2-Removal of organic pollutants from red water by magnetic-activated coke-2014

合集下载

吸附法去除硝基苯的流程

吸附法去除硝基苯的流程

吸附法去除硝基苯的流程Adsorption is a process that can be used to remove nitrobenzene from industrial wastewater. It involves the adhesion of the nitrobenzene molecules to the surface of a solid material, known as the adsorbent. This process is highly effective in removing organic pollutants from water, making it an ideal method for treating wastewater contaminated with nitrobenzene.吸附是一种可以用来去除工业废水中的硝基苯的过程。

它涉及硝基苯分子附着在固体材料表面上,称为吸附剂。

这个过程对去除水中的有机污染物非常有效,使其成为处理受硝基苯污染的废水的理想方法。

One of the key advantages of using the adsorption method to remove nitrobenzene is its versatility. There are various types of adsorbents that can be used, such as activated carbon, silica gel, zeolites, and clay minerals. Each type of adsorbent has its own unique properties and is effective in removing nitrobenzene from water. This allows for flexibility in choosing the most suitable adsorbent for a particular wastewater treatment process.使用吸附法去除硝基苯的关键优势之一是其多功能性。

外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展

外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展

第 35 卷 第 1 期环 境 科 学 研 究Vol.35,No.1 2022 年 1 月Research of Environmental Sciences Jan.,2022外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展陈妍希1,严登明2,朱明山1*1. 暨南大学环境学院, 广东省环境污染与健康重点实验室, 广东广州 5114432. 黄河勘测规划设计研究院有限公司, 河南郑州 450003摘要:环境中难降解有机物对生态环境及人体健康构成了巨大的威胁. 近年来,外场效应活化过硫酸盐高级氧化技术在环境治理中得到了广泛研究. 为进一步明确外场效应强化过硫酸盐活化技术的微观机制和污染物去除效能并拓宽其应用范围,综述了包括热场、US(ultrasonic,超声)场、电场、光场、磁场及压电场6类常见外场辅助过硫酸盐活化去除有机污染物的研究进展. 结果表明:①热场、US场、电场及光场强化过硫酸盐活化技术去除污染物的效能、活化机理和实际应用价值已被进行详细的研究.②在上述场效应中,磁场仅应用于提高Fe0及相关复合物活化过硫酸盐的效果;而压电效应活化过硫酸盐技术作为新兴的技术手段,其相关的研究报告非常少. ③目前的研究仍存在一些不足,如外场效应强化过硫酸盐活化技术的能源利用率、经济成本和实际应用潜能,以及降解过程中副产物的生态毒性等问题仍未进行深入的研究;压电强化过硫酸盐活化技术中压电材料和压电源的选择以及活化机理等内容依然存在空白;需解决多场耦合活化过硫酸盐技术存在的兼容性问题,其应用潜力也需进行评估.研究显示,外场效应强化过硫酸盐氧化技术具有高效的有机物去除能力,可以为推动过硫酸盐氧化技术在水污染控制方面的进一步发展提供更多的技术支撑.关键词:外场效应;过硫酸盐氧化技术;有机污染物中图分类号:X52文章编号:1001-6929(2022)01-0131-10文献标志码:A DOI:10.13198/j.issn.1001-6929.2021.07.08Recent Progress in Removal of Organic Pollutants by External-Field Effect Enhanced Persulfate Oxidation ProcessesCHEN Yanxi1,YAN Dengming2,ZHU Mingshan1*1. Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China2. Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, ChinaAbstract:Organic pollutants in the environment pose a huge threat toecological environment and human health. In recent years, the external-field effect enhanced persulfate advanced oxidation technology has been widely developed. In order to clarify its mechanism and broaden the application of persulfate oxidation technology, recent research on the removal of organic pollutants by persulfate oxidation under external fields (viz. thermal, US (ultrasonic), electric, light, magnetic and piezoelectric fields) enhancement is summarized. The results show that these external fields bring new pathways for persulfate activation and enhanced degradation efficiency of organic pollutants removal. However, the current investigation still has some limitations. For example, the energy efficiency,economic cost potential, practical application of external-fields effect enhanced persulfate oxidation technologies, and the ecotoxicity of by-products produced in the degradation process still lack in-depth investigation. Besides, the mechanism of the piezo-activation of persulfate, and thecompatibility in practical operation of multiple-fields enhanced persulfate oxidation need to be further investigated.This study exhibits high organic pollutants removal efficiency by usingexternal-field effect to enhance persulfate advanced oxidation process, which provides收稿日期:2021-06-07 修订日期:2021-07-04作者简介:陈妍希(1996-),女,广东汕头人,ccchenyanxi@.*责任作者,朱明山(1985-),男,安徽合肥人,教授,博士,博导,主要从事环境催化研究,zhumingshan@基金项目:广东省自然科学杰出青年基金项目(No.2020B1515020038);广东省“珠江人才计划”青年拔尖人才项目(No.2019QN01L148)Supported by Natural Science Foundation of Guangdong Province,China (No.2020B1515020038);Pearl River Talent Recruitment Program of Guangdong Province, China (No.2019QN01L148)a new direction to develop high-performance persulfate advanced oxidation technology in water treatment.Keywords :external-fields effect ;persulfate oxidation processes ;organic pollutants近年来,有机污染物被广泛应用于工业、医药业、农业及养殖业等行业中[1-2]. 由于这些污染物具有稳定的化学结构[3-4],传统的废水处理工艺不足以完全去除污染物,排放的有机污染物将流入地表水土及地下水中,导致严重的药物污染问题[5]. 目前的研究[6-11]表明,包括在中国、西班牙及澳大利亚等国家的环境水体及土壤中均已频繁检出多种有机污染物. 虽然目前在环境中只观察到痕量或超痕量的有机污染物的存在,但其在水土中的长期富集无疑会对生态环境及人体造成潜在的威胁[12]. 因此,基于当前的环境污染问题,开发先进的污染物处理技术十分迫切.AOPs(advanced oxidation process ,高级氧化技术)可以产生高反应自由基〔主要是·OH (hydroxyl-radical ,羟基自由基)〕,被认为是一种处理新兴难降解有机物的有效手段[13-15]. 其中,基于SO 4−·(sulfateradical ,硫酸根自由基)的AOPs 近年在水土环境治理中引起了极大的关注. 相比于·OH ,SO 4−·显示出更高的氧化还原电位(E 0=2.5~3.1 V)和更长的寿命(t 1/2=30~40 μs)[16-18]. 此外,相比于其他氧化剂如H 2O 2(hydrogen peroxide ,过氧化氢)和KMnO 4(potassium permanganate ,高锰酸钾),可产生SO 4−·的氧化剂过硫酸盐〔包括PMS(peroxomonosulfate ,过一硫酸盐)和PDS(peroxodisulfate ,过二硫酸盐)〕具有稳定性强、pH 适应能力高及成本低等优点,在应用于有机污染物的去除上显示出一定的优势[19-21]. 然而过硫酸盐的氧化性有限,需要采用不同的方法对其进行活化.过硫酸盐活化方法主要分为外场能量输入及催化剂投加两大类. 相比于催化剂直接投加的活化方法,直接输入如热、光、US(ultrasound ,超声)、电场或磁场等外场能量是一种灵活且控制的策略[22],可以在增强过硫酸盐活化效果的同时避免催化剂添加后产生的二次污染问题. 此外,不同场具有独特的活化机制和优势,这些都可能极大地影响过硫酸盐活化的效果. 外场效应强化过硫酸盐活化的基本类型及其优缺点等差异对比如 图1和表1所示. 目前,已有的过硫酸盐研究主要集中于找寻合适的方式实现过硫酸盐的高效活化以及综述近年来不同方法活化过硫酸盐降解有机污染物的研究进展. 例如:Pang 等[16]综述了近年来碳基磁性纳米复合材料活化过硫酸盐去除有机物的进展;Yang 等[23]探究了光在过硫酸盐氧化技图 1 外场效应强化过硫酸盐活化的基本类型Fig.1 The types of persulfate activation underexternal field enhancement表 1 不同外场效应强化过硫酸盐活化技术的对比Table 1 Comparison of different external-field effect enhanced persulfate oxidation technology外场强化机制优点缺点应用场景热场热能提供能量操作简单、活化效果明显外加热源能耗大、操作困难主要为实验室研究阶段;可应用于实际环境,利用可持续产生的热能实现连续的热场活化超声场空化效应释放能量环境友好、高效电能耗费大、无法大面积应用主要为实验室研究阶段,可用于污染土壤修复电场电能提供能量;水分解或过渡金属的价态转移提供电子无毒、高效成本高、操作复杂、无法大面积应用主要为实验室研究阶段光场光能提供能量;电子-空穴分离效率提供电子环境友好、成本低、易获得、效率高光利用率低,大部分为紫外和可见光主要为实验室研究阶段;可应用于实际环境,利用实际太阳光实现清洁环保的活化磁场弱磁场加速Fe 0腐蚀成Fe2+不引入其他能源及化学物质应用范围窄、研究内容少仅实验室研究阶段压电场机械力实现材料内部极化,提供电子和空穴能源效率高应用范围窄、研究内容少仅实验室研究阶段132环 境 科 学 研 究第 35 卷术处理废水过程中的作用. 然而,这些研究并没有对外场效应强化下过硫酸盐活化技术去除污染物的总体进展及成果进行统计和分析,也没有对其优势和未来发展方向进行评估. 该文在已有研究基础上,梳理了近年来的外场效应强化过硫酸盐活化技术去除有机污染物的研究成果,总结了不同场效应辅助过硫酸盐活化的效果和优势,并对其未来的发展提出建议,以期为更加高效地处理环境污染提供实际有效的参考.1 热场作为最常见的外场辅助策略之一,热场是活化过硫酸盐的传统方法. 已有研究[24-25]表明,过硫酸盐可以通过吸收热场产生的热能断裂其O−O键,进而生成SO4−·和·OH. 与PMS相比,PDS在热活化中的应用更广泛[26]. 当热场温度>50 ℃时,产生的能量可以使PDS的O−O键断裂并产生SO4−·[26]. 产生的SO4−·可以在较高温度下迅速与水反应生成·OH[26]. 近20年的研究主要集中于温度对污染物去除率以及PDS 消耗速率的影响[27-29]. 大量试验表明,在受控的温度范围内,污染物的反应速率随着温度的升高而提高[25,27]. 然而,温度的升高同时可能加速各种副反应(如SO4−·或·OH的重组等)的发生,限制污染物的去除效率[30],因此,其应用于实际污染水土中具有一定的难度. 为更好地将热场能量应用于实际环境中,近年来研究内容逐渐转移到实际热能的应用和利用热能处理难去除的实际废物中[30-34].使用可再生能源用作热源可以通过持续热能的产生实现连续的热场活化PDS,是一种可靠的实际应用手段. Forouzesh等[30]使用卤素灯泡作为热辐射源,首次在连续系统中研究热活化PDS对污染物的去除. 试验结果表明,无论是在间歇还是连续的热催化活化反应系统中,MTZ(metronidazole,甲硝唑)都能在温度大于70 ℃时起到大于90%的去除率[30]. 此外,工业生产过程中产生的大量废热(温度通常为60~120 ℃)[35]也可以活化PDS. 在40、60和90 ℃下,矿化70%的原水〔天然有机物的主要成分HA(humic acid,腐殖酸)〕分别需要168、24和1 h. 此外,HA的芳香结构在40 ℃下受到明显的破坏,并且超滤膜结垢问题显著改善[34]. 因此,废热活化有望成为一种可持续且低成本的水处理方案,而后续研究也将在真实环境下研究废热活化的处理效果.此外,热场辅助过硫酸盐活化的研究也逐渐集中于对实际水体复杂污染物的处理中. Bruton等[33]在原位化学氧化条件下用热活化PDS处理含多种氟化和非氟化表面活性剂的水成膜泡沫,结果表明,全氟烷基酸前体化合物被有效转化为短链全氟羧酸盐产物,使其更难被回收并可能对环境造成更大的危害.此外,在水力压裂条件下,单独的水力压裂添加剂糠醛也可以很快被PDS氧化,但加入化学添加剂会减慢糠醛的降解[32]. Zrinyi等[31]深入研究了热场温度对PDS活化降解苯甲酸的转化途径和产物分布的影响,结果表明温度的变化不仅控制SO4−·和·OH的生成速率,并且影响苯甲酸的脱羧机理和转化产物的分布.基于近年来热场辅助过硫酸盐活化技术的研究进展,使用可再生或可持续资源作为热源提供活化过硫酸盐的热量去除实际污染虽然是一个可行的技术,但使用过程中依然存在污染物降解速率受限以及转化产物毒性较高等问题. 因此,后续依然需要对热场强化过硫酸盐活化技术去除真实环境样本进行深入研究,并重视产物的毒性及迁移转化机制.2 US场US强化过硫酸盐活化技术作为一种新兴的技术手段,其主要原理是频率超过20 kHz的声波在液体介质中产生空化效应,导致气泡收缩、膨胀及破裂等一系列动态过程的发生[36-37]. 