变电站交直流控制电源一体化整体解决方案
变电站交直流一体化电源系统的设计与应用探讨

变电站交直流一体化电源系统的设计与应用探讨随着城市的快速发展以及工业化的进程,电力需求的增加已经成为了一个必然趋势。
而变频器、UPS等高负载设备的普及,也给变电站带来了更加严苛的用电环境和电源容量需求。
为了满足这些需求,变电站交直流一体化电源系统被提出并逐渐得到了广泛应用。
一、交流电源变电站所用的交流电源通常由220V或380V的三相交流电源组成。
交流电源通过配电变压器、断路器、电容器、电阻器等设备进行分配和过滤,最后供给变电站内部的各种设备使用。
直流电源在变电站中的应用非常广泛,比如说用于配电柜电源、电缆桥架维护电源、UPS电源等等。
变电站通常使用两种类型的直流电源:(1)整流器型直流电源整流器型直流电源通常利用三相交流电源先进行全波整流,将其转换为带有脉冲波形的直流电压。
然后通过一个电感器和滤波器进行平滑和滤波,最后输出可靠的直流电源。
化验型直流电源是一种可以输出成为特定电压和电流的高精度直流电源。
其关键的组成部分是直流电源调节器,它从输入电源中提取出需要的电流并将其输出。
交直流一体化电源系统是一种能够同时稳定地提供交流电源和直流电源的电力系统。
它通常包含三个部分:交流输电系统、直流稳压系统和中间连接系统。
交流输电系统通常由输电变压器、隔离变压器、低压配电柜等组成。
这些设备将中央电站产生的交流电力转换为适合于变电站使用的交流电源。
直流稳压系统通常包含多路直流稳压电源、电容、电感器和滤波器等。
这些设备能够从交流输电系统中提取出直流电源,并对其进行稳定和平滑,最终输出可靠的直流电源。
中间连接系统则是用来连接交流输电系统和直流稳压系统,使之能够有效地互通能量。
四、应用实例交直流一体化电源系统在变电站中的应用非常广泛。
比如,它可以用于电力电源、照明电源、制冷设备电源、UPS电源、国际标准通信电源等,受到了广泛的青睐。
总之,交直流一体化电源系统已经成为一个非常重要的电力配套系统,它的设计和应用可以有效提高变电站的稳定性和可靠性。
变电站交直流控制电源一体化整体解决方案

交流电源的作用
1 主电源
交流电源作为变电站的主 电源,为各来自设备提供电 力。2 供电调节
交流电源可以调节电压和 频率,以满足不同设备的 电力需求。
3 故障检测
交流电源具有故障检测功 能,能够及时发现并报告 电力设备的故障。
电源的控制方法
模拟控制
通过模拟信号控制电源输出的电压和电流。
数字控制
通过数字信号控制电源输出的电压和电流,实现精 确的控制。
控制电源的组成
直流电源单元
包括整流、滤波和稳压模块,将交流电转换为稳定的直流电。
交流电源单元
包括变压器、整流和滤波模块,将变电站的输入交流电转换为稳定的直流电。
控制单元
包括逻辑控制、监测和故障检测模块,实现对电源的控制和监测。
系统的稳定性
我们的控制电源系统具有高度的稳定性,能够在各种工作环境和负载情况下 提供稳定的电力供应。
一体化整体解决方案
我们提供一体化整体解决方案,将交直流控制电源集成到一个系统中,以便 更好地管理和控制变电站的电力设备。
直流电源的作用
1 稳定供电
直流电源为变电站提供稳 定的直流电,确保电力设 备的正常运行。
2 精确控制
直流电源可以根据需求精 确调节电压和电流,实现 对电力设备的精确控制。
3 备用电源
变电站交直流控制电源一 体化整体解决方案
本演示将向您展示变电站交直流控制电源一体化整体解决方案的各个方面, 包括作用、控制方法、组成、故障保护和优缺点等内容。
变电站交直流控制电源概述
交直流控制电源在变电站的运行中起着至关重要的作用,它能够提供稳定可 靠的电源供应,并对变电站的电力设备进行精确控制。
电力交直流一体化电源解决方案

电力交直流一体化电源解决方案关于变电站交直流一体化电源解决方案的探讨背景及现状1、背景电力系统中变电站内的操作电源是保证变电站控制、信号、保护、自动装置可靠运行的保障~变目前隆化分公司变电站一般配置三套各自独立的操作电源系统~即直流操作电源、通信电源、交流不间断电源,UPS,~每套电源系统单独配置蓄电池组和监控管理系统。
为控制、信号、保护、自动装置以及操作机构等供电的直流电源系统~通常称为直流操作电源。
为微机、载波、消防等设备供电的交流电源系统~通常称为交流操作电源,为交换机、光端机、远动等通信设备供电的直流电源系统~则称为通讯电源。
2、现状1、2、1直流操作电源直流操作电源室站用交流电源正常和事故状态下都能保持可靠供电给变电站内所有控制、保护、自动装置等控制负荷和各类直流电动机、断路器合闸机构等动力负荷的电源。
直流操作电源系统电源一般选择220V或110V,采用不接地方式。
隆化分公司现有35千伏变电站均装设1组蓄电池及1套充电装置~采用单母线接线。
1、2.2通信电源通信电源提供给变电站载波机、光端机等通信设备及保护复用设备电源。
系统电压为48V~采用正接地方式。
1、2.3交流不间断电源交流不间断电源在变电站中UPS主要是给不允许短时停电的计算机监控设备供电~可靠性及稳定性较高~一般均采用一主一备串联运行方式~即正常时由主机供电~主机故障时~从机自动投入。
UPS正常由交流电源供电~当交流电源消失或整流器、逆变器等元件故障~则由自带的蓄电池向逆变器供电。
隆化分公司现有变电站16座~各变电站内均配有UPS电源~由于其内置的蓄电池组容量小且没有专业的维护措施~因此造成蓄电池容量不足或损坏而无法满足自动化的要求。
1、2.4独立操作电源存在的问题无法综合优化资源~各自独立的操作电源系统重复配置蓄电池组~使一次投资增加。
分散布置的设备增加了日常运行维护工作。
各操作电源系统的由于不同的厂家使安装、服务等协调困难。
如何有效解决变电站站用交直流一体化的电源问题

