。

15. 一个班级有40名学生,其中男生和女生的人数比是3:2。

求这个班级男生和女生各有多少人。

五、应用题(每题15分,共30分)16. 小明去超市购物,他买了3个苹果和2个橙子。

七年级数学上册期末高频试题必杀(90题)含答案

七年级数学上册期末高频试题必杀(90题)含答案

七年级数学上册期末高频试题必杀(90题)含答案一.选择题1.﹣3的相反数是()A.﹣B.C.﹣3D.3【答案】D【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:D.2.﹣3的倒数为()A.﹣B.C.3D.﹣3【答案】A【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:A.3.﹣3的绝对值是()A.3B.﹣3C.D.﹣【答案】A【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【答案】B【解答】解:4 400 000 000=4.4×109,故选:B.5.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<bC.﹣b<a<﹣a<b D.﹣b<b<﹣a<a【答案】C【解答】解集:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.6.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤0【答案】D【解答】解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选:D.7.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)【答案】C【解答】解:A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项错误;D、0.05019≈0.0502(精确到0.0001),所以此选项正确;本题选择错误的,故选:C.8.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或2【答案】D【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.9.下列各组数中,互为相反数的是()A.2与B.﹣1与(﹣1)2C.(﹣1)2与1D.2与|﹣2|【答案】B【解答】解:∵2与互为倒数,不是互为相反数,故选项A错误,∵(﹣1)2=1,∴﹣1与(﹣1)2互为相反数,故选项B正确,∵(﹣1)2=1,∴(﹣1)2与1不是互为相反数,故选项C错误,∵|﹣2|=2,∴2与|﹣2|不是互为相反数,故选项D错误,故选:B.10.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg【答案】B【解答】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.11.下列说法不正确的是()A.0既不是正数,也不是负数B.一个有理数不是整数就是分数C.1是绝对值最小的数D.0的绝对值是0【答案】C【解答】解;A、0既不是正数,也不是负数,故A正确;B、有理数分为整数和分数,故B正确;c、0是绝对值最小的数,故C错误;D、|0|=0,故D正确;故选:C.12.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克【答案】C【解答】解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,因为24.75<24.80<25.25,故只有24.80千克合格.故选:C.13.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣4B.﹣1C.0D.4【答案】B【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0且n+2=0,∴m=3,n=﹣2.则m+2n=3+2×(﹣2)=﹣1.故选:B.14.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.5【答案】C【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.15.如果收入80元记作+80元,那么支出20元记作()A.+20元B.﹣20元C.+100元D.﹣100元【答案】B【解答】解:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为﹣20元.故选:B.16.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2D.3x2y﹣2yx2=x2y【答案】D【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.17.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,7【答案】C【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选:C.18.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1B.4C.7D.9【答案】C【解答】解:由题意得:x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故选:C.19.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3B.﹣x2+x﹣1C.﹣x2+5x﹣3D.x2﹣5x﹣13【答案】C【解答】解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选:C.20.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2【答案】B【解答】解:矩形的面积是:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).故选:B.21.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【答案】B【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选:B.22.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,3【答案】A【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.23.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A.4m+7n B.28mn C.7m+4n D.11mn【答案】A【解答】解:∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、7个篮球共需要(4m+7n)元.故选:A.24.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c【答案】B【解答】解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.25.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【答案】A【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.26.右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元【答案】C【解答】解:设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.27.下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=5【答案】D【解答】解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.28.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5【答案】D【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.29.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=2【答案】A【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.30.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x名工人生产螺钉,则下面所列方程正确的是()A.1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.2×1000(26﹣x)=800x【答案】C【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.31.解方程1﹣,去分母,得()A.1﹣x﹣3=3x B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x 【答案】B【解答】解:方程两边同时乘以6得6﹣x﹣3=3x.故选:B.32.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2B.﹣2C.D.﹣【答案】A【解答】解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.33.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣2【答案】B【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.34.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B 港相距x千米.根据题意,可列出的方程是()A.B.C.D.【答案】A【解答】解:设A港和B港相距x千米,可得方程:.故选:A.35.下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若,则2a=3b D.若x=y,则【答案】B【解答】解:A、根据等式性质1,x=y两边同时加5得x+5=y+5;B、根据等式性质2,等式两边都乘以c,即可得到ac=bc;C、根据等式性质2,等式两边同时乘以2c应得2a=2b;D、根据等式性质2,a≠0时,等式两边同时除以a,才可以得=.故选:B.36.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=【答案】A【解答】解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:A.37.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54B.6C.﹣10D.﹣18【答案】B【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选:B.38.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60°B.75°C.90°D.95°【答案】C【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选:C.39.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【答案】D【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.40.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段【答案】C【解答】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:C.41.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【答案】C【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.42.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°【答案】D【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选:D.43.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°【答案】C【解答】解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.44.如图是一个正方体的展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.梦B.的C.国D.中【答案】A【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:A.45.下列图形中,是圆锥侧面展开图的是()A.B.C.D.【答案】B【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.46.在时刻8:30,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°【答案】B【解答】解:8:30,时针指向8与9之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴此时刻分针与时针的夹角正好是2×30°+15°=75°.故选:B.47.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC 等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 【答案】C【解答】解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选:C.48.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→BC.A→C→E→F→B D.A→C→M→B【答案】B【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.二.填空题49.