气泡水会分解产生·OH 攻击过硫酸盐,而气泡因破裂具有高压和高温,也可以作为局部“热点”释放出巨大的能量激活过硫酸盐[38].近年来,US辅助过硫酸盐活化氧化技术作为一种环境友好且高效的AOPs,在有机污染物的去除上起到了明显的协同作用,例如,SMT(sulfamethazine,磺胺二甲嘧啶)、CBZ(carbamazepine,卡马西平)、DCF(diclofenac,双氯芬酸)分别在30、120和200 min 内达到100%、90%和100%的降解率[39-41].此外,Yang等[42]综述了近年来US活化过硫酸盐在去除污染物方面的研究,并对US功率、US频率、温度和pH等反应影响因素进行了总结和分析,表明US辅助过硫酸盐活化技术是难处理有机废水处理的有前途的替代技术. 相比于US活化PMS技术,目前大多数研究主要集中于US辅助PDS活化技术. 由于具有不同的分子结构和特性,PDS和PMS在特定条件下表现出不同的有机物分解速率. Lee等[43]以IBP (ibuprofen,布洛芬)作为模型污染物研究了PDS和PMS在不同US频率下的活性差异,结果表明不论是PDS还是PMS,当US频率为1 000 kHz时,IBP 的降解效率最好. 值得注意的是,当频率相同时,US 活化PDS对IBP的去除效率高于US活化PMS,且表现出最小的单位电能消耗量[43].此外,当前大部分研究均集中于环境水介质,其他环境介质如土壤环境下US辅助过硫酸盐活化的第 1 期陈妍希等:外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展133技术发展仍然有限. Lei等[44]将US辅助技术引入土壤系统中促进土壤团聚体的分解,并利用US激活PDS有效氧化去除DHC(diesel hydrocarbons,柴油碳氢化合物). 试验结果表明,产生的自由基、US过程的轻微热分解以及PDS的直接氧化三者的共同作用是造成DHC降解的主要原因. 然而,其降解效率依然有限,16.25 g/kg柴油只达到约28.0%的去除率. 此外,US强化过硫酸盐活化技术应该应用于实际土壤中,而不是仅在加标土壤中进行试验. 基于此,Lei 等[45]进一步将单频US替换成双频US,评估了双频US辅助PDS活化技术在实际土壤修复中降解总石油烃的降解动力学和机理. 试验结果表现出双频US 和PDS高效的协同作用,在180 min内实际土壤中观察到了88.9%的总石油烃去除率.基于近年的进展研究,US效应强化过硫酸盐活化技术的机理较为明晰,并且在土壤及水体环境中均得到了有效的污染物去除效果. 然而,US技术依然需要耗费一定的电能,且如何将其大面积应用于实际水土环境污染中还尚未可知. 因此,US效应强化过硫酸盐活化技术在实际应用方面仍具有很大的发展空间.3 电场与电场引入芬顿工艺的目的相似,电场引入过硫酸盐技术中的最初目的是解决金属活化过硫酸盐技术中金属离子的难回收及难再生等问题. Wu等[46]在Fe2+活化PDS的工艺中直接施加电场,观察到AO7(acid Orange 7,酸性橙7)的脱色效果显著增强.此外,Wang等[47]分别以铁片和石墨棒作为牺牲阳极和阴极,利用施加电流时阳极原位生成的Fe2+活化PMS产生ROSs(reactive oxygen species,活性氧物种)攻击污染物,产生的Fe3+在阴极被还原以实现Fe2+的再生. 基于以上发展,电场逐渐应用于过硫酸盐活化技术中.作为产生SO4−·最有效方法之一,近年来电场强化过硫酸盐活化技术处理实验室以及实际废水中有机污染物被进行了广泛的研究. 电活化过硫酸盐具有无毒、价格低廉、效率高及产生的·OH选择性高等优点[48],其主要机理是利用电场产生的能量直接活化过硫酸盐,或者通过水的分解或过渡金属的价态转移等间接提供电子活化过硫酸盐[49]. 活化过程生成的SO4−·可以直接与污染物发生氧化还原反应,也可以在很宽的pH范围内与水反应产生·OH再进一步攻击有机污染物[50]. 此外,电活化过硫酸盐处理技术也可以通过直接氧化和非自由基氧化实现污染物的去除. 例如,Song等[49,51]首次使用具有多种官能团的碳材料(包括多壁碳纳米管、石墨、碳黑和粒状活性炭)作为阳极进行电活化过硫酸盐,发现有机污染物的降解归因于非自由基、·OH和SO4−·氧化的共同作用. 以Ti/Pt电极为工作电极,电活化PDS技术表现出选择性氧化去除有机污染物的能力,其中PDS氧化、直接电解和非自由基氧化是造成污染物降解的原因[52]. 此外,与传统过硫酸盐技术不同,电化学反应通常在电极表面发生,因此产生的活性自由基(如OH和SO4−·)也常吸附于电极表面而不是在反应溶液中[52]. Liu等[53]分别使用ACF(activated carbon fiber, 活性碳纤维)/Ti/Pt和Ti/Pt作为阴极和阳极,提出了一种新型且可持续的电活化PDS的方法. 通入电流后,一方面自由电子可以注入到ACF的表面上,产生·OH 和SO4−·攻击吸附于ACF表面的污染物;另一方面,Ti/Pt阳极也可以吸附PDS并增强污染物在Pt表面的直接氧化.近年来,大量文献还研究了不同反应条件(如过硫酸盐的浓度、电极材料、电流密度、pH和电解质等)对电效应强化过硫酸盐活化技术去除污染物的影响,结果表明,过硫酸盐浓度和电流密度的增加一般有助于污染物的去除,而pH和电极材料的差异则会根据试验内容产生不同的影响[54-57].基于上述研究进展,电场效应强化过硫酸盐活化技术是处理有机污染物的有效手段. 然而,在实际污染环境中如何更高效和更具成本效益的去除污染物仍然存在挑战. 因此未来的研究方向应利用电场的优势着眼于减少能量及过硫酸盐的输入,优化出最佳的试验条件,并尽量减少二次污染(如铁泥等的产生).4 光太阳光包括约3%的UV(ultraviolet light,紫外光)、44%的VL(visible light,可见光)和53%的NIR (near infrared light,近红外光),具有成本低、操作简单和效率高等优点,是一种可再生的清洁能源[58]. 近年来大量的文献对光辅助过硫酸盐活化技术进行了研究和调查,主要包括:①UV直接激活过硫酸盐;②VL在均相或非均相体系中强化过硫酸盐活化;③NIR照射下光热转换活化过硫酸盐.UV照射产生的能量可以有效激活PMS和PDS 产生ROSs(活性氧物种)并高效降解有机污染物,无需添加其他催化剂,被认为是一种环境友好的活化方式,近年来已得到了广泛的研究[59-63]. 例如,Li等[61]探索了单独UV和UV活化PDS分别降解PCMX (4-chloro-3,5-dimethylphenol,4-氯-3,5-二甲基苯酚)的差异,结果表明与单独UV光照相比,UV/PDS体134环 境 科 学 研 究第 35 卷系中产生的SO4−·是促进PCMX快速降解的主要原因.开发基于VL或NIR活化的过硫酸盐体系是一种提高太阳光利用率的策略,但VL的能量不足以直接活化过硫酸盐. 在均相体系中通过光敏化或LMCT (ligand-to-metal charge transfer,配体金属的电荷转移效应)激活过硫酸盐是有效利用VL的常见手段. Achola等[64]使用Co-FeO x作为催化剂,在VL照射下活化PMS降解敏化染料AO2(acid Orange 2,酸性橙2). AO2作为光敏化剂在VL光照下可以加速Co3+/Co2+的循环,并通过产生活性自由基团促使AO2脱色. Yin等[65]研究发现,有机污染物SMX(sulfamethoxazole,磺胺甲恶唑)可与Fe3+形成络合物,在VL的诱导下通过LMCT将Fe3+原位还原成Fe2+,从而有效激活PDS降解SMX,实现“以污治污”. 此外,在VL照射下直接添加光催化剂也可以有效活化过硫酸盐. 过硫酸盐在光照条件下可以通过捕获光催化剂的光生电子进行自活化以产生·OH或SO4−·等ROSs,同时有效分离光生电子-空穴对并提高催化剂的光催化活性[66].例如,VL照射下MIL-100(Fe)(Fe-based metal organic framework,铁基金属有机骨架)产生光生电子和空穴,电子转移到MIL-100(Fe)的表面将Fe3+还原成Fe2+. PDS通过捕获光生电子和Fe2+产生ROSs并在180 min 内去除几乎100%的SMX[67].目前多数研究都集中于探索UV和VL区域中的光反应,而太阳光中一半为NIR区域. 由于涉及NIR区域的光反应会带来强烈的热效应,因此利用NIR产生的热效应活化过硫酸盐可能是一种有效的手段. 笔者所在课题组以典型的光热材料MoS2为催化剂,首次研究了NIR照射下光热转换活化PDS的过程,试验表明,在808 nm的激光照射下,从光能转换而来的局部热量可以将反应溶液的温度升至45 ℃并直接激活PDS以提高污染物的去除率[68]. 该研究本质上通过充分利用太阳光谱中NIR区域产生的能量,发挥热场与光场耦合活化的作用,从而提高有机污染物的去除率.总之,近年来的研究表明光辅助过硫酸盐技术可以显著提高污染物去除率,其机理也被进行深入的探究. 然而,目前的研究多数集中于UV和VL,而太阳光中一半区域为NIR,因此需要拓展光的利用. 此外,利用光反应中产生的热效应活化过硫酸盐的技术是一种有前途的环境修复技术,对此进行深入的研究可以最大程度地利用太阳光.5 磁场由于磁场可以通过改变材料的微观结构引起材料性质的变化,进而影响化学反应,磁化学作为一门新兴的学科逐渐得到关注与发展[69]. 数10年来,磁场被广泛应用于废水处理中,主要用于分离磁性材料或与Fe0耦合去除重金属和有机污染物[69-70]. 自1994年起, Fe0开始作为Fe2+的替代品用于水处理中,并且在过硫酸盐活化方面展示出较高的活性[71]. 然而,在处理废水过程中,溶解的O2、H2O、NO3−等会消耗大量的Fe0,导致其钝化并降低反应性. WMF(weak magnetic field,弱磁场)可以加速Fe0腐蚀成Fe2+,且产生的永磁体没有引入其他能源及化学物质,被认为是改善Fe0反应性的有前途的手段.Guan的研究团队在2014年首次将WMF引入Fe0/PDS体系中,并观察到酸性橙G的去除率提高了28.2倍[72]. 通过深入的机理研究,李锦祥等[73]发现施加WMF可产生不均匀磁场并磁化Fe0,其中,洛伦兹力通过减小Fe0表面的扩散层厚度改善其传质效果;磁场梯度力使具有顺磁性的Fe2+从磁感应强度低的位置往高的迁移,导致Fe0的腐蚀产物均匀分布于颗粒表面,进而改善Fe0的反应活性. Du等[74]的研究进一步发现,WMF的添加可以大大增强Fe0/PDS去除SMX的效率,但不会改变原工艺产生的ROSs类型,只是加速了Fe2+的释放.此外,Fe0的衍生材料在WMF的作用下也观察到高效的过硫酸盐活化效果.例如,沸石负载的Fe0在WMF的磁化作用下活化PDS的效果明显提升,其对AO7的去除率相比原工艺提高了2~3倍[75]. 然而,在实际水处理应用中仍无法将WMF大面积应用于Fe0活化过硫酸盐的技术中. 因此,利用Fe0的铁磁记忆特性,磁场预磁化手段处理Fe0被作为一种有效的改进手段并逐步应用于Fe0/PDS工艺中. 大量试验结果证明,预磁化后的Fe0可以有效改善PDS的活化能力和拓宽pH的应用范围,2,4-DCP(2,4-Dichlorophenol,2,4-二氯苯酚)[76]、OG(orange anthraquinone dyes,橙蒽醌染料)[77]、RhB (Rhodamine B,罗丹明B)[78]和p-ASA(p-aminopheny-larsonic acid,对氨基苯胂酸)[79]等有机污染物都可以被有效去除. 此外,Chen等[79]首次将预磁化Fe0/PDS 工艺应用于芳香有机砷化合物(以p-ASA为代表)的去除,并研究了降解过程中消毒副产物的生成,结果表明预磁化的处理可以提高p-ASA的去除率(99.2%)并减少碳质消毒副产物的形成,但会增加含氮的消毒副产物的形成.综上,WMF的引入可以大大增强Fe0活化过硫酸盐的能力,在未来的实际应用上具有很高的潜力.目前对WMF的大多数研究都集中于污染物去除性第 1 期陈妍希等:外场效应强化过硫酸盐氧化技术去除有机污染物的研究进展135能的探索和试验条件的优化,其相关的机理依然需要更深入的探究. 此外,预磁化Fe0活化过硫酸盐的研究仅局限于实验室规模. 因此,后续研究应着眼于实际水处理环境,进行较大规模的现场修复测试,并深入探索WMF及预磁化的Fe0的商业应用价值.6 压电场相比于其他的催化技术,压电催化具有更高的能源效率[80]. 压电效应是一种物理现象,当压电材料在受到风、潮汐及水流等外界环境力的作用下发生机械变形时,其材料表面产生压电势,并出现正负相反的电荷[80-82]. 据报道显示,压电场提供的充足的正负电荷可以直接攻击污染物,防止光电子-空穴复合[83-86].因此,近10年来压电催化技术主要用于直接分解污染物,或作为一种耦合技术提高光催化效率. 2020年,Zhu的研究团队和He的研究团队相继提出压电催化产生的电荷也有望通过攻击过硫酸盐的O−O键激活过硫酸盐,以提高污染物的去除率[87-88]. 压电活化过硫酸盐技术开始引起人们的关注.目前,压电活化过硫酸盐去除有机污染物的相关文献仅有4篇. 为了给予足够的压电形变以产生更多的电荷,文献均以超声作为压电源应用于实验室研究中. Zhu的研究团队和He的研究团队均使用传统的压电材料BaTiO3为催化剂,分别活化PDS和PMS 用于降解污染物IBP和BTH(benzothiazole,苯并噻唑),试验结果表明,压电效应可以有效激活PDS和PMS并达到高效的污染物去除率,分别可以在60和30 min内去除99%的IBP和92%的BTH[87-88]. Ao的研究团队[89]使用MoS2作为2D压电催化剂模型激活PMS以高效降解苯酚,并通过试验和DFT (density functional theory,密度泛函理论)计算,确定了2D压电材料催化PMS活化过程的内在机理主要是:①PMS被MoS2形变产生的负电荷还原成·OH 或SO4−·;②PMS和MoS2形变产生的正电子的相互作用产生SO5−·,且进一步生成SO4−·,最后在超声协助下通过水解转化成·OH;③MoS2本身也可以通过钼离子的变价活化PMS进而产生ROSs[89]. 以上研究均为将压电和AOPs相结合控制水污染的应用提供了可行性. 此外,为了提高压电材料的性能,Chen 等[90]构建了BaTiO3/MoS2压电异质结,其成功减少了载流子重组,研究证明,结合BaTiO3和MoS2可以增强压电效应,提高活化PMS的效率并在40 min内达到了90%的ORZ(ornidazole,奥硝唑)去除率,提供了一种通过构建压电材料异质结来增强压电激活过硫酸盐的新想法.总之,目前的研究结果表明压电活化过硫酸盐是一种有潜力的应用于水处理的技术手段,但其深入的机理研究以及实际应用价值仍有待挖掘,需要大量的试验探究其未来的发展方向及可行性. 后续的研究应集中于压电材料的选择、活化机理的研究及其在实际水处理中的应用潜力探究等方面.7 结论与展望a) 热场、US场、电场及光作为传统的活化过硫酸盐技术手段,在有机污染物去除中展现出优异的性能及广泛的应用前景,其效能、活化机理和实际应用价值被详细地研究,是目前研究较为深入的外场效应强化过硫酸盐活化手段. 然而,其能源利用率、经济成本等与实际应用相关的部分仍需进行探究.b) WMF辅助过硫酸盐活化技术的研究重点均集中于通过WMF强化Fe0及相关复合物活化过硫酸盐的效能,而未有研究讨论WMF在其他材料上的应用潜力. 未来的研究除了着眼于WMF和预磁化的Fe0的商业应用价值和实际应用潜力的探索外,还需尝试开发利用WMF提高过硫酸盐活化的其他方法,通过比较筛选更加经济高效的活化手段.c) 压电效应活化过硫酸盐技术作为新兴的技术手段,其相关的研究报告非常少. 虽然目前的研究表明压电效应活化过硫酸盐是去除有机污染物的有效方法,但压电材料和压电源的选择以及压电活化过硫酸盐的机理等内容依然存在空白,未来需进行更深入的探索.d) 目前,已有文献使用多场耦合活化过硫酸盐技术对有机污染物进行去除. 由于不同场的辅助机理和活化过硫酸盐的能力不同,后续研究应考虑多场耦合的可行性及兼容性问题,并考虑多场耦合的成本及实际应用潜力.e) 除有机污染物外,降解过程中产生的降解副产物也可能对实际环境造成威胁. 后续研究应探究降解副产物的生态毒性,并以污染物的矿化作为环境修复的最终目的. 此外,环境污染水体中一般存在不止一种污染物,有必要以实际污染水体为对象,探究外场效应强化下过硫酸盐活化技术去除多种污染物的效果.参考文献(References):CHEN Y X, YANG J L, ZENG L X, et al. Recent progress on theremoval of antibiotic pollutants using photocatalytic oxidationprocess[J]. Critical Reviews in Environmental Science andTechnology, 2020. doi:10.1080/10643389.2020.1859289.[1]WANG X D, YIN R L, ZENG L X, et al.A review of graphene-[2]136环 境 科 学 研 究第 35 卷。

