二元一次方程(组)概念
二元一次方程的概念与解法
二元一次方程的概念与解法二元一次方程是数学中常见的问题类型,它由两个未知数和一次项构成。
解决这类方程需要运用代数的基础知识和解方程的技巧。
本文将介绍二元一次方程的概念以及一些解法方法。
一、二元一次方程的概念二元一次方程又称为二元一次方程组,可用以下形式表示:ax + by = cdx + ey = f其中,a、b、c、d、e、f为已知数,x、y为未知数。
二元一次方程是一类形式简单且较易解的方程,通常用代数的方法来解决。
解二元一次方程有两种方法:消元法和代入法。
二、消元法解二元一次方程消元法是常用的解二元一次方程的方法之一。
其基本思路是通过对方程组进行合理加减运算,将其中一个未知数消去,从而得到一个只含有另一个未知数的一元一次方程。
具体解法步骤如下:1. 根据方程组的特点,选择合适的乘法因子使得方程中的两个未知数的系数相等或互为相反数;2. 将两个方程的乘法因子应用到方程组的两个方程,并对两个方程进行相应的乘法运算;3. 将两个经过乘法运算的方程相加或相减,消去其中一个未知数;4. 解得消去后的一元一次方程,得到该未知数的值;5. 将求得的未知数的值代入方程组中的任意一个方程,求解另一个未知数。
消元法是一种简便且直观的解法,通过适当的运算可以得到方程组的解。
三、代入法解二元一次方程代入法是另一种解二元一次方程的常用方法。
它的基本思路是将一个方程中的一个未知数用另一个方程中的未知数表示,然后代入到另一个方程中,从而得到一个只含有一个未知数的一元一次方程。
具体解法步骤如下:1. 选择一个已知数比较方便求解的方程,将该方程中的一个未知数用另一个方程中的未知数表示;2. 将代入得到的新方程代入另一个方程,从而得到只含有一个未知数的一元一次方程;3. 解得一元一次方程,求得一个未知数的值;4. 将求得的未知数的值代入原来的方程,求解另一个未知数。
代入法在解一些特殊的二元一次方程时,往往能够更快地得到解。
四、总结二元一次方程是数学中常见的问题类型,解决这类方程需要运用代数的基础知识和解方程的技巧。
初中二元一次方程知识归纳
初中二元一次方程知识归纳二元一次方程是初中解方程的重要知识点,求解二元一次方程首先要明白其基础内容。
以下是店铺分享给大家的初中二元一次方程知识,希望可以帮到你!初中二元一次方程知识一.二元一次方程(组)的相关概念1.二元一次方程:含有两个未知数并且未知项的次数是1的方程叫做二元一次方程。
2.二元一次方程组:二元一次方程组两个二元—次方程合在一起就组成了一个二元一次方程组。
3.二元一次方程的解集:(1)二元一次方程的解适合一个二元一次方程的每一对未知数的值.叫做这个二元一次方程的一个解。
(2)二元一次方程的解集对于任何一个二元一次方程,令其中一个未知数取任意二个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集。
4.二元一次方程组的解:二元一次方程组可化为使方程组中的各个方程的左、右两边都相等的未知数的值,叫做方程组的解。
二.利用消元法解二元一次方程组解二元(三元)一次方程组的一般方法是代入消元法和加减消元法。
1.解法:(1) 代入消元法是将方程组中的其中一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,消去另一个未知数,得到一个解。
代入消元法简称代入法。
(2)加减消元法利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加或相减,以消去这个未知数,使方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫做加减消元法,简称加减法。
用加减法消元的一般步骤为:①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
二元一次方程组复习(带解析)
二元一次方程组复习一、知识要点 1、二元一次方程组的有关概念I .二元一次方程(1)概念:含有______未知数,并且未知数的项的次数都是____,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c(a≠0,b≠0).(3)使二元一次方程两边的值______的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集.II .二元一次方程组(1)概念:具有相同未知数的______二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解.2、二元一次方程组的解法解二元一次方程组的基本思想是______,即化二元一次方程组为一元一次方程,主要__________消元法.不要漏掉括号x (或y )的代数式表示出y (或x ),即变成y =ax +b (或x =ay +b )的形式;(2)将y =ax +b (或x =ay +b )代入另一个方程,消去y (或x ),得到关于x (或y )的一元一次方程;(3)解这个一元一次方程,求出x (或y )的值;y =ax +b (或x =ay +b )中,求y (或x )的值.不要漏乘在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.二、典型例题考点一 :二元一次方程概念与解法例1.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m -n= .例2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗总结分析:灵活学会“方程解”概念解题.【巩固】已知方程组⎩⎨⎧-=--=+4652by ax y x 和方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2017)2(b a +的值.【变式】已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+f by ex c by ax 的解为⎩⎨⎧==13y x ,你能求得关于x ,y 的二元一次方程组⎩⎨⎧=++-=++-f y x b y x e c y x b y x a )()()()(的解吗★剖析总结★:灵活学会“方程解”概念解题,利用解相同,可以将方程重新组合,换位联立;在解题过程中,常常运用类比的思想【巩固2】.考点二:解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组);6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)方案问题:(2)行程问题;(3)工程问题;(4)数字问题;(5)年龄问题;(6)分配问题;(7)销售利润问题;(8)和差倍分问题; (9)几何问题; (10)表格或图示问题; (11)古代问题;(12)优化方案问题. 题型一 二元一次方程组的应用 - 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。
(word完整版)二元一次方程组的概念和解法-教师版
(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。
含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。
判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。
2。
二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。
二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般情况下,一个二元一次方程有无数个解。
【例1】 下列各式是二元一次方程的是( )A 。
30x y z -+=B 。
30xy y x -+=C 。
12023x y -= D 。
210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。
2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。
【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。
【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
二元一次方程组概念
2、(2009年江苏省)一辆汽车从A地驶往B地,前 路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.
2、(2009年淄博市)如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.
(1)求x,y的值;
(2)在备用图中完成此方阵图.
3、小亮解方程组 的解为 ,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这两个数●,★。
1、(2009年台湾)若二元一次联立方程式 的解为x=a,y=b,则ab=?
(A) (B) (C) (D) 。
1、(2009年湖南省株洲市)孔明同学在解方程组 的过程中,错把 看成了6,他其余的解题过程没有出错,解得此方程组的解为 ,又已知方程 有一组解是 ,则 的正确值应该是.
