希尔伯特的23个数学问题
1900年希尔伯特提出的23个问题

1900年,德国数学家希尔伯特在巴黎召开的国际数学家大会上提出了一个震撼全球的问题清单,其中包括23个数学问题,这个清单被称为希尔伯特的23个问题。
这些问题使数学家们探索了整个20世纪,直到今天,这些问题仍然是数学家研究的热点问题,对数学的发展影响深远。
1.安德烈·韦伊定理:韦伊在1924年证明了,任何一个数都可以用四种平方数的和表示(顺序可以不同)。
这个定理改变了我们对于整数的理解,使我们看到了整数之间的微妙关系。
2.多项式方程组的求解:通过解决多项式方程组的求解问题,数学家得以研究出代数几何、拓扑学、数论等领域的问题。
3.梅尔斯定理:梅尔斯定理是数论中一条著名的定理,它对于我们研究素数产生了深远的影响。
梅尔斯定理的核心是:素数分布呈现出一定的规律性。
4.黎曼假设:黎曼假设是数学中著名的一条定理,它对数论的发展产生了重大影响。
它研究的是素数的分布规律,尽管至今没有得到证明,但数学家们一直在致力于研究。
5.黑格尔猜想:黑格尔猜想是一个普遍存在的问题,涉及到对于整数的理解和分解的问题。
它被认为是一条重要的代数学关于整数的猜想。
6.二十四问题中的第六个问题:从广义空间的角度出发,探究可能存在的最小的黎曼曲面。
7.有多少种平面上的几何形状可以拼成一个正方形:这个问题通过广义多面体的角度进行探究。
8.三次方程的求解:即$x^3+nx=m$,求解这个方程对于代数学中之后的发展产生了至关重要的作用。
9.每两个整数之间,是否都存在一个素数:这个问题涉及到数论中经典的问题,对素数的研究提供了更深层次的思考。
10.背包问题:这个问题涉及到了优化、操作科学、组合学等领域,是计算理论中著名的问题之一,它是物品对背包的选择问题,需要使得物品价值总和最大。
11.第五个问题:在数学中,研究高维空间的性质是一项极其困难的任务,希尔伯特提出了这个问题,想要探究高维空间的各个性质。
12.稳定性问题:在一些实际问题中,如果输入数据有一些错误,模型的结果是否会受到很大影响?这个问题问得正是这个。
数学素材:希尔伯特的23个数学问题

希尔伯特的23个数学问题湖南 黄爱民希尔伯特(Hilbert D ,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一.1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的“希尔伯特23个问题”.这23个问题涉及现代数学大部分重要领域,推动了二十世纪数学的发展.下面介绍部分问题给同学们.1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设.1938年,哥德尔证明了连续统假设和世界公认的策梅洛———弗伦克尔集合论公理系统的无矛盾性.1963年,美国数学家科亨证明连续统假设和策梅洛———弗伦克尔集合论公理是彼此独立的.因此,连续统假设不能在策梅洛———弗伦克尔公理体系内证明其正确性与否.希尔伯特第1问题在这个意义上已获解决.2.算术公理的相容性 欧几里得几何的相容性可归结为算术公理的相容性.希尔伯特曾提出用形式主义计划的证明论方法加以证明.1931年,哥德尔发表的不完备性定理否定了这种看法.1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性.1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决.3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等.M .W .德恩1900年即对此问题给出了肯定解答.4.两点间以直线为距离最短线问题 此问题提得过于一般.满足此性质的几何学很多,因而需增加某些限制条件.1973年,前苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决.《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决.5.物理学的公理化 希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学.1933年,前苏联数学家柯尔莫哥洛夫实现了将概率论公理化.后来在量子力学、量子场论方面取得了很大成功.但是物理学是否能全盘公理化,很多人表示怀疑.6.不可能用只有两个变数的函数解一般的七次方程 七次方程的根依赖于3个参数a b c ,,,即()x x a b c ,,.这个函数能否用二元函数表示出来?前苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964).但如果要求是解析函数,则问题尚未解决.7.舒伯特计数演算的严格基础 一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观解法.希尔伯特要求将问题一般化,并给以严格基础.现在已有了一些可计算的方法,但严格的基础迄今仍未确立.8.半正定形式的平方和表示 一个实系数n 元多项式对一切数组12()n x x x L ,,,都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的.9.用全等多面体构造空间 由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决.。
1900年23个数学问题

1900年23个数学问题
1900年,法国数学家大卫·希尔伯特提出了23个重要的数学问题,
这些问题被称为“希尔伯特的23个问题”。
这些问题的解决对于数学发
展具有重要的意义,并且深刻地影响了20世纪数学研究的方向。
这些问题涵盖了多个数学领域,包括数论、代数、几何、拓扑学等。
其中一些问题被迅速解决,而另一些问题则成为了当今数学界的研究
热点。
希尔伯特的23个问题包括了一些著名的开放问题,比如黎曼猜想。
这个问题涉及黎曼函数,是解析数论中的重要问题之一。
希尔伯特问
题的第六个问题涉及到黎曼猜想,并且提出了一种可能的方法来解决
这个问题。
希尔伯特的问题还涉及到几何学中的问题,比如问题16和问题18。
问题16探讨了在给定的条件下是否存在与已知曲面切线相同的曲面,
而问题18则涉及到拓扑学中的一些基本问题。
希尔伯特问题还包括了一些代数学的问题,例如代数数域的公理和
多项式环的结构。
这些问题的解决对于代数学的发展和应用具有重要
的意义。
在过去的100多年中,许多希尔伯特问题已经被解决,但仍有一些
问题尚未解决。
这些问题的解决需要更深入的数学研究和创新。
解决
希尔伯特问题的过程促进了数学领域的发展,带来了新的数学理论和
应用。
希尔伯特的23个问题对于数学界起到了重要的推动作用,使得许
多数学家倾注心血进行研究。
希望未来的数学家能够在解决这些问题
的过程中取得突破,推动数学的发展,并为人类的科学进步作出贡献。
希尔伯特23个数学问题

希尔伯特23个数学问题希尔伯特的23个问题分为四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题是属于代数和几何问题;第19到第23问题属于数学分析问题.经过一个多世纪,希尔伯特提出的23个问题中,接近一半已经解决或基本解决.有些问题虽未解决,但也取得了重要的进展.问题1康托尔的连续统基数问题(公理化集合论)1874年,康托尔猜测在可数集基数与实数集基数之间没有别的基数,即著名的连续统假设.1938年,奥地利数理逻辑学家哥德尔证明了连续统假设与策梅洛-弗伦克尔(Zermelo-Fraenkel,ZF)集合论公理系统的无矛盾性.1963年,美国数学家科恩证明了连续统假设与ZF集合论公理系统彼此独立.因而连续统假设不能用ZF集合论公理系统加以证明,即连续统假设的真伪不可能在ZF集合论公理系统内判定.在这个意义上,问题已经解决了.问题2算术公理的相容性(数学基础)欧几里得几何的相容性可归结为算术公理的相容性.希尔伯特曾提出用形式主义计划的证明方法加以证明,后来发展为系统的希尔伯特计划(“元数学”或“证明论”),但1931年,哥德尔发表“不完备性定理”做出否定.1936年,根茨(G.Gentaen,1909—1945)使用超限归纳法证明了算术公理系统的相容性,但数学的相容性问题至今未解决.问题3只根据合同公理证明等底等高的四面体有相等之体积是不可能的(几何基础)问题的含义是:存在两个等底等高的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等,这一问题很快于1900年由希尔伯特的学生德恩(M.Dehn,1878—1952)给出了肯定的解答.这是希尔伯特问题中最早获得解决的一个.问题4直线作为两点间最短距离问题(几何基础)这一问题提得过于一般,满足这一性质的几何例子很多,只需要加以某些限制条件.在构造特殊度量几何方面已有很大进展,但未完全解决.1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获得解决.问题5不要定义群的函数的可微性假设的李群概念(拓扑群论) 这一问题简称连续群的解析性,即是否每一个局部欧式群都一定是李群.经过漫长的努力,这个问题于1952年,由美国格里森(Gleason)、蒙哥马利(Montqomery)和齐宾(Zipping)共同解决.1953年,日本的山迈彦得到完全肯定的结果.问题6物理公理的数学处理(数学物理)希尔伯特建议用数学的公理化方法推演出全部物理学.1933年,苏联数学家柯尔莫哥洛夫(A.Kolmogorov,1903—1987)将概率论公理化.后来在量子力学、量子场论和热力学等领域,公理化方法获得很大成功,但物理学各个分支能否全盘公理化,很多人对此表示怀疑.公理化的物理意味着什么,仍是需要探讨的问题.问题7某些数的无理性与超越性(超越数论)要求证明:若是代数数,是无理数的代数数,则一定是超越数或至少是无理数.苏联数学家盖尔丰德(A.O.Gelfond)于1929年、德国数学家施奈德(T.Schneieder)及西格尔(C.L.Siegel,1896—1981)于1934年各自独立地解决了这问题的后半部分.1966年贝克等大大推广了此结果.但是,超越数理论还远远未完成.要确定所给的数是否超越数,还没有统一的方法,如欧拉常数的无理性至今未获得证明.问题8素数分布问题(数论)希尔伯特在此问题中提到黎曼猜想、哥德巴赫猜想以及孪生素数问题.一般情形的黎曼猜想至今未解决.哥德巴赫猜想和孪生素数问题也未最终解决,这两个问题的最佳结果均属于中国的数学家陈景润.问题9任意数域中最一般的互反律之证明(类域论)该问题于1921年由日本学者高木贞治(1875—1860)、1927年由德国学者阿廷(E.Artin)各自给以基本解决.类域理论至今仍在发展之中.问题10丢番图方程可解性的判别(不定分析)希尔伯特提出问题:能否通过有限步骤来判定不定方程是否存在有理整数解.1970年,由苏联数学家马蒂雅塞维奇证明希尔伯特所期望的一般算法是不存在的.尽管得出了否定的结果,却产生了一系列很有价值的副产品,其中不少和计算机科学有密切联系.问题11系数为任意代数数的二次型(二次型理论)德国数学家哈塞(H.Hasse,1898—1979)于1929年和西格尔于1951年在这个问题上获得了重要的结果.20世纪60年代,法国数学家魏依取得了新的重大进展,但未获最终解决.问题12阿贝尔(Abel)域上的克罗内克(L.Kroneker,1823—1891)定理推广到任意代数有理域(复乘法理论)尚未解决.问题13不可能用只有两个变数的函数解一般的七次方程(方程论与实函数论)连续函数情形于1957年由苏联数学家阿诺尔德(V.Arnold,1937—2010)否定解决.1964年,苏联数学家维图斯金(Vituskin)推广到连续可微情形.但若要求是解析函数,则问题仍未解决.问题14证明某类完全函数系的有限性(代数不变式理论)1958年,日本数学家永田雅宜举出反例给出了否定解决.问题15舒伯特(Schubert)记数演算的严格基础(代数几何学) 由于许多数学家的努力,舒伯特演算的基础的纯代数处理已有可能,但舒伯特演算的合理性仍待解决.至于代数几何的基础,已由荷兰数学家范·德·瓦尔登于1940年及法国数学家魏依于1950年各自独立建立.问题16代数曲线与曲面的拓扑(曲线与曲面的拓扑学、常微分方程的定性理论)这个问题分为两部分:前半部分涉及代数曲线含有闭的分枝曲线的最大数目,后半部分要求讨论极限环的最大个数和相对位置.关于问题的前半部分,近年来不断有重要结果出现.