污染物净化分析英语作文

污染物净化分析英语作文

In the modern era,the purification of pollutants has become a critical issue that demands immediate attention and innovative solutions.The environment,which is the lifesupporting system for all living beings,is under constant threat from various pollutants.These pollutants not only affect the health of humans and animals but also disrupt the ecological balance of our planet.In this essay,we will delve into the importance of pollutant purification,the methods used for this purpose,and the challenges faced in achieving effective purification.The significance of pollutant purification cannot be overstated.Pollutants, such as heavy metals,pesticides,and industrial waste,can have devastating effects on the environment.For instance,water pollution from industrial effluents can lead to the death of aquatic life,affecting the food chain and ultimately impacting human health.Air pollution,on the other hand,can cause respiratory problems and contribute to climate change. Therefore,the purification of these pollutants is essential for the preservation of our environment and the wellbeing of all living beings.There are several methods employed for the purification of pollutants.One of the most common methods is the use of physical processes such as filtration and sedimentation.These methods involve the removal of pollutants from water or air by physically separating them from the medium.For example,water can be filtered through sand or other materials to remove solid particles,while sedimentation allows heavier particles to settle at the bottom of a container.Another method is the use of chemical processes,such as precipitationand neutralization.Precipitation involves the addition of chemicals to water to form insoluble compounds that can be easily removed. Neutralization,on the other hand,involves the addition of chemicals to neutralize the acidity or alkalinity of a solution,making it less harmful.Biological processes are also used for pollutant purification.This involves the use of microorganisms or plants to break down or absorb pollutants. For example,certain types of bacteria can break down organic waste in water,while plants can absorb heavy metals from the soil.However,the purification of pollutants is not without its challenges.One of the main challenges is the cost of purification technologies.Advanced purification systems can be expensive to install and maintain,making it difficult for some industries or communities to afford them.Additionally, some purification methods may not be effective against certain types of pollutants,requiring the development of new technologies.Another challenge is the lack of awareness and education about the importance of pollutant purification.Many people may not understand the harmful effects of pollutants or the benefits of purification.This lack of awareness can lead to a lack of support for purification initiatives or even resistance to implementing them.Moreover,the increasing amount of pollutants being released into the environment is a significant challenge.With the growth of industries and the increasing use of chemicals in agriculture,the amount of pollutants being released is constantly on the rise.This makes it difficult for existingpurification systems to keep up with the demand.Despite these challenges,there have been some successful cases of pollutant purification.For example,the Clean Air Act in the United States has led to a significant reduction in air pollution levels.Similarly,the use of wastewater treatment plants has helped to reduce water pollution in many parts of the world.In conclusion,the purification of pollutants is a crucial aspect of environmental protection.While there are various methods available for this purpose,there are also challenges that need to be addressed.It is essential for governments,industries,and individuals to work together to develop and implement effective purification technologies.Furthermore, raising awareness and promoting education about the importance of pollutant purification can help to ensure a cleaner and healthier environment for all.。

文献汇报-MOFs

文献汇报-MOFs

MOF-808-SO4 引 入 强 钡 螯 合 基 团 131.1mg/g 超高的吸附速率,高水 MIL-101113 ( 硫酸盐和磺酸基团) 稳定性,高度选择性 70.5mg/g SO3H(Cr)
SCU-7 离子交换, 树脂 , 分子 受 体 和 传 SCU-100 统的无机 多孔材料 1-NO2 SZ-2、SZ-3
24.8mg/g 良好的稳定性和重现性 68 Zr-O-As 配位键,每个 广泛的 pH 优异稳定性, Zr6 簇可以在平衡时捕 303mg/g 高表面积和大量的吸附 69 Uio-66 获七种等价的砷物质。 位点 Zr6 节 点 具 有 优 异 的 As5+结合能力和硫醇化 As5+和As3+双重吸附 71 UiO-MOF 接头对As3+离子的化学 选择性捕获 74 Cu3(BTC)2-SO3H 螯合效应 88.7 mg/g 受pH严重影响 合适的空腔和强氢键相 受活性位点, MOF 空 79 FJI-H9 286 mg/g 互作用两者协同作用 腔尺寸影响 89 FIR-53、FIR-54 100mg/g ZJU-101 Zr-DMBD FJI-H12 LMOF-263 软碱通常对软酸具有高 亲和力 245 mg/g 吸附量大,吸附速度快
2018年10月09日
1
汇报提纲
1.背景介绍
2.实例:MOFs用于去除废水中的无机污染物
3.实例:MOFs用于去除废水中的有机污染物 4.MOFs(ZIF-8)用于去除废水中的污染物(补充)
5.MOFs抗菌作用(补充)
6.总结与展望
2
1.背景介绍
沸石,活性炭,粘土 和铝磷酸盐,比表面 积低和缺乏可定制性
14
文献汇报
恳请各位老师批评指正! 谢谢!

TiO2光催化技术降解印染废水的研究进

TiO2光催化技术降解印染废水的研究进

第51卷第12期 辽 宁 化 工 Vol.51,No.12 2022年12月 Liaoning Chemical Industry December,2022收稿日期: 2022-03-12 作者简介:何景儒(1998-),男,新疆沙湾市人,2020年毕业于沈阳建筑大学给排水科学与工程专业,研究方向:污水处理理论与技术。

TiO 2光催化技术降解印染废水的研究进展何景儒(沈阳建筑大学市政与环境工程学院,辽宁 沈阳110168)摘 要:由于TiO 2光催化技术具有无毒、稳定性好、材料易得和氧化能力强的特性,在印染废水前处理及深度处理工艺中具有较好的应用前景。

文章阐述了TiO 2光催化降解有机污染物的机理,对近年来国内外不同TiO 2改性方法进行了综述,分析了TiO 2光催化技术在处理印染废水时的效果,并对未来TiO 2光催化技术在降解印染废水中的应用进行了展望。

关 键 词:光催化氧化技术;掺杂;TiO 2改性;印染废水中图分类号:TQ426.7 文献标识码: A 文章编号: 1004-0935(2022)12-1762-03印染工业为我国工业的主要组成部分,近年来随着纺织工业的飞速发展,废水的排放量逐年攀升,现已跃居为我国水量最大的工业废水之一[1],所造成的污染问题亟待解决。

由于新型染料可生化性显著降低,生物法处理效果较差[2],电解法阳极材料消耗大,产生铁泥需要处理。

在众多不同的光催化剂里,TiO 2的相关研究得最为广泛,因为它有较强的氧化能力、可以分解有机污染物、无毒、具有超亲水性[3]、高耐久性、化学稳定性、成本低。

而因TiO 2禁带宽度大(Eg =3.0~3.2 eV),故在可见光下的应用范围受到限制[4]。

本文综述了TiO 2改性的研究进展以及TiO 2光催化降解印染废水的应用现状及巨大潜能。

1 TiO 2光催化机理TiO 2属于n 型半导体,禁带宽度大,锐钛矿相带隙能为3.2 eV,金红石相带隙能为3.03 eV,只有在λ<387 nm 的紫外光下被活化。

污水处理-英文文献2

污水处理-英文文献2

污水处理-英文文献2Wastewater treatment is an essential process in modern society, which aims to remove pollutants and other harmful contaminants from wastewater. It is important for maintaining environmental, public health, and water quality standards. The following article provides an overview of wastewater treatment, including its processes, technologies, and benefits.Wastewater treatment is the process of removing pollutants, viruses, bacteria, and other harmful contaminants from wastewater before it is released back into the environment or reused for other purposes. The importance of wastewater treatment cannot be underestimated, as untreated wastewater can cause serious environmental and health problems. For example, if wastewater containing human waste is discharged into rivers, lakes, or oceans, it can lead to the outbreak of waterborne diseases such as cholera, typhoid, and dysentery.The wastewater treatment process consists of several stages, including primary, secondary, and tertiary treatment. The primary treatment process involves the removal of large particles, such as rocks, sticks, and other debris. This is usually done through the use of screens and grit chambers. After this stage, the wastewater undergoes secondary treatment, which involves the removal of organic matter and suspended solids. This is primarily achievedthrough biological processes, such as aeration and settling. Once this stage is complete, tertiary treatment may be used to remove any remaining contaminants, including nitrogen and phosphates.Wastewater treatment utilizes various technologies to help remove contaminants and pollutants. These technologies include biological treatment such as activated sludge process, anaerobic digesters, sequencing batch reactors; physical treatment such as sedimentation, filtration, and disinfection treatment such as chlorination, ozonation, and UV treatment.There are numerous benefits of wastewater treatment. First, it helps to protect public health, particularly against waterborne diseases caused by untreated wastewater. Second, it helps to maintain environmental standards by preventing pollutants from entering rivers, lakes, and oceans. Third, wastewater treatment enables recycled water to be reused for industry, irrigation, and other purposes, conserving scarce water resources.In conclusion, wastewater treatment is a critical process for protecting public health, preserving the environment, and ensuring a sustainable future. It requires the use of advanced technologies and processes to remove contaminants and pollutants from wastewater before it is released back into the environment or reused for other purposes. By investing in wastewater treatment, we can create healthy and sustainable communities for generations to come.。

氮气物理吸附英文

氮气物理吸附英文

氮气物理吸附英文Nitrogen Gas Physical AdsorptionNitrogen gas, with its chemical formula N2, is a colorless, odorless, and inert gas that makes up approximately 78% of the Earth's atmosphere. This ubiquitous gas has a wide range of applications, from industrial processes to medical and scientific research. One of the fundamental properties of nitrogen gas is its ability to undergo physical adsorption, a process that has significant implications in various fields.Physical adsorption, also known as physisorption, is a phenomenon where molecules or atoms of a substance (the adsorbate) accumulate on the surface of another substance (the adsorbent) without forming chemical bonds. This process is driven by the attractive forces between the adsorbate and the adsorbent, such as van der Waals forces and electrostatic interactions. In the case of nitrogen gas, the physical adsorption of N2 molecules onto various adsorbents has been extensively studied and has found numerous applications.One of the primary applications of nitrogen gas physical adsorption is in the field of gas separation and purification. Nitrogen gas can beselectively adsorbed onto specific adsorbents, such as activated carbon, zeolites, or metal-organic frameworks (MOFs), while other gases, such as oxygen or carbon dioxide, are not adsorbed as strongly. This selective adsorption allows for the efficient separation and purification of nitrogen gas from air or other gas mixtures. This process is particularly useful in industrial settings, where high-purity nitrogen gas is required for various applications, such as in the electronics industry, food packaging, or the production of chemicals.Another important application of nitrogen gas physical adsorption is in the area of gas storage and transportation. Nitrogen gas can be adsorbed onto porous adsorbents, such as activated carbon or metal-organic frameworks, to create high-density storage systems. These adsorbent-based storage systems can store a significantly larger amount of nitrogen gas compared to traditional compressed gas cylinders, making them more efficient and cost-effective for transportation and storage. This technology is particularly relevant in applications where large volumes of nitrogen gas are required, such as in the industrial or medical sectors.The physical adsorption of nitrogen gas is also crucial in the field of catalysis. Many catalytic processes involve the interaction of reactants with the surface of a catalyst, and the adsorption of nitrogen gas can provide valuable information about the catalyst's surface properties and accessibility. By studying the physicaladsorption of nitrogen gas on catalyst surfaces, researchers can gain insights into the catalyst's pore structure, surface area, and other characteristics that are essential for optimizing catalytic performance.In the field of material science, the physical adsorption of nitrogen gas is used to characterize the porous structure and surface properties of various materials, such as zeolites, activated carbon, and metal-organic frameworks. The analysis of nitrogen adsorption-desorption isotherms, which describe the relationship between the amount of nitrogen adsorbed and the pressure at a constant temperature, can provide information about the material's surface area, pore size distribution, and other structural features. This information is crucial for the development and optimization of materials with specific applications, such as in catalysis, adsorption, or energy storage.Furthermore, the physical adsorption of nitrogen gas is widely used in the field of environmental science and engineering. Nitrogen-based compounds, such as nitrates or nitrites, can be adsorbed onto various adsorbents, including activated carbon or clay minerals, for the removal of these pollutants from water or soil. This process is particularly important in the treatment of wastewater or the remediation of contaminated sites, where the removal of nitrogen-containing compounds is crucial for environmental protection.In conclusion, the physical adsorption of nitrogen gas is a fundamental phenomenon with a wide range of applications across various scientific and technological fields. From gas separation and purification to gas storage, catalysis, material characterization, and environmental remediation, the understanding and manipulation of nitrogen gas physical adsorption have been instrumental in advancing scientific knowledge and driving technological innovation. As research in this field continues to evolve, new and exciting applications of nitrogen gas physical adsorption are likely to emerge, further expanding its impact on our modern world.。

厌氧折流板反应器的英语

厌氧折流板反应器的英语

厌氧折流板反应器的英语English:An anaerobic baffled reactor (ABR) is a type of wastewater treatment system that operates without the presence of oxygen. It consists of multiple compartments or baffles, each serving a specific purpose in the treatment process. Wastewater enters the reactor and flows through these compartments, undergoing different stages of treatment such as sedimentation, digestion, and clarification. In each compartment, specific anaerobic bacteria and microorganisms thrive, breaking down organic matter through anaerobic processes. As the wastewater moves through the reactor, it gradually undergoes further treatment and clarification, resulting in the removal of organic pollutants and the production of biogas as a byproduct. The design of the ABR allows for efficient treatment of high-strength organic wastewater while minimizing energy consumption and sludge production. Overall, anaerobic baffled reactors play a crucial role in sustainable wastewater treatment, offering an environmentally friendly solution for organic waste management.中文翻译:厌氧折流板反应器(ABR)是一种在没有氧气存在的情况下运行的污水处理系统。