1、二元一次方程 的正整数解是_________
8-2二元一次方程的解的概念
适合二元一次方程的一对未知数的值,叫做这个二元一次方程的一个解
Tip1:二元一次方程有无数个解
Tip2:二元一次方程组的解必须成对出现,否则不成为二元一次方程的解,记作 的形式
Tip3:二元一次方程有无数个解,所以又叫不定方程,不定方程的整数解是有限的,所以有时候经常考察二元一次方程的整数解,一般难度都比较高。
⑵将这两个方程分别相加或相减,消去一个未知数,得到一个一元一次方程,
第7课时二元一次方程组(教师版)
二元一次方程(组)知识精要一、二元一次方程的概念1、二元一次方程:含有两个未知数,并且未知数的次数是一次的方程叫做二元一次方程。
2、二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值叫做二元一次方程的解。
3、二元一次方程的解集:二元一次方程的解有无数个,二元一次方程的解的全体叫做二元一次方程的解集。
4、二元一次方程组:如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
5、二元一次方程组的解:在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解。
二、方程组的解法1、代入消元法:(1)求表示式:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用另一个未知数的式子表示出来(2)代入消元:将所得的式子代入另一个方程中,消去一个未知数,得到一个一元一次方程。
(3)求解方程:解得到的一元一次方程(4)回代得解:把求得的一个未知数的值代入先前的表示式,得到另一个未知数的值,从而得到方程组的解。
2、加减消元法:(1)变换系数:方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等(即绝对值不相等),就用适当的数去乘某一个或两个方程的两边,使这个未知数的系数互为相反数或相等(即绝对值相等)(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个以另一个未知数为未知数的一元一次方程。
(3)求解方程:(4)回代得解:热身练习1、下列各式:21(1)233;(2)0;(3)4;3x y x y x y -=-=-= 1(4);2xy = 1(5)32;(6)1;(7)6;(8)523x y y x y z x y x y x++=++=-=- 属于二元一次方程的是______(1)(3)(8)_________2、若4x-5y=0,x≠0,且y≠0,求125125x y x y-+的值。
解:由4x-5y=0得4x=5y ,12x=15y125125x y x y -+=212010515515==+-y y y y y y3、已知2(321)20x y x y -++--=,求x ,y 的值。
《二元一次方程组》知识讲解及例题解析
《二元一次方程组》知识讲解及例题解析◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.【分析】由方程组的解的定义可知21xy=⎧⎨=⎩,同时满足方程组中的两个方程,将21xy=⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩ 解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩ 故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得: 30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩答:每辆A型汽车每次运土石10t,每辆B型汽车每次运土石15t.【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.。
第一节 二元一次方程(组)的相关概念-学而思培优
第一节二元一次方程(组)的相关概念-学而思培优一、课标导航二、核心纲要1.二元一次方程1) 二元一次方程的概念二元一次方程是指含有两个未知数,且未知数的项的最高次数是1的整式方程。
判定一个方程是二元一次方程必须同时满足三个条件:①方程两边的代数式都是整式——整式方程;②含有两个未知数——“二元”;③含有未知数的项的最高次数为1——“一次”。
2) 二元一次方程的一般形式二元一次方程的一般形式为:ax+by+c=0(a≠0,b≠0)。
3) 二元一次方程的解使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般情况下,一个二元一次方程有无数个解。
2.二元一次方程组1) 二元一次方程组的概念由几个一次方程组成并且含有两个未知数的方程组,叫做二元一次方程组。
二元一次方程组不一定由两个二元一次方程合在一起,方程可以超过两个,有的方程可以只有一个未知数。
例如:{2x=6.3x-y=1}也是二元一次方程组。
2) 二元一次方程组的解二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数。
三、全能突破基础演练1.下列方程是二元一次方程的是(。
)A.2x+y=1B.2x-y=1C.3x/y=2D.2x+3xy=52.在{1/x=2.2x-y=5.x=-1.x=2}各组数中,是方程2x-y=5的解是(。
)。
A.(2)(3)B.(1)(3)C.(3)(4)D.(1)(2)(4)3.方程3x+y=10的正整数解有(。
)组。
A.1组B.3组C.4组D.无数组4.二元一次方程组{3x-2y=3.x+2y=5}的解是(。
)。
A.{x=1.y=2}B.{x=2.y=3}C.{x=7/2.y=-3/2}D.{x=7.y=-15}5.请写出一个解为{x=1.y=-2}的二元一次方程。
6.下列方程组中,是二元一次方程组的是(。
)。
A.{x。
x+y=2.xy=2.x^2-1}B.{x。
二元一次方程组的概念及解法
第四讲 二元一次方程组的概念及解法考点梳理考点一 二元一次方程组的概念含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。
把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
典例分析 例1、在方程组、、、、、中,是二元一次方程组的有 个;例2、已知二元一次方程2x -y =1,若x =2,则y = ;若y =0,则x = . 练习:1、方程x +y =2的正整数解是__________. 2、在方程3x -ay =8中,如果是它的一个解,那么a 的值为例3、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、 ⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。
问鸡兔各几何。
”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。
考点二 解二元一次方程⎩⎨⎧==13y x(一)消元解二元一次方程⎧⎨⎩代入消元法加减消元法典例分析例1、把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = , 化成含x 的代数式表示y 的形式:y = . 练习:用含一个未知数的代数式表示另一未知数 (1)5x-3y=x+2y (2)2(3y-3)=6x+4 (3)1223=+y x (4)24741=+y x例2、用代入消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩(4)25342x y x y -=⎧⎨+=⎩例3、用加减消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩ (4)25342x y x y -=⎧⎨+=⎩(二)二元一次方程组的特殊解法 1、整体代入法例4、解方程组y x x y +=+-=⎧⎨⎪⎩⎪14232313、设参代入法例6、解方程组⎩⎨⎧==-3:4:23y x y x2、先消常数法 例5、解方程组⎩⎨⎧=-=+1523334y x y x4、换元法例7、解方程组()()x y x yx y x y +--=+=-⎧⎨⎪⎩⎪236345、简化系数法 例8、解方程组⎩⎨⎧=-=-443334y x y x练习:解下列方程(1)⎩⎨⎧-=-+=-85)1(21)2(3y x x y (2)⎪⎩⎪⎨⎧=+=184332y x y x(3)⎩⎨⎧=--=--023256017154y x y x (4)⎪⎩⎪⎨⎧=-=+234321332y x y x(5)⎪⎩⎪⎨⎧=-+=+1323241y x x y (6)⎩⎨⎧=+=+24121232432321y x y x考点三 二元一次方程组解的应用 例1、若,则= ,= 。
第4讲 二元一次方程(组)的概念与解法(学生版)
第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。
二元一次方程组的概念
解二元一次方程(组)
二元一次方程组和它的解
制作人:苏志明
二元一次方程(组)概念
一、二元一次方程:
有两个未知数,并且含未知数项的次数是1的方程.例:二、二元一次方程组:
把两个二元一次方程组合在一起,就组成了一个二元一次方程组。
例:注意:1、在方程或者方程组中,“元”是指未知数,“二元”是指
方程中只含有两个未知数;“次”是指含有未知数项的次数,例如:
就不是二元一次方程。
2、含有未知数的式子必须是整式。
3、方程组的二元意味着方程组中的所有方程的未知数各数为2,而不是每一个方程都含有两个。
,523=+y x ,012=--y x ,y x =Λ223=+y x {32=-=y x y x {
{62185=+=+y x x 342342-==-x y x y x 02=-x 12=-+z y x 03=xy
二元一次方程(组)的解
概念:使二元一次方程(组)每个方程的左右两边都相等的两个未知数的值,叫做二元一次方程(组)的解。
注意:1、二元一次方程(组)的每一组解都是一对数值,而不是一个数值。
例如:是二元一次方程
的一组解,而单独的或都不是方程的一组解。
2、一般情况下二元一次方程的解有无限组,但如果对未知数的取值加些限制条件,那么也有可能有限组解。