关于问题的后半部分,1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出了至少有4个极限环的具体例子.1983年,中国的秦元勋进一步证明了二次系至多有4个极限环,从而最终解决了二次微分方程的解的结构问题,并且为希尔伯特第16问题的研究提供了新的途径.问题17半正定形式的平方表示式(实域论)一个实数n元多项式对任意数组都恒大于零或等于零,是否能写成平方和的形式?此问题于1927年,由阿廷给予肯定的解决.问题18用全等多面体构造空间(结晶体群理论)该问题由三部分组成.第一部分欧式空间仅有有限个不同类的带基本区域的运动群.第二部分包括是否存在不是运动群的基本区域但经适当毗连即可充满全空间的多面体?第一部分由德国数学家贝尔巴赫(Bieberbach)于1910年做出了肯定的回答.第二部分由德国数学家莱因哈特(Reinhart)于1928年、黑施于1935年做出了部分解决.第三部分至今未能解决.问题19正则变分问题的解是否一定解析(椭圆型偏微分方程理论)1929年,德国数学家伯恩斯坦(L.Bernstein,1918—1990)证明了一个变元的、解析的非线性椭圆方程,其解必定是解析的.这个结果后来又被伯恩斯坦和苏联数学家彼德罗夫斯基等推广到多变元和椭圆组的情形.在此意义下,问题已获解决.问题20一般边值问题(椭圆型偏微分方程理论)偏微分方程边值问题的研究正处于蓬勃发展的阶段,已成为一个很大的数学分支,目前还在继续发展,进展十分迅速.问题21具有给定单值群的线性偏微分方程的存在性证明(线性常微分方程大范围理论)此问题属于线性常微分方程的大范围理论.希尔伯特于1905年、勒尔(H.Rohrl)于1957年分别得出重要结果.1970年,法国数学家德利涅(Deligne)做出了突出的贡献.问题22用自守函数将解析函数单值比(黎曼曲面体)此问题涉及深奥的黎曼曲面理论,一个变数的情形已由德国数学家克贝(P.Koebe)于1907年解决,但一般情形尚未解决.问题23变分法的进一步发展(变分法)这是一个不明确的数学问题,只是谈了一些对变分法的一般看法.希尔伯特本人和许多数学家对变分法的发展做出了重要的贡献.20世纪变分法已有了很大的进展.希尔伯特的23个数学问题的影响及意义希尔伯特的23个数学问题绝大部分业已存在,并不是希尔伯特首先提出来的,但他站在更高的层面,用更尖锐、更简单的方式重新提出了这些问题,并指出了其中许多问题的解决方向.在世纪之交提出的这23个问题,涉及现代数学的许多领域.一个世纪以来,这些问题激发着数学家们浓厚的研究兴趣,对20世纪数学的发展起着巨大的推动作用.许多世界一流的数学家都深深为这23个问题着迷,并力图解决这些问题.希尔伯特所提出的问题清晰、易懂,其中一些有趣得令许多外行都跃跃欲试.解决其中任意一个,或者在任意一个问题上有重大突破,就自然地被公认为是世界一流水平的数学家.我国的数学家陈景润因在解决希尔伯特第8个问题(即素数问题,包括黎曼猜想、哥德巴赫猜想等)上有重大贡献而为世人所瞩目,由此也可见希尔伯特问题的特殊地位.经过整整一个世纪,希尔伯特的23个数学问题中,将近一半已经解决或基本解决.有些问题虽未解决,但也取得了重要进展.希尔伯特提出的问题是极其深奥的,不少问题一般人连题目也看不懂.正因为困难,才吸引有志之士去做巨大的努力.但它又不是不可接近的,因而提供了使人们终有收获的科学猎场.一百多年来,人们始终注视着希尔伯特问题的研究,绝不是偶然的.希尔伯特问题的研究与解决大大推动了许多现代数学分支的发展,包括数理逻辑、几何基础、李群、数学物理、概率论、数论、函数论、代数几何、常微分方程、偏微分方程、黎曼曲面论和变分法等.第2问题和第10问题的研究,还促进了现代计算机理论的成长.当然,预测不可能全部符合后来的发展,20世纪数学发展的广度和深度都远远超出20世纪初年的预料,像代数拓扑、抽象代数、泛函分析和多复变量函数等许多理论学科都未列入这23个问题,更不要说与应用有关的应用数学以及随计算机出现发展起来的计算数学和计算机科学了.。
希尔伯特的23个问题

19.正则变分问题的解是否一定解析 椭圆型偏微分方程理论 这问题在下述意义上已获解
决,1904年,C.Bерн mтейн[前苏联]证明了一个两个变元的、解析的非线性椭圆方
程,其解必定是解析的。这个结果后来又被Bернтейн本人和и.г.п eтров
18.由全等多面体构成空间 结晶体群理论 问题的第一部分(欧氏空间中仅有有限个不同
类的带基本区域的运动群)于1910年由L.Bieberbarch肯定解决;问题的第二部分(是否存
在不是运动群的基本区域但经适当毗连可充满全空间的多面体)已由Reinhardt(1928年)
和Heesch(1935年)分别给出三维和二维情形的例子;至于将无限个相等的给定形式的立体
决,即证明了存在群г,其不变式所构成的环不具有有限个整基。
15.Schubert计数演算的严格基础 代数几何学 由于许多数学家的努力,Schubert演算基
础的纯代数处理已有可能,但Schubert演算的合理性仍待解决。至于代数几何的基础,已
由B.L.Vander Waerden(1938年 -1940年)与A.Weil(1950年)建立。
无理数β≠0证明了α攩β攪的超越性,1966年这一结果又被A.Baker等人大大推广和发展
了。
8.素数问题 数 论 一般情形下的Riemann猜想至今仍然是猜想。包括在其中的Goldbach
问题至今也未解决。中国数学家在这方面做出了一系列出色的工作。
9.任意数域中最一般的互反律证明 类域论 已由高木贞治[日,1921年]和E.Artin[美192
,但一般地说,公理化的物理意味着什么,仍是需探讨的问题。至于概率论的公理化,已由
未证明的23个数学猜想

未证明的23个数学猜想1.希尔伯特猜想:每个正整数都可以写成2的若干次方之和。
2.Goldbach猜想:任何一个大于2的偶数都可以表示为两个素数之和。
3.调和猜想:每个正整数都可以表示为至少两个正有理数的和。
4.Underwood猜想:任何整数的“素因子构造”(由一组乘积组成的正整数)都是独一无二的。
5.加贝尔猜想:每个大于3的质数都可以写成一个素数与连续两个平方数之和。
6.切比雪夫猜想:任何一个不能被其他数整除的正整数都可以写成多个素数的乘积。
7.黎曼猜想:任何一个大于2的正整数,都可以表示成一组连续奇数的和。
8.汉密尔顿猜想:四面体数和二面体数总是互质的。
9.尼拔猜想:所有质数都可以表示成一个整数的四次幂加一。
10.拉格朗日猜想:任何两个整数的平方和都是另一个整数的平方。
11.格贝尔猜想:总计的素数的和正好是阶乘的一半。
12.若昂·克拉伦猜想:任意正数的全部正因子总和等于它的这个正数的两倍。
13.高斯猜想:每个正整数的平方都可以表示成一个正整数的和。
14.古典柯西猜想:每个正整数可以表示成一组和相等的两个立方数之和。
15.利奥波德·波利亚猜想:任何一个偶数都可以表示成两个奇数的和。
16.梅尔·史密斯猜想:任何一个大于2的偶数都可以表示为至少三个素数之和。
17.巴比伦大定理:任何一个大于2的整数都可以表示为六个质数的乘积。
18.阿贝尔猜想:任何一个大于2的正整数都可以表示为三个素数的和。
19.皮亚诺猜想:素数列表是无限的。
20.哥德巴赫猜想:每个大于2的偶数,都可以分解为两个质数的和。
21.约翰逊猜想:每个奇完全数都可以表示成一系列质数的乘积。
22.完美数猜想:任何一个大于2的整数都可以表示为一个完美数乘以一个素数。
23.保罗·圣凯猜想:任何一个大于7的偶数都可以表示为一组连续质数的和。
希尔伯特23个数学难题

希尔伯特23个数学难题1. 哥德巴赫猜想:任意大于2的偶数都可以表示成两个质数之和。
2. 佩尔方程:找出满足 x² - ny² = 1 的自然数解,其中 n 是一个给定的正整数。
3. 费尔马小定理:如果 p 是一个质数,那么对于任意整数 a,a^p - a 都是 p 的倍数。
4. 黎曼猜想:所有非平凡的自然数零点都位于复平面上的某一直线上,即 "黎曼 Zeta 函数的非平凡零点的实部等于 1/2"。
5. 庞加莱猜想:任何大于1的整数都可以表示成至多四个自然数的平方和。
6. 费马大定理:对于任意大于2的整数 n,方程 x^n + y^n = z^n 没有正整数解。
7. 罗宾逊算术:是否存在一个算术表达式,可表示为解 x^n + y^n = z^n,其中 n、x、y、z 都是多项式函数?8. 连续平面切片问题:一个单位区间上的无限个单位半径圆,是否一定能够被切割为有限个片,从而使得每个片的周长之和无上限?9. 康托对角线证明了无穷的数量比可数的数量更多,这一论断是否成立?10. 佛馬定理:给定一个序列 a0, a1, a2, ...,是否存在一个多项式 P(x) ,使得对于所有 n,P(n)和 a(n) 在整数环上取得相等的值?11. 黑洞信息悖论:如果一个物体掉入黑洞的话,它的信息会丢失吗?12. 度量空间完备性:对于一个给定的度量空间,是否所有的柯西序列都收敛于该空间的内点?13. 矩阵剖析:对于一个给定的方块矩阵,是否可以逐步剖析为若干个小方块,而每个小方块都可以分解为若干个更小的方块?14. 程序终止:是否存在一个通用的算法,可以判断任意给定程序是否会在有限的步骤内终止?15. 旅行推销员问题:对于给定的城市和距离,是否存在一个最短的闭合路径,使得旅行推销员途经每个城市一次,然后返回起点?16. 负二次定理:是否存在一个实数 a,满足 a * a = -1 ?17. 确定性因素分解:是否存在一个确定性的多项式时间算法,用于将大整数因式分解?18. 最短超球面问题:给定一组点,是否可以找到一个最小的超球面,将这些点全部覆盖?19. 生物学中的形态发生:如何解释、理解和预测生物体的形态发生过程?20. 难以判定的问题:是否存在一个问题,无法通过任何算法,以有限步骤确定其答案的正确性?21. 最大连续子序列和问题:给定一个整数序列,找出具有最大和的连续子序列。
希尔伯特的23个问题

04 问题四:物理学的公理基 础
问题的表述
希尔伯特提出的问题四,主要关注物理学的基础公理。他 希望找到一组基本的公理,能够作为物理学理论的基石, 并使得整个物理学理论体系严密、一致和完备。
这个问题涉及到物理学的基本概念和原理,如空间、时间、 物质、力等,以及它们之间的关系和推导。
希尔伯特希望通过公理化方法,将物理学理论建立在坚实 的逻辑基础上,避免理论内部的矛盾和冲突,并使得理论 具有更好的预测和解释能力。
对于一般的域F,克罗内克假设仍然是一个开放的问题。目前的研究主要 集中在代数几何和代数数论领域,通过研究代数曲线、代数曲面和高维 代数簇的几何结构和性质,来探讨克罗内克假设的可能性。
尽管克罗内克假设尚未得到完全解决,但它的研究对于代数几何和代数 数论的发展有着重要的意义,有助于深入理解代数的结构和性质。
问题的研究历史
自希尔伯特提出这个问题以来,许多数学家和物理学家都致力于研究这个问题,尝试建立物理学的基 本公理体系。
20世纪初,德国数学家赫尔曼·外尔和埃米·诺特等人在这方面做出了重要贡献,他们尝试将相对论和量 子力学等现代物理学理论建立在公理基础上。
然而,尽管取得了一些进展,但至今仍未能够完全解决这个问题。许多物理学家认为,完全公理化整个 物理学理论体系可能是不现实的,因为物理学理论的发展和变化是不断进行的。
总结词
希尔伯特问题五至今仍未得到完全解决,尽管已有一些进展和新的观点。
详细描述
近年来,数学界对希尔伯特问题五的关注度有所提高,新的数学工具和技术为解决这个 问题提供了新的可能性。然而,尽管取得了一些进展,但该问题仍未得到完全解决。
06 问题六:数学分析中的形 式主义系统
问题的表述
01
希尔伯特的第六问题询问的是:是否存在一种形式化的、有效 的证明方法,能够确定数学分析中的所有命题的真伪?
希尔伯特数学23个世界难题

希尔伯特数学23个世界难题1900年德国数学家希尔伯特在巴黎第二届国际数学家代表会上提出23个重要的数学问题,称为希尔伯特数学问题﹝Hilbert'sMathematicalProblems﹞。
内容涉及现代数学大部份重要领域,目的是为新世纪的数学开展提供目标和预测成果,结果大大推动了20世纪数学的开展。
该23个问题的简介如下:1.连续统假设。
2.算术公理体系的兼容性。
3.只根据合同公理证明底面积相等、高相等的两个四面体有相等的体积是不可能的。
即不能将这两个等体积的四面体剖分为假设干相同的小多面体。
4.直线作为两点间最短距离的几何结构的研究。
5.拓扑群成为李群的条件。
6.物理学各分支的公理化。
7.某些数的无理性与超越性。
8.素数问题。
包括黎曼猜想、哥德巴赫猜想等问题。
9.一般互反律的证明。
10.丢番图方程可解性的判别。
11.一般代数数域的二次型论。
12.类域的构成问题。
具体为阿贝尔域上的克罗内克定理推广到作意代数有理域。