能化控 制 , 实 现 变 电站 一 体 化 和 网络 化 发 展 目标 。在
是利 用分 散形式 来进 行设计 和构 建 ,其 主屏 较为 独 立 .实 际应用 的设 备主要是 选择不 同厂家的产 品 . 对
不 同 的系 统 进 行 信 息 管 理 和设 计 。变 电 站 在 实 际 发 展
( 2 ) :  ̄J t l 了变 电站 内部 电源 的 稳定 性 和 可 靠性 。 设 备在实际运作过程 中 , 可 以 利 用 较 为 成 熟 的 一 体 化 技 术来进行 运作 , 不存 在技术 安全 问题 , 降 低 了 变 电 站 发 生安 全 事故 的 概率 。
( 2 ) 财务支 出压力大 。由于设备来 自不同 的厂家 ,
对 于 不 同 优 势 和 劣 势 的产 品 , 不 能 在 站 内 电源 中 整 合 应用 , 导致 运用 的重 复性 , 增 加 了 站 内 电 源 的 重 复 运
用性 。
3交直流 电源的构 建方案
对 变 电站 交 直 流 电源 进 行 方 案 的构 建 , 可 以采 用
( 3 ) 安 装 工 作 和 实 际 运 用 工 作 的 协 调 性 较 差 。不
同厂 家的设备在安装 和实际应用时无 法协调 , 并 且发
收 稿 日期 : 2 0 1 7 . O 1 . 0 8
8 9
{ WwW. a u t o — a p p l y . c o n {自动 化 应 用 r
电力用直流和交流一体化不间断电源技术方案