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.50.比较大小:(用“>或=或<”填空).【解答】解:∵>,∴<;故答案为:<.51.如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2=.【解答】解:∵ab=1,c+d=0,m=﹣1,∴2ab﹣(c+d)+m2=2﹣0+1=3.52.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣353.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.【解答】解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.32.定义a※b=a2﹣b,则(1※2)※3=.【解答】解:根据题意可知,(1※2)※3=(1﹣2)※3=﹣1※3=1﹣3=﹣2.故答案为:﹣2.54.按照如图所示的操作步骤,若输入的值为3,则输出的值为.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.55.在数轴上与表示﹣2的点距离3个单位长度的点表示的数是.【解答】解:在数轴上与表示﹣2的点距离3个单位长度的点表示的数是﹣2+3=1或﹣2﹣3=﹣5.56.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w,则+=(直接写出答案).【解答】解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0.57.若单项式2x2y m与x n y3是同类项,则m+n的值是.【解答】解:由同类项的定义可知n=2,m=3,则m+n=5.故答案为:5.58.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.【解答】解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.59.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.【解答】解:设该用户居民五月份实际用水x立方米,故20×2+(x﹣20)×3=64,故x=28.故答案是:28.60.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.【解答】解:法一:设x=0.45…,则x=0.45+1/100 x,解得x=45/99=5/11法二:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,99x=45解方程得:x==.故答案为:.61.如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是.【解答】解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.62.如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=.【解答】解:∵长方形ABCD中,AD∥BC,∴∠CEF=∠EFG=56°,∴∠CEF=∠FEG=56°,∴∠BEG=180°﹣∠CEF﹣∠FEG=180°﹣56°﹣56°=68°.故答案是:68°.63.把15°30′化成度的形式,则15°30′=度.【解答】解:∵30′=0.5度,∴15°30′=15.5度;故答案为:15.5.64.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.【解答】解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.三.解答题65.计算(1);(2).【解答】(1)解:,=,=﹣7+18﹣12,=﹣1;(2)解:,=,=,=.66.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.67.有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.【解答】解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,当y=﹣1时,原式=﹣2×(﹣1)3=2.因为化简的结果中不含x,所以原式的值与x值无关.68.已知A=y2﹣ay﹣1,B=2y2+3ay﹣2y﹣1,且多项式2A﹣B的值与字母y的取值无关,求a的值.【解答】解:2A﹣B=2(y2﹣ay﹣1)﹣(2y2+3ay﹣2y﹣1)=2y2﹣2ay﹣2﹣2y2﹣3ay+2y+1=(2﹣5a)y﹣1,∵多项式与字母y的取值无关,∴2﹣5a=0,2=5a,a=.69.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?【解答】解:(1)根据题意:规定向东为正,向西为负:则(+15)+(﹣4)+(+13)+(﹣10)+(﹣12)+(+3)+(﹣13)+(﹣17)=﹣25千米,故小王在出车地点的西方,距离是25千米;(2)这天下午汽车走的路程为|+15|+|﹣4|+|+13|+|﹣10|+|﹣12|+|+3|+|﹣13|+|﹣17|=87,若汽车耗油量为0.4升/千米,则87×0.4=34.8升,故这天下午汽车共耗油34.8升.70.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:﹣3﹣2﹣1.501 2.5与标准质量的差值(单位:千克)筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)【解答】解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐重5.5千克;(2)列式1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克),故20筐白菜总计超过8千克;(3)用(2)的结果列式计算2.6×(25×20+8)=1320.8≈1321(元),故这20筐白菜可卖1321(元).71.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a 0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.72.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km 的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?【解答】解:(1)5+2+(﹣4)+(﹣3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的南边10千米处.(2)(5+2+|﹣4|+|﹣3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5﹣3)×1.8]+10+[10+(4﹣3)×1.8]+10+[10+(10﹣3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.73.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【解答】解:(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:(200×20+40x)×0.9=(3600+36x)元;(2)当x=30元时,方案①需付款为:40x+3200=40×30+3200=4400元,方案②需付款为:3600+36x=3600+36×30=4680元,∵4400<4680,∴选择方案①购买较为合算.74.某市为鼓励市民节约用水,特制定如下的收费标准:若每月每户用水不超过10立方米,则按3元/立方米的水价收费,并加收0.2元/立方米的污水处理费;若超过10立方米,则超过的部分按4元/立方米的水价收费,污水处理费不变.(1)若小华家5月份的用水量为8立方米,那么小华家5月份的水费为元;(2)若小华家6月份的用水量为15立方米,那么小华家6月份的水费为元;(3)若小华家某个月的用水量为a(a>10)立方米,求小华家这个月的水费(用含a的式子表示).【解答】解:(1)由题意,得8×(3+0.2)=25.6(元)故答案是:25.6;(2)由题意,得10(3+0.2)+(15﹣10)(4+0.2)=53(元)故答案是:53;(3)3×10+4(a﹣10)+0.2a=4.2a﹣10.∴小华家这个月的水费为(4.2a﹣10)元75.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k元,木地板的价格为每平方米2k元,那么小王一共需要花多少钱?【解答】解:(1)木地板的面积为2b(5a﹣3a)+3a(5b﹣2b﹣b)=2b•2a+3a•2b=4ab+6ab=10ab(平方米);地砖的面积为5a•5b﹣10ab=25ab﹣10ab=15ab(平方米);(2)15ab•k+10ab•2k=15abk+20abk=35abk(元),答:小王一共需要花35abk元钱.76.为了提高业主的宜居环境,在某居民区的建设中,因地制宜规划修建一个广场(图中阴影部分).(1)用含m、n的代数式表示该广场的周长;(2)用含m、n的代数式表示该广场的面积;(3)当m=6,n=8时,求出该广场的周长和面积.【解答】解:(1)C=6m+4n;(2)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(3)把m=6,n=8,代入周长6m+4n=6×6+4×8=68,把m=6,n=8,代入面积3.5mn=3.5×6×8=168.77.小明房间窗户的装饰物如图所示,它们由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积(结果保留π);(2)请用代数式表示窗户能射进阳光部分面积(结果保留π);(3)若a=1,b=,请求出窗户能射进阳光的面积的值(取π=3)【解答】解:(1)装饰物的面积=•π•(b)2=πb2;(2)窗户能射进阳光部分面积=ab﹣πb2;(3)a=1,b=,ab﹣πb2=1×﹣×3×()2=.所以窗户能射进阳光的面积为.78.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的高度为cm,课桌的高度为cm;(2)当课本数为x(本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离(用含x的代数式表示);(3)桌面上有55本与题(1)中相同的数学课本,整齐叠放成一摞,若有18名同学各从中取走1本,求余下的数学课本高出地面的距离.【解答】解:(1)书的厚度为:(88﹣86.5)÷(6﹣3)=0.5cm;课桌的高度为:86.5﹣3×0.5=85cm.故答案为:0.5;85;(2)∵x本书的高度为0.5x,课桌的高度为85,∴高出地面的距离为85+0.5x(cm).故答案为:(85+0.5x)cm;(3)当x=55﹣18=37时,85+0.5x=103.5cm.故余下的数学课本高出地面的距离是103.5cm.79.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物每满100元返购物券30元销售(不足100元不返券,购物券全场通用).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【解答】解:(1)设书包单价为x元,则随身听的单价为(4x﹣8)元.根据题意,得4x﹣8+x=452,解得:x=92,4x﹣8=4×92﹣8=360.答:书包单价为92元,随身听的单价为360元.(2)在超市A购买随身听与书包各一件需花费现金:452×80%=361.6(元).因为361.6<400,所以可以选择超市A购买.在超市B可花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计花费现金:360+2=362(元).因为362<400,所以也可以选择在B超市购买.因为362>361.6,所以在超市A购买更省钱.80.张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.【解答】解:设李明上次购买书籍的原价和是x元,由题意得:0.8x+20=x﹣12,解得:x=160.答:李明上次购买书籍的原价和是160元.81.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?【解答】解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.82.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?【解答】解:设应先安排x人工作,根据题意得:+=1化简可得:+=1,即:x+2(x+2)=10解可得:x=2答:应先安排2人工作.83.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)【解答】解:设支援拔草的有x人,由题意得:31+x=2[18+(20﹣x)].84.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB 的中点,求DE的长.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.85.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.【解答】解:设AB=2x,BC=3x,CD=4x,∴AD=9x,MD=x,则CD=4x=8,x=2,MC=MD﹣CD=﹣4x==×2=1.86.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.87.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使P A+PC的值最小.【解答】解:如图所画:(1)(2)(3)(4).89.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.90.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠BOC=∠AOB=45°,∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°,∠BOD=3∠DOE,∴∠DOE=15°,∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°,故答案为75°.。