13.不可能用只有两个变量的函数解一般的七次方程。
14.证明某类完全函数系的有限性。
15.舒伯特计数演算的严格根底。
16.代数曲线与曲面的拓扑研究。
17.正定形式的平方表示式。
18.由全等多面体构造空间。
19.正那么变分问题的解是否一定解析。
20.一般边值问题。
21.具有给定单值群的线性微分方程的存在性。
22.用自守函数将解析关系单值化。
23.开展变分学的方法。
希尔伯特的二十三个数学问题

希尔伯特的二十三个数学问题1900年,德国数学家D.希尔伯特在巴黎第二届国际数学家大会上作了题为《数学问题》的著名讲演,其中对各类数学问题的意义、源泉及研究方法发表了精辟的见解,而整个讲演的核心部分则是希尔伯特根据19世纪数学研究的成果与发展趋势而提出的23个问题。
①连续统假设1963年,P.J.科恩证明了:连续统假设的真伪不可能在策梅洛-弗伦克尔公理系统内判明。
②算术公理的相容性1931年,K.哥德尔的“不完备定理”指出了用希尔伯特“元数学”证明算术公理相容性之不可能。
数学相容性问题尚未解决。
③两等高等底的四面体体积之相等M.W.德恩1900年即对此问题给出了肯定解答。
④直线作为两点间最短距离问题希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。
⑤不要定义群的函数的可微性假设的李群概念A.M.格利森、D.蒙哥马利和L.齐平等于1952年对此问题作出了最后的肯定解答。
⑥物理公理的数学处理公理化物理学的一般意义仍需探讨。
至于希尔伯特问题中提到的概率论公理化,已由А.Н.柯尔莫哥洛夫(1933)等人建立。
⑦一些数的无理性与超越性1934年,A.O.盖尔丰德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数□≠0,1,和任意代数无理数□证明了□□的超越性。
⑧素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。
一般情况下的黎曼猜想仍待解决。
哥德巴赫猜想最佳结果属于陈景润(1966),但离最终解决尚有距离。
⑨任意数域中最一般的互反律之证明已由高木□治(1921)和E.阿廷(1927)解决。
⑩丢番图方程可解性的判别1970年,□.В.马季亚谢维奇证明了希尔伯特所期望的一般算法不存在。
11系数为任意代数数的二次型H.哈塞(1929)和C.L.西格尔(1936,1951)在这问题上获得重要结果。
12阿贝尔域上的克罗内克定理推广到任意代数有理域尚未解决。
13不可能用只有两个变数的函数解一般的七次方程连续函数情形于1957年由В.И.阿诺尔德解决。
希尔伯特23个数学问题7大数学难题

世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。
你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。
然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定13,717,)于1971程序言,使它慢而轮胎面不是。
大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。
这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
四:黎曼(Riemann)假设有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。
这样的数称为素数;它们在纯数学及其应用中都起着重要作用。
在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓这点已经对于开始的1,500,000,000个解验证过。
证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
五:杨-米尔斯(Yang-Mills)存在性和质量缺口量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。
大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。
基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。
尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。
特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。
20世纪数学家应当努力解决的23个数学问题

在20世纪初期,数学家大卫·希尔伯特提出了23个他认为是最重要的数学问题,这些问题被称为希尔伯特的23个问题。
这些问题包含了许多不同领域的数学,如代数、几何、分析等,被认为是当时数学界最棘手和最有挑战性的问题。
数学家们纷纷投入研究,但许多问题至今仍未得到圆满解决。
在本文中,我们将深入探讨希尔伯特的23个问题,并从不同角度展开阐述,帮助您更加全面地了解这些数学难题。
1. 斐波那契猜想希尔伯特的第5个问题是关于斐波那契数列的猜想。
斐波那契数列是指每个数字等于前两个数字之和的数列,如1, 1, 2, 3, 5, 8, 13, 21等。
希尔伯特猜想,斐波那契数列中相邻两个数之间的最大公约数是1。
这个问题涉及到数字理论和算术的深入研究,目前仍待解决。
2. 黎曼猜想另一个备受关注的问题是黎曼猜想,这是希尔伯特的第8个问题。
黎曼猜想涉及到复变函数的性质,特别是与质数分布相关的复变函数。
许多数学家致力于试图证明或者反驳黎曼猜想,但至今尚未有定论。
3. 洛伦兹方程组和纳维-斯托克斯方程希尔伯特的第6个问题涉及到经典物理学中的流体力学方程,即洛伦兹方程组和纳维-斯托克斯方程。
这两个方程组描述了流体的运动规律,对理解大气、海洋、宇宙等流体运动具有重要意义。
然而,这两个方程组的数学性质至今仍未完全理解。
4. 黏性流体力学的数学理论希尔伯特的第16个问题涉及到黏性流体力学的数学理论,这是一个非常具有挑战性的问题。
黏性流体力学是描述流体运动的数学模型,对于工程、地质、气象等领域具有重要意义。
虽然在一些简化的情况下可以得到解析解,但在一般情况下仍是一个未解决的难题。
5. 素数假设我们提到希尔伯特的第7个问题,即素数假设。
素数在数论中具有重要地位,而素数假设涉及到素数分布的规律性。
虽然数学家们已经证明了一些关于素数分布的结论,但素数假设仍未得到圆满解决。
以上只是希尔伯特的23个问题中的几个代表性问题,这些问题涉及到数学的各个领域,对于数学家们来说是一场挑战,同时也是一次思想的盛宴。
20世纪有待解决的23个重要数学问题

为了深入探讨20世纪有待解决的23个重要数学问题,首先我们需要了解这些问题的背景和意义。
这些问题集合称为希尔伯特问题,是由德国数学家希尔伯特于1900年在巴黎国际数学家大会上提出的。
这些问题被认为是当时数学界最重要的挑战,同时也被认为是当时数学研究的路线图。
在我看来,希尔伯特问题代表了数学领域的一些最基本的、未解决的问题,解决这些问题将极大地推动数学的发展,对数学领域的未来产生深远的影响。
我们有必要对这些问题进行深入的研究和探讨。
接下来,我们就一起来看一下这些23个重要数学问题所涉及的领域和内容:1. 椭圆曲线和模函数2. 黎曼猜想3. 黎曼曲面和自同构问题4. 黎曼-黎曼-梅特日对猜想5. 费马猜想6. 四色问题7. 线性偏微分方程问题8. 整数域中的因子理论问题9. 二次形式的四平方问题10. 勒让德三平方式定理11. 亥姆霍兹方程组的奇异点问题12. 微分几何中的de Rham理论问题13. 序列中的达布问题14. 算术基本定理15. 核的Fredholm性质16. 求解各向同性Navier-Stokes方程问题17. 球面上自同构问题18. 无穷范数二次型问题19. 李代数问题20. 纽结理论的拓扑化问题21. 缩约问题22. 数字理论中的良序集问题23. 微分方程理论中的希尔伯特第十三问题每个问题都牵涉到数学的某一领域,如代数、几何、拓扑、分析等。
解决这些问题需要数学领域里最前沿和最深入的知识,对数学领域有着巨大的挑战和推动作用。
希尔伯特问题是20世纪数学领域的一些未解之谜,它们代表了数学领域的基础和方向。
解决这些问题将使数学的发展迈出一个重要的步伐,对未来的数学研究有着深远的影响。
在这篇文章中,我们通过对每个问题的简要介绍和相关背景的阐述,帮助您了解了这些数学问题的重要性和意义。
我也借此机会希望更多的数学爱好者能够参与到这些问题的研究中,共同推动数学领域的发展。
希望我们的共同努力能够为解决这些重要数学问题贡献一份力量。
1900年希尔伯特提出的23个问题

1900年希尔伯特提出的23个问题1900年,德国数学家大卫·希尔伯特在国际数学家大会上提出了二十三个数学难题,这些难题被称为希尔伯特的23个问题。
这些问题涉及了数学的各个领域,从代数到分析,从几何到数论,从数学逻辑到拓扑等等。
希尔伯特希望通过这些问题的研究,推动数学的发展,解决一些重要的数学难题,促进数学与其他科学的交叉研究。
希尔伯特提出的23个问题中,最著名的是他的第一问题:连续统一的函数。
在这个问题中,希尔伯特问道,是否存在一个连续函数,可以将所有的整数映射到实数上去。
这个问题牵涉到了数学的基础理论,深刻地影响了数学的发展。
后来,通过对这个问题的研究,数学家们逐渐发展出了拓扑学的基本概念和方法,使得这个问题得到了更加深入和完善的解答。
除了第一问题,希尔伯特的23个问题中还有很多其他具有重要意义的问题。
比如第二个问题:是否存在一个确定性的算法,可以判断任意给定的二次方程是否有整数解。
这个问题涉及了数论和算法的复杂性理论,对计算机科学的发展起到了重要的推动作用。
另一个著名的问题是第七个问题:黎曼猜想。
这个问题是关于黎曼ζ函数的性质的猜想,涉及了复变函数的研究,对数论的发展有着重要的影响。
至今,黎曼猜想仍然是数学界的一个重要未解问题,解决它将对数论和几何拓扑学有着深远的影响。
希尔伯特的23个问题不仅对于数学的发展具有重要的意义,也深刻地影响了20世纪整个数学界的研究方向和发展轨迹。
许多数学家为了解决这些问题,进行了深入的研究,取得了众多重要的成果。
这些问题激发了无数数学家的智慧和创造力,推动了数学的发展,并促进了数学与其他科学领域的交叉融合。
然而,虽然希尔伯特的23个问题引起了广泛的关注,但并不是所有的问题都得到了解决。
一些问题已经在之后的几十年中被证明是不可解的,比如第十五个问题:希尔伯特方程是否有一个通解。
而一些问题,如黎曼猜想,至今仍然没有得到最终的证明。
虽然希尔伯特的23个问题本身遗留下许多未解之谜,但它们对于数学的发展起到了重要的推动作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BULLETIN(New Series)OF THEAMERICAN MATHEMATICAL SOCIETYVolume37,Number4,Pages407–436S0273-0979(00)00881-8Article electronically published on June26,2000MATHEMATICAL PROBLEMSDAVID HILBERTLecture delivered before the International Congress of Mathematicians at Paris in1900.Who of us would not be glad to lift the veil behind which the future lies hidden;to cast a glance at the next advances of our science and at the secrets of its development during future centuries?What particular goals will there be toward which the leading mathematical spirits of coming generations will strive?What new methods and new facts in the wide and richfield of mathematical thought will the new centuries disclose?History teaches the continuity of the development