电力用直流和沟通一体化不连续电源技术方案一、概述目前变电站一般配置三套各自独立的操作电源系统,即直流操作电源(DC)、通信电源、沟通不连续电源(UPS),每套电源系统单独配置蓄电池室、蓄电池组和监控治理系统。为掌握、信号、保护、自动装置以及某些执行机构等供电的直流电源系统,通常称为直流操作电源。为微机、载波、消防等设备供电的沟通电源系统,通常称为沟通操作电源;为交换机、远动等通信设备供电的直流电源系统,则称为通信电源。1.1变电站操作电源系统现状分析1.1.1直流操作电源(DC)直流操作电源是在站用沟通电源正常和事故状态下都能保持可靠供电给变电站内全部掌握、保护、自动装置等掌握负荷和各类直流电动机、断路器合闸机构等动力负荷的电源。直流操作电源系统电压一般选择220 V或110 V,承受不接地方式。对220 kV及以上变电站均装设2组蓄电池及2套充电装置,构成两电两充方式,承受单母线分段接线,2段母线之间设联络电器,2组蓄电池及2套充电装置分别接于不同母线段。从90年月开头智能高频开关电源技术的成熟 ,实现了模块化和并联热备份运行,蓄电池组则承受免维护的阀控式铅酸蓄电池 ,承受分布式计算机及现场总线技术对直流电源系统进展集中监控,提高了充电模块的智能化治理水平及维护便利性,系统运行的牢靠性和技术水平取得了质的飞跃,目前在变电站中已完全取代相控电源而广泛应用。降交 流配 沟通输入电 单元整流模块*)硅 整流模块堆 压整流模块掌握输出动力输出配电监控 电池巡检动 控力 制母 母线 线绝缘监测无源触点监控模块 至电站监控系统 *)系统不设置硅降压装置时,动力母线和掌握母线合并。
图1 智能高频开关直流电源典型系统构造图1.1.2 通信电源通信电源供给应变电站内载波机 、光端机等通信设备及保护复接设备电源。系统电压为48V,承受正极接地方式。220 kV 及以上变电站按两电两充设计,承受单母线接线,两组蓄电池及2套充电装置分别 接于不同母线段,2段母线之间不设联络电器。1.1.3 沟通不连续电源 (UPS)沟通不连续电源在变电站中UPS 主要是给不允许短时停电的计算机监控设备供电,牢靠性及稳定性要求高,一般均承受一用一备串联运行方式,即正常时由主机供电,主机故障时,从机自动投入。UPS 正常 由沟通电源供电,当沟通电源消逝或整流器、逆变器等元件故障,则由自带的蓄电池向逆变器供电。从90年月中期开头,大量应用在变电站中UPS,由于其内置的蓄电池组容量小且没有专业的维护措施,因此造成蓄电池容量缺乏或损坏而无法满足自动化的要求。1.2独立的操作电源系统给客户带来了以下问题1)无法综合优化资源,各自独立的操作电源系统重复配置蓄电池组,使一次投资增加。2)分散布置的设备增加了日常运行维护工作。3)各操作电源系统的供给商由于利益的差异使安装、效劳等协调困难。4)供电局各操作电源系统专业班组无法统一治理。1.3型解决方案针对以上问题,我司设计完成型直流和沟通一体化不连续电源系统,并解决了一体化不连续电源共用蓄电池带来的隔离、DC/DC馈线短路脱扣、统一信息治理等技术难题。二、一体化不连续电源的实施方案直流电源、电力用沟通(UPS)和电力用逆变电源(INV)、通信用直流变换电源(DC/DC)等装置组合为一体 ,共享直流电源的蓄电池组 , 并统一监控的成套设备。依据变电站存在的电源类型及其特点 ,考虑目前运行治理体制的差异,我司一体化不连续电源可按以下 2种类型进展接线设计。2.1DC—UPS一体化电源。统一由直流操作电源供电,除供给直流操作电源DC外,还供给沟通不连续电源UPS。主要由直流操作电源、电力专用UPS或逆变、集中监控等局部组成。UPS不配置独立蓄电池组 ,与直流电源共用蓄电池组,UPS装置作为直流系统的负荷之一。电力专用逆变器直流输入取自站内直流掌握电源系统的蓄电池组,并且实现了直流与沟通输入和输出的电气隔离,以及高精度的稳压稳频逆变输出 ,是真正意义上的干净电源。图2 电力专用逆变电源INV典型系统构造图图3 电力专用UPS电源典型系统构造图从系统构造图中我们可以看出,电力专用UPS与逆变电源INV的区分仅仅是在逆变电源的根底上增加了整流器 ,正常运行为在线模式, 即沟通输入经整流器变为直流电后再经逆变器变为标准的正弦波输出,电网停电时无连续地切换至直流掌握电源供电 ,适用于对电源质量要求较高的微机监控设备。另外在牢靠性要求更高的变电站中 ,可承受1+1双机热备份或者N+1多机热备份方式供电。电力专用逆变电源INV主要用于后备模式运行,即沟通输入正常时经旁路输出,电网停电时无连续地切换至直流掌握电源逆变输出,适用于对电源质量要求不高的沟通负荷,如事故照明。电力专用逆变电源虽然可以运行在在线模式,但要增加直流掌握电源系统的常常负荷电流和充电装置的选择容量,明显是不合理的选择。DC—UPS一体化电源装置设计理念能较好地符合当前变电站的治理体制和运行习惯。2.2DC—UPS—DC/DC一体化电源。该接线设计同时取消了UPS系统、通信电源系统的蓄电池,共用直流操作电源DC的蓄电池组。统一由直流操作电源供电,除供给直流操作电源DC、沟通不连续电源UPS,还供给通信用48 V电源。在前述接线1的根底上,利用DC/DC电源变换装置代替原通信专业48 V蓄电池电源系统,将DC/DC装置作为直流系统的一个负荷考虑。它同样是取消了配套的蓄电池组,从站内直流掌握电源系统的蓄电池组取得直流电,经高频变换输出满足通信设备要求的 48V掌握电源。DC-DC变换器不但实现了直流输入与输出的电气隔离 ,而且通过模块的并联冗余,可以获得很高的牢靠性,绝缘及耐压也满足电力系统的特别要求。三、一体化不连续电源制造的客户价值和效益一体化不连续电源与变电站传统独立操作电源相比 ,具有以下主要特点:(1)设备资产优化,提高工程投资经济性一体化不连续电源削减了通信用蓄电池及UPS蓄电池,与加大直流操作电源蓄电池容量所增加的投资比 ,可节约肯定资金。削减了蓄电池组,也就是节约了使用空间。一体化不连续电源仅用一组蓄电池, 削减了长期维护费用。(2)人力资源优化,削减日常维护工作量,削减人员配置一体化不连续电源仅配置 1套直流操作电源蓄电池,取消UPS电源、通信电源蓄电池组,削减了维护治理工作量。蓄电池的日常维护由电气专业人员完成,对蓄电池的日常治理具有更严格的巡察、检查、维护体系,因而可以延长电池的使用寿命,并提高电源系统的牢靠性。一体化不连续电源将打破目前变电站的运行治理体制和习惯 , 将原各操作电源分开进展维护治理的工作转变到了由变电电气专业人员统一治理维护,削减人员冗余配置。(3)社会经济效益削减蓄电池的使用量,对改善环境质量具有乐观的作用。并节约了蓄电池生产所需的铅、铜等不行再生资源。(4)精细化治理,能较好地实现电源系统治理的网络化、智能化。将原由不同供货商供给的、通信规约不兼容的电源系统统一为同一标准的产品,设置集中监控器与变电站后台监控通信 ,实现站用电源系统数据一体化的实时监视 ,被监控对象的掌握、调整和运行方式便于实施集中治理、分散掌握。集中监控承受总线式构造,能便利地进展监控功能的扩展,便利维护。四、一体化电源已解决的技术问题4.1不同电源系统与直流操作电源系统的隔离直流操作电源系统为不接地系统,所以沟通侧的UPS装置的沟通输入、输出与直流侧必需实行措施进展隔离,如承受隔离变,可避开沟通侧的运行及故障影响直流操作电源系统侧的绝缘降低,造成直流系统接地等特别。通信电源系统承受正极接地方式,所以DC/DC装置的输入、输出局部也是隔离的。另外,对于单电单充的变电站,蓄电池组出现故障,则全站全部的交直流电源系统都将失电 ,带来较为严峻的后果,以上都是我司一体化不连续电源针对变电站的重要程度所解决的问题。4.2DC/DC馈线短路保护装置当电力通信专用DC/DC模块一条馈线支路发生短路故障,馈线短路保护装置能够在DC/DC短路保护状况下,能牢靠切除故障馈线,同时不影响通信电源正常供电。4.3蓄电池容量的选择一体化电源设备增加了UPS、DC/DC装置,其直流负荷的统计计算时间和负荷系数要合理选择。如工程设计中UPS的负荷容量一般均较实际偏大,容量计算时可考虑负荷系数为0.6,避开蓄电池容量选择过大。事故放电时间计算时,直流操作电源系统按无人值班考虑2h,而通信电源系统则按12 h考虑,容量选择时必需考虑以上不同运行条件要求,保证足够容量以满足牢靠性要求。五、一体化不连续电源系统应用总结一体化不连续电源系统削减了设备配置、蓄电池及检测设备、屏柜数和安装建筑面积,提高设备牢靠性、数据共享及系统分析水平,由变电站统一运行、维护,削减了运维人员和工作量,提高了工作效率和运营治理经济性。一体化电源必将发挥出它的优势 ,具有良好的进展前景。6事故照明逆变电源屏3kVA面1附件1一体化不连续电源货物范围一览表序号 名称型号规格 单位 数量 备注1 高频开关电源直流充电屏DC110V面 1 含一体化监控系统2 直流馈线屏面13 蓄电池屏 200Ah 套 1 选用单节电池(2V)4 沟通屏 0.4KV 面 11 5电力专用UPS 屏 1kVA 面 1附件2 设备一览表附件3一体化不连续电源技术条件书1. 总则1.1. 本次订货的电力用直流和沟通一体化不连续电源设备应到达以下标准和技术条件的要求:: DL/T1074- 《电力用直流和沟通一体化不连续电源设备》DL/T5044- 《电力工程直流系统设计技术规定》 DL/T720- 《电力系统继电保护柜、屏通用技术条件》 GB/T 2900.11- 《电工术语 蓄电池名词术语》GB/T 2900.32- 《电工术语 电力半导体器件》GB/T 2900.33- 《电工术语 电力电子技术》GB4208- 《外壳防护等级》DL/T 637- 《阀控式密封铅酸蓄电池订货技术条件》 DL/T 459- 《电力系统直流电源柜订货技术条件》 NDGJ8- 《火力发电厂、变电所二次接线设计技术规程》DL/T724-《电力系统用蓄电池直流电源装置运行与维护技术规程》DL/T781- 《电力用高频开关整流模块技术规定》DL/T5120- 《小型电力工程直流系统设计规程》电安生[1994]191 《电力系统继电保护及安全自动装置反事故措施要点》国家电力公司《防止电力生产重大事故的二十五项重点要求》国电调[2023]138号《“防止电力生产重大事故的二十五项重点要求”继电保护实施细则》GB3859.1- 《半导体电力变流器》GB4942.2 《低压电器外壳防护等级》GB/T 4208- 《外壳保护等级》GB/T 13384- 《机电产品包装通用技术条件》GB/T 17626.2- 《电磁兼容试验和测试技术静电》GB7261- 《继电器及继电保护装置根本试验方法》GB1984- 《沟通高压断路器》DL402- 《沟通高压断路器》GB/T14715-93 《信息技术设备用不连续电源通用技术条件》以上标准均以最版本为准2.环境条件及工程条件2.1.环境条件2.1.1.安装场所: 户内全地下2.1.2. 四周空气温度: - 15 ℃~ + 40 ℃最大日温差: 15℃相对湿度: ≯90%2.1.3.地震强度:水平加速度垂直加速度≤0.2g ≤0.1g2.1.4.海拔高度: 不超过1000m2.1.5.噪声水平: ≯55dB 2.2.系统概述2.2.1.变电站电源系统承受电力用直流和沟通一体化不连续电源设备来实现。对于变电站来说,掌握和操作用的沟通不连续电源和直流操作电源的牢靠性是至关重要的,它们是整个站内用电设备的动力来源。一旦它们发生故障,将会导致微机掌握系统失灵和操作开关拒动等等事故,对安全生产造成极大危害。将二者整合为一体,实现统一监控和远程监控,这对于变电站智能化治理是必不行少的,是变电站电源进展趋势。一体化电源装置主要技术特征有:(1)事故照明逆变电源、电力专用 UPS 电源和直流电源共用蓄电池,削减运行维护工作量,提高供电牢靠性,提高站用电源整合机制;(2)通过符合 IEC61850 标准的统一通讯接口,实现对沟通电源、直流操作电源和沟通不连续电源的远程监控,建立站用电源网络监控平台,提高直流电源和UPS 电源的智能化、网络化监控;(3)逆变负载、UPS负载短路时不关机、不中断供电;(4)逆变、UPS 监控器具有智能化防误操作的模拟显示屏,可有效防止由于误操作而导致停电事故;(5)逆变、UPS 的输入和输出均具有工频隔离变压器,从而保证沟通侧的任何特别不会影响直流操作电源的对地绝缘。2.2.2.电力用直流和沟通一体化不连续电源设备系统框图入下所示:上图种仅示意了UPS系统,逆变系统依据UPS系统一样设置。2.2.3.一体化电源直流操作电源(DC)配置及接线110V直流操作电源包括蓄电池组、蓄电池充电器、直流屏、蓄电池屏等。充电器承受高频开关型,具有稳压、稳流及限流性能。直流馈线承受辐射状供电方式。直流系统额定电压:110V DC直流系统接线:单母线接线,辐射状供电,接一组蓄电池和一套高频开关充电装置。蓄电池组数及容量:1组/200Ah(待设联会确认)高频开关充电模块配置:4个20A模块,掌握母线上配置2个,合闸母线上配置2 个。2.2.3.1高频开关电源根本技术参数充电装置型式:高频开关电源沟通输入: 三相380V±15%50HZ±10% 双回手动、自动切换直流输出: 额定电压110V额定输出电流:20A输出稳压精度为: ±0.1%输出稳流精度为: ±0.1%纹波系数:≤0.1%(阻性负载)并机均流不平衡度:±5%2.2.4.一体化电源装置中逆变电源、电力专用UPS配置及接线逆变电源、电力专用UPS包括沟通输入和输出工频隔离变压器、整流器、逆变器、静态转换开关、手动旁路开关和沟通配电单元等。本工程要求逆变电源、UPS均不带蓄电池,直流电源来自站内直流系统。沟通输出额定电压:220V AC电力专用UPS电源数量及容量:1kVA/台1台逆变电源数量及容量:3kVA/台1台2.2.4.1逆变电源、电力专用UPS电源根本技术参数标称沟通输入电压: 220VAC±15%直流输入电压110V,80—115%,纹波系数≤5%沟通输出电压220V±2%(沟通直接输入除外)沟通输出频率:50HZ±0.5%(沟通直接输出除外)波形失真:≤5%(在0~100%线性负载) 过载力量:120%10min150%10S 关机转旁路直流输入与沟通输入切换时间: 0 ms 逆变输出与旁路输出切换时间: ≤4ms 输出功率因数: 0.8 噪 音: 效 率: ≯55dB ≥85% 波峰系数:3:1工频耐压: 屏内各带电回路按其工作电压应能承受下表所规定历时1分钟的 工频耐压试验(特别强调SPWM 逆变输出原边回路对地),试验过程中应无绝缘击穿和内络现象。防电磁干扰:符合GB9254的规定。特别是通过二极管对直流源(直流母线)的传导干扰应小于300mV 。牢靠性估量指标: MTBF 大于10年。3. 技术参数和性能要求3.1. 总的要求3.1.1. 一体化电源设备的根本参数和技术指标应满足《电力用直流和沟通一体化不连续电源设备》要求。3.1.2. 全部的元器件必需选用具有生产许可证的合格产品,其性能应符合该元 器件技术条件的规定。3.1.3. 各柜体应设保护接地,接地处应有防锈措施和接地标志;额定绝缘电压U额定工作电压沟通均方根值或直流V≤60 i工频电压 KV 冲击电压 KV1.0 1 60< V ≤3002.0 5 300< V ≤5002.512四遥功能整流模块沟通屏沟通输入电压、电流遥测单个模块的输出电压、电流交、直流配电三相电压母线电压、电流电池充/放电压、电流逆变、UPS电源直流输入电压、电流沟通输入电压、电流沟通输出电压、电流、频率遥信交直流输入电压、特别报警沟通输出特别报警故障3.1.4.柜内元器件的安装应整齐美观,应考虑散热要求及与相邻元件之间的间隔距离,并应充分考虑电缆的引接便利。3.2.一体化电源设备的技术要求3.2.1.接线方式直流母线应承受单母线运行方式,母线接一组蓄电池、一套充电装置、一套逆变及一套UPS。蓄电池组经保护电器接入母线。外部放电设备经保护电器直接与蓄电池并接。3.2.2.一体化电源屏配置一体化电源屏应包括充电装置进线、蓄电池进线、放电试验、逆变进线、UPS进线、馈线开关等开断设备。组屏按充电装置及馈线屏、蓄电池屏、逆变屏、UPS屏原则设置。阀控式密封铅酸蓄电池要安装在蓄电池屏内,放置于户内。3.2.3.网络设计沟通电源输入回路应承受双回,且能自动切换,在切换后输入高频开关整流模块、逆变电源模块和UPS电源模块前均需配置防雷设施。直流回路的操作与保护设备承受西门子直流型自动空气开关,沟通回路的操作与保护设备承受西门子沟通型自动空气开关。全部回路需有指示灯,空开带报警接点。3.3.一体化电源设备应具有遥信、遥测、遥控、遥调功能,留有与变电所监控系统或远方掌握中心的数字接口,满足无人值守变电所的要求。四遥的根本功能见下表:充电机输出电压、电流浮充电流正常工作状态沟通输入过压、欠压、缺相母线过压、欠压沟通输入过压、欠压母线过压、欠压故障工作状态进线开关、分段开直流母线正、负极关状态绝缘低馈线故障报警熔断器熔断、开关。
一体化电源解决方案