(必考题)初中数学七年级下期末经典复习题(答案解析)

(必考题)初中数学七年级下期末经典复习题(答案解析)

一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70°2.下列各式中计算正确的是( ) A .93=± B .2(3)3-=- C .33(3)3-=±D .3273= 3.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm4.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°5.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒ 6.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°7.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°8.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=09.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-4 10.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -=B .321a b +=C .491b a -=-D .941a b += 11.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°12.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( )A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤13.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角14.下列说法正确的是( )A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.15.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度二、填空题16.某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD =120° ,则∠ABC = ________.17.27的立方根为 .18.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.19.已知13xy=⎧⎨=⎩是二元一次方程组71mx nynx my+=⎧⎨-=⎩的解,则2m+n的值为_____.20.若a,b均为正整数,且a>7,b<32,则a+b的最小值是_______________. 21.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_____ cm.22.如图,已知AB、CD相交于点O,OE⊥AB于O,∠EOC=28°,则∠AOD=_____度;23.如图,在数轴上点A表示的实数是_____________.24.关于x的不等式组352223x xx a-≤-⎧⎨+>⎩有且仅有4个整数解,则a的整数值是______________.25.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=_____.三、解答题26.某运输公司现将一批152吨的货物运往A,B两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A,B 两地的运费如下表所示:目的地(车型)A地(元/辆)B地(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A地,其余货车前往B地,设前往A地的大货车为x辆,前往A,B两地总费用为w元,试求w与x的函数解析式.27.(1)(感知)如图①,//AB CD,点E在直线AB与CD之间,连接AE、CE,试说明AEC A DCE∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E 作//EF AB .1A ∴∠=∠( ),//AB CD (已知),EF //AB (辅助线作法),//EF CD ∴( ),2DCE ∴∠=∠( ),12AEC ∠=∠+∠,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)28.已知//AB CD ,点M 为平面内一点.(1)如图1,ABM ∠和DCM ∠互余,小明说过M 作//MP AB ,很容易说明BM CM ⊥。

《七年级(上)数学期末复习题(三) 》答案

《七年级(上)数学期末复习题(三) 》答案

七年级(上)数学期末复习题(三)陈 2011.12.5 一,选择题1. C2. C3. A4. D5. D6. C7. B8. C9. D10. B二、填空题11、负九分之一 3²和(-3)²12、负二分之一负三分之二 -2,3,013、15 9014、 215、35°16、124°17、三分之五a18、-5.17×10的6次方19、250020、(1)15(2)2n+1三、解答题21、计算题(1)解:原式=11-22+33 (2)解:原式=-3+(六分之三-六分之四)+9 =22 =-3-六分之一+9=五又六分之五(3)解:原式=三分之二×(-60)-十分之一×(-60)-十五分之一×(-60)=-40+5+4=-31(4)解:原式=-9×2-3×4=-18-12=-3022题、解方程(1)解:4y-8-2y-6=5 (2)、解:5(x+2)-3(2x-3)=154y-2y=8+6+5 5x+10-6x+9=152y=19 5x-6x=-10-9+15y=9.5 -x=-4x=4(3)解:4(5y+1)=3(9y+1)-8(1-y)20y+4=27y+3-8+8y20y-27y-8y=-4+3-8-15y=-9y=0.623、2xy²-【5x-3(2x-1)-2xy²】+1解:原式=2xy²-【5x-6x+3-2xy²】+1=2xy²-5x+6x-3+2xy²+1=(2+2)xy²+(-5+6)x+1-3=4xy²+x-2当x=2,y=负二分之一时,带入原式。

得4×2×(负二分之一)²+2-2=224、(画图题,无法编辑,回学校看。

)25、解:(3x²+my-8)-(-nx²+2y+7)由题意可得n=-3 m=2=3x²+my-8+nx²-2y-7 代入原式,得=(3x²+nx²)+(my-2y)-8-7 9+八分之一=就有八分之一 =0+0-15=-1526、(1)它们是相等的,因为它们的共余角∠MOF,∠EOF=MON=90°要求出∠EOM,则∠EOM=∠EOF-∠MOF,要求出∠FON,则∠FON=∠MON-∠MOF,由于∠EOF和∠MON是补角,所以∠EOF-∠MOF=∠MON-∠MOF(2)∠EON与∠MOF的和为180°因为∠EON+∠MOF=∠EON+∠MON-∠MOF=∠EOF+∠MON∠MOF与∠MON均为直角,因此∠MOF+2MON=90°+90°=180°27、(此题为画图题,无法编辑,回学校看)28、解:设此商品的进价为x元。