of science.We know that every age has its own problems,which the following age either solves or casts aside as profitless and replaces by new ones.If we would obtain an idea of the probable development of mathematical knowledge in the immediate future,we must let the unsettled questions pass before our minds and look over the problems which the science of to-day sets and whose solution we expect from the future.To such a review of problems the present day,lying at the meeting of the centuries,seems to me well adapted.For the close of a great epoch not only invites us to look back into the past but also directs our thoughts to the unknown future.The deep significance of certain problems for the advance of mathematical science in general and the important rˆo le which they play in the work of the individual investigator are not to be denied.As long as a branch of science offers an abundance of problems,so long is it alive;a lack of problems foreshadows extinction or the cessation of independent development.Just as every human undertaking pursues certain objects,so also mathematical research requires its problems.It is by the solution of problems that the investigator tests the temper of his steel;hefinds new methods and new outlooks,and gains a wider and freer horizon.It is difficult and often impossible to judge the value of a problem correctly in advance;for thefinal award depends upon the grain which science obtains from the problem.Nevertheless we can ask whether there are general criteria which mark a good mathematical problem.An old French mathematician said:“A mathematical theory is not to be considered complete until you have made it so clear that you can explain it to thefirst man whom you meet on the street.”This clearness and ease of comprehension,here insisted on for a mathematical theory,I should still more demand for a mathematical problem if it is to be perfect;for what is clear and easily comprehended attracts,the complicated repels us.Moreover a mathematical problem should be difficult in order to entice us,yet not completely inaccessible,lest it mock at our efforts.It should be to us a guide408DA VID HILBERTpost on the mazy paths to hidden truths,and ultimately a reminder of our pleasure in the successful solution.The mathematicians of past centuries were accustomed to devote themselves to the solution of difficult particular problems with passionate zeal.They knew the value of difficult problems.I remind you only of the“problem of the line of quickest descent,”proposed by John Bernoulli.Experience teaches,explains Bernoulli in the public announcement of this problem,that lofty minds are led to strive for the advance of science by nothing more than by laying before them difficult and at the same time useful problems,and he therefore hopes to earn the thanks of the mathematical world by following the example of men like Mersenne,Pascal, Fermat,Viviani and others and laying before the distinguished analysts of his time a problem by which,as a touchstone,they may test the value of their methods and measure their strength.The calculus of variations owes its origin to this problem of Bernoulli and to similar problems.Fermat had asserted,as is well known,that the diophantine equationx n+y n=z n(x,y and z integers)is unsolvable—except in certain self-evident cases.The attempt to prove this impossibility offers a striking example of the inspiring effect which such a very special and apparently unimportant problem may have upon science.For Kummer,incited by Fermat’s problem,was led to the introduction of ideal numbers and to the discovery of the law of the unique decomposition of the numbers of a circularfield into ideal prime factors—a law which to-day in its generalization to any algebraicfield by Dedekind and Kronecker,stands at the center of the modern theory of numbers and whose significance extends far beyond the boundaries of number theory into the realm of algebra and the theory of functions.To speak of a very different region of research,I remind you of the problem of three bodies.The fruitful methods and the far-reaching principles which Poincar´e has brought into celestial mechanics and which are to-day recognized and applied in practical astronomy are due to the circumstance that he undertook to treat anew that difficult problem and to approach nearer a solution.The two last mentioned problems—that of Fermat and the problem of the three bodies—seem to us almost like opposite poles—the former a free invention of pure reason,belonging to the region of abstract number theory,the latter forced upon us by astronomy and necessary to an understanding of the simplest fundamental phenomena of nature.But it often happens also that the same special problemfinds application in the most unlike branches of mathematical knowledge.So,for example,the problem of the shortest line plays a chief and historically important part in the foundations of geometry,in the theory of curved lines and surfaces,in mechanics and in the calculus of variations.And how convincingly has F.Klein,in his work on the icosahedron,pictured the significance which attaches to the problem of the regular polyhedra in elementary geometry,in group theory,in the theory of equations and in that of linear differential equations.In order to throw light on the importance of certain problems,I may also refer to Weierstrass,who spoke of it as his happy fortune that he found