关于废水处理英语作文初中

关于废水处理英语作文初中

关于废水处理英语作文初中Water is one of the most essential resources for lifeon Earth. However, with the increasing population and industrialization, the demand for water has also increased, leading to the generation of a large amount of wastewater. Improper disposal of wastewater can have severe consequences on the environment and human health. Therefore, it is essential to treat wastewater before releasing itinto the environment. In this essay, we will discuss the importance of wastewater treatment and its methods.Wastewater treatment is the process of removing contaminants from wastewater to make it safe for discharge into the environment. The primary objective of wastewater treatment is to protect the environment and human health. Untreated wastewater can contain harmful pollutants such as bacteria, viruses, heavy metals, and toxic chemicals that can cause serious health problems and environmental damage.There are several methods of wastewater treatment,including physical, chemical, and biological treatments. Physical treatment involves the removal of large solid particles through processes such as screening, sedimentation, and filtration. Chemical treatment involves the use of chemicals to remove dissolved pollutants from wastewater. Biological treatment involves the use of microorganisms to break down organic matter in wastewater.The most common method of wastewater treatment is the activated sludge process. In this process, wastewater is mixed with a mixture of microorganisms called activated sludge. The microorganisms break down the organic matter in the wastewater, converting it into carbon dioxide, water, and other harmless substances. The treated wastewater is then disinfected with chlorine or ultraviolet light before being discharged into the environment.Another method of wastewater treatment is the use of constructed wetlands. In this method, wastewater is passed through a series of artificial wetlands, where plants and microorganisms remove pollutants from the water. The treated water is then discharged into the environment.In conclusion, wastewater treatment is essential to protect the environment and human health. Proper treatment of wastewater can prevent the spread of diseases and reduce the pollution of water bodies. There are several methods of wastewater treatment, including physical, chemical, and biological treatments. The choice of method depends on the characteristics of the wastewater and the desired level of treatment. It is crucial to implement effective wastewater treatment systems to ensure a sustainable future for our planet.。

北大考研-环境科学与工程学院研究生导师简介-叶正芳

北大考研-环境科学与工程学院研究生导师简介-叶正芳

爱考机构 中国高端考研第一品牌(保过 保录 限额)
2010.1-2010.12 南水北调东线治污新理念与成效研究 国务院南水北调办 项目负责人 25
2009.10-2010.9. 垃圾渗滤液处理的组合技术及工艺开发 北京市 项目负责人 15
2008.1-2012.12 功能化载体的研究与试制 企业委托 项目负责人 50
研究领域
污水处理、地下水处理、固定化微生物(酶)、功能材料等相关的科学与技术研究 奖励荣誉
全部获奖人员排名 获奖时间 获奖项目类别(国家、省部、校) 奖励名称 等级
倪晋仁,叶正芳,崔锋,王志民,籍国东等 16 人
2007
爱考机构 中国高端考研第一品牌(保过 保录 限额)
2011.6-2012.12 B 市重金属污染土壤修复示范工程项目 B市 项目负责人 75
2011.9-2012.12 B 市重金属污染土壤背景值监测与评估项目 B市 项目负责人 640
2011.9-2012.12 B 市重金属污染整治与生态修复系统规划 B市 项目负责人 290
2007.10-2008.9 微污染水体净化关键材料和装置开发 北京市 项目负责人 15
高等学校科学技术进步奖 固定化微生物处理高氨氮废水的研究 一等
叶正芳,倪晋仁 2008 北京市发明专利奖 一种制备聚氨酯及生物固定化载体的工艺 二等
王刚,邱熔处,叶正芳,周程,邢秀兰等 9 人 2010 甘肃省/兰州市科学技术进步奖 H—BAF 综合技术用于污水再生利用工程 二等/一等
叶正芳 2006 甘肃省十大优秀专利奖 曝气生物流化池 十大优秀专利
代表性论文
爱考机构 中国高端考研第一品牌(保过 保录 限额)
1.Peer-reviewedJournalPublications(47intotal)

各类污水处理工艺去除微塑料的原理及效果

各类污水处理工艺去除微塑料的原理及效果

用下,微塑料和絮凝体发生聚集。

铁基盐和铝基盐是污水处理中广泛使用的絮凝剂。

铁基盐对微塑料的絮凝作用来自于氢氧化铁聚集体的吸附。

在低pH 条件下,絮凝体以高正电荷的小团聚体形式存在,被局部吸附在微塑料表面,中和了微塑料的表面电荷,消除了微塑料之间的斥力。

在中性和碱性pH 条件下,絮凝体粒径增大,成为微塑料之间的桥梁,是为塑料发生聚集。

铝基絮凝剂则主要通过氢键与微塑料相互作用。

此外,在微塑料风化降解的过程中,微塑料表面会形成新官能团(如:羟基、羧基、碳碳双键等),这些新的官能团对絮凝体与微塑料之间的相互作用有一定的加强作用。

因而,铝基絮凝剂对发生降解的微塑料的去除效果更好。

最终,与絮凝体结合的微塑料被初级沉降技术以沉淀或浮沫的形式去除。

目前,我们基本了解了絮凝沉淀工艺去除微塑料的机理,但对微塑料絮凝体相关性质及其对初沉工艺沉降效率的影响尚不清楚。

2 生物反应器工艺生物反应器工艺去除微塑料主要是基于微生物的摄取和污泥团聚体的形成。

在随后的二次沉降过程中将含有微塑料的污泥去除。

“厌氧-缺氧-好氧”污水处理工艺(anaerobic-anoxic-oxic, AAO)是目前应用最广泛的生物反应器工艺。

但由于存在污泥回流问题,其微塑料去除率相对较低,大约20%转移到污泥中的微塑料会回流到水相。

此外,微塑料在AAO 中的降解较为缓慢。

研究显示,红球菌在40 d 内仅能降解6.4%的聚丙烯微塑料[8];菌株Ideonella sakaiensis 完全降解聚对苯二甲酸乙二醇酯膜微塑料需要6周[9]。

然而,现有的水力停留时间一般为7~14 h ,难以实现对微塑料的有效降解。

因此,传统活性污泥法对微塑料的去除效果并不理想。

膜生物反应器(membrane bio-reactor, MBR)技术是近年来污水处理技术中比0 引言微塑料是指尺寸小于5 mm 的塑料,广泛存在于大气、土壤、海洋、淡水,甚至存在于北极淡水湖的沉积物中[1]。

树有助于空气清新英语作文

树有助于空气清新英语作文

树有助于空气清新英语作文Trees are an integral part of our ecosystem, providing numerous benefits that contribute to the health and well-being of our planet. One of the most significant roles that trees play is in air purification, which is essential for maintaining a clean and healthy environment for all living organisms.Absorption of Carbon Dioxide: Trees are natural carbon sinks, absorbing carbon dioxide (CO2) from the atmosphere and converting it into oxygen through the process of photosynthesis. This process not only reduces the greenhouse effect but also replenishes the air with fresh oxygen, which is vital for life.Production of Oxygen: In addition to absorbing CO2, trees release oxygen, which is essential for the respiration of animals and humans. The oxygen-rich environment created by trees supports a healthy ecosystem and improves the overall air quality.Removal of Pollutants: Trees are also effective at removing pollutants from the air. They can trap and filter out dust, smoke, and other particulate matter through their leaves and bark. This filtering action helps to reduce the levels of air pollution and contributes to clearer, cleaner air.Creation of Shade: The shade provided by trees can cool theair temperature, reducing the formation of smog and the need for air conditioning. This natural cooling effect can lower the overall temperature of urban areas, known as the urban heat island effect, and decrease the demand for energy, which in turn reduces air pollution from power plants.Habitat for Wildlife: Trees provide habitats for various species of birds, insects, and other animals, which are also involved in the process of air purification. For example, some birds and insects help in pollination, which is crucial for plant reproduction, including trees that contribute toair purification.Conclusion: Trees are a natural and essential ally in the fight against air pollution. They not only improve airquality but also enhance biodiversity and contribute to the overall health of our planet. It is crucial to protect and plant more trees to ensure a cleaner and more sustainable future for generations to come.。

曝气及外加H2O2强化电芬顿法处理石化反渗透浓水

曝气及外加H2O2强化电芬顿法处理石化反渗透浓水

2017年第36卷第9期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·3523·化 工 进展曝气及外加H 2O 2强化电芬顿法处理石化反渗透浓水吴月1,2,3,孙宇维2,3,王岽4,张健2,3,何沛然2,3,李玉平1,张忠国2,3,曹宏斌1(1中国科学院过程工程研究所,北京 100190;2轻工业环境保护研究所,北京 100095;3中国轻工业节能节水与废水资源化重点实验室,北京 100095;4中国石油化工股份有限公司北京化工研究院,北京 102500) 摘要:以铁板为阳极、不锈钢板为阴极,采取外加H 2O 2的方式构建电芬顿体系,处理石化废水反渗透浓水,以降低投资,减少污泥量,解决阴极产生H 2O 2低效率的问题。

考察了H 2O 2投加量、pH 、电流密度,特别是通气条件等因素对废水处理效果的影响。

研究发现,曝气可有效强化电芬顿过程,显著提高有机物去除率,改善污泥沉降效果。

在H 2O 2投加浓度150mg/L 、pH=4.0、电流密度为10mA/cm 2、空气曝气量为120L/h 的条件下,反应仅10min ,COD 去除率即可达57.1%,继续反应至60min ,COD 去除率最大可达66.7%,出水COD <20mg/L ,满足北京市《水污染物综合排放标准》(DB 11/307—2013)中A 类排放限值。

该电芬顿法在短时间内即可高效处理石化废水反渗透浓水,污染物去除率显著高于相关研究结果,具有广阔的应用前景。

关键词:电芬顿;反渗透浓水;高级氧化;曝气;石化废水中图分类号:X742 文献标志码:A 文章编号:1000–6613(2017)09–3523–08 DOI :10.16085/j.issn.1000-6613.2017-0165Enhanced treatment of petrochemical reverse osmosis concentrate by anelectro-Fenton process with dosing H 2O 2 and aerationWU Yue 1,2,3,SUN Yuwei 2,3,WANG Dong 4,ZHANG Jian 2,3,HE Peiran 2,3,LI Yuping 1,ZHANG Zhongguo 2,3,CAO Hongbin 1(1Institute of Process Engineering ,Chinese Academy of Sciences ,Beijing 100190,China ;2Environmental Protection Research Institute of Light Industry ,Beijing 100095,China ;3Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery (Environmental Protection Research Institute of Light Industry ),China National Light Industry ,Beijing 100095,China ;4SINOPEC Beijing Research Institute of Chemical Industry ,Beijing 102500,China )Abstract :To reduce investment and sludge volume and to solve the problem of low production rate of H 2O 2 on cathode ,an electro-Fenton system using iron and stainless steel sheets as anode and cathode respectively was established for treating reverse osmosis concentrate of petrochemical wastewater. Theeffects of H 2O 2 concentration ,pH ,current density ,and aeration conditions on treatment efficiency were investigated. The results showed that aeration could effectively enhance the electro-Fenton process ,improve the removal of organic matter ,and significantly increase sludge settling velocity. The optimum conditions were H 2O 2 dosage of 150 mg/L ,pH of 4,current intensity of 10mA/cm 2,and air flux of 120L/h. After reaction of 10 min the removal of COD Cr was up to 57.1%. Then at the reaction time of 60 min ,the removal rate of COD was 66.7%,with the effluent COD <20mg/L ,and the main indicators of the treated water satisfied the class B emission limits of “Integrated Discharge Standard of容为高浓度难降解废水深度处理技术。

光催化甲苯氧化活化

光催化甲苯氧化活化

光催化甲苯氧化活化英文回答:Photocatalytic Oxidation of Toluene Activation.Photocatalytic oxidation (PCO) is a promising advanced oxidation process (AOP) for the removal of organic pollutants from water and air. In PCO, a semiconductor photocatalyst (e.g., TiO2, ZnO, CdS) is activated by light, generating reactive oxygen species (ROS) that can oxidize and mineralize organic pollutants.Toluene is a volatile organic compound (VOC) that is commonly found in industrial effluents and air emissions. Toluene can be harmful to human health, even at low concentrations. PCO is a promising technology for the removal of toluene from the environment.The photocatalytic oxidation of toluene has been extensively studied. The following factors have been foundto influence the photocatalytic oxidation of toluene:Light intensity: The rate of photocatalytic oxidation increases with increasing light intensity.Photocatalyst: The type of photocatalyst used can significantly affect the rate of photocatalytic oxidation. TiO2 is the most commonly used photocatalyst for the oxidation of toluene.Toluene concentration: The rate of photocatalytic oxidation decreases with increasing toluene concentration.pH: The pH of the solution can affect the rate of photocatalytic oxidation. The optimum pH for the photocatalytic oxidation of toluene is typically between 7 and 9.Temperature: The rate of photocatalytic oxidation increases with increasing temperature.Oxygen: Oxygen is required for the photocatalyticoxidation of toluene. The rate of photocatalytic oxidation decreases with decreasing oxygen concentration.The photocatalytic oxidation of toluene can be used to achieve complete mineralization of the toluene molecule.The products of the photocatalytic oxidation of toluene include CO2, H2O, and inorganic anions (e.g., NO3-, SO42-).PCO is a promising technology for the removal oftoluene from the environment. However, there are still some challenges that need to be overcome before PCO can bewidely used for the treatment of toluene-contaminated water and air. These challenges include the low efficiency of PCO, the high cost of photocatalysts, and the potential for the formation of harmful byproducts.中文回答:甲苯光催化氧化活化。

厌氧接触氧化法的工艺流程

厌氧接触氧化法的工艺流程

厌氧接触氧化法的工艺流程Anaerobic contact oxidation (ACO) process is a widely used technology for wastewater treatment. It involves the use of anaerobic bacteria to degrade organic pollutants in wastewater under conditions where oxygen is limited. This process is effective in removing organic matter, nutrients, and toxic substances from wastewater, resulting in cleaner effluent that meets environmental discharge standards.厌氧接触氧化法是一种广泛应用于废水处理的技术。

它利用厌氧细菌在氧气限制条件下降解废水中的有机污染物。

这个过程有效地去除了废水中的有机物、营养物质和有毒物质,产生了符合环境排放标准的清洁废水。

One of the key advantages of the anaerobic contact oxidation process is its ability to operate at low energy consumption levels. This means that it is a cost-effective solution for wastewater treatment, particularly for industries looking to reduce their operational costs. By harnessing the power of anaerobic bacteria, the ACO process can break down organic pollutants without the need for aeration, saving on energy costs.厌氧接触氧化法的一个关键优势是其在低能耗水平下运行的能力。