部编数学七年级上册期末真题必刷压轴60题(17个考点专练)(解析版)含答案

部编数学七年级上册期末真题必刷压轴60题(17个考点专练)(解析版)含答案

期末真题必刷压轴60题(17个考点专练)一.正数和负数(共2小题)1.(2023春•南岗区期末)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):星期一星期二星期三星期四星期五星期六星期日合计﹣27.8﹣70.3200138.1﹣8188458表中星期六的盈亏被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?【分析】设星期六为x元,根据题意可得等量关系:七天的盈亏数之和=458,根据等量关系列出方程,再解方程即可.【解答】解一:458﹣(﹣27.8﹣70.3+200+138.1﹣8+188),=458+27.8+70.3﹣200﹣138.1+8﹣188,=38,因为38为正数,故星期六是盈利,盈利38元,答:星期六是盈利38元.解二:设星期六为x元,则:﹣27.8﹣70.3+200+138.1﹣8+x+188=458,x=458+27.8+70.3﹣200﹣138.1+8﹣188,x=38,因为38为正数,故星期六是盈利,盈利38元,答:星期六是盈利38元.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.正确理解正负数的意义.2.(2022秋•长寿区期末)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负,单位:辆)星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)产量最多的一天比产量最少的一天多生产多少辆;(2)该厂实行计件工资制,一周结算一次,每辆车60元,超额完成任务每辆再奖15元,少生产一辆倒扣15元,那么该厂工人这一周的工资总额是多少元?【分析】(1)根据表格及题意求出七天的生产情况,即可求出产量最多的一天比产量最少的一天多生产的;(2)求出七天共生产的辆数,与1400比较,判断是超额还是没有完成任务,即可得到结果.【解答】解:(1)根据题意得:星期一到星期日生产的辆数分别为:205;198;196;213;190;216;191,则产量最多的一天比产量最少的一天多生产216﹣190=26(辆);(2)根据题意得:一周总产量为205+198+196+213+190+216+191=1409(辆),∵1409>1400,∴超额完成9辆,则该厂工人这一周的工资总额是1409×60+9×15=84540+135=84675(元).【点评】此题考查了正数与负数,属于应用题,弄清题意是解本题的关键.二.数轴(共5小题)3.(2022秋•鼓楼区期末)数轴上某一个点表示的数为a,比a小2的数用b表示,那么|a|+|b|的最小值为( )A.0B.1C.2D.3【分析】理解绝对值的定义,如|a﹣2|表示数轴上点a到2的距离;|a|=|a﹣0|表示a到原点的距离;【解答】解:∵比a小2的数用b表示,∴b=a﹣2,∴|a|+|b|=|a﹣0|+|a﹣2|,那么|a|+|b|的最小值就是在数轴上找一点a到原点和到2的距离最小,显然这个点就是在0与2之间,当a在区间0与2之间时,|a﹣0|+|a﹣2|=|2﹣0|=2为最小值,∴|a|+|b|的最小值为2,故选:C.【点评】本题考查绝对值的定义,难点在于|a﹣0|+|a﹣2|对这个式子的理解并用绝对值意义来解答.4.(2022秋•黄埔区校级期末)已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c ﹣a|= 2b+2c﹣2a .【分析】去绝对值符号的关键是判断绝对值符号里面的数的符号,根据题意确定了符号,容易去绝对值符号.【解答】解:根据图形,a﹣b<0,b+c>0,c﹣a>0,所以|a﹣b|+|b+c|+|c﹣a|=b﹣a+b+c+c ﹣a=2b+2c﹣2a.故答案为:2b+2c﹣2a.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.5.(2021秋•佳木斯期末)已知,A,B在数轴上对应的数分别用a,b表示,且(ab+100)2+|a﹣20|=0,P是数轴上的一个动点.(1)在数轴上标出A、B的位置,并求出A、B之间的距离.(2)已知线段OB上有点C且|BC|=6,当数轴上有点P满足PB=2PC时,求P点对应的数.(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P能移动到与A或B重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动与哪一点重合.【分析】(1)先根据非负数的性质求出a,b的值,在数轴上表示出A、B的位置,再根据数轴上两点间的距离公式,求出A、B之间的距离即可;(2)设P点对应的数为x,当P点满足PB=2PC时,分三种情况讨论,根据PB=2PC 求出x的值即可;(3)根据第一次点P表示﹣1,第二次点P表示2,点P表示的数依次为﹣3,4,﹣5,6…,找出规律即可得出结论.【解答】解:(1)∵(ab+100)2+|a﹣20|=0,∴ab+100=0,a﹣20=0,∴a=20,b=﹣10,∴AB=20﹣(﹣10)=30,数轴上标出A、B的位置,如图:(2)∵|BC|=6且C在线段OB上,∴x C﹣(﹣10)=6,∴x C=﹣4,∵PB=2PC,当P在点B左侧时PB<PC,此种情况不成立,当P在线段BC上时,x P﹣x B=2(x c﹣x p),∴x p+10=2(﹣4﹣x p),解得:x p=﹣6,当P在点C右侧时,x p﹣x B=2(x p﹣x c),x p+10=2x p+8,x p=2,综上所述P点对应的数为﹣6或2.(3)第一次点P表示﹣1,第二次点P表示2,依次﹣3,4,﹣5,6…则第n次为(﹣1)n•n,点A表示20,则第20次P与A重合;点B表示﹣10,点P与点B不重合.【点评】本题考查的是数轴,非负数的性质以及同一数轴上两点之间的距离公式的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.6.(2022秋•碑林区校级期末)将一条数轴在原点O和点B处各折一下,得到如图所示的“折线数轴”,图中点A表示﹣10,点B表示10,点C表示18.我们称点A和点C在数轴上的“友好距离”为28个单位长度.动点P从点A出发,以2单位长度/秒的速度沿着“折线数轴”向其正方向运动.当运动到点O与点B之间时速度变为原来的一半.经过点B后立刻恢复原速;同时,动点Q从点C出发,以1单位长度/秒的速度沿着“折线数轴”向其负方向运动,当运动到点B与点O之间时速度变为原来的两倍,经过O后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至点C需要 19 秒,动点Q从点C运动至点A需要 23 秒;(2)P,Q两点相遇时,求出相遇点M在“折线数轴”上所对应的数;(3)是否存在t值,使得点P和点Q在“折线数轴”上的“友好距离”等于点A和点B 在“折线数轴”上的“友好距离”?若存在,求出t的值;若不存在,请说明理由.