at the outset of his scientific career a problem so important as Jacobi’s problem of inversion on which to work.MATHEMATICAL PROBLEMS409 Having now recalled to mind the general importance of problems in mathematics, let us turn to the question from what sources this science derives its problems. Surely thefirst and oldest problems in every branch of mathematics spring from experience and are suggested by the world of external phenomena.Even the rules of calculation with integers must have been discovered in this fashion in a lower stage of human civilization,just as the child of to-day learns the application of these laws by empirical methods.The same is true of thefirst problems of geometry, the problems bequeathed us by antiquity,such as the duplication of the cube, the squaring of the circle;also the oldest problems in the theory of the solution of numerical equations,in the theory of curves and the differential and integral calculus,in the calculus of variations,the theory of Fourier series and the theory of potential—to say noting of the further abundance of problems properly belonging to mechanics,astronomy and physics.But,in the further development of a branch of mathematics,the human mind, encouraged by the success of its solutions,becomes conscious of its independence. It evolves from itself alone,often without appreciable influence from without,by means of logical combination,generalization,specialization,by separating and col-lecting ideas in fortunate ways,new and fruitful problems,and appears then itself as the real questioner.Thus arose the problem of prime numbers and the other problems of number theory,Galois’s theory of equations,the theory of algebraic invariants,the theory of abelian and automorphic functions;indeed almost all the nicer questions of modern arithmetic and function theory arise in this way.In the meantime,while the creative power of pure reason is at work,the outer world again comes into play,forces upon us new questions from actual experience, opens up new branches of mathematics,and while we seek to conquer these new fields of knowledge for the realm of pure thought,we oftenfind the answers to old unsolved problems and thus at the same time advance most successfully the old theories.And it seems to me that the numerous and surprising analogies and that apparently prearranged harmony which the mathematician so often perceives in the questions,methods and ideas of the various branches of his science,have their origin in this ever-recurring interplay between thought and experience.It remains to discuss briefly what general requirements may be justly laid down for the solution of a mathematical problem.I should sayfirst of all,this:that it shall be possible to establish the correctness of the solution by means of afinite number of steps based upon afinite number of hypotheses which are implied in the statement of the problem and which must always be exactly formulated.This requirement of logical deduction by means of afinite number of processes is sim-ply the requirement of rigor in reasoning.Indeed the requirement of rigor,which has become proverbial in mathematics,corresponds to a universal philosophical necessity of our understanding;and,on the other hand,only by satisfying this requirement do the thought content and the suggestiveness of the problem attain their full effect.A new problem,especially when it comes from the world of outer experience,is like a young twig,which thrives and bears fruit only when it is grafted carefully and in accordance with strict horticultural rules upon the old stem,the established achievements of our mathematical science.Besides it is an error to believe that rigor in the proof is the enemy of simplic-ity.On the contrary wefind it confirmed by numerous examples that the rigorous method is at the same time the simpler and the more easily comprehended.The410DA VID HILBERTvery effort for rigor forces us tofind out simpler methods of proof.It also fre-quently leads the way to methods which are more capable of development than the old methods of less rigor.Thus the theory of algebraic curves experienced a considerable simplification and attained greater unity by means of the more rigor-ous function-theoretical methods and the consistent introduction of transcendental devices.Further,the proof that the power series permits the application of the four elementary arithmetical operations a well as the term by term differentiation and integration,and the recognition of the utility of the power series depending upon this proof contributed materially to the simplification of all analysis,particularly of the theory of elimination and the theory of differential equations,and also of the existence proofs demanded in those theories.But the most striking example for my statement is the calculus of variations.The treatment of thefirst and second variations of definite integrals required in part extremely complicated calculations, and the processes applied by the old mathematicians had not the needful rigor. Weierstrass showed us the way to a new and sure foundation of the calculus of variations.By the examples of the simple and double integral I will show briefly,at the close of my lecture,how this way leads at once to a surprising simplification of the calculus of variations.For in the demonstration of the necessary and sufficient criteria for the occurrence of a maximum and minimum,the