如方程的解有无数,但是它的正整数解只,两组解。
3、一般情况下,二元一次方程的解不唯一,二元一次方程组的解唯一。
{25==y x {{5=x 2=y 31==y x 1
2==y x 谢谢观看!。
二元一次方程组的概念与解法
二元一次方程组的概念与解法二元一次方程组是初中数学中的重要内容,它由两个未知数和两个方程组成。
本文将介绍二元一次方程组的概念以及解法,帮助读者更深入地理解和掌握这一知识点。
一、概念二元一次方程组由两个未知数和两个一次方程组成。
通常的一种表示形式为:```{ax + by = c (式1){dx + ey = f (式2)```其中,a、b、c、d、e、f都是已知的实数系数,x和y是未知数。
二、解法解二元一次方程组有多种方法,下面将分别介绍三种常用的解法。
1. 代入法代入法是一种较为直观且易于理解的解法。
我们可以将其中一个方程中的一个未知数用另一个方程中的未知数表示,然后代入另一个方程中,从而得到一个只含有一个未知数的方程,进而求解。
以下是具体步骤:Step 1:选择一个方程,将其中一个未知数,如x,用另一个方程中的未知数y表示。
Step 2:将代入得到的式子代入另一个方程中,得到一个只含有一个未知数的方程。
Step 3:求解该方程,得到一个未知数的值。
Step 4:将求得的未知数的值代入任意一个原方程,求解另一个未知数。
Step 5:得到方程组的解。
2. 消元法消元法是一种常用的解法,它通过逐步消去一个未知数,从而实现解方程组的目的。
以下是具体步骤:Step 1:通过变换,使得两个方程的系数相等。
Step 2:将两个方程相减(或相加),得到一个只含有一个未知数的方程。
Step 3:求解该方程,得到一个未知数的值。
Step 4:将求得的未知数的值代入任意一个原方程,求解另一个未知数。
Step 5:得到方程组的解。
3. 矩阵法矩阵法是一种更为高级的解法,它将二元一次方程组表示为一个矩阵方程,并通过矩阵的性质进行求解。
以下是具体步骤:Step 1:将方程组的系数和常数构成一个矩阵。
Step 2:求解矩阵的逆矩阵。
Step 3:将逆矩阵与常数向量相乘,得到未知数向量。
Step 4:得到方程组的解。
通过以上三种方法,我们可以解决二元一次方程组的问题。
第8讲 二元一次方程(组)的概念和解法
第8讲二元一次方程(组)的概念和解法【学习目标】1.二元一方程(组)的概念2.二元一次方程组的基本解法3.复杂的多元一次方程组【模块一】二元一次方程组的概念在本模块我们的学习目标是:1、掌握二元一次方程概念2、掌握二元一次方程组概念3、理解方程组的解(公共解)一、二元一次方程1、定义:含有两个未知数,并且含未知数的项的最高次数是1的整式方程叫二元一次方程. 【例】x+2y=5,2x=3y,3x=y-2对于二元一次方程的定义可以用“三个条件一个前提”来理解:①含有两个未知数一一“二元②含有未知数的项的最高次数为1一“一次③未知数的系数不能为0前提:方程两边的代数式都是整式一一整式方程2、一般形式:二元一次方程的一般形式:ax+by+c=0(a=0,b=0)【课堂建议】类比一元一次方程:标准式:ax+b=0(a≠0)3、判定:先看前提,再化一般形式易错总结(1)二元:x+y+z=1,x-2=1(2)一次:x2-x+y=1,xy+x+y=1【袁华燕录入】(3) 系数不为0:x+y-1=x-y+1,x2-x+y-1=x2+x-y+1(4) 整式方程:1x+y=1,1x+x+y=1x【易错】x+y-1=x-y+1,x2-x+y-1=x2+x-y+1,1x+x+y=1x【例1】下列方程中,是二元一次方程的有哪些?①x+3=7;②a+b=0;③3a+4t=9;④xy-1=0;⑤1x-y=0;⑥x+y+z=4;⑦2x2+x+1=2x2+y+5;⑧x2+y-6=2x.【练1】方程2x-3y=5,xy=3,x+3y-1,3x-y+2z=0,x2+y=6中是二元一次方程的有()A. 1个B. 2个C. 3个D. 4个【例2】⑴己知方程x n-1+2y|m-1|=m关于x,y的二元—次方程,求m、n的值.⑵己知方程(a-2)x|a|-1-(b+5)y|b|-4=3是关于x、少的一元一次方程,求a、b的值.【练2】(1)若方程2x m-1+y n+m=12是二元一次方程.则mn=_____(2)若己知方程(k2-1)x2+(k+1)x+(k-7)y=k+2,当k=_______时,方程为一元一次方程,当k=_____时,方程为二元一次方程.4、二元一次方程的解:二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.任何一个二元一次方程都有无数个解.【例3】⑴己知21xy=⎧⎨=⎩是方程3x+ay=5的解,则a的值为()A.-1B.1C.2D.3⑵判断下列数值是否是二元一次方程3t+2s=24的解.①29ts=⎧⎨=⎩②21ts=⎧⎨=⎩③89ts=⎧⎨=⎩④46ts=⎧⎨=⎩【练3】⑴若23x ky k=⎧⎨=-⎩是二元—次方程2x-y=14的解,则k的值是()A.2B.-2C.3D.-3⑵已知12xy=⎧⎨=⎩与3xy m=⎧⎨=⎩都是方程x+y-=n的解,求m与n的值.二.二元_次方程组:1、二元一次方程组.由几个一次方程组成并且含有两个未知数的方程组叫二元—次力程组.(1)二元:总共有两个未知数如:+12 22 xx=⎧⎨=⎩,21x y yx+=⎧⎨=⎩,12x yx y+=⎧⎨+=⎩,121x yx+=⎧⎨=⎩,12xy=⎧⎨=⎩,12x y zx y z+-=⎧⎨-+=⎩,11x yy z+=⎧⎨+=⎩(2) —次:每个都是一次方程如:22x yy x⎧=⎪⎨=⎪⎩,2222+x x xy y y⎧=⎪⎨+=⎪⎩,11x yxy+=⎧⎨=⎩,1111xy⎧=⎪⎪⎨⎪=⎪⎩(3)方程组:方程个数大于等于2如:x+y=l,112 xyz=⎧⎪=⎨⎪=⎩① 二元—次方程组一定是由两个或多个二元一次方程组成(错)② 两个或多个二元一次方程一定可以组成二元一次方程组(错)【例4】下列方程组中,属于二元一次方程组的是()A.527x yxy+=⎧⎨=⎩B.121340xyx y⎧+=⎪⎨⎪-=⎩C.354433x yx y=⎧⎪⎨+=⎪⎩D.28312x zx y-=⎧⎨+=⎩【练4】下列方程组中,是二元一次方程组的是()A.4119x yx y+=⎧⎪⎨+=⎪⎩B.57x yy z+=⎧⎨+=⎩C.1x y xyx y-=⎧⎨-=⎩D.1326xx y=⎧⎨-=⎩2、二元一次方程组的解:使二元一次方程组的两个方程左右两边都相等的两个未知数的值(即两个方程的公共解),叫做二元一次方程组的解,同时它也必须是-个数对.而不能是一个数.【例5】⑴己知43xy=-⎧⎨=⎩是方程组12ax yx by+=-⎧⎨-=⎩的解,则(a+b)b=_______,(2)己知21xy=⎧⎨=⎩是二元一次方程组12ax bybx ay+=⎧⎨+=⎩的解,则a-b的值为( )A.1B.-1C.2D.3【练5】(1)下列四个解中是方程组16223111x yx y⎧-=⎪⎨⎪+=-⎩的解是()A.810xy=⎧⎨=-⎩B.101xy=⎧⎨=-⎩C.6xy=⎧⎨=-⎩D.112xy⎧=-⎪⎨⎪=⎩⑵关于x,y的二元一次方程组331ax yx by-=⎧⎨-=-⎩解中的两个未知数的值互为相反数,其中x=l,求a,b的值.模块二二元一次方程组的基本解法一.会解基本二元一次方程组(体会消元过程)2、熟练应用代入与加减的方法,养成严格书写的习惯二元一次方程方程组最根本的思路就是将二元方程消元变成一元方程,代入消元法和加减消元法是最常用的方法.1.代入消元:why:等量代换when:(未知数系数为1时优先)how:用一个字母表示另一个字母直接代入(1)12xx y=⎧⎨+=⎩(2)2x yx y=⎧⎨+=⎩⑶23x yx y=⎧⎨+=⎩⑷13x yx y+=⎧⎨+=⎩变形代入(5)13x yx y-=⎧⎨+=⎩(6)2127x yx y-=⎧⎨+=⎩(7)2+38321x yx y=⎧⎨-=-⎩1.代入消元法代入消元法是解二元一次方程组的基本方法之一.“消元”体现了数学研究中转化的重要思想, 代入法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法. 用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用另一个未知数如x的代数式表示出来,即写成y=ax+b的形式:②把y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程:③解这个一元一次方程,求出x的值:④回代求解:把求得的x的值代入y=ax+b中求出y的值从而得出方程组的解.⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式.【例】解方程组2 239 x yx y-=⎧⎨+=⎩②①解:由①得y=x—2 ③把③代入②,得2x+3(x-2)=9 解得x=3把x=3代入③得,y=l所以方程组的解是31 xy=⎧⎨=⎩2、加减消元:Why:等式性质When:系数绝对值相同优先How:系数统一后相加减直接加减;⑴31x yx y+=⎧⎨-=⎩⑵521327x yx y-=⎧⎨+=⎩⑶24234x yx y+=⎧⎨-=-⎩系数统一(4)23124x yx y-=⎧⎨+=⎩(5)237324x yx y+=⎧⎨-=⎩2.加减消元法加减法是消元法的一种,也是解二元一次方程组的基本方法之一,也是今后解其他方程(组)经常用到的方法用加减法解二元一次方程组的-般步骤:①变换系数:把一个方程或者两个方程的两边都乘以适当的数.使两个方程里的某―个未知数互为相反数或相等.②加减消元:把两个方程的两边分别相加或相减.消去一个未知教,得到一个一个―次方程:③解这个一元一次方程,求得一个未知数的值:④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值:⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式例:解方程组32 12 3 x yx y-=⎧⎨+=⎩②①解:①×2 得4x+2y=6 ③①+③得7x=7解得x=l把x=l代入①得y=l所以方程组的解是11 xy=⎧⎨=⎩代入消元与加减消元的对比:代入消元方法的选择:①运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0” 的形式.求不出未知数的值.