【分析】(1)根据题意可得,动点P从点A运动至点C需要的时间是:10÷2+10÷1+8÷2=19(s),动点Q从点C运动至点A需要的时间是:8÷1+10÷2+10÷1=23(s);(2)根据题意可知,P、Q两点在OB上相遇,P点运动到OB上时表示的数是t﹣5,Q 点运动到OB上时表示的数是10﹣2(t﹣8),则t﹣5=10﹣2(t﹣8),求出t的值,再求M点表示的数即可;(3)分7种情况讨论:①当0≤t≤5时,P点在OA上,Q点在BC上,此时P点表示的数是﹣10+2t,Q点表示的数是18﹣t,由题意可得,28﹣3t=20,解得t=;②当5<t≤8时,P点在OB上,Q点在BC上,此时P点表示的数是t﹣5,Q点表示的数是18﹣t,由题意可得,23﹣2t=20,解得t=(舍);③8<t≤13时,点P、Q都在BO上,此时PQ<10,此情况不符合题意;④13<t≤15时,P点在OB上,Q点在OA上,此时P点表示的数是t﹣5,Q点表示的数是13﹣t,由题意可得,2t﹣18=20,解得t=19(舍);⑤15<t≤19时,P点在BC上,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,由题意可得,3t﹣33=20,解得t=;⑥19<t≤23时,P点在C 的右侧,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,由题意可得,3t﹣33=20,解得t=(舍);⑦t>23时,P点在C点右侧,Q点在A点左侧,PQ>20,不符合题意.【解答】解:(1)∵点A表示﹣10,点B表示10,点C表示18,∴OA=10,BO=10,BC=8,∴动点P从点A运动至点C需要的时间是:10÷2+10÷1+8÷2=19(s),动点Q从点C运动至点A需要的时间是:8÷1+10÷210÷1=23(s),故答案为:19,23;(2)根据题意可知,P、Q两点在OB上相遇,P点运动到OB上时表示的数是t﹣5,Q点运动到OB上时表示的数是10﹣2(t﹣8),∴t﹣5=10﹣2(t﹣8),解得t=,∴M点表示的数是﹣5=;(3)存在t值,使得点P和点Q在“折线数轴”上的“友好距离”等于点A和点B在“折线数轴”上的“友好距离”,理由如下:∵点A表示﹣10,点B表示10,∴点A和点B在“折线数轴”上的“友好距离”是20,①当0≤t≤5时,P点在OA上,Q点在BC上,此时P点表示的数是﹣10+2t,Q点表示的数是18﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为18﹣t+10﹣2t=28﹣3t,由题意可得,28﹣3t=20,解得t=;②当5<t≤8时,P点在OB上,Q点在BC上,此时P点表示的数是t﹣5,Q点表示的数是18﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为18﹣t﹣t+5=23﹣2t,由题意可得,23﹣2t=20,解得t=(舍);③8<t≤13时,点P、Q都在BO上,此时PQ<10,∴此情况不符合题意;④13<t≤15时,P点在OB上,Q点在OA上,此时P点表示的数是t﹣5,Q点表示的数是13﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为t﹣5+13﹣t=8(舍);⑤15<t≤19时,P点在BC上,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为13﹣t+2t﹣20=t﹣7,由题意可得,t﹣7=20,解得t=27;⑥19<t≤23时,P点在C的右侧,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是13﹣t,∴点P和点Q在“折线数轴”上的“友好距离”为13﹣t+2t﹣20=t﹣7,由题意可得,t﹣7=20,解得t=27;⑦t>23时,P点在C点右侧,Q点在A点左侧,PQ>20,不符合题意;综上所述:t的值为27或.【点评】本题考查实数与数轴,熟练掌握实数上点与数轴的对应关系,弄清“友好函数”的定义是解题的关键.7.(2022秋•石门县期末)附加题:已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?【分析】(1)若点P对应的数与﹣1、3差的绝对值相等,则点P到点A,点B的距离相等.(2)根据当P在A的左侧以及当P在B的右侧分别求出即可;(3)设经过a分钟点A与点B重合,根据点A比点B运动的距离多4,列出方程,求出a的值,即为点P运动的时间,再乘以点P运动的速度,可得点P经过的总路程.【解答】解:(1)∵1﹣(﹣1)=2,2的绝对值是2,1﹣3=﹣2,﹣2的绝对值是2,∴点P对应的数是1.(2)当P在AB之间,PA+PB=4(不可能有)当P在A的左侧,PA+PB=﹣1﹣x+3﹣x=6,得x=﹣2当P在B的右侧,PA+PB=x﹣(﹣1)+x﹣3=6,得x=4故点P对应的数为﹣2或4;(3)解:设经过a分钟点A与点B重合,根据题意得:2a=4+a,解得a=4.则6a=24.答:点P所经过的总路程是24个单位长度.【点评】本题考查了绝对值、路程问题、一元一次方程等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.三.有理数的乘方(共1小题)8.(2021秋•头屯河区期末)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2019,则m的值是( )A.46B.45C.44D.43【分析】根据有理数的乘方和数字的变化寻找规律即可求解.【解答】解:23=3+5,第一项为22﹣2+1,最后一项为3+2×133=7+9+11,第一项为32﹣3+1,最后一项为7+2×243=13+15+17+19,第一项为42﹣4+1,最后一项为13+2×3…453的第一项为452﹣45+1=1981,最后一项为1981+2×44=2069,1981到2069之间有奇数2019,∴m的值为45.故选:B.【点评】本题考查了有理数的乘方,解决本题的关键是根据数字的变化情况寻找规律.四.有理数的混合运算(共3小题)9.(2022秋•江海区期末)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣).【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(﹣2)2﹣|﹣7|+3﹣2×(﹣)=4﹣7+3+1=1.【点评】考查了有理数的混合运算,有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.10.(2022秋•孝南区期末)对于有理数a、b,定义一种新运算“⊕”,规定:a⊕b=|a+b|﹣|a﹣b|(1)计算2⊕(﹣3)的值;(2)若a⊕a=8,则a= ±4 .【分析】(1)根据新定义规定的运算公式列式计算可得;(2)根据新定义规定的计算公式可得a⊕a=|a+a|﹣|a﹣a|=|2a|=2|a|,即2|a|=8,解之可得.【解答】解:(1)2⊕(﹣3)=|2﹣3|﹣|2+3|=﹣4;(2)a⊕a=|a+a|﹣|a﹣a|=|2a|=2|a|,由条件得2|a|=8,∴a=±4,故答案为:±4.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握新定义规定的运算公式和有理数的混合运算顺序及运算法则.11.(2022秋•安顺期末)若a,b是有理数,定义一种新运算⊕:a⊕b=2ab+1.计算:例如:(﹣3)⊕4=2×(﹣3)×4+1=﹣23.试计算:(1)3⊕(﹣5).(2)[3⊕(﹣5)]⊕(﹣6).【分析】直接套用公式列出算式,根据实数的混合运算即可得出结果.【解答】解:(1)根据题意可得:原式=2×3×(﹣5)+1=﹣30+1=﹣29;(2)根据题意可得:2×(﹣29)×(﹣6)+1=348+1=349.【点评】本题主要考查有理数的混合运算,根据新规定的运算法则列出算式是解题的关键.五.列代数式(共2小题)12.(2022秋•闽侯县校级期末)某农户承包果树若干亩,今年投资24400元,收获水果总产量为20000千克.此水果在市场上每千克售a元,在果园直接销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需2人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天200元.(1)分别用含a,b的代数式表示两种方式出售水果的收入.(2)若a=4.5元,b=4元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.