calculation of the sec-ond variation and in part,indeed,the wearisome reasoning connected with thefirst variation may be completely dispensed with—to say nothing of the advance which is involved in the removal of the restriction to variations for which the differential coefficients of the function vary but slightly.While insisting on rigor in the proof as a requirement for a perfect solution of a problem,I should like,on the other hand,to oppose the opinion that only the concepts of analysis,or even those of arithmetic alone,are susceptible of a fully rigorous treatment.This opinion,occasionally advocated by eminent men,I con-sider entirely erroneous.Such a one-sided interpretation of the requirement of rigor would soon lead to the ignoring of all concepts arising from geometry,mechanics and physics,to a stoppage of theflow of new material from the outside world,and finally,indeed,as a last consequence,to the rejection of the ideas of the continuum and of the irrational number.But what an important nerve,vital to mathematical science,would be cut by the extirpation of geometry and mathematical physics! On the contrary I think that wherever,from the side of the theory of knowledge or in geometry,or from the theories of natural or physical science,mathematical ideas come up,the problem arises for mathematical science to investigate the principles underlying these ideas and so to establish them upon a simple and complete system of axioms,that the exactness of the new ideas and their applicability to deduction shall be in no respect inferior to those of the old arithmetical concepts.To new concepts correspond,necessarily,new signs.These we choose in such a way that they remind us of the phenomena which were the occasion for the formation of the new concepts.So the geometricalfigures are signs or mnemonic symbols of space intuition and are used as such by all mathematicians.Who does not always use along with the double inequality a>b>c the picture of three points following one another on a straight line as the geometrical picture of the idea “between”?Who does not make use of drawings of segments and rectangles enclosed in one another,when it is required to prove with perfect rigor a difficult theorem on the continuity of functions or the existence of points of condensation?Who could dispense with thefigure of the triangle,the circle with its center,or with the crossMATHEMATICAL PROBLEMS411 of three perpendicular axes?Or who would give up the representation of the vector field,or the picture of a family of curves or surfaces with its envelope which plays so important a part in differential geometry,in the theory of differential equations, in the foundation of the calculus of variations and in other purely mathematical sciences?The arithmetical symbols are written diagrams and the geometricalfigures are graphic formulas;and no mathematician could spare these graphic formulas,any more than in calculation the insertion and removal of parentheses or the use of other analytical signs.The use of geometrical signs as a means of strict proof presupposes the exact knowledge and complete mastery of the axioms which underlie thosefigures;and in order that these geometricalfigures may be incorporated in the general treasure of mathematical signs,there is necessary a rigorous axiomatic investigation of their conceptual content.Just as in adding two numbers,one must place the digits under each other in the right order,so that only the rules of calculation,i.e.,the axioms of arithmetic,determine the correct use of the digits,so the use of geometrical signs is determined by the axioms of geometrical concepts and their combinations.The agreement between geometrical and arithmetical thought is shown also in that we do not habitually follow the chain of reasoning back to the axioms in arithmetical,any more than in geometrical discussions.On the contrary we ap-ply,especially infirst attacking a problem,a rapid,unconscious,not absolutely sure combination,trusting to a certain arithmetical feeling for the behavior of the arithmetical symbols,which we could dispense with as little in arithmetic as with the geometrical imagination in geometry.As an example of an arithmetical theory operating rigorously with geometrical ideas and signs,I may mention Minkowski’s work,Die Geometrie der Zahlen.1Some remarks upon the difficulties which mathematical problems may offer,and the means of surmounting them,may be in place here.If we do not succeed in solving a mathematical problem,the reason frequently consists in our failure to recognize the more general standpoint from which the problem before us appears only as a single link in a chain of related problems. Afterfinding this standpoint,not only is this problem frequently more accessible to our investigation,but at the same time we come into possession of a method which is applicable also to related problems.The introduction of complex paths of integration by Cauchy and of the notion of the ideals in number theory by Kummer may serve as examples.This way forfinding general methods is certainly the most practicable and the most certain;for he who seeks for methods without having a definite problem in mind seeks for the most part in vain.In dealing with mathematical problems,specialization plays,as I believe,a still more important part than generalization.Perhaps in most cases where we seek in vain the answer to a question,the