②当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.加减消元方法的选择:① 一般选择系数绝对值最小的未知数消元;② 当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用加减消元求解.④当未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时方程进行变形,转化为系数的绝对值相同,再用加减消元求解.【例6】⑴方程组233x yx y-=⎧⎨+=⎩的解是( )A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩⑵方程组535213x yx y+=⎧⎨-=⎩的解是()A.12xy=⎧⎨=⎩B.45xy=-⎧⎨=⎩C.53xy=⎧⎨=⎩D.45xy=⎧⎨=-⎩⑶用代入消元法解方程组:3 3814 x yx y-=⎧⎨-=⎩⑷用加减消元法解方程组:49 351 x yx y+=-=⑸二元一次方程ax+by=6有两组解是22xy=⎧⎨=-⎩与18xy=-⎧⎨=-⎩,求a,b的值.【练6】⑴二元―次方程组2x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.11xy=-⎧⎨=-⎩⑵方程组25342x yx y-=⎧⎨+=⎩的解是____________.⑶己知方程组2421mx y nx ny m+=⎧⎨-=-⎩的解是11xy=⎧⎨=-⎩,那么m,n的值为()A.11mn=⎧⎨=-⎩B.21mn=⎧⎨=⎩C.32mn=⎧⎨=⎩D.31mn=⎧⎨=⎩三元:【例7】0 423 9328 a b ca b ca b c++=⎧⎪++=⎨⎪-+=⎩【练7】解方程组0.5320 322 x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩模块三二元一次方程组的基本解法本模块中,我们主要学习复杂二元一次方程组化简,同时,对换元,轮换,连等式等量代信思想的建议认识理解.复杂方程组化简为基本二元一次方程组消元求解【例8】解下列方程组:⑴3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩⑵134723m nm n⎧-=-⎪⎪⎨⎪+=⎪⎩【练8】解方程组:⑴2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩⑵3221245323145x yx y--⎧+=⎪⎪⎨++⎪-=⎪⎩2、轮换对称:二元对称:【例9】解方程组:⑴231763172357x yx y+=⎧⎨+=⎩⑵201120134023201320114025x yx y+=⎧⎨+=⎩【曾伟录入】【练9】(1)解关于x、y的方程组301120722 150271571x yx y+=⎧⎨+=⎩(2)解关于x、y的方程组331512 173588x yx y+=⎧⎨+=⎩三元轮换【例10】解方程组(1)222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩;(2)1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩.【练10】(1)解方程组12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩;(2)已知1467245735674757671234567394941131499x x x x x x x x x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪+++=⎪+=⎨⎪+=⎪⎪+=⎪++++++=⎩,求7x .3、换元:【例11】(1)解方程组23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩【练11】(第七届“华罗庚杯”邀请赛试题) 解方程组1211631102221x y x y ⎧+=⎪--⎪⎨⎪+=⎪--⎩【例12】解方程组(1)1513pq p q pq p q ⎧=⎪+⎪⎨⎪=⎪-⎩;(2)1321312312mn m n mn m n ⎧=⎪⎪+⎨⎪=⎪+⎩.【练12】(1)已知1,2,3xy yz zx x y y z z x===+++,求x y z ++的值.(2)解关于x 、y 的方程组1111(0,)x y abx a b x y aby ab ab b aa b ⎧+=+⎪⎪⎨⎪+=+≠±≠⎪⎩.4、连等比例【例13】解方程组:(1):::1:2:3:49732200x y z u x y z u =⎧⎨+++=⎩;(2)解方程组:2345238x y z x y z ⎧==⎪⎨⎪+-=⎩【练13】已知a b c k b c a c a b===+++,求k 的值.第8讲[尖端课后作业二元一次方程(的)念和解法【习1】下列各方程中,是二元一次方程的是( )A. 312x xy +=B. x y =C. 2115x y =+ D. 253x y x y -=+ 【习2】下列各方程是二元一次方程的是( )A. 23x y z +=B. 45y x +=C. 2102x y +=D. 1(8)2y x =+【习3】若关于x 、y 的方程2(3)0a a x y --+=是二元一次方程,那么a 的取值为( )A. 3a =-B. 3a =C. 3a >D. 3a <【习4】若方程22(4)(23)(2)0k x k x k y -+-+-=为二元一次方程,则k 的值为( )A. 2B. -2C. 2或-2D. 以上均不对【习5】若方程2(3)25m m x y -+-=为关于x 、y 的二元一次方程,则2012(2)m -= .【习6】下列方程组中,是二元一次方程组的是( )A. 4119x y x y +=⎧⎪⎨+=⎪⎩B. 57x y y z +=⎧⎨+=⎩C. 1x y xy x y -=⎧⎨-=⎩D.1326x x y =⎧⎨-=⎩【习7】下列不是二元一次方程组的是( )A. 23x y y z +=⎧⎨+=⎩B. 2334m n n m =+⎧⎨-=⎩ C. 21x y =⎧⎨=-⎩D. 4252()12()3a a b a b +=⎧⎨-+=+-⎩ 【习8】解下列二元一次方程组:(1)527341x y x y -=⎧⎨+=-⎩ ;(2)327238x y x y +=⎧⎨+=⎩ ;(3)34165633x y x y +=⎧⎨-=⎩【习9】若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( ) A. 6.32.2x y =⎧⎨=⎩ B. 8.31.2x y =⎧⎨=⎩ C. 10.32.2x y =⎧⎨=⎩ D. 10.30.2x y =⎧⎨=⎩【习10】若实数x 、y 满足2142y x ⎛⎫= ⎪⎝⎭,求关于x 、y 的方程组12x y a x y a +=-⎧⎨-=-⎩的解.【习11】已知211(3)02a b -++=,解方程组315ax y x by -=⎧⎨+=⎩. 【习12】解方程组2(1)5(2)1101217102x y x y --++=⎧⎪-+⎨-=⎪⎩【习13】解方程组3()4()4126x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩ 【习14】解方程组2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩【习15】解方程组9()18523()2032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩【习16】解方程组1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩【习17】解方程组37043225x y y z x z -+=⎧⎪+=⎨⎪-=-⎩【习18】解方程组23162125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩【习19】解方程组56812412345x y z x y z x y z +-=⎧⎪+-=-⎨⎪+-=⎩【玉勇录入】【习20】已知方程组361463102463361102x y x y +=-⎧⎨+=⎩的解是x p y q =⎧⎨=⎩,方程组345113435113991332x y z x y z x y z ++=⎧⎪++=⎨⎪+-=⎩的解是x m y n z t =⎧⎪=⎨⎪=⎩,则(p -q )(m -n +t )等于 .【习21】(武汉市“CASIO ”竞赛题)已知正数a ,b ,c ,d ,e ,f 满足becdf a =4,acdef b =9,abdef c =16,abcef d =14,abcdf e =19, abcde f =116,求(a +c +e )-(b +d +f )的值.【习22】(第二十三届“希望杯”全国数学邀请赛初二第1试)已知实数x 1,x 2,x 3,x 4满足条件1231234234134124x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=⎩,其中a 1<a 2<a 3<a 4,则x 1,x 2,x 3,x 4的大小关系是( ) A . x 1<x 2<x 3<x 4 B . x 2<x 3<x 4<x 1 C . x 3<x 2<x 1<x 4 D . x 4<x 3<x 2<x 1【习23】若x1,x2,x3,x4,x5满足方程组12323434545151212345x x xx x xx x xx x xx x x-+=⎧⎪-+=⎪⎪-+=⎨⎪-+=⎪⎪-+=⎩①②③④⑤,求x2x3x4的值.【习24】解方程组::3:2:5:466 x yy zx y z=⎧⎪=⎨⎪++=⎩【张来录入】。
二元一次方程组的概念和解法要点精析