(3)该农户加强果园管理,力争到明年纯收入达到72000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入﹣总支出)?【分析】(1)市场出售收入=水果的总收入﹣额外支出.而水果直接在果园的出售收入为:20000b元.(2)根据(1)中得到的代数式,将a=4.5,b=4,代入代数式计算即可.(3)根据(2)的数据,首先确定今年的最高收入,然后计算增长率即可.【解答】解:(1)将这批水果拉到市场上出售收入为:20000a﹣×2×100﹣×200=20000a﹣4000﹣4000=(20000a﹣8000)(元)在果园直接出售收入为20000b(元);(2)当a=4.5时,市场收入为20000a﹣8000=20000×4.5﹣8000=82000(元).当b=4时,果园收入为20000b=20000×4=80000(元).因为82000>80000,所以应选择在市场出售;(3)因为今年的纯收入为82000﹣24400=57600,×100%=25%,所以增长率为25%.【点评】本题考查了根据实际问题列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达.13.(2022秋•沁县期末)某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m3时,按2元/m3计算;月用水量超过20m3时,其中的20m3仍按2元/m3计算,超过部分按2.6元/m3计算.设某户家庭月用水量xm3.月份4月5月6月用水量151721(1)用含x的式子表示:当0≤x≤20时,水费为 2x 元;当x>20时,水费为 2.6x﹣12 元.(2)小花家第二季度用水情况如上表,小花家这个季度共缴纳水费多少元?【分析】(1)分类讨论:当x≤20时,水费为2x元;当x>20时,水费为[20×2+2.6(x ﹣20)]元;(2)由(1)得到四月份和五月份的用水量按2元/立方米计费、六月份的用水量按方式二计费,然后把三个月的水费相加即可.【解答】解:(1)当0≤x≤20时,水费为2x元;当x>20时,水费为20×2+2.6(x﹣20)=2.6x﹣12元.故答案为:2x、2.6x﹣12;(2)15×2+17×2+2.6×21﹣12=30+34+54.6﹣12=106.6,答:小花家这个季度共缴纳水费106.6元.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是水费要分段付费.六.代数式求值(共3小题)14.(2022秋•罗湖区校级期末)若a<b<c,x<y<z,则下面四个代数式的值最大的是( )A.ax+by+cz B.ax+cy+bz C.bx+ay+cz D.bx+cy+az【分析】要比较两个多项式的大小,只需采用作差法,将它们的差因式分解就可解决问题.【解答】解:∵b<c,y<z,∴b﹣c<0,y﹣z<0,∴(ax+by+cz)﹣(ax+bz+cy)=by+cz﹣bz﹣cy=b(y﹣z)﹣c(y﹣z)=(y﹣z)(b﹣c)>0,∴ax+by+cz>ax+bz+cy,即A>B.同理:A>C,B>D,∴A式最大.故选:A.【点评】本题主要考查了整式的加减、因式分解、不等式的性质、不等式的传递性等知识,比较大小常用作差法或作商法,应熟练掌握.15.(2022秋•衡南县期末)盱眙县防疫部门配送新冠疫情物资,甲、乙两仓库分别有防疫物资30箱和50箱,A、B两地分别需要防疫物资20箱和60箱.已知从甲、乙仓库到A、B两地的运价如表:到A地到B地甲仓库每箱15元每箱12元乙仓库每箱10元每箱9元(1)若从甲仓库运到A地的防疫物资为x箱,则用含x的代数式表示从甲仓库运到B地的防疫物资为 (30﹣x) 箱,从乙仓库将防疫物资运到B地的运输费用为 (270+9x) 元;(2)求把全部防疫物资从甲、乙两仓库运到A、B两地的总运输费(用含x的代数式表示并化简);(3)如果从甲仓库运到A地的防疫物资为10箱时,那么总运输费为多少元?【分析】(1)根据题意,从甲仓库运到A地的防疫物资为x箱,则用含x的代数式表示从甲仓库运到B地的防疫物资为(30﹣x)箱,从乙仓库运到B地的防疫物资为(30+x)箱,从乙仓库将防疫物资运到B地的运输费用为(270+9x)元;(2)根据总运输费=从甲、乙两仓库运到A、B两地的费用之和列出代数式;(3)把x=10代入(2)中代数式即可.【解答】解:(1)∵甲仓库有防疫物资30箱,从甲仓库运到A地的防疫物资为x箱,∴从甲仓库运到B地的防疫物资为(30﹣x)箱;∵B地需要防疫物资60箱,从甲仓库运到B地的防疫物资为(30﹣x)箱;∴从乙仓库运到B地的防疫物资为:60﹣30+x=(30+x)箱,∴从乙仓库将防疫物资运到B地的运输费用为:9×(30+x)=(270+9x)元,故答案为:(30﹣x),(270+9x);(2)总运费:15x+12(30﹣x)+10(20﹣x)+9(30+x)=(2x+830)元,∴全部防疫物资从甲、乙两仓库运到A、B两地的总运输费(2x+830)元;(3)当x=10时,2x+830=2×10+830=850,∴总运输费为850元.【点评】本题考查列代数式和代数式求值,关键是根据题意列出代数式.16.(2022秋•阜平县期末)若“ω”是新规定的某种运算符号,设aωb=3a﹣2b.(1)计算:(x2+y)ω(x2﹣y);(2)若x=﹣2,y=2,求出(x2+y)ω(x2﹣y)的值.【分析】(1)先依据定理列出代数式,然后依据整式的运算法则进行计算即可;(2)将x=﹣2,y=2代入(1)的化简结果进行计算即可.【解答】解:(x2+y)ω(x2﹣y)=3(x2+y)﹣2(x2﹣y)=3x2+3y﹣2x2+2y=x2+5y;(2)将x=﹣2,y=2代入得:原式=(﹣2)2+5×2=2+20=14.【点评】本题主要考查的是整式的加减和求代数式的值,掌握整式的加减法则是解题的关键.七.整式的加减(共2小题)17.(2022秋•深圳校级期末)数轴上点A对应的数为a,点B对应的数为b,且多项式x3y﹣2xy+5的二次项系数为a,常数项为b.(1)直接写出:a= ﹣2 ,b= 5 .(2)数轴上点A、B之间有一动点P,若点P对应的数为x,试化简|2x+4|+2|x﹣5|﹣|6﹣x|;(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,沿数轴以每秒2个单位长度的速度向左移动,到达A点后立即返回并向右继续移动,请直接写出经过 2或或6或8 秒后,M、N两点相距1个单位长度,并选择一种情况计算说明.【分析】(1)根据多项式中二次项系数与常数项的定义即可求解;(2)由题意可得﹣2<x<5,根据绝对值的意义去掉绝对值符号,再化简即可;(3)设经过t秒M,N两点相距一个单位长度.分四种情况进行讨论:①点M、点N 没有相遇之前;②点M、点N相遇后,但是点N没有到达A点;③点N到达A点后返回,但是没有追上点M;④点N到达A点后返回,追上了点M.【解答】解:(1)∵多项式x3y﹣2xy+5的二次项系数为a,常数项为b,∴a=﹣2,b=5.故答案为﹣2,5;(2)依题意,得﹣2<x<5,则|2x+4|+2|x﹣5|﹣|6﹣x|=2x+4+2(5﹣x)﹣(6﹣x)=2x+4+10﹣2x﹣6+x=x+8;(3)设经过t秒M,N两点相距一个单位长度.①M,N第一次相距一个单位长度时,t+1+2t=7,解得t=2;②M,N第二次相距一个单位长度时,t+2t=7+1,解得t=;③当M,N第三次相距一个单位长度时,t﹣2(t﹣3.5)=1,解得t=6;④当M,N第四次相距一个单位长度时,2(t﹣3.5)﹣t=1,解得t=8.故答案为2或或6或8.【点评】本题考查了一元一次方程的应用,整式的加减以及数轴,解题关键是要读懂题目的意思,根据题目给出的条件,分类讨论并且找出合适的等量关系列出方程,再求解.18.(2022秋•阜平县期末)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.