cause of the failure lies in the fact that problems simpler and easier than the one in hand have been either not at all or incompletely solved.All depends,then,onfinding out these easier problems,and on solving them by means of devices as perfect as possible and of concepts capable of generalization. This rule is one of the most important leers for overcoming mathematical difficulties and it seems to me that it is used almost always,though perhaps unconsciously.412DA VID HILBERTOccasionally it happens that we seek the solution under insufficient hypotheses or in an incorrect sense,and for this reason do not succeed.The problem then arises:to show the impossibility of the solution under the given hypotheses,or in the sense contemplated.Such proofs of impossibility were effected by the ancients, for instance when they showed that the ratio of the hypotenuse to the side of an isosceles right triangle is irrational.In later mathematics,the question as to the impossibility of certain solutions plays a pre¨e minent part,and we perceive in this way that old and difficult problems,such as the proof of the axiom of parallels,the squaring of the circle,or the solution of equations of thefifth degree by radicals havefinally found fully satisfactory and rigorous solutions,although in another sense than that originally intended.It is probably this important fact along with other philosophical reasons that gives rise to the conviction(which every mathematician shares,but which no one has as yet supported by a proof) that every definite mathematical problem must necessarily be susceptible of an exact settlement,either in the form of an actual answer to the question asked, or by the proof of the impossibility of its solution and therewith the necessary failure of all attempts.Take any definite unsolved problem,such as the question as to the irrationality of the Euler-Mascheroni constant C,or the existence of an infinite number of prime numbers of the form2n+1.However unapproachable these problems may seem to us and however helpless we stand before them,we have,nevertheless,thefirm conviction that their solution must follow by afinite number of purely logical processes.Is this axiom of the solvability of every problem a peculiarity characteristic of mathematical thought alone,or is it possibly a general law inherent in the nature of the mind,that all questions which it asks must be answerable?For in other sciences also one meets old problems which have been settled in a manner most satisfactory and most useful to science by the proof of their impossibility.I instance the problem of perpetual motion.After seeking in vain for the construction of a perpetual motion machine,the relations were investigated which must subsist between the forces of nature if such a machine is to be impossible;2and this inverted question led to the discovery of the law of the conservation of energy,which,again,explained the impossibility of perpetual motion in the sense originally intended.This conviction of the solvability of every mathematical problem is a powerful incentive to the worker.We hear within us the perpetual call:There is the problem. Seek its solution.You canfind it by pure reason,for in mathematics there is no ignorabimus.The supply of problems in mathematics is inexhaustible,and as soon as one problem is solved numerous others come forth in its place.Permit me in the fol-lowing,tentatively as it were,to mention particular definite problems,drawn from various branches of mathematics,from the discussion of which an advancement of science may be expected.Let us look at the principles of analysis and geometry.The most suggestive and notable achievements of the last century in thisfield are,as it seems to me,the arithmetical formulation of the concept of the continuum in the works of Cauchy, Bolzano and Cantor,and the discovery of non-euclidean geometry by Gauss,Bolyai,MATHEMATICAL PROBLEMS413 and Lobachevsky.I thereforefirst direct your attention to some problems belonging to thesefields.1.Cantor’s problem of the cardinal number of the continuumTwo systems,i.e.,two assemblages of ordinary real numbers or points,are said to be(according to Cantor)equivalent or of equal cardinal number,if they can be brought into a relation to one another such that to every number of the one assemblage corresponds one and only one definite number of the other.The inves-tigations of Cantor on such assemblages of points suggest a very plausible theorem, which nevertheless,in spite of the most strenuous efforts,no one has succeeded in proving.This is the theorem:Every system of infinitely many real numbers,i.e.,every assemblage of numbers (or points),is either equivalent to the assemblage of natural integers,1,2,3,...or to the assemblage of all real numbers and therefore to the continuum,that is,to the points of a line;as regards equivalence there are,therefore,only two assemblages of numbers,the countable assemblage and the continuum.From this theorem it would follow at once that the continuum has the next cardinal number beyond that of the countable assemblage;the proof of this theorem would,therefore,form a new bridge between the countable assemblage and the continuum.Let me mention another very remarkable statement of Cantor’s which stands in the closest connection with the theorem mentioned and which,perhaps,offers the key to its proof.Any system of real numbers is said to be