一体化电源解决方案一体化电源解决方案是指将多个电源设备整合在一起,通过统一的控制系统进行管理和监控,以提高电源的效率、可靠性和安全性。
该解决方案适合于各种领域,包括工业、通信、交通、医疗等。
一体化电源解决方案的主要特点包括:1. 高效能节能:采用先进的电源转换技术,提高电源的效率,减少能源消耗,降低运行成本。
2. 可靠性高:通过冗余设计和故障监测,确保电源系统的可靠性和稳定性,减少系统故障和停机时间。
3. 安全性强:采用多重保护机制,如过载保护、短路保护、过压保护等,确保电源系统的安全运行。
4. 灵便性好:支持多种输入和输出电压,适应不同设备的需求,方便系统的扩展和升级。
5. 可监控性强:通过远程监控和管理系统,实时监测电源设备的运行状态和参数,及时发现和解决问题。
一体化电源解决方案的应用场景举例:1. 工业自动化:在工业生产过程中,需要为各种设备和系统提供稳定可靠的电源,一体化电源解决方案可以集中管理和监控各个设备的电源,提高生产效率和安全性。
2. 通信基站:通信基站需要稳定的电源供应,一体化电源解决方案可以将多个电源设备整合在一起,通过智能控制和监测,确保通信基站的正常运行。
3. 医疗设备:医疗设备对电源的要求非常高,一体化电源解决方案可以提供稳定的电源,确保医疗设备的安全和可靠运行。
4. 交通信号灯:交通信号灯需要24小时不间断供电,一体化电源解决方案可以提供可靠的电源,确保交通信号灯的正常运行。
5. 太阳能发电系统:太阳能发电系统需要将太阳能转换为电能供应给家庭或者工业设备使用,一体化电源解决方案可以将太阳能发电系统与电网连接起来,实现电能的高效利用。
以上是一体化电源解决方案的简要介绍,该解决方案的应用广泛且具有很大的市场潜力。
通过整合和管理多个电源设备,提高电源的效率和可靠性,可以为各个行业提供更好的电源供应服务。
站用电源交直流一体化系统