化学氧化法英文

化学氧化法英文

化学氧化法英文Chemical oxidation is a fundamental process in chemistry that involves the transfer of electrons from one substance to another. This process plays a crucial role in various industries, environmental remediation, and even in our daily lives. In this essay, we will explore the principles of chemical oxidation, its applications, and the various methods employed to harness its power.At its core, chemical oxidation is a redox (reduction-oxidation) reaction, where one substance acts as an oxidizing agent, accepting electrons, while another substance acts as a reducing agent, donating electrons. This electron transfer can result in the formation of new compounds, the breakdown of existing ones, or the generation of energy. The strength of an oxidizing agent is determined by its ability to accept electrons, which is typically measured by its oxidation-reduction potential (ORP) or reduction potential.One of the primary applications of chemical oxidation is in the field of water and wastewater treatment. The removal of organiccontaminants, heavy metals, and pathogens from water sources is a critical challenge faced by many communities worldwide. Chemical oxidation processes, such as chlorination, ozonation, and advanced oxidation processes (AOPs), have proven to be effective in addressing these issues. Chlorine, for example, is a widely used oxidizing agent that can disinfect water by destroying the cell walls of microorganisms. Ozone, on the other hand, is a powerful oxidant that can break down complex organic compounds, while AOPs, which combine oxidants like hydrogen peroxide and ultraviolet light, can generate highly reactive hydroxyl radicals that can effectively mineralize a wide range of pollutants.Another significant application of chemical oxidation is in the field of environmental remediation. Contaminated soil and groundwater, often resulting from industrial activities or accidental spills, pose a serious threat to human health and the environment. Chemical oxidation techniques, such as in-situ chemical oxidation (ISCO), have been employed to treat these contaminated sites. In ISCO, strong oxidizing agents, like potassium permanganate or hydrogen peroxide, are injected into the subsurface to react with and break down the contaminants, transforming them into less harmful or more easily removable compounds.In the medical and pharmaceutical industries, chemical oxidation plays a crucial role in the production and purification of variousdrugs and medical compounds. Oxidation reactions are used to synthesize active pharmaceutical ingredients, as well as to remove impurities and byproducts during the manufacturing process. Additionally, oxidizing agents like hydrogen peroxide and sodium hypochlorite are widely used as disinfectants and sterilizing agents in healthcare settings.The food and beverage industry also benefits from the applications of chemical oxidation. Oxidation processes are used to preserve food, enhance flavors, and improve the shelf life of various products. For instance, the oxidation of fats and oils can lead to the formation of desirable flavors and aromas in baked goods and fried foods. Conversely, the controlled oxidation of certain compounds can be used to remove undesirable off-flavors or to stabilize the color and appearance of food products.In the field of energy production, chemical oxidation plays a vital role in the generation of electricity. Fuel cells, which convert the chemical energy of a fuel (such as hydrogen or methanol) directly into electrical energy, rely on the controlled oxidation of the fuel at the anode to produce a flow of electrons. This process is highly efficient and environmentally friendly, making it a promising technology for the future of energy production.Despite the numerous benefits of chemical oxidation, it is importantto recognize that the process can also have negative environmental impacts if not managed properly. The improper disposal or release of oxidizing agents, such as chlorine or hydrogen peroxide, can harm aquatic ecosystems and pose risks to human health. Therefore, it is crucial to adhere to strict regulations and safety protocols when handling and utilizing chemical oxidation technologies.In conclusion, chemical oxidation is a versatile and powerful process that has found applications in a wide range of industries, from water treatment to energy production. By understanding the principles of electron transfer and the various oxidizing agents available, scientists and engineers can harness the power of chemical oxidation to address complex challenges and develop innovative solutions. As our understanding of this process continues to evolve, we can expect to see even more exciting advancements in the field of chemical oxidation and its impact on our lives.。

219385451_硼

219385451_硼

DOI :10.19965/ki.iwt.2022-0720第 43 卷第 6 期2023年 6 月Vol.43 No.6Jun.,2023工业水处理Industrial Water Treatment 硼/Fe 0/H 2O 2体系对高盐废水中有机污染物的去除梁丽琛1,许彦平2,潘易3,李子豪4,许元顺1,王丹1,潘玉伟4(1.生态环境部南京环境科学研究所,江苏南京 210042;2.中国石油天然气股份有限公司广东石化分公司,广东揭阳 515200;3.丽水市土壤与固体废物管理中心,浙江丽水 323000;4.南京林业大学生物与环境学院,江苏南京 210037)[ 摘要 ] 传统Fenton 氧化法对高盐废水中有机污染物的处理效果不理想。

为提高高盐废水中有机污染物的处理效果,在传统Fenton 法基础上选用廉价、安全易得的Fe 0代替Fe 2+参与反应,并创新性地加入硼(B )作为还原剂,以促进Fenton 体系对高盐废水中有机污染物(柠檬黄)的降解。

结果表明,B/Fe 0/H 2O 2体系对高盐废水中柠檬黄有着很好的去除效果,在盐(Na 2SO 4)浓度为0.2 mol/L 、反应60 min 时,柠檬黄的最终降解率达到100%,B 、Fe 0以及H 2O 2的最佳投加量分别为0.2 g/L 、0.02 g/L 和1 mmol/L 。

B/Fe 0/H 2O 2体系对盐(Na 2SO 4)浓度在0~0.4 mol/L 的废水都有着很好的柠檬黄降解率,且在废水中含有其他不同阴离子组合时仍具有很好的降解效果。

6次循环后,反应30 min 时B/Fe 0/H 2O 2体系对柠檬黄的去除率仍然可以达到87.0%,说明B/Fe 0/H 2O 2体系具有较好的循环性能。

B 的投加促进了Fe 3+/Fe 2+循环,使得Fe 2+能不断催化H 2O 2产生·OH ,从而提升对高盐废水中有机物的去除效率。

亚铁活化及铁碳强化过硫酸钠氧化法修复模拟机油污染土壤

亚铁活化及铁碳强化过硫酸钠氧化法修复模拟机油污染土壤

亚铁活化及铁碳强化过硫酸钠氧化法修复模拟机油污染土壤高焕方;何炉杰;王东;郑佳;龙海波;李亚玲【摘要】分别采用传统的Fe2+活化过硫酸钠(Na2S2O8)氧化和铁碳强化Na2S2O8氧化两种方法修复模拟机油污染土壤.实验结果表明:对于传统Fe2+-Na2S2O8体系,在Na2S2O8投加量为3.0%(w)、FeSO4·7H2O投加量为0.6%(w)的优化条件下,土壤中总石油烃(TPH)的去除率仅为33.12%;而对于Fe0-C-Na2S2O8体系,在Na2S2O8投加量为1.0%(w)、还原铁粉和活性炭的投加量均为0.1%(w)的优化条件下,土壤中TPH的去除率为42.99%;Fe0-C-Na2S2O8体系较Fe2+-Na2S2O8体系对土壤具有更好的修复效果,且Na2S2O8的投加量减少了2/3.此外,Fe0-C-Na2S2O8体系较Fe2+-Na2S2O8体系对土壤pH的影响小,在实际应用中可适当提高铁粉的投加量来减小Na2S2O8对土壤pH的影响.【期刊名称】《化工环保》【年(卷),期】2019(039)001【总页数】5页(P55-59)【关键词】铁碳;过硫酸钠;亚铁;机油;土壤修复【作者】高焕方;何炉杰;王东;郑佳;龙海波;李亚玲【作者单位】重庆理工大学化学化工学院,重庆 400054;重庆理工大学化学化工学院,重庆 400054;重庆市固体废物管理中心,重庆 401147;重庆市固体废物管理中心,重庆 401147;重庆理工大学化学化工学院,重庆 400054;重庆理工大学化学化工学院,重庆 400054【正文语种】中文【中图分类】X53机油是润滑油的一种,具有润滑、冷却、密封等作用[1]。