二元一次方程组的概念和解法要点精析二元一次方程组是初中代数的重要内容之一,它的应用很广泛.一方面在进一步学习高中数学如平面解析几何时要用它们;另一方面在国防、科技、工、农、商业和生活的实际问题中也要用到它们.同学们必须把它学好,在学习时要注意以下几个问题:一、正确理解四个概念1. 二元一次方程 含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程.如x + y =6.必须注意:同时具备下列三个条件的方程才能叫做二元一次方程.(1)二元一次方程必须是整式方程.即等号两边的代数式必须是整式(单项式,多项式).如x+ 1y =1, 14x+ 2y = 6都不是二元一次方程,而是分式方程(分母中含有未知数). (2)二元一次方程中必须含有两个未知数.如2x+3=0含有一个未知数,x+4y+z=5含有三个未知数,因而,它们都不是二元一次方程.(3)二元一次方程中的“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.即未知项的次数必须是“一次”.如xy+3=0就不是二元一次方程,尽管x 、y 的次数都是一次,但单项式xy 的次数为二,所以,它不是二元一次方程,而是二元二次方程. 例1.下列方程中,二元一次方程是( ).(A)xy=1 (B)y=3x - 1 (C)x+1y=2 (D)x 2+y -3=0 (上海市中考题)解析:本题可利用二元一次方程的概念进行检验.显然,方程xy=1,x 2+y -3=0都不满足“未知项的次数是1的条件”,而方程 x +1y =2的左边 x +1y 不是整式.故只有方程y=3x -1符合二元一次方程的概念.选(B).例2.若220a b a b x y -+--=是二元一次方程,那么a 、b 的值分别是( ).(A)1,0 (B)0,-1 (C) (D)2,-3(陕西省中考题)解析:根据二元一次方程的意义,即含未知数的项的次数是1,得12 1.a b a b -=⎧⎨+-=⎩, 即 13.a b a b -=⎧⎨+=⎩, 解得21.a b =⎧⎨=⎩,故选(C). 2. 二元一次方程的解 能使二元一次方程左右两边的值相等的未知数的值,叫做二元一次方程的解.如11.x y =⎧⎨=⎩, 能使方程x+y=2的左右两边的值相等,所以11.x y =⎧⎨=⎩,就叫做方程x+y=2的一个解.但是,能使该方程的左右两边的值相等的未知数的值有无数对,如20.xy=⎧⎨=⎩,31.xy=⎧⎨=-⎩,……所以,任何一个二元一次方程都有无数个解.例3.二元一次方程x -2y=1有______个解.(上海市中考题)解:无数.例4.已知12.xy=⎧⎨=⎩,是方程ax-3y=5的一个解,则a=___.(苏州市中考题)解析:根据二元一次方程的解的意义,将12.xy=⎧⎨=⎩,代入方程,解关于a的一元一次方程.得a=11.3. 二元一次方程组两个含有相同未知数的二元一次方程合在一起,就组成了一个二元一次方程组.二元一次方程组必须具备以下三个条件:(1)有两个或两个以上的整式方程组成,常用“{”把这些方程联合在一起.(2)方程组中含有两个不同未知数,且方程组中,同一未知数代表同一数量.(3)方程组中每个方程经过整理后,都是一次方程.但要注意:二元一次方程组里一共含有两个未知数,而不是一定要每个方程都含有两个未知数.例如,211.x yy+=⎧⎨=⎩,也是二元一次方程组.同样,方程组21062.x yx yy x+=⎧⎪+=⎨⎪-=⎩,,,虽然是由三个二元一次方程组成,但整个方程组中只有两个未知数,所以它仍然是二元一次方程组,而方程组3050.x zx y+=⎧⎨+=⎩,中,虽然,每个方程中都只含有两个未知数,但整个方程组中却有三个未知数,因此它不是二元一次方程组,而是三元一次方程组.4. 二元一次方程组的解使二元一次方程组的两个方程的左、右两边的值都相等的两个未知数的值,即方程组中各个方程的公共解,叫做二元一次方程组的解.如12.xy=-⎧⎨=⎩,是方程组31.y xx y-=⎧⎨+=⎩,的一个解(其实是一对数),但不能叫两个解.要注意:解方程组时,原方程组中每个方程都至少要用到一次.方程组的解满足方程组中的每个方程,反之,方程组中任何一个方程的解不一定是方程组的解.例5.已知12xy=⎧⎨=⎩是方程组120.ax yx by+=-⎧⎨-=⎩,的解,则a+b=( ).(A)2 (B)-2 (C)4 (D) - 4(浙江省绍兴市中考题)解析:根据二元一次方程组的解的概念.12xy=⎧⎨=⎩满足方程组120.ax yx by+=-⎧⎨-=⎩,于是代入得21,220.ab+=-⎧⎨-=⎩解得3,1ab=-⎧⎨=⎩所以a+b=-3+1=-2.故选(B).二、注意领会一个思想有一位著名数学家曾经指出:“解题就是把习题归结为已经解过的问题”.由此可知,解数学题时,要自觉地把题目变型转化,归结为“已经解过的问题”来处理,这种关于解题的思想称为“化归”,它体现了“在一定条件下,不同的事物可以互相转化”的唯物辨证观点,是解数学题的一盏指路名灯.在本章内容中,蕴涵的一个重要化归思想就是“消元”.即把“三元”通过消去一个未知数转化为“二元”,“二元”再通过消去一个未知数转化为“一元”.转化为一元一次方程就会解了,化“未知”为“已知”,化“复杂”为“简单”,充满了辨证思维,希望同学们好好领会.三、熟练掌握两种方法代入消元法和加减消元法是二元一次方程组的常规解法.1.代入消元法的主要步骤;(1)求表达式从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用含另一个未知数(x)的代数式表示出来,写成y=ax+b的形式;(2)代入消元将表达式y=ax+b代入另一个方程中,消去y,得到一个关于x一元一次方程;(3)解方程解这个一元一次方程,求出x的值;(4)回代得解把求得的x的值代入y=ax+b中,求出y的值,从而得到方程组的解.2.加减消元法的主要步骤:(1)变换系数方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;(2)加减消元把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解方程解这个一元一次方程;(4)回代得解将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.在解方程组时,应根据题中的系数构成情况灵活选用两种方法,一般说来:①当方程组中有一个方程的某一个未知数的系数绝对值是1;②当方程组中有一个方程的常数项是0,此时用代入法较简捷.又,①当方程组中两个方程的某一个未知数的系数绝对值相等;②当方程组中两个方程的某一个未知数的系数成整数倍,此时用加减法较简捷.。
完整版)二元一次方程组知识点归纳
完整版)二元一次方程组知识点归纳二元一次方程组是数学中的基本概念,它包含了两个未知数,且未知数的项次数都是1.这样的方程被称为二元一次方程。
当两个二元一次方程具有相同的未知数时,它们可以被合并成一个二元一次方程组。
需要注意的是,一个或多个二元一次方程也可以单独组成一个方程组。
二元一次方程组的解是指使方程组中两个未知数相等的值。
一个二元一次方程有无数个解。
二元一次方程组的解是指满足方程组中两个方程的公共解。
例如,方程组x+y=5和6x+13y=89有解x=-24/7,y=59/7.有些方程组没有解,例如x+y=4和2x+2y=10.这是因为方程②化简后为x+y=5,这与方程①相矛盾。
消元是解决方程组的一种常用方法,它可以将方程组中的未知数个数由多化少。
代入消元法是一种常见的消元方法,它可以将一个方程中的未知数用另一个未知数的式子表示出来,然后代入另一个方程中,消元求解。
加减消元法是另一种解二元一次方程组的方法,它可以将两个方程相加或相减,消去其中一个未知数,从而得到一个关于另一个未知数的一元一次方程。
最后解出这个方程,求出未知数的值。
1.理解问题,明确未知量和已知量之间的关系;2.根据问题中的条件,列出方程(组);3.解方程(组),求出未知量的值;4.检验解是否符合实际情况;5.给出问题的答案,并附上解题过程。
七、注意事项1.在解题过程中,要注意符号的运用,避免出现计算错误;2.在列方程(组)时,要注意把问题中的信息全部转化为数学语言,避免遗漏;3.在解方程(组)时,要注意检查解的合理性,避免出现无解或多解的情况;4.在解应用题时,要注意理解问题的实际意义,避免出现解出的答案与实际情况不符的情况。
解二元一次方程组的方法主要有加减消元法和代入法。
在同一个方程中,如果同一未知数的系数不相等或不互为相反数,就可以用适当的数乘方程两边,使同一未知数的系数相等或互为相反数,即“乘”。
将两个方程的两边相加或相减,可消去一个未知数,得到一个一元一次方程,即“加减”。
初中数学中考复习考点知识与题型专题讲解06 二元一次方程组(解析版)
初中数学中考复习考点知识与题型专题讲解专题06 二元一次方程组【知识要点】考点知识一二元一次方程(组)有关概念二元一次方程的概念:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
【注意】1)二元:含有两个未知数;2)一次:所含未知数的项的次数都是1。
例如:xy=1,xy的次数是二,属于二元二次方程。
2)方程:方程的左右两边必须都是整式(分母不能出现未知数)。
二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.【注意】1)在二元一次方程中,给定其中一个未知数的值,就可以求出另一个未知数的值。
2)二元一次方程有无数个解,满足二元一次方程使得方程左右相等都是这个方程的解,但并不是说任意一对数值就是它的解。
二元一次方程组的概念:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.【注意】1)二元一次方程组的“二元”和“一次”都是针对整个方程组而言的,组成方程组的各个方程不必同时含有两个未知数,如⎩⎨⎧2x +1=0,x +2y =2也是二元一次方程组。
这两个一次方程不一定都是二元一次方程,但这两个一次方程必须一共含有两个未知数。
3) 方程组中的各个方程中,相同字母必须代表同一未知量。
4)二元一次方程组中的各个方程应是整式方程。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
【注意】1)二元一次方程组的解是方程中每个方程的解。
2)一般情况下二元一次方程组的解是唯一的,但是有的方程组有无数个解或无解。
如:⎩⎨⎧x +y =5,4x +4y =20.有的方程组无解,如:⎩⎨⎧x +y =5,x +y =2.考点知识二 解二元一次方程组消元的思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先求出一个未知数,然后再求另一个未知数。
这种将未知数的个数由多化少、逐一解决的思想,叫做消元的思想。
初中数学 二元一次方程组及其解法