原料篇—必要性
站用电源负荷小结: 直流是交流的负荷!
原料篇—必要性
3、一体化站用电源系统元件 (1)、智能交流
进线开关、ATS、智能交流监控单元、馈线
(2)、智能直流
充电模块、降压硅链、直流监控、绝缘监测仪、电池巡检 仪、馈线、通信电源模块、逆变电源、事故照明
站用电源 (1)站用交流电指变电站内部负荷使用的50HZ,
220V正弦波交流电。 (2)站用直流电指变电站内部负荷使用的周期无限大,
频率为0,恒定大小220V/110V/48V的交流电。
原料篇—必要性
2、站用电源负荷 (1)站用交流电负荷 照明、空调、操作电源(开关、电机)、 充电模块 (2)站用直流电 事故照明、信号控制操作电源、通信电源
简化采购及施工协调,总投资减少,总维护费用降低,拥有成本 ( TCO)降低
品评篇—典型方案
(1)、站用电源难以实现系统管理
由不同供应商提供的交流系统与直流系统通信规约一般 不兼容,难以实现网络化系统管理。
原料篇—必要性
(2)、经济性较差
由不同供应商分别设计各个子系统,资源不能综合考 虑,使一次投资增加。如:直流系统配置一套蓄电池 组,UPS不间断电源系统、通信电源系统又各自分别配 置独立的蓄电池,浪费严重。运行维护分成交流、直 流、通信专业,UPS无人管,冗员且不安全。
3、网络化
各子系统通过一体化监控器接入综自/调度,形成网络系统。
一体化监 控器
综自系统
调度系统
交流系统
直流操作 电源系统
逆变电源 系统
通信电源 系统
上盘篇—特点
4、智能化 15”触摸式一体化监控器
上盘篇—特点
变电站交直流一体化电源系统的设计与应用探讨

变电站交直流一体化电源系统的设计与应用探讨1.1 交直流一体化电源系统的基本原理传统的变电站电源系统主要是交流电源,然而随着发电技术的不断进步和电力需求的日益增长,直流电源的应用也逐渐增多。
交直流一体化电源系统就是基于这样的背景而发展起来的。
它通过集成交流和直流两种电源系统,实现了电网的双回路供电,具有更高的可靠性和稳定性。
在设计变电站交直流一体化电源系统时,需要考虑以下几个原则:首先是整体性原则,即整个系统需要整体设计,实现交直流电源的协调运行;其次是灵活性原则,即系统需要具有一定的灵活性,可以根据实际需要进行调整和改变;再次是可靠性原则,即系统需要具有高度的可靠性,在各种情况下都能够稳定运行;最后是经济性原则,即在设计和建设过程中需要考虑成本因素,确保系统的高性价比。
2.1 设备选型在变电站交直流一体化电源系统的设计中,设备的选型是非常关键的环节。
需要考虑的主要设备包括变压器、开关设备、逆变器、直流配电柜等。
在选型过程中,需要充分考虑设备的技术性能、可靠性、节能性以及成本等因素,以确保系统的稳定运行和经济性的实现。
2.2 系统布局系统布局是变电站交直流一体化电源系统设计的重要环节。
合理的系统布局能够有效地减少线路损耗,提高系统的运行效率。
良好的系统布局还能够减少设备的占地面积,降低系统的建设成本。
2.3 运行控制在变电站交直流一体化电源系统的设计中,运行控制是至关重要的。
需要设计合理的运行控制系统,实现对系统运行状态的实时监测和调控。
这样可以有效地保障系统的稳定运行,并在出现故障时及时进行处理,降低损失。
2.4 安全保障安全是变电站交直流一体化电源系统设计的首要考虑因素。
需要采取一系列的安全保障措施,包括防雷、防火、防爆等,以保障系统运行过程中的安全稳定。
随着电力系统技术的不断进步和电力需求的日益增长,变电站交直流一体化电源系统的应用前景非常广阔。
交直流一体化电源系统具有更高的可靠性和稳定性,能够满足电力系统对电能的高质量需求。
一体化电源解决方案

一体化电源解决方案一体化电源解决方案是指将多个电源设备集成在一个整体系统中,以实现高效、可靠的电力供应。
该解决方案可应用于各种领域,包括工业、通信、交通、医疗等。
一体化电源解决方案的设计原则是满足用户需求,提供稳定、可靠、高效的电力供应。
以下是一个标准的一体化电源解决方案的设计流程:1. 确定需求:首先,根据用户的需求和应用场景,确定所需的电源容量、输入电压范围、输出电压稳定性等参数。
2. 选型设计:根据需求确定的参数,选择合适的电源设备组件,例如电源模块、电池组、开关电源等。
3. 系统集成:将选定的电源设备组件进行系统集成,确保各个组件之间的兼容性和协同工作。
同时,考虑系统的散热、防护等方面的设计。
4. 安全保护:为了确保系统的安全运行,一体化电源解决方案需要加入各种保护措施,如过压保护、过流保护、短路保护等。
5. 效率优化:为了提高系统的效率,一体化电源解决方案需要考虑功率因数校正、电源转换效率等方面的优化。
6. 可靠性测试:设计完成后,进行可靠性测试,包括温度测试、振动测试、电磁兼容性测试等,以确保系统在各种环境下的可靠性和稳定性。
7. 产品交付:经过测试和验证后,将一体化电源解决方案交付给用户,并提供相应的技术支持和售后服务。
一体化电源解决方案的优势包括:1. 空间节省:通过将多个电源设备集成在一个整体系统中,可以节省空间,简化布线,提高系统的紧凑性。
2. 简化维护:一体化电源解决方案可以减少设备数量,简化维护工作,降低维护成本。
3. 提高可靠性:通过系统集成和优化设计,一体化电源解决方案可以提高系统的可靠性和稳定性,减少故障发生的可能性。
4. 节能环保:一体化电源解决方案可以提高系统的能效,减少能源消耗,降低对环境的影响。
5. 灵便性:一体化电源解决方案可以根据用户需求进行定制设计,满足不同应用场景的需求。
总之,一体化电源解决方案是一种高效、可靠的电力供应解决方案,通过系统集成和优化设计,可以满足各种应用场景的需求。
变电站交直流一体化电源系统的设计与应用探讨