随着我国军工、机械、汽车行业的快速发展,对润滑油的需求不断增加。

润滑油使用一段时间后需更换,废弃润滑油也随之产生[2]。

受成本、技术等因素制约,我国对废弃润滑油的回收利用率较低,大部分废弃润滑油被直接排放、泄漏到土壤环境中。

紫外激活过硫酸盐降解水中双氯芬酸钠

紫外激活过硫酸盐降解水中双氯芬酸钠

紫外激活过硫酸盐降解水中双氯芬酸钠郭佑罗;高乃云;关小红;朱思瑞;鲁仙;安娜【摘要】为解决传统工艺难以有效去除水中有机污染物的问题,采用紫外激活过硫酸盐工艺去除水中典型PPCPs类物质双氯芬酸钠,考察双氯芬酸钠初始质量浓度、过硫酸盐(PS)投加量、溶液pH、阴离子质量浓度和腐殖酸(HA)投加量多种因素对紫外(UV)激活PS去除双氯芬酸钠的影响,并分析反应后中间产物可能的降解路径.结果表明:该工艺降解双氯芬酸钠与准一级动力学模型相符(R2≥0.95),准一级反应速率常数随双氯芬酸钠初始质量浓度增加而减小,但随PS投加量的增加双氯芬酸钠的降解速率快速增大.不同的pH环境对双氯芬酸钠的降解有一定影响,溶液pH从酸性到碱性的过程中,反应速率常数的总体趋势增大.溶液中的阴离子会对系统降解双氯芬酸钠产生影响,碳酸氢根离子总体呈促进作用,氯离子呈抑制作用.HA的存在对系统去除双氯芬酸钠有较强抑制作用.SO4-·可能与双氯芬酸钠分子发生去羧基、去羟基等反应,主要生成N-苯基-2,6-二氯苯胺、1-(2,6-二氯苯基)-2吲哚酮、2-二氢吲哚酮及醛类物质等中间产物.%To solve the deficiency of organic pollutants removal in traditional technologies, UV/persulfate ( PS ) process was employed to remove diclofenac, one of the typical pharmaceuticals and personal care products. The effect of various factors including initial diclofenac concentration, persulfate dosage, pH, inorganic anions and humic acidon the diclofenac degradation by UV/PS process was investigated. The proposed degradation pathways of intermediate products after reaction were also analyzed. The results showed that diclofenac degradation fitted the pseudo-first-order kinetics w ell (R2≥0.95). With the increase of the initial diclofenac concentration, the pseudo-first-order-constant gradually decreased. And the degradation rate of diclofenac quickly increased with the increase of the PS dosage. Different pH environment influenced the degradation rate of diclofenac to a certain extent. For the pH ranging from acidic to alkaline conditions, the degradation rate of diclofenac has an obvious increase. Inorganic anions in the solution had different degree of impact on the diclofenac degradation. The existence of bicarbonate ion accelerated the degradation but chloride ions had an adverse effect. Additionally, the existence of humic acid had an inhibition effect on the removal of diclofenac. Sulfate radicals activated by UV may react with diclofenac molecules, thereby removing carboxyl or hydroxyl herein. The main intermediate products were 2, 6-dichlorodiphenylamine, 1-(2, 6-dichlorophenyl)-2-indolinone, 2-indolinone and aldehydes or something.【期刊名称】《哈尔滨工业大学学报》【年(卷),期】2017(049)008【总页数】6页(P65-70)【关键词】双氯芬酸钠;动力学;过硫酸盐;速率常数;降解路径【作者】郭佑罗;高乃云;关小红;朱思瑞;鲁仙;安娜【作者单位】污染控制与资源化研究国家重点试验室(同济大学) ,上海200092;污染控制与资源化研究国家重点试验室(同济大学) ,上海200092;污染控制与资源化研究国家重点试验室(同济大学) ,上海200092;污染控制与资源化研究国家重点试验室(同济大学) ,上海200092;污染控制与资源化研究国家重点试验室(同济大学) ,上海200092;污染控制与资源化研究国家重点试验室(同济大学) ,上海200092【正文语种】中文【中图分类】TU991药物与个人护理用品 (简称PPCPs) 广泛应用于人类和兽类医药、农业及水产养殖业中. 其通过医疗废水与生活污水处理厂排放的出水到达生态环境,并以垃圾渗滤液、制造过程残余等方式进入环境,导致地表水、地下水、饮用水中多次检测出PPCPs母体化合物及其代谢产物[1].双氯芬酸钠是一种典型的PPCP类物质,尽管毒性较低,但当其与其他药物共存时产生耦合作用,毒性将被增强.然而污水处理厂和自来水厂常规处理工艺并不能有效地去除双氯芬酸钠,且传统生物处理技术与化学氧化技术降解可生化性差、相对分子质量较大、难氧化的有机物时较困难且去除效率低,难以满足要求,所以,研究双氯芬酸钠在高级氧化工艺中的降解和转化对保障水质安全具有重要的意义.1987 年Glaze等[2]将可以产生大量羟基自由基从而净化水质的水处理技术定义为高级氧化技术 (advanced oxidation process, AOPs),主要包括 Fenton法、湿式氧化法、超临界水法、电解氧化法、O3氧化法与光化学氧化法等.近年来,利用激活过硫酸盐的高级氧化技术降解难降解有机物成为一个新的研究热点.紫外光(UV)辐照作为饮用水消毒技术,实践证明为一种高效且相对绿色的工艺.而基于 UV 的高级氧化水处理技术已经被广泛运用于有机污染物去除的研究和运用中.本文利用UV激活过硫酸盐对水环境中的双氯芬酸钠进行降解,从不同PS投量、底物质量浓度、溶液pH、水中阴离子质量浓度和腐植酸投加量方面对反应效果进行试验研究,为UV活化过硫酸盐降解水环境中PPCPs类有机污染物的应用提供技术理论支撑.1.1 实剂与装置双氯芬酸钠(纯度≥98%,HPLC级别) 购自aladdin公司;HPLC所用流动相试剂乙醇(EtOH,纯度≥99.7%)、乙腈(色谱纯)和甲酸(色谱纯)购自美国Sigma-Aldrich公司;腐植酸(纯度≥99.5%)、过硫酸盐(纯度≥99.5%)、碳酸氢钠、氯化钠、磷酸氢二钠和磷酸二氢钠均购自上海国药集团化学试剂有限公司;如无特殊说明,试验中涉及的其他化学物质均为分析纯.试验中所有溶液均使用超纯水配制(Milli-Q净水系统制备,电导率为18 MΩ·cm).1.2 实验方法在考察溶液pH对该工艺降解双氯芬酸钠影响的试验中,溶液pH变化范围为3至11,通过磷酸氢二钠和磷酸二氢钠调节pH,研究其他因素对反应的影响时pH均保持初始pH不作调整.本试验以2个直径为90 mm的玻璃皿为反应容器,紫外光源(主波长为254 nm)利用功率为75 W的低压汞灯提供.为保证反应时紫外光照射强度稳定,试验开始前将紫外辐照装置开启预热60 min.试验时向反应容器中加入100 mL一定质量浓度的双氯芬酸钠溶液,在一定量的过硫酸盐溶液加入反应器时反应开始,当反应进行至5、10、20、30、45和60 min时利用注射器取样1 mL,每次预先在棕色的液相小瓶中加入50 μL乙醇作为淬灭剂终止反应继续进行.1.3 分析方法采用 HPLC测定双氯芬酸钠含量,UV检测器检测波长为230 nm,流动相采用乙腈与甲酸溶液(质量分数为0.10%),两者体积比为60∶40,流动速率1.0 mL/min,柱温为35 ℃.高效色谱仪配UV检测器(VWD-FLD),色谱柱采用岛津公司产品Symmol/Letry C18色谱柱(250 mm×4. 6 mm×5 μm).LC-MS/MS分析产物过程中HPLC条件:流动相为乙腈和含0.1%甲酸溶液,流动相流速为0.2 mL/min,柱温35 ℃,进样体积10 μL.质谱的分析条件:采用全扫模式对双氯芬酸钠的降解产物进行检测分析,扫描范围的m/z为50~500,质谱电离源为加热电喷雾电离正源(ESI+).采用二级碰撞解离模式(CID),载气为高纯氮气,碰撞气为氩气(体积分数为99.999%),碰撞温度为300 ℃.高效液相色谱串联质谱(LC-MS/MS),配有MGIII C18 色谱柱(100 mm×2.1 mm×5 μm).试验中涉及的所有物质的质量使用电子天平(FA1004)进行称量;溶液的pH与温度均使用梅特勒-托利多(Mettler Toledo)pH计测定.1.4 反应动力学在紫外光照射下,PS在水溶液中会被激活产生可迅速将大多数目标污染物降解使其矿化成二氧化碳、水和无机酸等的活性基团SO4-· [3-4],并且引发一系列的链式反应生成多种活性物质[5-7].反应式如下:S2O82-+hv2SO4-· ,SO4-·+SO4-·S2O82-,SO4-·+S2O82-SO42-+S2O8-·,SO4-·+H2O·OH+H++SO42-,SO4-·+·OHHSO5- ,SO4-·+HSO5-SO5-·+HSO4-,·OH+HSO5-SO5-·+H2O ,2SO5-·S2O82-+O2,·OH+S2O82-S2O8-·+OH- .在UV激活过硫酸盐过程中,各种活性物质都会与目标污染物发生反应,使得动力学反应较为复杂,但其他活性物质与SO4-·相比含量较少,可忽略不计,从而利用拟一级动力学描述.底物质量浓度ρ的变化利用准一级动力学反应式-dρ/dt=kobs·ρ来表示,在紫外活化PS过程中,ρ表示反应中任意时刻双氯芬酸钠的质量浓度,ρ0表示双氯芬酸钠初始的质量浓度,kobs为拟一级速率常数(min-1),可由下式描述:-dρ/dt=kobs·ρ 或-ln(ρ/ρ0)=kobs·t.2.1 双氯芬酸钠初始质量浓度的影响反应控制PS投加量为1.0 mmol/L,反应底物质量浓度分别为2.5、5.0、10.0和20.0 mg/L时,对UV激活PS降解双氯芬酸钠的影响如图1、2所示.图中R 2为相关系数,kobs为准一级反应速率常数.研究发现,在不同的目标污染物质量浓度下,PS投加量为1.0 mmol/L时,所有反应均符合准一级动力学模型(R 2≥0.95).当双氯芬酸钠初始质量浓度为2.5、5.0、10.0和20.0 mg/L时,该反应60 min时的去除率分别为100% (45 min时双氯芬酸钠质量浓度已低于仪器检出限)、98.5%、85.8%和70.6%.随着底物初始质量浓度递增,去除率逐渐减小.与此同时,该反应的准一级反应速率常数也从0.126 3 min-1减小到0.022 2 min-1.这主要是由于过硫酸盐投加量和UV辐照强度相同,从而产生了几乎等量的SO4-·,但双氯芬酸钠初始质量浓度的降低使得单位体积内的双氯芬酸钠分子数量减少,所以单个双氯芬酸钠分子接触到的SO4-·数量越多,进而使得该反应去除率随着底物质量浓度的降低而增加.高乃云等[8]的研究中也报道了类似结果,在 UV 激发条件下,S2O82-产生了SO4-·并和底物安替比林进行反应.2.2 过硫酸盐投加量的影响反应控制双氯芬酸钠质量浓度为10.0 mg/L,向反应液中加入不同物质量的过硫酸盐使得过硫酸盐投加量分别为0.25、0.50、1.00和2.00 mmol/L.过硫酸盐投加量对UV激活过硫酸盐降解双氯芬酸钠的影响如图3所示.可以看出,不同的过硫酸盐投加量下,双氯芬酸钠质量浓度为10.0 mg/L时,所有反应均符合准一级动力学模型.随着过硫酸盐投加量的增加反应速率常数与去除率均逐步增加.当过硫酸盐投加量由0.25 mmol/L增加到2.00 mmol/L时,该反应的反应速率常数由0.026 7增加到0.059 9 min-1,去除率由78.1%增加到97.6%.这主要是因为随着氧化剂过硫酸盐投加量的增加系统中产生了更多的SO4-·自由基,从而更有效地降解了目标污染物.同时,通过拟合反应速率常数与氧化剂投加量发现,过硫酸盐投加量与反应速率常数呈线性关系(R 2=0.95),结果如图4所示.Zhang等[9]在研究UV/H2O2工艺对17α-乙炔基雌二醇的降解中也发现底物的降解速率常数和氧化剂投加量符合线性关系.2.3 溶液pH的影响反应控制双氯芬酸钠质量浓度为10.0 mg/L,过硫酸盐投加量为1.0 mmol/L,利用磷酸氢二钠和磷酸二氢钠缓冲盐调节溶液pH分别为3.0、5.0、7.0、9.0和11.0.UV激活过硫酸盐降解双氯芬酸钠体系去除效果随pH变化见图5、6.由图5可知,pH在3.0至11.0的范围内变化时,UV激活过硫酸盐去除双氯芬酸钠的反应均符合准一级在动力学模型(R 2≥0.95).由图6可知,当反应时间为60 min时,随着pH从3.0增加到5.0,反应中kobs值从0.033 2 min-1减小到0.031 0 min-1,但在pH逐步从5.0增至7.0、9.0和11.0的过程中,kobs值随之逐渐增加到0.036 5、0.037 6和0.042 0 min-1.试验同时表明,该工艺对双氯芬酸钠的降解效率也呈现先减小再增大的趋势,去除率分别为84.7%、82.6%、87.3%、88.3%和90.4%.显然,在60 min后利用UV激活过硫酸盐在不同的pH 条件下都可以有效降解水体中的双氯芬酸钠.并且该反应总体的趋势是随pH的增加去除率与反应速率常数逐步增大,在pH=5.0时的小幅下降也许是因为试验或仪器检测误差所致.随着pH的升高,溶液碱性增强,双氯芬酸钠降解速率增大的主要原因为:pH越高溶液碱性越强,过硫酸盐会发生碱激活从而生成一定量的硫酸根自由基[10];在氢氧根存在条件下,硫酸根自由基会和氢氧根反应生成羟基自由基,而羟基自由基具有比硫酸根自由基更高的氧化还原电位(E(·OH)=2.80 V),因此,对底物的去除效率更高[11].2.4 腐殖酸的影响在实际水体中存在有各种有机物,对目标污染物的降解去除产生重要影响.因此,在溶液中投加一定量的腐殖酸模拟实际水体对研究该高级氧化技术具有重要意义.在双氯芬酸钠初始质量浓度为10.0 mg/L、过硫酸盐投加量为1.0 mmol/L的条件下,考察当溶液中腐殖酸质量浓度分别为0、5.0、10.0、20.0和40.0 mg/L时UV/PS工艺对双氯芬酸钠的降解情况.如图7、8所示,UV激活过硫酸盐降解双氯芬酸钠与准一级动力学模型相符.该工艺降解双氯芬酸钠的反应速率常数随腐殖酸投加量的增加不断减小.在腐殖酸投加量为0、5.0、10.0、20.0和40.0 mg/L时,对应的反应速率常数为0.033 6、0.023 9、0.017 3、0.015 7和0.011 3 min-1.同时, 对双氯芬酸钠的去除率也随腐殖酸投加量从0 mg/L增加到40.0 mg/L而由85.8%降低至47.0%.研究结果表明,腐殖酸会和目标污染物发生反应,如吸附、催化及竞争等,从而影响底物的降解[12].显见,在该反应中主要是因为腐殖酸与双氯芬酸钠竞争溶液中产生的SO4-·,并且随着腐殖酸投加量的加大其竞争能力增强,从而导致双氯芬酸钠去除率的迅速降低.Roshani等[13]在研究电子射辐照激活过硫酸盐降解苯并三氮唑研究中也发现,腐殖酸的存在会明显抑制对目标污染物的降解反应.2.5 溶液中阴离子的影响自然水体中广泛存在各种阴离子,其对高级氧化技术去除污染物有一定影响,因此,选取两种在水体中最常见的氯离子与碳酸氢根离子作为影响因素,研究不同的氯离子与碳酸氢根离子质量浓度对UV激活过硫酸盐降解双氯芬酸钠的影响.反应控制双氯芬酸钠质量浓度为10.0 mg/L,过硫酸盐投加量为1.0 mmol/L,将一定物质量的NaCl与NaHCO3投加至溶液中使得两种阴离子浓度分别为0、25.0、50.0、100.0和200.0 mmol/L.试验结果如表1所示.由表1可知:无论是在溶液中加入氯离子还是碳酸氢根离子,随着阴离子浓度的升高,双氯芬酸钠的去除率与kobs都呈现比较复杂的变化.对于加入氯离子,其对UV激活过硫酸盐降解双氯芬酸钠主要起到抑制作用,试验中加入的氯离子浓度范围内去除率下降幅度小于6%.双氯芬酸钠降解被抑制主要可能是因为氯离子与双氯芬酸钠竞争硫酸根自由基,使得与双氯芬酸钠反应的硫酸根数量减少;并且氯离子与硫酸根自由基反应产生的氯自由基氧化还原电位又明显低于硫酸根自由基,导致了降解双氯芬酸钠的反应速率常数与去除率降低[14].Anipsitakis等[15]在研究中也发现了类似的现象.而碳酸氢根离子对该系统降解双氯芬酸钠总体起促进作用,在碳酸氢根离子浓度为25.0 mmol/L时达到最大,此时去除率为91.8%,kobs达0.043 3 min-1.但随着碳酸氢根离子浓度的进一步增加至200.0 mmol/L,kobs与去除率分别逐步下降至0.037 3 min-1与87.0%.导致这一现象也许是因为一定量碳酸氢根离子的加入使得溶液pH升高,产生碱激活从而促进反应的进行;但随着碳酸氢根离子浓度的进一步增加,过高的离子强度降低了溶液中自由基等活性物质的活性,从而去除效果有了小幅的下降[16].2.6 降解产物分析之前的文献报道主要是围绕氯氧化、臭氧氧化、辐照降解等方式,分析双氯芬酸钠的降解产物与中间降解过程,并未涉及硫酸根自由基对于双氯芬酸钠降解产物的分析.本研究利用LC-MS/MS分析结果与相关文献报道,得出了紫外激活过硫酸盐降解双氯芬酸钠过程中产生的中间产物以及可能的降解路径.结果如图9所示,各物质名称见表2.由图9可知,UV激活过硫酸盐降解双氯芬酸钠系统中检测出9种中间产物,主要有1- (2, 6-二氯苯基) -2吲哚酮、N-苯基-2, 6-二氯苯胺、2-二氢吲哚酮及醛类物质等.UV激活水中的过硫酸盐产生大量SO4-·及其他活性基团,这些活性基团将快速与目标污染物发生加成、取代及羧化等反应.双氯芬酸钠在SO4-·的作用下,发生去羧基反应与去羟基反应分别生成产物P1, P2.刘群等[17]在研究辐照降解水中双氯芬酸钠时也发现了同样的中间产物P1, P2.产物P3是底物在SO4-·等活性物质作用下脱水或在P2产物的基础上脱氢生成的吲哚酮类物质.Hartmann等[18]在超声降解水中双氯芬酸的研究中也发现了产物P3.产物P4可能是产物P1经过脱甲基反应生成的,而产物P5、P6是产物P1发生脱氢反应形成的.当P3、P4等中间产物中C—N键在SO4-·等活性基团的作用下断裂,可能会生成P7、P8和P9等产物.1)UV激活过硫酸盐去除双氯芬酸钠与一级反应动力学规律相符,随着双氯芬酸钠初始质量浓度的增加,反应速率常数逐步减小,并且双氯芬酸钠的去除率在一定的范围内随PS投加量的增加而增大.2)溶液不同的pH对该工艺降解双氯芬酸钠具有一定影响,在pH从酸性到碱性的过程中,反应速率常数的总体趋势是逐步增大的.3)UV活化过硫酸盐去除双氯芬酸钠时,溶液中存在的腐殖酸对反应具有抑制作用,且随腐殖酸投加量的加大,对反应的抑制作用愈加明显.4)溶液中的氯离子和碳酸氢根离子都会对UV激活过硫酸盐工艺降解双氯芬酸钠产生影响,碳酸氢根离子总体呈促进作用,而氯离子呈抑制作用.5)SO4-·与双氯芬酸钠分子发生去羧基、去甲基、脱水与羧化等反应,主要生成1- (2, 6-二氯苯基) -2吲哚酮、N-苯基-2, 6-二氯苯胺、2-二氢吲哚酮及醛类物质等中间产物.【相关文献】[1] LAVILLE N, AIT-AISSA S, GOMEZ E, et al. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes [J]. Toxicology, 2004, 196 (1/2): 41-55.[2] GLAZE W H, KANG J W, CHAPIN D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation [J]. Ozone: Science & Engineering, 1987, 9 (4): 335-352.[3] GU X, LU S, QIU Z, et al. Photodegradation performance of 1,1,1-trichloroethane in aqueous solution: In the presence and absence of persulfate [J]. Chemical EngineeringJournal, 2013, 215/216: 29-35.[4] GAO Y, GAO N, DENG Y, et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water [J]. Chemical Engineering Journal, 2012, 195/196: 248-253.[5] LIANG C J, HUANG S C. Kinetic model for sulfate/hydroxyl radical oxidation of methylene blue in a thermally-activated persulfate system at various pH and temperatures [J]. Sustainable Environment Research, 2012, 22 (4): 199-208.[6] GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system [J]. Environment Science & Technology, 2011, 45 (21): 9308-9314.[7] WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products [J]. Environmental Science & Technology, 2006, 41 (3): 1010-1015.[8] 高乃云, 肖雨亮, 朱延平, 等. UV和UV/过硫酸盐工艺降解安替比林的对比研究 [J]. 中南大学学报, 2014 (9): 3308-3314.GAO Naiyun, XIAO Yuliang, ZHU Yanping, et al. Comparative study of antipyrine degradation by UV and UV/persulfate system [J]. Journal of Central South University, 2014 (9): 3308-3314.[9] ZHANG Z, FENG Y, LIU Y, et al. Kinetic degradation model and estrogenicity changes of EE2 (17α-ethinylestradiol) in aqueous solution by UV and UV/H2O2 technology [J]. Journal of Hazardous Materials, 2010, 181 (1/2/3): 1127-1133.[10]FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate [J]. Environment Science & Technology, 2010, 44 (16): 6423-6428.[11]SANTIAGO E, JAIME G, SANDRA C, et al. Comparison of different advanced oxidation processes for phenol degradation [J]. Water Research, 2002, 36 (4): 1034-1042.[12]LATIFOGLU A, GUROL M D. The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes [J]. Water Research, 2003, 37 (8): 1879-1889.[13]ROSHANI B, KARPEL V, LEITNER N. Effect of persulfate on the oxidation of benzotriazole and humic acid by e-beam irradiation [J]. Journal of Hazardous Materials, 2011, 190 (1/2/3): 403-408.[14]郭佑罗, 关小红, 高乃云, 等. 紫外/过硫酸盐工艺降解水中氯贝酸的研究 [J]. 中国环境科学, 2016, 36 (7): 2014-2019.GUO Youluo, GUAN Xiaohong, GAO Naiyun, et al. Kinetics of clofibric acid degradation by UV/persulfate system in aqueous solution [J]. China Environmental Science, 2016, 36 (7): 2014-2019.[15]ANIPSITAKIS G P, DIONYSIOU D D, GONZALEZ M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds, implications of chloride ions [J]. Environmental Science & Technology, 2005, 40 (3): 1000-1007.[16]HUANG K C, COUTTENYE R A, HOAG G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) [J]. Chomosphere, 2002, 49 (4): 413-420. [17]刘群, 郑正, 罗兴章, 等. 双氯芬酸钠水溶液的辐照降解 [J]. 环境化学, 2011, 30 (10): 1700-1704.LIU Qun, ZHENG Zheng, LUO Xingzhang, et al. Irradiation induced degradation of diclofenac in aqueous solution [J]. Environmental Chemistry, 2011, 30 (10): 1700-1704.[18]HARTMANN J, BARTELS P, MAU U, et al. Degradation of the drug diclofenac in water by sonolysis in presence of catalysts [J]. Chemosphere, 2008, 70 (3): 453-461.