二元一次方程组及其解法一、二元一次方程的概念1.二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程,叫做二元一次方程.二元一次方程的一般形式为:ax by c ++=0(,)a b ≠0≠0.【例】x y +2=5,x y 2=3,x y 3=-2,x y 2+3+6=0等都是二元一次方程. 2.二元一次方程的判定: 必须同时满足四个条件:(1)含有两个未知数——“二元”;(2)未知数项的最高次数为1——“一次”; (3)方程两边都是整式——整式方程; (4)未知数的系数不能为0.【例】x y +=1,()y x 1=+82,x y 3-1=2-5,x y 4=3等都是二元一次方程;y x 4+=5,x y z 2+3=,x y 21+=02,x x 2+3=-5等都不是二元一次方程. 3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.【注】任何一个二元一次方程都有无数个解.【例】x y =1⎧⎨=2⎩和x y =3⎧⎨=1⎩是方程x y +2=5的解,可以看出x y +2=5有无数个解.二、二元一次方程组的概念和解法1.二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次方程组.【注意】(1)二元一次方程组不一定由几个二元一次方程合在一起.(2)方程可以超过两个.【例】x x y 2=6⎧⎨3-=1⎩,x x y 2=6⎧⎨3-=1⎩,x y x y =2⎧⎪=3⎨⎪+=4⎩等都是二元一次方程组.2.二元一次方程组的解:使二元一次方程组的几个方程左、右两边都相等的两个未知数的值(即几个方程的公共解),叫做二元一次方程组的解.【例】x x y 2=6⎧⎨3-=1⎩的解是x y =3⎧⎨=8⎩.3.二元一次方程组解的情况:一般情况下,一个二元一次方程组只有唯一一组解;但在特殊情况下,二元一次方程组也可能无解或有无数组解.【例】方程组x y x y +=1⎧⎨2+2=2⎩有无数组解,方程组x y x y +=2⎧⎨2+2=2⎩和x y x y =2⎧⎪=3⎨⎪+=4⎩无解.4.二元一次方程组的基本解法(1)代入消元法:①从方程组中选一个系数比较简单的方程,将该方程中的一个未知数用含另一未知数的式子表示出来,例如y ax b =+;②把y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出x 的值; ④把求得的x 的值代回y ax b =+中,求出y 的值,从而得出方程组的解;⑤把这个方程组的解写成x my n =⎧⎨=⎩的形式.解方程组:19,x y x y 3+4=⎧⎨-=4.⎩解:19,x y x y 3+4=⎧⎨-=4.⎩①②由②,得x y =4+,③ 把③代入①,()y y 34++4=19, ∴y y 12+3+4=19,得y =1. 把y =1代入③,得x =4+1=5.∴方程组的解为5x y =⎧⎨=1.⎩,(2)加减消元法:①把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数相反或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中,求出另一个未知数的值,从而得出方程组的解;⑤把这个方程组的解写成x my n=⎧⎨=⎩的形式.解方程组:x y x y +2=1⎧⎨3-2=11⎩解:x y x y +2=1⎧⎨3-2=11⎩①②①+②,得x 4=12,解得:x =3.将x =3代入①,得y 3+2=1, 解得y =-1.∴方程组的解是x y =3⎧⎨=-1⎩.5.解方程组的三大解题思想(1)消元思想;(2)整体思想;(3)换元思想.(1)在下列方程中,①x 4+5=1;②x y 3-2=1;③x y1+=1;④xy y +=14;⑤x y =;⑥()y x 1=+82,其中是二元一次方程的是__________.(填序号)(2)已知方程||n m x y m -1-1+2=是关于x 、y 的二元一次方程,则m =_____,n =______.(3)若已知方程()()()k x k x k y k 22-1++1+-7=+2,当k =______时,方程为一元一次方程,当k =_______时,方程为二元一次方程.【解析】(1)②⑤⑥;(2)m =0或2,n =2.(3)-1,1.模块一 二元一次方程的概念例题1(1)已知x y =1⎧⎨=-1⎩是方程x ay 2-=3的一个解,那么a 的值是_________.(2)若x ky k =2⎧⎨=-3⎩是二元一次方程x y 2-=14的解,则k 的值是_________.【解析】(1)1;(2)2.(1)下列方程组中,是二元一次方程组的是( )A .x y y 2+=1⎧⎪1⎨=-1⎪⎩ B .x xy 2=1⎧⎨=-1⎩ C .x y y z 2+=1⎧⎨-=-1⎩D .x y =1⎧⎨=-1⎩(2)已知x y =-4⎧⎨=3⎩是方程组ax y x by +=-1⎧⎨-=2⎩的解,则()a b 6+=______.(3)已知x y =2⎧⎨=1⎩是二元一次方程组ax by bx ay +=1⎧⎨+=2⎩的解,则a b -的值为______.【解析】(1)D ;(2)由题意得a =1,b =-2,a b +=1,∴()a b 6+=1.(3)把解代入方程组得a b b a 2+=1⎧⎨2+=2⎩①②,①-②得a b -=-1.(1)用代入消元法解方程组:x y x y 3+4=2⎧⎨2-=5⎩.(2)用加减消元法解方程组:x y x y 4+3=5⎧⎨-2=4⎩.例题2模块二二元一次方程组的概念和解法例题3例题4【解析】(1)由题意得,x yx y3+4=2⎧⎨2-=5⎩①②由②,得y x=2-5,③把③代入①,得()x x3+42-5=2,∴x x3+8-20=2,得x11=22,解得x=2.把x=2代入③,得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩(2)由题意得,x yx y4+3=5⎧⎨-2=4⎩①②①×2+②×3,得x x8+3=10+12,∴x11=22,解得x=2.将x=2代入①,得y8+3=5,解得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩【提示】展示解二元一次方程组的基本解法.用合适的方法解下列二元一次方程组:(1)()()()x yy x3-1=+5⎧⎨5-1=3+5⎩(2)()()()x yx y+1=5+2⎧⎨32-5-43+4=5⎩(3)()()x y yx y4--1=31--2⎧⎪⎨+=2⎪23⎩(4)m n n mnm+-⎧-=2⎪⎪34⎨⎪4+=14⎪3⎩(5)x yx y3-22-1⎧+=2⎪⎪45⎨3+23+1⎪-=0⎪45⎩(6)...x yx y112⎧+=⎪535⎨⎪05-03=02⎩【解析】(1)由题意得,x yx y3-=8⎧⎨3-5=-20⎩①②①-②,得y4=28,解得y=7.将y=7代入①,得x3-7=8,解得x=5.∴方程组的解为xy=5⎧⎨=7⎩.(2)由题意得,x yx y-5=9⎧⎨-2=6⎩①②②-①,得y3=-3,解得y=-1.将y=-1代入①,得x+5=9,解得x=4.∴方程组的解为xy=4⎧⎨=-1⎩.(3)xy=2⎧⎨=3⎩.(4)mn18⎧=⎪⎪5⎨6⎪=-⎪5⎩.(5)xy=2⎧⎨=3⎩.(6)xy14⎧=⎪⎪17⎨12⎪=⎪17⎩.例题5【提示】练习解二元一次方程组的一般步骤:(1)去分母,去括号,最好转化为各项系数为整数的二元一次方程组; (2)多观察,系数为1±时优先使用代入消元法,其次才是加减消元法.解方程组:(1)x y x y 23+17=63⎧⎨17+23=57⎩(2)x y x y 2011-2013=4023⎧⎨2013-2011=4025⎩【解析】(1)两方程相加,得:x y 40+40=120,即x y +=3 ①两方程相减,得:x y 6-6=6,即x y -=1 ② ①+②得:x 2=4,解得x =2,①-②得:y 2=2,解得y =1,∴方程组的解为:x y =2⎧⎨=1⎩.(2)x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】系数对称的二元一次方程组的特殊解法.(1)若方程组.a b a b 2-3=13⎧⎨3+5=309⎩的解是..a b =83⎧⎨=12⎩,则方程组()()()().x y x y 2+2-3-1=13⎧⎨3+2+5-1=309⎩的解是( )A ...x y =63⎧⎨=22⎩B ...x y =83⎧⎨=12⎩C ...x y =103⎧⎨=22⎩D ...x y =103⎧⎨=02⎩(2)用适当的方法解下列方程组:()()x y x y x y x y 3+-2-=-1⎧⎪⎨+-+=1⎪⎩24.【解析】(1)A .比较两个方程组可知..x a y b +2==83⎧⎨-1==12⎩,解得..x y =63⎧⎨=22⎩.(2)令x y u +=,x y v -=,则u v u v 3-2=-1⎧⎪⎨+=1⎪⎩24,解得u v =1⎧⎨=2⎩,即x y x y +=1⎧⎨-=2⎩,解得x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】整体换元法.例题6例题7解方程组:(1)x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩ (2)x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩【解析】(1)由题意得,x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩①②③由①,得y z x =-,④把④代入②和③, 得x z x z 5-=5⎧⎨-+3=13⎩,解得x z =2⎧⎨=5⎩. 把x z =2⎧⎨=5⎩代入④得,y =3.∴方程组的解为x y z =2⎧⎪=3⎨⎪=5⎩.(2)由题意得,x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩①②③③①+得,④x y 3+5=21, 2③②⨯+得,⑤x y 3+3=9,④﹣⑤得y 2=12,y =6,将y =6代入⑤得,x 3=-9,x =-3,将x =-3,y =6代入①得,()z =16-2⨯-3-3⨯6=4, ∴方程组的解为x y z =-3⎧⎪=6⎨⎪=4⎩.【提示】三元一次方程组的基本解法:(1)通过消元把三元一次方程组转化为二元一次方程组; (2)解二元一次方程组.