【分析】(1)先根据题意列出关于A的式子,再去括号,合并同类项即可;(2)先根据题意列出关于A﹣B的式子,再去括号,合并同类项即可.【解答】解:(1)∵A+B=9x2﹣2x+7,B=x2+3x﹣2∴A=9x2﹣2x+7﹣(x2+3x﹣2)=9x2﹣2x+7﹣x2﹣3x+2=8x2﹣5x+9;(2)A﹣B=8x2﹣5x+9﹣(x2+3x﹣2)=8x2﹣5x+9﹣x2﹣3x+2=7x2﹣8x+11.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.八.整式的加减—化简求值(共5小题)19.(2022秋•宁明县期末)先化简再求值:求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).【分析】先去括号,然后合并同类项,最后代入x、y的值即可.【解答】解:原式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,原式=4.【点评】此题考查了数轴,整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(2022秋•岳普湖县校级期末)先化简,再求值2x3+4x﹣﹣(x+3x2﹣2x3),其中x=﹣3.【分析】先去括号、合并同类项化简,再代入计算即可;【解答】解:原式=2x3+4x﹣﹣x﹣3x2+2x3,=4x3+3x﹣x2,当x=﹣3时,原式=﹣108﹣9﹣30=﹣147.【点评】本题考查的加减混合运算,代数式求值,解题的关键是掌握去括号法则、合并同类项法在等知识,属于中考常考题型.21.(2022秋•仓山区期末)先化简,再求值:5(3x2y﹣xy2)﹣4(﹣x2y+3xy3),其中x=﹣2,y=3.【分析】根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可.【解答】解:原式=15x2y﹣5xy2+4x2y﹣12xy3=19x2y﹣5xy2﹣12xy3,当x=﹣2、y=3时,原式=19×(﹣2)2×3﹣5×(﹣2)×32﹣12×(﹣2)×33=228+90+648=966.【点评】本题考查了对整式的加减,合并同类项,单项式乘多项式等知识点的理解和掌握,注意展开时不要漏乘,同时要注意结果的符号,代入﹣2时应用括号.22.(2022秋•淮滨县期末)先化简,再求值:(3x2+5x﹣2)﹣2(2x2+2x﹣1)+2x2﹣5,其中x2+x﹣3=0.【分析】原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=3x2+5x﹣2﹣4x2﹣4x+2+2x2﹣5=x2+x﹣5,由x2+x﹣3=0,得到x2+x=3,则原式=3﹣5=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(2022秋•新都区期末)先化简,再求值:(5a2﹣3b2)+(a2+b2)﹣(5a2+3b2),其中a=﹣1,b=1.【分析】先去括号、合并同类项化简原式,再将a、b的值代入计算即可得.【解答】解:原式=5a2﹣3b2+a2+b2﹣5a2﹣3b2=a2﹣5b2,当a=﹣1、b=1时,原式=(﹣1)2﹣5×12=1﹣5=﹣4【点评】本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和法则.九.解一元一次方程(共1小题)24.(2022秋•六盘水期末)解下列方程:(1)4﹣x=7x+6(2)﹣=4.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:﹣x﹣7x=6﹣4,合并得:﹣8x=2,解得:x=﹣;(2)去分母得:4(2x﹣1)﹣3(x+1)=48,去括号得:8x﹣4﹣3x﹣3=48,移项合并得:5x=55,解得:x=11.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.一十.一元一次方程的应用(共24小题)25.(2022秋•广阳区期末)为响应习总书记“绿水青山,就是金山银山”的号召,某校今年3月争取到一批植树任务,领到一批树苗,按下列方法依次由各班领取:第一班领取全部的,第二班领取100棵和余下的,第三班领取200棵和余下的,第四班领取300棵和余下的…,最后树苗全部被领完,且各班领取的树苗相等,则树苗总棵数为( )A .6400B .8100C .9000D .4900【分析】设树苗总数为x 棵,根据各班的树苗数都相等,可得出第一班和第二班领取的树苗数相等,由此可得出方程.【解答】解:设树苗总数x 棵,根据题意得:x =100+(x ﹣x ﹣100),解得:x =9000,答:树苗总数是9000棵.故选:C .【点评】本题考查了一元一次方程的应用,解答本题的关键是得出各班的树苗数都相等,这个等量关系,因为第一班,第二班领取数量好表示,所以我们就选取这两班建立等量关系.26.(2022秋•南开区校级期末)某超市推出如下优惠方案:(1)购物款不超过200元不享受优惠;(2)购物款超过200元但不超过600元一律享受九折优惠;(3)购物款超过600元一律享受八折优惠.小明的妈妈两次购物分别付款168元、423元.如果小明的妈妈在超市一次性购买与上两次价值相同的商品,则小明的妈妈应付款( )元.A .522.80B .560.40C .510.40D .472.80【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过200,即是168元.第二次就有两种情况,一种是超过200元但不超过600元一律9折;一种是购物超过600元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.【解答】解:(1)第一次购物显然没有超过200元,即在第二次消费168元的情况下,他的实质购物价值只能是168元.(2)第二次购物消费423元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过200元但不足600元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=423,解得:x=470.①第二种情况:他消费超过600元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=423,解得:x=528.75(舍去)即在第二次消费423元的情况下,他的实际购物价值可能是470元.综上所述,他两次购物的实质价值为168+470=638(元),超过了600元.因此一次性购买可以按照8折付款:638×0.8=510.4(元)综上所述,她应付款510.4元.故选:C.【点评】本题考查了一元一次方程的应用.解题关键是第二次购物的432元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.27.(2022秋•岳麓区校级期末)随着夏天的到来,西瓜越来越受大家欢迎,6月某水果店购进一批西瓜,第一周销售麒麟瓜的利润率是30%,销售爆炸瓜的利润率是40%,麒麟瓜销量是爆炸瓜销量的2倍,结果第一周这两种西瓜的总利润率是35%,受本地西瓜的冲击,第四周销售麒麟瓜的利润率比第一周下降了,销售爆炸瓜的利润率比第一周下降了,结果第四周这两种西瓜的总利润率达到27%,则第四周麒麟瓜、爆炸瓜的销量之比是 6:7 .(利润率=×100%)【分析】设麒麟瓜与爆炸瓜每千克的成本分别为m,n,第一周爆炸瓜销量为x,则麒麟瓜销量为2x,根据第一周这两种西瓜的总利润率是35%,可以得到m=2n,设第四周麒麟瓜、爆炸瓜销量分别为a,b,根据第四周这两种西瓜的总利润率达到27%,列出方程可求四周麒麟瓜、爆炸瓜的销售之比.【解答】解:设麒麟瓜与爆炸瓜每千克的成本分别为m,n,第一周爆炸瓜销量为x,则麒麟瓜销量为2x,依题意有:(1+30%)m×2x+(1+40%)×nx=(1+35%)(m×2x+nx),整理得:n=2m,设第四周麒麟瓜、爆炸瓜销量分别为a,b,依题意有:。