变电站交直流一体化电源系统的设计与应用探讨1. 引言1.1 背景介绍随着电力系统的快速发展和现代化建设,变电站作为电力传输的重要枢纽,在电网运行中扮演着至关重要的角色。
在传统的变电站设计中,交流供电是主要形式,但随着电力需求的增加及新能源的大规模接入,直流技术在变电站中的应用也日益受到关注。
传统的交流供电系统存在输电损耗大、稳定性差、占地面积大等问题,而直流系统具有输电效率高、稳定性强、占地面积小等优点。
将交流与直流一体化,构建交直流一体化电源系统成为了当前电力系统建设的一个趋势。
通过将交流系统和直流系统相结合,实现电力输送的高效、稳定和可靠运行。
本文旨在对变电站交直流一体化电源系统的设计与应用进行探讨,结合设计原则与方法、关键技术探讨、案例分析和系统优势等方面,探讨交直流一体化电源系统在电力系统中的应用前景和发展趋势。
1.2 研究意义变电站交直流一体化电源系统是当前电力系统中一个重要的技术发展方向,其具有很高的实用价值和研究意义。
随着我国经济的快速发展和电力需求的增加,传统的交流电源系统已经不能满足对电力的高品质、高可靠性和高效率的需求。
引入直流电源技术,将直流与交流系统相结合,可以提高供电系统的灵活性和稳定性,提高电能利用率,提高电网的运行效率。
变电站交直流一体化电源系统的研究可以促进电力系统的智能化和自动化发展,推动智能电力网的建设。
通过对系统优势的深入分析和探讨,可以为电力系统的升级改造提供新的思路和技术支持,推动电力行业的技术创新和发展。
研究变电站交直流一体化电源系统具有重要的现实意义和深远的发展意义,对促进电力系统的现代化建设和可持续发展具有重要的推动作用。
深入研究该领域的设计与应用探讨对于推动电力系统的发展和提升电力供应质量具有重要的意义和价值。
1.3 研究目的研究目的:本文旨在探讨变电站交直流一体化电源系统的设计与应用,通过对系统的概述、设计原则与方法、关键技术探讨、案例分析以及系统优势的分析,以期为相关领域的研究与应用提供参考。
变电站交直流一体化电源的解决方案.doc

变电站交直流一体化电源的解决方案2013年1月9日15:56:36 来源:大比特半导体器件网作者:=== 摘要:变电站交直流一体化电源的解决方案关键字:变电站, 交直流一体化, 电源, 解决方案1引言站用电源是变电站安全运行的基础,随着变电站综自化程度的越来越高以及大量无人值班站投运,相应提高站用电源整体的运行管理水平具有非常重要意义。
笔者认为,站用电源始终需要立足于系统技术来研究和发展,根据实际问题、发展现状提出发展思路。
现有站用电源在资源整合、自动化水平、管理模式等方面都还存在很大的优化空间,结构紧凑、经济可靠的变电站交直流一体化电源模式具有广阔的应用前景。
2传统站用电源现状分析传统变电站站用电源分为交流系统、直流系统、UPS 、通信电源系统等,各子系统采用分散设计,独立组屏,设备由不同的供应商生产、安装、调试,供电系统也分配不同的专业人员进行管理。
这种模式存在的主要问题:(1)、站用电源自动化程度不高。
由不同供应商提供的各子系统通信规约一般不兼容,难以实现网络化管理,系统缺乏综合的分析平台,制约了管理的提升。
(2)、经济性较差。
站用电源资源不能综合考虑,使一次投资显著增加。
(3)、安装、服务协调较难。
各个供应商由于利益的差异使安装、服务协调困难,远不如站用交直流电源一体化的“交钥匙工程”模式顺畅。
(4)、运行维护不方便。
站用电源分配不同专业人员进行管理:交流系统与直流系统由变电人员进行运行维护,UP S由自动化人员进行维护,通信电源由通信人员维护,人力资源不能总体调配,通信电源、UP S等也没有纳入变电严格的巡检范围,可靠性得不到保障。
3变电站交直流一体化电源的解决方案变电站站用交直流一体化电源系统是使用系统技术,针对变电站站用交流、直流、逆变、通信电源整体,根据实际问题、发展现状提出解决方案的站用电源系统。
目前有关生产研发厂家已提出三代产品,分别是:(1)、智能型站用电源交直流一体化系统主要实现:A、建立站用电源信息共享平台。
交直流一体化电源系统优化设计

交直流一体化电源系统优化设计交直流一体化电源系统是在电力系统中越来越常见的一种电源系统,它将交流电源和直流电源通过整合在同一个系统中,能够更加高效地利用电能和节省能源成本。
本文将从优化设计的角度探讨交直流一体化电源系统的优势和优化方向。
1. 数据中心运营效率的提升:数据中心是一个耗能巨大的地方,传统的纯直流或交流电源系统在集成和管理方面存在困难,需采用多种技术方案,增加成本。
交直流一体化电源系统省去了这些不必要的麻烦,能够实现数据中心的运营效率提升,提高数据中心的服务器装机密度,降低数据中心的空间资源和能耗成本。
2. 能耗降低:交直流一体化电源系统采用直流供电,能够实现更高的能量转化效率,并能够通过峰谷电价等政策可以降低能耗成本。
3. 安全性和可靠性提高:交直流一体化电源系统在电源转换的过程中,能够减少能源的损耗,使得电源系统的稳定性更强,同时也能够有效地保证系统的供电安全性和可靠性。
4. 智能化管理:交直流一体化电源系统能够实现对电源的智能化管理,通过远程监控技术,能够及时地监控各设备的工作状态,实现智能化管理与控制,提高供电的可靠性,降低人工成本。
1. 设备的选型优化:交直流一体化电源系统要实现高效能的转换,需要选用高品质、高效率的电源设备。
在选择设备时,需要根据实际应用需求和系统的规模来进行优化,选择符合负载特点的电源设备和系统组合,减少系统中的能耗损失,提高转化率。
4. 节能优化:能源成本的降低是优化交直流一体化电源系统的一个重要方向。
在设计和优化电源系统时,需要通过峰谷电价等技术手段,降低能耗成本。
同时也需要设计能耗监控系统,进行能耗数据分析,优化系统,降低能耗损失,减少不必要的浪费。
结语:通过以上四个方面的优化,交直流一体化电源系统可以实现更加高效、节能、智能和可靠的供电。
交直流一体化电源系统是电力系统发展的趋势,我们需要不断优化电源系统设计和管理,减少能耗损失,保证系统的供电稳定,并实现可持续化的发展。
数字化变电站一体化站用电源解决方案