模块三 多元一次方程组的解法例题8(1) x y zx y z ⎧==⎪234⎨⎪5+2-3=8⎩ (2) x y z x y z x y z 2++=2⎧⎪+2+=4⎨⎪++2=6⎩【解析】(1)令x y zk ===234,即x k =2,y k =3,z k =4, 代入②可求得k =2,所以x y z =4⎧⎪=6⎨⎪=8⎩.(2)①+②+③得x y z ++=3,用①、②、③分别减去此式得x y z =-1⎧⎪=1⎨⎪=3⎩.【提示】三元一次方程组的特殊解法:(1)连比设k 型;(2)对称轮换型,整体相加.解方程组:(1)pq p q pq p q1⎧=⎪+5⎪⎨1⎪=⎪-3⎩ (2)xyx y yz y z zx z x ⎧=1⎪+⎪⎪=2⎨+⎪⎪=3⎪+⎩【解析】(1)原方程组可化为p q q p 11⎧+=5⎪⎪⎨11⎪-=3⎪⎩,解得q p 1⎧=4⎪⎪⎨1⎪=1⎪⎩,∴q p 1⎧=⎪4⎨⎪=1⎩.(2)原方程组可化为,解得,∴.【提示】均为可以转化为二元一次方程组或者三元一次方程组的分式方程.11111121113x y y z z x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩151217121112x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩12512712x y z ⎧=⎪⎪⎪=⎨⎪⎪⎪=-⎩例题9非常挑战(1)已知二元一次方程x y--1=023,下列用含x 的代数式表示y 正确的是( ). A .y x 3=-12 B .y x 3=+12 C .y x 3=-32 D .y x 3=+32(2)下列方程属于二元一次方程的是( )A .x y +=1B .xy +5=4C .y x 23-8=D .x y1+=2(3)已知方程||||()()a b a x b y -1-4-2-+5=3是关于x 、y 的二元一次方程,则a =________,b =__________.【解析】(1)C ;(2)A ;(3)根据题意可得:a -2≠0,b +5≠0,||a -1=1,||b -4=1,所以a =-2,b =5.(1)下列不是二元一次方程组的是( )A .x y =2⎧⎨=-1⎩B .m n n m =2+3⎧⎨3-=4⎩C .x y y z +=2⎧⎨+=3⎩D .(())a a b a b 4+2=5⎧⎨2-+1=2+-3⎩(2)二元一次方程ax by +=6有两组解是x y =2⎧⎨=-2⎩与x y =-1⎧⎨=-8⎩,求a 、b 的值.【解析】(1)C .(2)将两组解分别代入ax by +=6,可得a b a b 2-2=6⎧⎨--8=6⎩,解得a b =2⎧⎨=-1⎩.复习巩固演练1演练2解方程组:(1)m n m n 3+2=2⎧⎨5-4=7⎩(2)()()()()y x x y 3-1=4-4⎧⎨5-1=3+5⎩(3)()()y x x y y x -1⎧-=3⎪2⎨⎪2-+32-=-6⎩ (4)x y x y +1+2⎧=⎪⎪34⎨-3-31⎪-=⎪4312⎩【解析】(1)m n =1⎧⎪⎨1=-⎪⎩2. (2)x y =7⎧⎨=5⎩. (3)x y =2⎧⎨=-1⎩. (4)x y =2⎧⎨=2⎩.解下列方程组:(1)x y x y 21+23=243⎧⎨23+21=241⎩ (2)x y x y 2014+2013=2012⎧⎨2012+2011=2010⎩(3)x y x yx y x y 2+32-3⎧+=7⎪⎪43⎨2+32-3⎪+=8⎪32⎩【解析】(1)x y =5⎧⎨=6⎩.(2)x y =-1⎧⎨=2⎩.(3)设x y a 2+3=,x y b 2-3=,则原方程组可变为,,a ba b ⎧+=7⎪⎪43⎨⎪+=8⎪32⎩整理,得,,a b a b 3+4=84⎧⎨2+3=48⎩解得,.a b =60⎧⎨=-24⎩∴,,x y x y 2+3=60⎧⎨2-3=-24⎩解得,,x y =9⎧⎨=14⎩ ∴原方程组的解为,.x y =9⎧⎨=14⎩演练3演练4解方程组:(1)x z z y x y z -=4⎧⎪-2=-1⎨⎪+-=-1⎩(2)::::::x y z u x y z u =1234⎧⎨9+7+3+2=200⎩(3) x y z y z x z x y +-=11⎧⎪+-=3⎨⎪+-=1⎩(4)mn m n mn m n 1⎧=⎪⎪3+213⎨1⎪=⎪2+312⎩【解析】(1)x y z =-7⎧⎪=-5⎨⎪=-11⎩.(2)设x k =,y k =2,z k =3,u k =4,所以有k k k k 9+14+9+8=200, 即k =5,故x y z u =5⎧⎪=10⎪⎨=15⎪⎪=20⎩.(3)①+②+③得:x y z ++=15,分别去减①、②、③式可得:x y z =6⎧⎪=7⎨⎪=2⎩.(4)m n 1⎧=⎪⎪2⎨1⎪=⎪3⎩.演练5。
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
二元一次方程组去括号计算题
二元一次方程组去括号计算题
摘要:
1.二元一次方程组的概念
2.去括号的方法
3.计算实例
正文:
一、二元一次方程组的概念
二元一次方程组是指包含两个未知数的一次方程。
例如,x + y = 5 和2x - y = 1 就是一个二元一次方程组。
二、去括号的方法
在解决二元一次方程组时,常常需要去括号。
去括号的方法如下:
1.如果括号前的数字是正数,直接去掉括号即可。
例如,3(x + y) = 15 去掉括号后变为3x + 3y = 15。
2.如果括号前的数字是负数,去掉括号后需要改变括号内各项的符号。
例如,-2(x - y) = -10 去掉括号后变为-2x + 2y = -10。
三、计算实例
现在,我们通过一个实例来说明如何解决二元一次方程组去括号的问题。
例题:解下列方程组
x + 2y = 12
2x - y = 8
首先,我们去掉第一个方程的括号:x + 2y = 12 变为x + 2y = 12
然后,我们去掉第二个方程的括号并改变括号内各项的符号:2x - y = 8 变为2x - y = 8
现在,我们可以将两个方程相加,以消去y 的项:(x + 2y) + (2x - y) = 12 + 8
化简后,得到:3x + y = 20
接下来,我们可以用代入法或消元法求解x 的值。
二元一次方程组知识点整理
二元一次方程组知识点1:二元一次方程(组)的定义1、二元一次方程的概念含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程 注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数. (2)含有未知数的项的次数都是1.(3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1。
即若ax m+by n=c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1例1:已知(a -2)x -by|a|-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.例2:下列方程为二元一次方程的有_________①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22=-y x ,⑥22=-+y x xy ,⑦71=+y x⑧y x 23+,⑨1=++c b a 【巩固练习】下列方程中是二元一次方程的是( ) A .3x-y 2=0 B .2x +1y =1 C .3x -52y=6 D .4xy=3 2、二元一次方程组的概念由两个二元一次方程所组成的方程组叫二元一次方程组注意:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
例:下列方程组中,是二元一次方程组的是( )A 、228423119...23754624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩【巩固练习】1,已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩,其中属于二元一次方程组的个数为( )A .1 B. 2 C . 3 D . 4 1、 若753313=+--m n m y x是关于x 、y 二元一次方程,则m =_________,n =_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂 听课及知识掌握情况反馈_________________________________________________________。 检测 测试题(累计不超过 20 分钟)_______道;成绩_______;教学需:加快□;保持□;放慢□;增加内容□ 课后 作业__题; 巩固复习____________________ ; 预习布置_____________________ 巩固
签字教学组长签字: Nhomakorabea学习管理师:
老师 老师最欣赏的地方: 课后 老师想知道的事情: 赏识 老师的建议: 评价
5
1 4 y 2 ,5y-4x=2x,x2-y2=2,x=4 中,二元一次方程有 x
个。
◆了解二元一次方程的解的概念 当 x=1,y=2 时,方程 x+y=3 的左右两边的值都相等,就是说,未知数的这一对值适合这 个方程,我们就把适合二元一次方程的一对未知数的值,叫做 。 想一想,还有其他的解吗? 1、下列各组数是方程 x+2y=10 的解是_________,是方程y=2x 的解的是________,既是方 x+2y=10 的解又是方程y=2x 的解的是_________ ①x=4,y=3 ②x=3,y=6 ③x=2,y=4 ④x=4,y=2 ◆了解二元一次方程组的概念,二元一次方程组的解的概念: 把上面的方程①②联立,写成 便得到一个二元一次方程组, 叫二元一次方程组的解 1、下列方程组中,哪些是二元一次方程组?哪些不是? (1)(2)(3)(4)(5) 2、二元一次方程组的解是( ) A、 B、 C、 D、 交流反思:一般情况下,一个二元一次方程的解有多少个?二元一次方程组的解呢? 同步练习
4
学大教育个性化教学教案
Beijing XueDa Century Education Technology Ltd.