ordered,if for every two numbers of the system it is determined which one is the earlier and which the later, and if at the same time this determination is of such a kind that,if a is before b and b is before c,then a always comes before c.The natural arrangement of numbers of a system is defined to be that in which the smaller precedes the larger.But there are,as is easily seen,infinitely many other ways in which the numbers of a system may be arranged.If we think of a definite arrangement of numbers and select from them a particular system of these numbers,a so-called partial system or assemblage,this partial system will also prove to be ordered.Now Cantor considers a particular kind of ordered assemblage which he designates as a well ordered assemblage and which is characterized in this way,that not only in the assemblage itself but also in every partial assemblage there exists afirst number.The system of integers1,2,3,...in their natural order is evidently a well ordered assemblage.On the other hand the system of all real numbers,i.e.,the continuum in its natural order,is evidently not well ordered.For,if we think of the points of a segment of a straight line,with its initial point excluded,as our partial assemblage,it will have nofirst element.The question now arises whether the totality of all numbers may not be arranged in another manner so that every partial assemblage may have afirst element,i.e., whether the continuum cannot be considered as a well ordered assemblage—a ques-tion which Cantor thinks must be answered in the affirmative.It appears to me most desirable to obtain a direct proof of this remarkable statement of Cantor’s, perhaps by actually giving an arrangement of numbers such that in every partial system afirst number can be pointed out.414DA VID HILBERT2.The compatibility of the arithmetical axiomsWhen we are engaged in investigating the foundations of a science,we must set up a system of axioms which contains an exact and complete description of the relations subsisting between the elementary ideas of that science.The axioms so set up are at the same time the definitions of those elementary ideas;and no statement within the realm of the science whose foundation we are testing is held to be correct unless it can be derived from those axioms by means of afinite number of logical steps.Upon closer consideration the question arises:Whether,in any way,certain statements of single axioms depend upon one another,and whether the axioms may not therefore contain certain parts in common,which must be isolated if one wishes to arrive at a system of axioms that shall be altogether independent of one another.But above all I wish to designate the following as the most important among the numerous questions which can be asked with regard to the axioms:To prove that they are not contradictory,that is,that afinite number of logical steps based upon them can never lead to contradictory results.In geometry,the proof of the compatibility of the axioms can be effected by constructing a suitablefield of numbers,such that analogous relations between the numbers of thisfield correspond to the geometrical axioms.Any contradiction in the deductions from the geometrical axioms must thereupon be recognizable in the arithmetic of thisfield of numbers.In this way the desired proof for the compatibility of the geometrical axioms is made to depend upon the theorem of the compatibility of the arithmetical axioms.On the other hand a direct method is needed for the proof of the compatibility of the arithmetical axioms.The axioms of arithmetic are essentially nothing else than the known rules of calculation,with the addition of the axiom of continuity.I recently collected them3and in so doing replaced the axiom of continuity by two simpler axioms,namely,the well-known axiom of Archimedes,and a new axiom essentially as follows:that numbers form a system of things which is capable of no further extension,as long as all the other axioms hold(axiom of completeness).I am convinced that it must be possible tofind a direct proof for the compatibility of the arithmetical axioms,by means of a careful study and suitable modification of the known methods of reasoning in the theory of irrational numbers.To show the significance of the problem from another point of view,I add the following observation:If contradictory attributes be assigned to a concept,I say, that mathematically the concept does not exist.So,for example,a real number whose square is−1does not exist mathematically.But if it can be proved that the attributes assigned to the concept can never lead to a contradiction by the application of afinite number of logical processes,I say that the mathematical existence of the concept(for example,of a number or a function which satisfies certain conditions)is thereby proved.In the case before us,where we are concerned with the axioms of real numbers in arithmetic,the proof of the compatibility of the axioms is at the same time the proof of the mathematical existence of the complete system of real numbers or of the continuum.Indeed,when the proof for the compatibility of the axioms shall be fully accomplished,the doubts which have been expressed occasionally as to the existence of the complete system of real numbers will become totally groundless.The totality of real numbers,i.e., the continuum according to the point of view just indicated,is not the totality of。