数字化变电站一体化站用电源解决方案摘要:为保证变电站的顺利运行,需优化站用电源的使用,而随着变电站自动化水平的提高,实现无人管理,提高站用电源的运行效率显得尤为重要。
本篇文章是从变电、直流电的角度出发,加入一体化的思路,优化站用电源方案的设计,为其提供理论支持。
关键词:数字化变电站;站用电源;运行引言:一体化站用电源的建设,已经成为变电站发展的必然趋势,加快变电站的数字化建设。
其一体化的建设,可有效解决站用电源运行出现的小问题,提供运行方案,从而提高变电站的运行效率,提高管理水平。
所以,变电站需加快站用电源一体化的建设,以实现变电站的数字化管理。
1.站用电源一体化建设存在的问题站用电源一体化建设过程中,会出现以下问题。
首先,配置与管理分散。
配置分散式是指,组成站用电源的各部分相对独立,设备供应商分散;管理分散式是各部分都由不同人员管理,这两种情况导致了运行过程繁琐,且不易维护。
站用电源有两个电力系统,一是直流电系统,二是交流电系统,这两个系统由专人维护,其中,UPS是由负责自动化技术人员进行维护,人员分配分散,协调性差,降低了维护的效率。
其次,系统管理无法有效落实,很多技术方案无法实施。
因为站用电源的各个设备是由不同的供货商提供,设备的兼容性较差,无法统一放到一个管理系统中管理,同时,站用电源会使用多个技术方案,包括低压减载、节能技术等,但因为管理智能化尚未实现,这些方案很难落实[1]。
最后,经济效益较差。
这主要出现于直流电系统,其配有独立蓄电池,UPS与通信电源也有独立蓄电池,如果三者的蓄电同时使用,会耗费大量的的电能,降低了电力生产带来的经济效益。
2.完善一体化站用电源建设的措施站用电源一体化的设计与建设是一项系统的工作,有很强的综合性,需要多方面的建设。
所以,针对上述不足,可以从以下几方面加以完善。
2.1建设基本架构基本架构的建立,是把所有设备或模块放到统一的架构中。
即根据每个电源设备的设计要求,找到符合所有设备要求的设计方式,统一设计,并在母线上放置高频开关模块、逆变电源等设备,减少不必要电缆的连接,从而保证设备的运行的稳定。
交直流一体化电源系统优化设计

交直流一体化电源系统优化设计随着电子设备的不断发展和普及,对于电源系统的稳定性和性能要求也越来越高。
传统的直流电源系统和交流电源系统各有其优势和不足,而交直流一体化电源系统则兼具两者的优点,具有更好的稳定性和高效性能。
本文将探讨交直流一体化电源系统的优化设计,以提高其性能和稳定性。
一、交直流一体化电源系统的基本结构交直流一体化电源系统是指在电源系统中同时具备交流和直流的特性,能够提供兼容交直流设备的电源输出。
其基本结构包括交流输入、直流输入、整流变换、逆变变换、稳压输出等多个部分。
交流输入主要是从市电或者发电机组等交流电源中获得电能,而直流输入则是通过太阳能光伏板或者蓄电池等直流电源获得。
整流变换部分用于将交流电源转换为直流电源,逆变变换部分用于将直流电源转换为交流电源,而稳压输出则用于输出稳定的电压和电流给设备使用。
1. 适用性广泛:交直流一体化电源系统可以适配多种类型的电源输入和输出要求,能够提供兼容交直流设备的电源输出,具有更广泛的适用性。
2. 能效高:交直流一体化电源系统采用了高效的能量转换技术,能够最大程度地提高能源利用效率,降低能源浪费。
3. 稳定性强:交直流一体化电源系统采用了先进的稳压技术和过载保护技术,能够提供更稳定和可靠的电源输出,并确保设备的正常运行。
4. 节能环保:交直流一体化电源系统可以与可再生能源设备结合使用,如太阳能光伏板、风力发电机等,能够减少对传统能源的依赖,达到节能环保的效果。
1. 输电线路优化:在交直流一体化电源系统设计中,需要合理设计和布置输电线路,减小线路损耗,提高输电效率,同时要根据系统的容量和负载特性选择合适的导线截面和绝缘等级,确保输电线路的安全和可靠性。
2. 整流逆变器优化:整流逆变器是交直流一体化电源系统的核心部分,需要采用高效的功率半导体器件、先进的PWM控制技术和磁性元件,以提高整流逆变效率,降低热损耗,提高系统的稳定性和可靠性。
3. 输出稳压设计:在交直流一体化电源系统设计中,输出稳压是非常重要的一环,需要采用先进的稳压器件和控制技术,确保系统能够在负载变化和电网扰动的情况下提供稳定的输出电压和电流。
交直流一体化电源系统优化设计