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Full Terms & Conditions of access and use can be found at/action/journalInformation?journalCode=tdwt20Download by: [Nanjing University Science & Technology]Date:28 September 2015, At: 01:06Desalination and Water TreatmentISSN: 1944-3994 (Print) 1944-3986 (Online) Journal homepage: /loi/tdwt20Removal of organic pollutants from red water by magnetic-activated cokePan Hu, Yihe Zhang, Kun Tong, Fangfang Wei, Qi An, Xinke Wang, Paul K. Chu & Fengzhu LvTo cite this article: Pan Hu, Yihe Zhang, Kun Tong, Fangfang Wei, Qi An, Xinke Wang,Paul K. Chu & Fengzhu Lv (2015) Removal of organic pollutants from red water by magnetic-activated coke, Desalination and Water Treatment, 54:10, 2710-2722, DOI:10.1080/19443994.2014.903204To link to this article:/10.1080/19443994.2014.903204Published online: 24 Mar 2014.Submit your article to this journalArticle views: 60View related articlesView Crossmark dataCiting articles: 2 View citing articlesRemoval of organic pollutants from red water by magnetic-activated cokePan Hu a ,Yihe Zhang a ,b ,*,Kun Tong a ,Fangfang Wei a ,Qi An a ,Xinke Wang a ,Paul K.Chu b ,Fengzhu Lv aaNational Laboratory of Mineral Materials,School of Materials Science and Technology,China University of Geosciences,Beijing,China,Tel./Fax:+861082323433;email:zyh@ bDepartment of Physics &Materials Science,City University of Hong Kong,Tat Chee Avenue,Kowloon,Hong Kong,China Received 3July 2013;Accepted 5March 2014A B S T R A C TA magnetic adsorbent,magnetic-activated coke (MAC),is incorporated with Fe 3O 4particles for removal of organic materials from 2,4,6-trinitrotoluene red water.The MAC is character-ized by N 2adsorption,Fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscope,and energy dispersive X-ray spectroscopy.Adsorption of organic pol-lutants is evaluated systematically by varying the adsorbent dosage,exposure time,temper-ature,pH,and dilution ratios of 2,4,6-trinitrotoluene red water.The equilibrium adsorption data can be better fitted with the Freundlich isotherm than Langmuir isotherm except at 343K.The adsorption kinetics follows a pseudo-second-order model and thermodynamic analysis indicates an endothermic and spontaneous adsorption process.The settling rate after adsorption suggests that the response of MAC under an external magnetic field is very fast.Keywords:Adsorption;Magnetic;Activated coke;TNT red water;Organic pollutants1.IntroductionTNT is an important explosive used in many fields [1].During production and assembly,a large amount of TNT wastewater is produced and if it is discharged without effective treatment,contamination of soil and underground water will pose health and environmen-tal hazards [2].Red water produced during purifica-tion of crude TNT by sodiumsulfite is dark red and contains hazardous dissolved dinitrotoluene sulfonates (mainly 2,4-dinitrotoluene-3-sulfonate and 2,4-dinitro-toluene-5-sulfonate),trinitrotoluene,nitrotoluene,dini-trotoluene,as well as other chemicals [3].Several methods are proposed to remove TNT and otherorganic species from wastewater,for example,adsorp-tion [4],incineration [5],vacuum distillation [6],deg-radation [7],catalytic destruction such as fenton oxidation [8],photocatalytic oxidation [9],advanced oxidation employing UV and hydrogenperoxide/ozone [10],as well as supercritical water oxidation [11].Adsorption is one of the commonly used methods but adsorbents can be expensive and so there is much research on developing more efficient and economical adsorbents to treat TNT red water.Activated coke (AC)[12],a common substitute for activated carbon is used because of the lower cost and availability [13–15],is pro-duced from natural carbonaceous materials like lignite,petroleum coke,wood,and other biomass.It is typically macro-and mesoporous with a small micropore volume*Corresponding author.1944-3994/1944-3986Ó2014Balaban Desalination Publications.All rightsreserved.Desalination and Water Treatment54(2015)2710–2722Maydoi:10.1080/19443994.2014.903204D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015[16]thus boding well for extraction of contaminants from liquids [17,18].AC has been utilized to extract organic pollutants from TNT red water but using 160g L −1AC,the relative removal of chemical oxygen demand (COD)is only 64.8%and adsorption efficiency is quite low [19].Hence,improvement is needed before the process becomes commercially viable.Magnetic adsorbents [20]have attracted more attention recently because of their capability to treat a large volume of wastewater in a short time.The aim of this study is to investigate the adsorption efficacy and related properties of magnetic-activated coke (MAC)from the perspective of TNT red water treat-ment.The synthesis of MAC and removal of organic chemicals from TNT red water under an external mag-netic field are illustrated in Fig.1.2.Experimental 2.1.MaterialsTNT red water supplied by Dongfang Chemical Corporation (Hubei Province,China)was dark red with complicated compositions and high COD.The water samples used in the experiments were diluted 1–100times with distilled water and Table 1shows the physical and chemical properties.The AC made from lignite was provided by Datang Yima Coke Plant (Henan Province,China).The price was only 0.5CNY kg −1and Table 2lists the physical properties.All the other reagents used in this study were analytical grade and distilled water was used to prepare the solutions.2.2.Preparation of nano-Fe 3O 40.4374g of FeCl 2·4H 2O,1.189g of FeCl 3·6H 2O,and 25mL of distilled water were added dropwise to anammonia solution,which was purged with nitrogen and agitated ultrasonically at 60˚C for 3h.Magnetic particles in the solution were obtained by magnetic separation.2.3.Preparation of MACThe magnetic particle and 100mL of distilled water were agitated ultrasonically at 60˚C for 1h in three neck round-bottom flask.10g of AC was then added to the solution gradually.It was stirred at 60˚C for 2h,filtered 3times,and dried at 100˚C.The adsorbents were used separately in the equilibrium isotherm experiments.2.4.Adsorption experimentsThe adsorption experiments were conducted using 2g of MAC as the adsorbent in a 100mL flask contain-ing 25mL of TNT red water.The bottles were shaken in a digital water bath oscillator at 150rpm.In order to determine the optimal adsorbent dosage,time,pH value,temperature,and concentration of TNT red water,experiments were performed systematically.The effects of pH were studied in the range of 1.0–14.0.The pH was adjusted using 0.1M NaOH and 0.1M HCl and measured by CLEAN water quality analyzers (pH 500pH/TEMP Meter).The effects of temperature on the MAC adsorption capacity were studied at 298,313,323,333,343,and 353±0.2K in TNT red water diluted 0–100times.The effects of the exposure time on the removal degree of COD were determined from 5to 360min in TNT red water diluted 30times.After equilibrium had been reached,the suspension was filtered rapidly and the filtrate was analyzed by a COD rapid detector withaFig.1.Synthesis of MAC and removal of organic pollutants from TNT red water under an external magnetic field.P.Hu et al./Desalination and Water Treatment 54(2015)2710–27222711D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015precision of ±5%to determine the adsorption efficiency.The relative removal of COD of the organic pollutants and q e (mg g −1)in the TNT red water adsorbed by MAC was calculated by Eqs.(1)and (2):Relative removal of COD ð%Þ¼COD o ÀCOD eCOD oÂ100%(1)q e ¼ðCOD o ÀCOD e ÞVW(2)where COD o (mg L −1)is the COD of the initial TNT red water and COD e is the COD of the TNT red water treated by the adsorbents until reaching equilibrium,respectively,V (L)is the volume of TNT red water,and W (g)is the adsorbent weight.At any time,the amount of COD absorbed,q t (mg g −1),by the MAC was calculated by a similar relationship based on Eq.(2).Fourier transform infrared spectra (FT-IR,PerkinElmer Spectrum 100),X-ray diffraction (XRD,Rigaku D/max-rA),scanning electron microscope (SEM,JSM-6301F),and energy dispersive X-ray spectroscopy (EDS)were performed to characterize the structure and morphologies of MAC and AC.The COD of red water was determined by a COD rapid detector (5B-6,Lian-Hua Tech.Co.,China).3.Results and discussion 3.1Characterization of MAC3.1.1.FT-IR of MACIn order to study the functional groups before and after magnetic modification of AC,FT-IR spectra areacquired.Fig.2shows the FT-IR spectra of the AC (Fig.2(a))and MAC (Fig.2(b)).The FT-IR spectrum of MAC shows new peaks.The peak at 3,436cm −1is assigned to O–H stretching indicating that the surface of the MAC particles is hydroxylated.The peaks at 1,446and 1,080cm −1can be attributed to the axial deformation vibrations of C–H bonds and C–O bonds,respectively [21].3.1.2.XRD and SEM of MACXRD and SEM were conducted to examine the sur-face morphology of AC,MAC,and MAC after adsorp-tion.The XRD patterns in Fig.3reveal the existence of iron oxide particles (Fe 3O 4)in MAC before and after adsorption.They have magnetic properties and can be used in magnetic separation.The SEM image of MACTable 1Properties of red water diluted 30times pH COD (mg L −1)Solid content (mg L −1)2,4-DNT-3-SO À3(mg L −1)2,4-DNT-5-SO À3(mg L −1)TNT (mg L −1)Turbidity Chromaticity 6.78855.2190018633050.363.2Reddish brown 1×30timesTable 2Properties of ACParticle size (mm)BET (m 2g −1)Pore volume (cm 3g −1)Aperture (um)Bulk density (gcm −3)Porosity (%)0.90–2.0439.70.271≤403.00.7045Fig.2.FTIR spectra:(a)AC and (b)MAC.2712P.Hu et al./Desalination and Water Treatment 54(2015)2710–2722D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015(Fig.4)shows that the MAC before adsorption had a porous and coarse surface (Fig.4(a)–(c)).There are many Fe 3O 4particles on the surface and in the chan-nel of MAC as revealed by EDS (Fig.4(c)).After adsorption,the porosity of the MAC (Fig.4(d)–(f))decreases or disappears because the surfaces and pores of MAC are covered by organic chemicals.How-ever,as shown in Figs.3and 4(f),the Fe 3O 4particles still exist on the MAC after adsorption as indicated by XRD and EDS.Hence,the MAC after adsorption is still magnetic.3.2.Effects of adsorbent dosage on extraction of pollutants In order to determine the optimal adsorbent dos-age,different values are studied at 298K for 3h in water diluted 30times.As shown in Fig.5,adsorp-tion of organic materials by AC and MAC reaches equilibrium when the dosage is 2g/25mL.The adsorption rate of MAC is obviously faster than that of AC and the relative removal of COD reaches 50.13and 74.41%,respectively.MAC possesses stronger adsorption ability than AC for organic pollutants and 2g/25mL is the experimentally determined optical dosage.3.3.Effects of exposure time and temperature on extraction of organic chemicalsFig.6shows the effects of the exposure time on adsorption of organic pollutants from TNT red water diluted 30times with a dosage of 2g/25mL between298and 353K.The adsorption rate increases quickly in the initial 30min and then does not change obvi-ously,finally it reaches equilibrium after 30min.A similar phenomenon has been reported for extraction of organic pollutants from TNT red water using AC and bamboo charcoal [22].In this study,the relative removal of COD on MAC can reach 84.89%instead of 45%on AC at a dosage of 2g/25mL.The results indi-cate that many vacant sites and active sites are avail-able to organic materials on the surface of MAC and AC in the initial stage.Our results suggest that the optimal exposure time is 30min.Fig.6shows the relative removal of COD increases with temperature in this range and the adsorption process is controlled by diffusion and endothermic [23].The surface of MAC is loaded with Fe 3O 4parti-cles.At a higher temperature,the kinetic energy of magnetic particles is larger and therefore,contact between the magnetic particles and active sites on the MAC are sufficient to increase the loading efficiency.Similar trends pertaining to aqueous adsorption have been reported [24].At the same time,chemical interac-tions also take place between magnetic particles on the MAC and organic materials in the TNT red water to promote adsorption.As a result,the relative removal of COD of MAC is higher than that of AC.Additionally,the increased loading capacity on MAC at a higher temperature may be attributed to the enlarged pore size [25].However,the trend does not continue after reaching a certain temperature and the increase in the relative removal of COD is no longer obvious.This can be explained by the commencement of desorption if the temperature exceeds a threshold [26].Fig.7shows the effects of TNT red water diluted 10,20,30,50,and 100times at temperature (298,313,323,333,343,and 353K)at an adsorbent dosage of 2g/25mL.The results show that the removal of COD is appropriate when TNT red water is diluted 30times.3.4.Effects of pH on adsorption of organic pollutants The pH is one of the most important parameter determining the adsorption capacity of MAC [27].Adsorption of organic materials involves electrostatic interactions between the organic pollutants in TNT red water and functional groups on the MAC.The TNT red water contains dinitrotoluene-sulfonate (Ph-SO 3Na),α-TNT,several α-nitrophenols (NBCs-OH),α-nitrobenzoic acid (NBCs-COOH),and other nitrobenzene compounds (NBCs)[28].In the aqueous medium,dinitrotoluene-sulfonate is dissociated and converted to anionic forms as shown in Eq.(3):Fig.3.XRD patterns:(a)AC,(b)MAC,and (c)MAC after adsorption.P.Hu et al./Desalination and Water Treatment 54(2015)2710–27222713D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015Fig.4.SEM of MAC:Before adsorption:(a)×1,000,(b)×3,000,and (c)×40,000.After adsorption:(d)×1,000,(e)×3,000,and (f)×40,000.2714P.Hu et al./Desalination and Water Treatment 54(2015)2710–2722D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015Ph ÀSO 3Na À!H 2OPh ÀSO À3þNaþ(3)Under acidic conditions,most of the organic pollutantsin TNT red water exist in the molecular form because they are difficult to ionize.In addition,Fe 3O 4can be dissolved in an acidic solution as shown by Eq.