初一数学试题及答案(极其经典)

初一数学试题及答案(极其经典)

初一数学试题及答案(极其经典)一、选择题1. 若a=3,b=4,则a²+b²=?A. 7B. 9C. 25D. 26答案:D2. 一个等边三角形的周长是18cm,则其边长是?A. 4cmB. 6cmC. 9cmD. 12cm答案:B3. 若x²=16,则x的值可以是?A. 4B. 4C. 2D. 2答案:A, B4. 若a+b=5,ab=3,则a和b的值分别是?A. a=4, b=1B. a=1, b=4C. a=2, b=3D. a=3, b=2答案:A5. 若a=2,b=3,c=4,则a²+b²+c²=?A. 29B. 30C. 31D. 32答案:D二、填空题1. 若x²4x+4=0,则x的值是______。

答案:22. 若a²+b²=36,且a=3,则b的值是______。

答案:±33. 若x³=27,则x的值是______。

答案:34. 若a+b+c=6,a²+b²+c²=14,则ab+bc+ca的值是______。

答案:65. 若x²5x+6=0,则x的值是______。

答案:2, 3三、解答题1. 解方程:2x+3=7。

答案:x=22. 解方程:3x5=4x+1。

答案:x=63. 解方程:x²5x+6=0。

答案:x=2, 34. 解方程:2x²+5x3=0。

答案:x=1/2, 35. 解方程:x³3x²+3x1=0。

答案:x=1一、选择题6. 若a=5,b=2,则a²+b²=?A. 27B. 29C. 31D. 33答案:B7. 一个等边三角形的周长是24cm,则其边长是?A. 6cmB. 8cmC. 12cmD. 16cm答案:C8. 若x²=25,则x的值可以是?A. 5B. 5C. 3D. 3答案:A, B9. 若a+b=7,ab=1,则a和b的值分别是?A. a=4, b=3B. a=3, b=4C. a=2, b=5D. a=5, b=2答案:A10. 若a=4,b=5,c=6,则a²+b²+c²=?A. 77B. 78C. 79D. 80答案:D二、填空题6. 若x²9x+14=0,则x的值是______。

2024更新-人教版七年级数学(上册)期末复习题及答案(可打印)

2024更新-人教版七年级数学(上册)期末复习题及答案(可打印)

人教版七年级数学(上册)期末复习题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.下列图形具有稳定性的是( )A .B .C .D .5.若关于x 的不等式组()2213x x a x x <⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a 的取值范围是( )A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.437.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°10.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.绝对值不大于4.5的所有整数的和为________.3.因式分解:2218x -=______.4.已知15x x+=,则221x x +=________________. 5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.3.如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4,求证:AD ∥BE.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、A5、A6、A7、A8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、03、2(x+3)(x﹣3).4、235、两6、48三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、±33、略4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)20%;(2)6006、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。

初一数学经典试题及答案

初一数学经典试题及答案

初一数学经典试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果是0?A. 3 + 2B. 4 - 4C. 5 × 0D. 6 ÷ 2答案:C3. 一个数的相反数是它自身的数是:A. 0B. 1C. -1D. 2答案:A4. 下列哪个选项是完全平方数?A. 10B. 11C. 12D. 13答案:A5. 一个数的绝对值是它自身的数是:A. 负数B. 正数C. 零D. 正数和零答案:D6. 一个数的倒数是它自身的数是:A. 1B. -1C. 0D. 2答案:B7. 计算下列哪个表达式的结果是1?A. 1 ÷ 1B. 2 ÷ 2C. 3 ÷ 3D. 4 ÷ 4答案:A8. 下列哪个选项是质数?A. 4B. 6C. 8D. 9答案:A9. 一个数的平方是它自身的数是:A. 0B. 1C. -1D. 2答案:B10. 下列哪个选项是合数?A. 2B. 3C. 4D. 5答案:C二、填空题(每题4分,共20分)1. 一个数加上它的相反数等于______。

答案:02. 一个数减去它自己等于______。

答案:03. 一个数乘以它的倒数等于______。

答案:14. 一个数除以它自己(不为零)等于______。

答案:15. 一个数的绝对值是它自身的数是______和______。

答案:正数,零三、解答题(每题10分,共50分)1. 计算:(3 + 5) × 2 - 4答案:(3 + 5) × 2 - 4 = 16 - 4 = 122. 求一个数,使得这个数加上6等于10。

答案:设这个数为x,则 x + 6 = 10,解得 x = 4。

3. 求一个数,使得这个数的3倍减去2等于8。

答案:设这个数为y,则 3y - 2 = 8,解得 y = 10/3。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+:进位 -:借位 ×:进位 ÷:分别除
32
6 .3 1 3 3 1 9 4 8 5 0 2 9 1 4 0 2 9 90
基本概念 33
B
O
95
A
34
5x
2x
D
C
E
2x2 15x21
A
B 21 9 8
35
45或15 1
已知 BOC= AOC , BOC=15 2
求 AOB的度数 A
轨 道 交 通 日 均 客 运 量 为 353万 人 地 面 公 交 日 均 客 运 量 为 1343万 人
(2009北京卷)……据统计,2008 年10月11日到2009年2月28日期间, 地面公交日均客运量与轨道交通日 均客运量总和为1696万人次,地面 公交日均客运量比轨道交通日均客 运量的4倍少69万人次.在此期间, 地面公交和轨道交通日均客运量各 为多少万人次?
a 1方 程 有 无 数 解
40
A
41
42
x 1.5x 2.5x
AB 62044
B
nn 1
线段条数 角的个数
2
交点个数
45
24
图形认识(一)
请阅读下列语句:
① 射线AB与射线BA是两条相同的射线;
② 如果C点在线段EF上,那么EC<EF;
③ 5′49”的角是锐角;
④ 一条直线可以看成一个平角;
⑤ 43°50′=43.5°;
⑥ 钝角大于直角,锐角小于直角;
其中正确的序号为 ③ ⑥ .
具体
数学语言
几何图形(关系)
抽象
25
A
C
B
O
BO
C
36
综合题
6,3 0
n 1, n n 1 37
x&1&3x&1
2x12
x 1 2 38
39
3 |a | 3 x 6 a 1
3| a | 3 0
a 1 0 x 2 a 0且 a 1
3| a | 3 0 a 1 0
x 2 2a a 0且 a 1
a 1 a 1方 程 无 解
1132227 7 64
142 27 7 64
1627 27 169 1 1
4964 1961911 6
有理数(三)
D
12
D
13
B
14
D
15
整式加减(一)
-6
16
整式加减(二)
3x24x13x29x
5x1 17
5x3y5x3y 538
18
m2,n1
19
x mx
nx
A
20
一元一次方程(一) 解各种类型的
一元一次方程
• (1) 5x+3=-7x+9
x 1

(2)
3(7x1) 7x1 73
2 x 5
• (3)
x 3 3x 4 5 15
21 x 5
• (4) 3x212x12x1
6
2
4 5 x 9
28
21
一元一次方程(二)
A
22
(2008北京卷)……预计高速列车在北京、
天津间单程直达运行时间为半小时.某次
试车时,试验列车由北京到天津的行驶时
间比预计时间多用了6分钟,由天津返回
北京的行驶时间与预计时间相同.如果这
次试车时,由天津返回北京比去天津时平
均每小时多行驶40千米,那么这次试车时
由北京到天津的平均速度是每小时多少千
米?
0.5
6 60
x
0.5
x
40
23
x 200km/ h
大家好
1
初一上数学期末复习典型题
2
有理数(一)
AAD
3
在数轴上A点表示的数为-1, 求A点到原点的距离.
1
4
D
5
3abc
6
有理数(二)
1499 2 17
9 25
1 4 9
4 3
7
5 6 3 2 1 5 1
8
17
10 3 4
2
24
9
30
24 2 11
729 2
10
1217312623 43
图形认识(二)
正方体的展开图
26
a 8b 4c 25
ac1,7 bc21
a b 2 c c 1 c 7 2 2 c 1 38 27
D




28
D
A
B
C
D
29
图形认识(三)
C
A
C
B
C
30
0.5或0.25
A
MCB
C
31
图形认识(四)
116 1 0 0 4 1 1 1 1 2 0 4 5 3 9
相关文档
最新文档