19.解:由题意可知 x=y,∴4x+3y=7 可化为 4x+3x=7, ∴x=1,y=1.将 x=1,y=•1•代入 kx+(k-1)y=3 中得 k+k-1=3, ∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代 替,化“二元”为“一元”,从而求得两未知数的值. 20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0 且 2y+1=0,∴x=±1,y=-. 当 x=1,y=-时,x-y=1+=; 当 x=-1,y=-时,x-y=-1+=-. 解析:任何有理数的平方都是非负数,且题中两非负数之和为 0, 则这两非负数(│x│-1)2 与(2y+1)2 都等于 0,从而得到│x│-1=0,2y+1=0. 21.解:经验算是方程 x+3y=5 的解,再写一个方程,如 x-y=3. 22.(1)解:设 0.8 元的邮票买了 x 枚,2 元的邮票买了 y 枚,根据题意得. (2)解:设有 x 只鸡,y 个笼,根据题意得. 23.解:满足,不一定. 解析:∵的解既是方程 x+y=25 的解,也满足 2x-y=8,• ∴方程组的解一定满足其中的任一个方程,但方程 2x-y=8 的解有无数组, 如 x=10,y=12,不满足方程组. ∴当 m=1 时,x=-7;m=-1 时,x=7;m=•7 时,x=-1;m=-7 时 x=1.
2
学大教育个性化教学教案
Beijing XueDa Century Education Technology Ltd.
17.当 y=-3 时,二元一次方程 3x+5y=-3 和 3y-2ax=a+2(关于 x,y 的方程)•有相同的 解,求 a 的值.
18.如果(a-2)x+(b+1)y=13 是关于 x,y 的二元一次方程,则 a,b 满足什么条件?
24.(开放题)是否存在整数 m,使关于 x 的方程 2x+9=2-(m-2)x 在整数范围内有解, 你能找到几个 m 的值?你能求出相应的 x 的解吗?
答案: 一、选择题 1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的 项的次数是 1;③等式两边都是整式. 2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次 数为 1;③每个方程都是整式方程. 3.B 解析:不加限制条件时,一个二元一次方程有无数个解. 4.C 解析:用排除法,逐个代入验证. 5.C 解析:利用非负数的性质. 6.A 7.C 解析:根据二元一次方程的判定,•含有两个未知数且未知数的次数不超过 1 次的整 式方程叫二元一次方程,注意⑧整理后是二元一次方程. 8.B 二、填空题 9. 10. -10 11.,2 解析:令 3m-3=1,n-1=1,∴m=,n=2. 12.-1 解析:把代-ky=1 中,得-2-3k=1,∴k=-1. 13.4 解析:由已知得 x-1=0,2y+1=0, ∴x=1,y=-,把代入方程 2x-ky=4 中,2+k=4,∴k=1. 14.解: 解析:∵x+y=5,∴y=5-x,又∵x,y 均为正整数, ∴x 为小于 5 的正整数.当 x=1 时,y=4;当 x=2 时,y=3; 当 x=3,y=2;当 x=4 时,y=1. ∴x+y=5 的正整数解为 15.x+y=12 解析:以 x 与 y 的数量关系组建方程,如 2x+y=17,2x-y=3 等, 此题答案不唯一. 16.1 4 解析:将中进行求解. 三、解答题 17.解:∵y=-3 时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4, ∵方程 3x+5y=•-•3•和 3x-2a 同的解, ∴3×(-3)-2a×4=a+2,∴a=-. 18.解:∵(a-2)x+(b+1)y=13 是关于 x,y 的二元一次方程, ∴a-2≠0,b+1≠0,•∴a≠2,b≠-1 解析:此题中,若要满足含有两个未知数,需使未知数的系数不为 0.
重点 重点:二元一次方程、二元一次方程组及二元一次方程组的解的概念 难点 难点:
课 堂 教 学 过 程
课前 检查 作业完成情况:优□ 良□ 中□ 差□ 建议__________________________________________ ◆了解二元一次方程的概念 雄伟的长城是中华民族的象征,长城东起鸭绿江,西达嘉峪关,全长 7300 千米,其中东 段从鸭绿江到山海关,西段从山海关到嘉峪关,西段比东段长 6100 千米,长城的东、西段各 长多少千米? (1)哪些量是已知量?哪些量是未知量? (2)有哪些等量关系? (3) 如果设长城东段的长为 x 千米, 西段的长为 y 千米, 那么长城的全长为 ; 西段比东段长 。 根据等量关系: ,可以列方程 ① 根据等量关系: ,可以列方程 ② 像这样,含有 ,并且 的方程,叫 做 。例如:x+y=3,3x+5y=-1,x=3y+1 等,都是二元一次方程。 1、举几个二元一次方程的例子 。 2 、 下 列 方 程 2xy=7, xy+2x-y=0, x=2y,x+y=9, x-y=z, { EMBED Equation.DSMT4 | 过 程
学大教育个性化教学教案
Beijing XueDa Century Education Technology Ltd.
个性化教学辅导教案
学科: 数学 任课教师: 时间:
姓名
教学课题
年级 初一 性别
学校
认识二元一次方程组
1、通过对实际问题的分析,进一步体会方程及方程组是刻画现实世界的有效数学模型。
教学 2、了解二元一次方程组、二元一次方程组及其解的概念,并会判定一个数是不是已给出的二 目标 元一次方程组的解。
2、已知二元一次方程 2x-y-5=0,用含 y 的代数式表示 x,x= .用含 x 的代数 式表示 y,y= 。 3、已知二元一次方程 2x-y=1,若 x=2,则 y= ,若 y=0,则 x= . 4、方程 x+y=2 的正整数解是__________. 5、甲种物品每个 4 千克,乙种物品每个 7 千克。现有甲种物品 x 个,乙种物品 y 个,共 76 千克。 (1)列出关于 x、y 的二元一次方程 (2)若 x=12,则 y= ; (3)若有乙种物品 8 个,则有甲种物品 个. 6、方程 3x-2y=-2 的一个解是( ) A、 B、 C、 D、 7、已知二元一次方程 x-5y=30.(1)用含 x 的代数式表示 y= ;(2)用含 y 的 代数式表示 x= 。
1
学大教育个性化教学教案
Beijing XueDa Century Education Technology Ltd.
1.根据题意,列出二元一次方程组: 小明从邮局买了面值分别为 0.5 元和 0.8 元的邮票共 9 枚,一共花了 6.3 元,小明买了两种 邮票各多少枚?设面值 0.5 元的邮票有 x 枚,面值 0.8 元的邮票有 y 枚。
课后练习
1.下列方程中,是二元一次方程的是( ) A.3x-2y=4z B.6xy+9=0 C.+4y=6 D.4x= 2.下列方程组中,是二元一次方程组的是( ) A. 3.二元一次方程 5a-11b=21 ( ) A.有且只有一解 B.有无数解 C.无解 D.有且只有两解 4.方程 y=1-x 与 3x+2y=5 的公共解是( ) A. 5.若│x-2│+(3y+2)2=0,则 3y-x 的值是( ) A.-1 B.-2 C.-4 D. 6.方程组的解与 x 与 y 的值相等,则 k 等于( ) A.1 B.2 C.3 D.4 7.下列各式,属于二元一次方程的个数有( ) ①xy+2x-y=7; ②4x+1=x-y; ③+y=5; ④x=y; ⑤x2-y2=2 2 2 ⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y -y +x A.1 B.2 C.3 D.4 8.某年级学生共有 246 人,其中男生人数 y 比女生人数 x 的 2 倍少 2 人,•则下面所列的方 程组中符合题意的有( ) A. 9.已知方程 2x+3y-4=0, 用含 x 的代数式表示 y 为:y=_______;用含 y 的代数式表示 x 为: x=________. 10.在二元一次方程-x+3y=2 中,当 x=4 时,y=_______;当 y=-1 时,x=______. - - 11.若 x3m 3-2yn 1=5 是二元一次方程,则 m=_____,n=______. 12.已知是方程 x-ky=1 的解,那么 k=_______. 13.已知│x-1│+(2y+1)2=0,且 2x-ky=4,则 k=_____. 14.二元一次方程 x+y=5 的正整数解有______________. 15.以为解的一个二元一次方程是_________. 16.已知的解,则 m=_______,n=______. 三、解答题