(4).Fe 3O 4À!H þ2Fe 2þþFe 3þþ4H 2O(4)In a basic medium,α-TNT forms the Janovsky com-plexes [29](Fig.8).In addition,the α-nitrophenols andα-nitrobenzoic acid in TNT red water easily ionize toanionic forms [30],as shown by Eqs.(5)and (6).NBCs ÀOH !OH ÀNCBs ÀO ÀþH 2O (5)NBCs ÀCOOH À!OH ÀNCBs ÀCOO ÀþH 2O(6)The effects of pH on the adsorption of organic materi-als on the MAC are illustrated in Fig.9.The optimalpH value is determined to be 1.0at which the relative removal of COD is 96.3%.When pH <8(pH PZC =6.2Fig. 5.Effects of adsorbent dosage on adsorption of organic pollutants in TNT red water on (a)AC and (b)MAC.Fig. 6.Effects of exposure time and temperature on adsorption of organic pollutants in TNT red water on AC andMAC.Fig.7.Effects of dilution ratios of TNT red water on MAC (adsorbent dosage =2g/25mL).Fig.8.Effects of pH on adsorption of organic pollutants in TNT red water on AC and MAC.P.Hu et al./Desalination and Water Treatment 54(2015)2710–27222715D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015for Fe 3O 4,pH PZC =8.2for AC),the surface charges on AC and Fe 3O 4particles are positive [31].The relative removal of COD increases with the decrease of pH due to the electrostatic attraction.Furthermore,under acidic conditions,most of the organic pollutants in TNT red water exist in the molecular form because they are dif-ficult to ionize.The lower the pH,the better the organic molecules are absorbed,as shown in Fig.9.The relative removal of COD reaches a maximum at pH of 1.0.However,at pH >8,the surface charges of AC and Fe 3O 4particles are negative.Meanwhile,the organic materials in TNT red water are ionized forming anions in the basic medium.Consequently,the relative removal of COD is smaller because of electrostatic repulsion.The Janovsky complexes and the low solu-bility of α-TNT also affect adsorption negatively.3.5.Sorption isotherm modelsThe sorption equilibrium data of organic materials in TNT red water on MAC are analyzed by the Lang-muir and Freundlich isotherm models.The linear form of the Langmuir’s isotherm model is given by the fol-lowing Eq.(7):c e q e ¼1bq m þc e q m(7)where q e (mg g −1)is the amount of COD absorbed per unit mass by MAC at equilibrium,c e (mg L −1)is the COD of the TNT red water treated by MAC until reaching equilibrium,q m (mg g −1)is the amount of maximum COD adsorbed per unit mass by the MAC,and b (L mg −1)is the Langmuir constant related to the rate of adsorption.The specific isotherm parameters,q m and b ,can be calculated from the slope and inter-cept of the plots c eq evs.c e (Fig.10(a))and they are listed in Table 3.The essential characteristics of the Lang-muir isotherm can also be expressed in terms of a dimensionless constant separation factor or equilib-rium parameter,R L ,defined in Eq.(8):R L ¼11þbC 0(8)where b is the Langmuir constant and C 0is the initial COD of TNT red water.The value of R L indicates whether the isotherm is unfavorable (R L >1),linear (R L =1),favorable (0<R L <1),or irreversible (R L =0)[32].Its values determined from this study are given in Table 3.Since they are within the range of 0–1,adsorption on MAC appears to be a favorable process.In addition,the small R L values (<0.1)imply that the interaction between organic pollutants in TNT red water and MAC is relatively strong.The Freundlich [33]isotherm equation is given in Eq.(9):q e ¼K f c 1=ne(9)The linear form of the Freundlich model is expressed in Eq.(10):log q e ¼log K f þ1nlog c e(10)where q e (mg g −1)is the amount of absorbed per unit mass on the MAC at equilibrium,c e (mg L −1)is the COD of the TNT red water treated by MAC until reaching equilibrium,and K f (mg g −1(L mg −1)1/n )and n are the Freundlich constant and intensity factors,respectively.The plot of log q e vs.log c e (Fig.10(b))yields a straight line with a slope of 1/n .The experimental isotherm data are fitted accord-ing to the corresponding isotherm equation.Table 3lists the parameters of the equations and correlation coefficient values.It can be observed that the fitting is better when the Freundlich isotherm is used than Langmuir isotherm,except at 343K.The results may be due to the specific homogeneous nature of the MACsurface.Fig.9.Formation of Janovsky complex.2716P.Hu et al./Desalination and Water Treatment 54(2015)2710–2722D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 20153.6.Adsorption kineticsAdsorption is a physicochemical process that involves mass transfer of a solute from a liquid phase to the adsorbent surface [34].A kinetics study imparts important information to facilitate better understand-ing of the adsorption rate and control of the process.The kinetics is investigated based on two kinetic mod-els,namely the Lagergren pseudo-first-order and pseudo-second-order model [35].The linear form of the pseudo-first-order kinetic model is expressed by Eq.(11):log ðq e Àq t Þ¼log q e ÀK f2:303t(11)where K f (L min −1)is the rate constant of pseudo-first-order adsorption,and q e (mg g −1)and q t (mg g −1)are the amounts of COD adsorbed at equilibrium and at any time t (min),respectively.The values of K f and q e for adsorbate adsorption by MAC can be determined from the plot of log (q e −q t )vs.t in Fig.11(a).The pseudo-second-order equation is expressed as Eq.(12)[36]:t q t ¼1k 2q eþ1q e t (12)where k 2(g mg −1min −1)is the pseudo-second-order constant and q e and k 2can be determinedexperimen-Fig.10.Adsorption isotherms of organic pollutants extraction from TNT red water by MAC:(a)Langmuir adsorption isotherms,(b)Freundlich adsorption isotherms,adsorbent dosage =2.0g/25mL,dilution ratio =0–1:100,temperature =298–353±0.2K,and contact time =180min.Table 3Parameters of Langmuir and Freundlich isotherm models for extraction of organic materials from TNT red water by MAC (adsorbent dosage =2g/25mL,ratio of dilution =1:10–1:100,temperature =298–353±0.2K,and contact time =180min)Isotherm Temperature (K)298313323333343353Langmuirq m (mg g −1)43.2152147.2813251.6262350.3778350.3271355.12679b (L mg −1) 4.532709 5.8913437.5210188.0505228.9983159.170604R L 0.000090.000140.0001550.0001450.0002050.000495R 20.818750.865230.937640.960340.985510.8722FreundlichK f (mg g −1(L mg −1)1/n )0.8753250.8830180.8616810.8985440.9032640.854678n 1.845665 1.783135 1.686198 1.717918 1.691904 1.595303R 20.937580.963890.978210.979130.961820.95209P.Hu et al./Desalination and Water Treatment 54(2015)2710–27222717D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015tally from the slope and intercept of the plot t q t vs.t (Fig.11(b)).To compare the validity of each model,a normal-ized standard deviation is calculated using Eq.(13):Áq ð%Þ¼100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ðq exp Àq cal Þq exp2v u u t (13)where q exp and q cal (mg g −1)are the experimental and calculated amounts of absorbed COD and N is the number of measurements.If the data from a model are similar to the experimental data,Δq (%)will be small,but if they differ,Δq (%)will be large.To con-firm whether the adsorption system fits a kinetics model,it is necessary to analyze the data using Δq (%)in conjunction with the determined coefficient R 2.The constants of kinetic models for the adsorption of organic pollutants from TNT red water on MAC are listed in Table 4.The calculated adsorption capac-ity (q e,cal )values estimated by the pseudo-first-order model differ substantially from those measured exper-imentally,whereas the q e,cal values obtained from the pseudo-second-order kinetic model are very close to experimental pared to pseudo-first-order model,Δq of the pseudo-second-order model is smal-ler.Moreover,the correlation coefficients in the pseudo-second-order model are much larger than those of pseudo-first-order-model confirming the mechanism that follows the pseudo-second-order kinetic model.3.7.Adsorption thermodynamicsChanges in the free energy (ΔG ),enthalpy (ΔH ),and entropy (ΔS )can be calculated according to Eqs.(14),(15),and (16)in equilibrium [37–39]:K c ¼c 0Àc e c e Âq Vm(14)Fig.11.Kinetics plots:(a)pseudo-first order and (b)pseudo-second order pertaining to adsorption of organic pollutants on MAC.Table 4Parameters of kinetic and intraparticle diffusion models for extraction of organic pollutants from TNT red water by MAC (adsorbent dosage =2.0g/25mL,dilution ratio =1:30,temperature =303–353±0.2K,and contact time =25min)Kinetic modelsParameters 298313323333343353Pseudo-first-order kineticq e ,cal (mg g −1)0.09090.22970.14640.13590.14060.1470k f (L min −1) 2.545 4.647 3.624 3.360 3.114 3.001R 20.40790.92280.92230.97830.91750.9597Δq (%)109.54Pseudo-second-order kineticq e ,cal (mg g −1)15.0620.4420.3819.9919.8519.992718P.Hu et al./Desalination and Water Treatment 54(2015)2710–2722D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015ÁG ¼ÀRT ln K c (15)ln K c ¼ÁS R ÀÁHRT(16)where K c is the distribution coefficient,ρ=1g L −1isthe density of the solution mixture,c e (mg L −1)is the COD of the TNT red water treated by MAC until reaching equilibrium,q e is the COD amount of adsorp-tion at equilibrium (mg g −1),T is the solution tempera-ture (K),and R is the gas constant and is equal to 8.314J mol −1K −1).ΔH and ΔS are calculated from theslope and intercept of the linear plot of 1T .vs.ln K c .The values and thermodynamic parameters of MAC are given in Table 5.The ΔG values (kJ mol −1)(−9.14,−10.42,−11.65,−12.32,−13.65,−14.51)under the experimental conditions indicate that adsorption of organic materials is spontaneous.The positive ΔH indicates that adsorption on the MAC is an endother-mic process.In addition,ΔH (15.46kJ mol −1)is between 2and 40kJ mol −1indicative of physical adsorption characteristics [40].The entropy change ΔS is positive suggesting that the randomness increases during adsorption [41].3.8.Settling rate after adsorption onto MACMagnetic adsorbents can treat a large amount of wastewater in a short time and can also be separated from wastewater conveniently.MAC is a satisfactoryTable 5Thermodynamic parameters for adsorption of organic pollutants in TNT red water on MAC (adsorbent dosage =2g/25mL,dilution ratio =1:30,temperature =298–353,and contact time =30min)Parameters Temperature298313323333343353K c40.0054.9176.5985.57119.75140.54ΔG (kJ mol −1)−9.14−10.42−11.65−12.32−13.65−14.51ΔH (kJ mol −1)20.36ΔS (J mol −1K)98.74parative study on the before adsorption and after adsorption on AC and MAC.D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015magnetic adsorbent in this respect.The settling rate after adsorption in Fig.12shows the response of MAC under an external magnetic field.The attraction and re-dispersion processes can be readily altered by switching the external magnetic field.The good water dispersion and magnetic separation characteristics favor effective separation.3.9.Mechanism of adsorptionThermodynamic analysis illustrates that the adsorption process is related to electrostatic interac-tions,hydrogen bond formation,and electron donor–acceptor interaction [42].As shown by our previous study,electrostatic interactions are the major factor from the perspective of the effects of pH on adsorp-tion.Hydrogen bonding between organic pollutants and MAC also plays the dominant role in the adsorp-tion process.The results can be explained by the func-tional groups on the MAC that can form hydrogen bonds with nitrogen and oxygen atoms on the organic materials in TNT red water.On the other hand,oxy-gen on the MAC can also form hydrogen bonds with hydrogen atoms of –COOH,–OH,–HSO 3−and –NO 2on the organic materials in TNT red water.Based on our analysis,the adsorption mechanism is illustrated in Fig.13.3.10.ReusabilityIt has been reported that hydroxypropyl-β-cyclo-dextrin can increase the solubility of nitro-com-pounds in water because of the formation of inclusion compounds [43].Adsorption on MAC pro-ceeds by regeneration of hydroxypropyl-β-cyclodex-trin.The organic pollutants are released into the eluent and the active sites on the adsorbent are partly recovered.Therefore,MAC can be recycled.In order to demonstrate the reusability of MAC,the adsorption–desorption cycle is repeated eight times using the same materials.As shown in Fig.14MAC can indeed be used repeatedly without significant loss in the adsorption capacity.Meanwhile,the organic pollutants released into the eluent are very dangerous if handled improperly and the organic pollutants can cause secondary pollution.It has been reported that the enriched organic compounds from TNT red water are used for preparation of viscosifier for drilling fluid [44]and hence,the problem associ-ated with secondary pollution can be effectively cir-cumvented.Fig.13.Adsorption mechanism for organic pollutants on MAC in TNT redwater.Fig.14.Adsorption–desorption cycle of MAC.D o w n l o a d e d b y [N a n j i n g U n i v e r s i t y S c i e n c e & T e c h n o l o g y ] a t 01:06 28 S e p t e m b e r 2015。

相关文档
最新文档