交直流一体化电源系统优化设计
交直流一体化电源系统是一种将交流电源与直流电源结合在一起的电源系统。
它能够
实现交流电源和直流电源的互相切换和互补,可广泛应用于各种领域,如电力系统、通信
系统、工业控制系统等。
交直流一体化电源系统的优化设计是为了提高其性能和效率,减小系统的体积和成本。
在进行优化设计时,需要考虑以下几个方面:
1. 电源的功率因数校正:传统的交流电源由于存在功率因数低的问题,会导致电网
的负担增加。
在优化设计中,可以引入功率因数校正技术,使电源的功率因数接近1,减
小对电网的影响。
2. 电源的效率提高:电源的效率是衡量其能量利用率的指标,也是优化设计的重点
之一。
通过选择高效率的功率器件、采用合适的控制策略和优化电路结构等手段,可以提
高电源的效率。
3. 多级转换结构的应用:传统的交直流电源系统采用的是单级转换结构,其体积较大,效率较低。
通过引入多级转换结构,可以减小转换器的功率和体积,提高整个系统的
效率。
5. 电源的安全性:电源的安全性是优化设计的重要考虑因素。
通过采用合适的保护
电路和安全措施,可以降低电源故障引起的安全风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UPS监控模块 站内交流设备
直流监控模块 直流用电设备
综自后台
通信电源系统
第9页/共36页
通信监控模块 通信电源设备
北京国电光宇机电设备有限公司
国电光宇一体化交直流控制电源的构成
综自监控
高速以太网
站控层
一体化触摸式监控器
ACBUS
IEC61850
DCBUS
间隔层
MODBUS
站 用 变
AC380/220V
进行优化设计和EMI处理,满足EMC要求。 ❖ 统一了通信协议,使得交直流系统后台的管理更加方便化。 ❖ 建立智能监测与诊断系统,保证了变电站交直流电源系统
大的可靠运行。
第8页/共36页
北京国电光宇机电设备有限公司
变电站电源系统现状
站用电源系统
一路交流 二路交流
充电器 ATS
ATS
UPS电源系统 直流电源系统
没有综合的监控平台对站用电源系统进行统一管理 ;存在系统监控 盲点,不能及时发现事故隐患;限制了站用电源的深层次开发,管 理水平难以提升。
❖ 环保效应差 蓄电池重复配置,造成环保隐患;
核对性放电电能通过负载箱释放,造成电能浪费,所产生大量 的热能影响周围设备工作,同时也存在负载发热燃烧的隐患;
第7页/共36页
北京国电光宇机电设备有限公司
一体化交直流控制电源需解决问题
❖ 减少传统变电站交、直流系统用两个ATS的模式。 ❖ 一体化监测与诊断系统提供了实时在线监测系统,使得报
警及维护更加及时,保证电力系统的稳定性。 ❖ 共享直流操作电源的蓄电池组,取消传统UPS和通信电源
的蓄电池组和充电单元,减少维护工作量。 ❖ 对防雷单元统一优化配置,针对UPS和DC/DC的直流输入
第4页/共36页
北京国电光宇机电设备有限公司
交直流一体化设计理念
节约成本
传统电源系统 一体光宇机电设备有限公司
统一监控平台
UPS电源系统 直流电源系统
通信电源系统 UPS电源通信规约 直流电源通信规约 通信电源通信规约
综自监控
UPS电源系统 直流电源系统
综自监控
站用电源
DC220/DC110V
AC220V
DC48V
直流操作电源
电力专用UPS电源 通信电源
第10页/共36页
北京国电光宇机电设备有限公司
一路交流
ACBUS
ATS
二路交流
交流屏
此为双向并网有 源逆变过程
DCBUS 逆变电源屏 直流充电屏 通信电源屏
监控模块 交流站用设备
监控模块 直流站用设备
监控模块 通信设备
蓄电池整组电池或部分电池失效时(开路、短路或容量不足), 充电机故障或交流失压,将导致全站直流失压,引起保护及自动装置 拒动,影响电网系统安全运行。
随着电力公司电网规模的日益扩大和负荷需求的不断增加,电网 系统对变电站交、直流系统的运行要求越来越高,不及时发现、清除 交直流系统缺陷,将可能给电网的安全稳定运行带来严重影响。
北京国电光宇机电设备有限公司
变电站交直流一体化检测与诊断系统概述
❖目前变电站交、直流系统运行状况 a 缺乏统一技术规范,无法推广应用。 b 无统一监控系统平台,各设备检测装置各自独立形成系统,
形成多个信息孤岛,造成资源浪费。 c 信息通信标准不统一,信息传输交换难度大。 d 缺乏设备信息状态诊断、智能分析、预警、寿命预测和管
变电站站用控制电源系统拓扑图
控制电源系统
站用电交 流电源
动 力 、 照 明
UPS电源 系统
直流操作电 源系统
直流通信电 源系统
微机 监控 、 事故 照明
提供断路 器的分、 合电源及 各类高低 压设备的 直流用电
载波 机、 交换 机
第1页/共36页
北京国电光宇机电设备有限公司
传统站用电源配置中存在的问题
高速以太网
通信电源系统
一体式触摸式监控器 IEC61850规约
MODBUS
第6页/共36页
北京国电光宇机电设备有限公司
电力运营需要交直流一体化解决方案
❖ 数字化变电站发展的需要:紧凑、标准、统一 ❖ 降低设备全寿命周期成本需要:可靠、维护简单 ❖ 服务及时到位的需要:一站式 ❖ 状态检测的需要:数据共享、统一分析
第12页/共36页
北京国电光宇机电设备有限公司
变电站交直流一体化检测与诊断系统图
Text
以太网
变电站现场
IEC61850规约转换器
直流采集单元
监控系统后台
防火墙 WEB交换机
蓄 电 池 屏
交 流 屏
U P S 屏
直 流 屏
WEB 服务 器
数据 库服 务器
客户端 浏览
决策 支持
工程 维护
第13页/共36页
❖ 一次性投资大
❖ 蓄电池浪费
直流操作系统 UPS电源系统 通信电源系统
a 直流电源、通信电源、UPS电源分别配置一套蓄电池,浪费严重 b 各屏柜外存在大量二次接线,设计和生产的成本高、工作量大、周期长 c 交、直流系统分离 ,无统一信号接口,需各自配备监控装置。
第2页/共36页
北京国电光宇机电设备有限公司
理等高级应用功能,不能为运行部门状态检修和全寿命管理提 供有效支持。
第14页/共36页
北京国电光宇机电设备有限公司
❖ 变电站监控现况有可能带来的后果
继电保护室或高压室空调馈线空气开关跳闸,保护及自动装置所 处运行环境温度升高,将会造成保护及自动装置死机,有可能出现越 级跳闸现象,扩大事故范围。
直流储能空开在断路器合闸储满能后跳闸,线路断路器跳闸后重 合成功,短时间内再次故障,则线路不能重合,严重者可能导致全站 失压。
❖ 长期维护成本高,难度大
自动化人员 变电人员 通信人员
UPS电源系统 交直流系统 通信电源系统
a 协调困难,效率低下 b 每套系统需要各自对应的专业人员维护 c 柜间二次连线过多,增加维修成本
第3页/共36页
北京国电光宇机电设备有限公司
❖ 可靠性不高、环保效应差
❖ 可靠性不高 由不同供应商提供的交直流系统,通信规约一般不兼容,因此,
第11页/共36页
综自监控 高速以太网
IEC61850 交直流一体化电源监控装置
MODBUS
北京国电光宇机电设备有限公司
变电站交直流一体化检测与诊断系统
❖目的 我公司提供的GY/JNZT系列一体化电源所采用的交直流一
体化检测与诊断系统以”IEC61850”通信体系为基准,实时掌 握变电站交、直流电源设备的运行状况。实时在线监测、分析 、诊断,并对设备隐患进行预警,为运行部门进行状态检测提 供科学依据,确保变电站交、直流系统安全、稳定运行,为电 网安全运行保驾护航。具体见下面的系统图。