广东省2019年中考数学试题及答案解析(WORD版)
2019年广东省广州市中考数学试题及答案【Word版】
2019年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟 注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (0)a a ≠的相反数是 ( )A .a -B .2aC .||aD .1a 2.下列图形中,是中心对称图形的是 ( ) A . B . C . D .3.如图1,在边长为1的小正方形组成的格中,ABC ∆的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .434.下列运算正确的是( )A .54ab ab -=B .112a b a b +=+C .624a a a ÷=D .2353()a b a b =5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是( )A . 外离B .外切C .内切D .相交6.计算242x x --,结果是 ( ) A .2x - B .2x + C .42x - D .2x x+7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是 ( )A . 中位数是8B . 众数是9C . 平均数是8D . 极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )A .2 B .2 C .6 D .229.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中恒成立的是( )A .120y y +>B .120y y +<C .120y y ->D .120y y -<10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GO GC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( )A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒. 12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______. (结果保留π)图2-①图2-②15. 已知16. 若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOE COF ∆≅∆.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数6y kx =-的图象与反比例函数2k y x =-的图象交于A B 、两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,45AB AC ==,5cos 5C =. (1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:DE CE =;②求点D 到BC 的距离。
2019年广东省中考数学试卷附分析答案
∵S△AFN AN•FG
2×1=1,S△ADM AD•DM
∴S△AFN:S△ADM=1:4 故④正确, 故选:C.
4×2=4,
二.填空题(本大题 6 小题,每小题 4 分,共 24 分)请将下列各题的正确答案填写在答题卡 相应的位置上.
11.(4 分)计算:20190+( )﹣1= 4 .
【解答】解:原式=1+3=4.
其中点 A 的坐标为(﹣1,4),点 B 的坐标为(4,n). (1)根据图象,直接写出满足 kx+b> 的 x 的取值范围; (2)求这两个函数的表达式; (3)点 P 在线段 AB 上,且 S△AOP:S△BOP=1:2,求点 P 的坐标.
第 4页(共 21页)
24.(9 分)如图 1,在△ABC 中,AB=AC,⊙O 是△ABC 的外接圆,过点 C 作∠BCD=∠ ACB 交⊙O 于点 D,连接 AD 交 BC 于点 E,延长 DC 至点 F,使 CF=AC,连接 AF. (1)求证:ED=EC; (2)求证:AF 是⊙O 的切线; (3)如图 2,若点 G 是△ACD 的内心,BC•BE=25,求 BG 的长.
22.(7 分)在如图所示的网格中,每个小正方形的边长为 1,每个小正方形的顶点叫格点, △ABC 的三个顶点均在格点上,以点 A 为圆心的 与 BC 相切于点 D,分别交 AB、AC 于点 E、F. (1)求△ABC 三边的长; (2)求图中由线段 EB、BC、CF 及 所围成的阴影部分的面积.
五、解答题(三)(本大题 3 小题,每小题 9 分,共 27 分) 23.(9 分)如图,一次函数 y=kx+b 的图象与反比例函数 y 的图象相交于 A、B 两点,
育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.
2019年广东省中考数学试题(Word版,含答案)
机密★启用前2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上; 如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.2-的绝对值是 A.2B.2-C.12D.2±2.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为 A.62.2110⨯B.52.2110⨯C.322110⨯D.60.22110⨯3.如图,由4个相同正方体组合而成的几何体,它的左视图是A. B. C. D.4.下列计算正确的是 A.632b b b ÷=B.339b b b ⋅=C.2222a a a +=D.()336a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A. B. C. D.6.数据3、3、5、8、11的中位数是 A.3B.4C.5D.67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A.a b >B.a b <C.0a b +>D.0a b<8. A.4-B.4C.4±D.29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是 A.12x x ≠B.21120x x -=C.122x x +=D.122x x ⋅=10.如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ∆≅∆;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ∆∆=.其中正确的结论有A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:10120193-⎛⎫+= ⎪⎝⎭_________. 12.如图,已知//a b ,175∠=︒,则2∠=_______.13.一个多边形的内角和是1080︒,这个多边形的边数是______. 14.已知23x y =+,则代数式489xy -+的值是_______________.15.如图,某校教学楼AC 与实验楼BD 的水平间距CD =在实验楼顶部B 点测得教学楼顶部A 点的仰角是30︒,底部C 点的俯角是45︒,则教学楼AC 的高度是______米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_______(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①②18.先化简,再求值:221224x x x x x x-⎛⎫-÷ ⎪---⎝⎭,其中x =19.如图,在ABC ∆中,点D 是边AB 上的一点.(1)请用尺规作图法,在ABC ∆内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AEEC的值.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级扇形统计图(1)x =______,y =______,扇形图中表示C 的圆心角的度数为______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC ∆的三个顶点均在格点上,以点A 为圆心的»EF与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求ABC ∆三边的长;(2)求图中由线段EB 、BC 、CF 及»FE所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.24.如题24-1图,在ABC ∆中,AB AC =,O e 是ABC ∆的外接圆,过点C 作BCD ACB ∠=∠交O e 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF AC =,连接AF .(1)求证:ED EC =; (2)求证:AF 是O e 的切线;(3)如题24-2图,若点G 是ACD ∆的内心,25BC BE ⋅=,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线2y x x =+-与x轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD ∆绕点C 顺时针旋转得到CFE ∆,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作1DD x ⊥轴于点1D ,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M为垂足,使得PAM ∆与1DD A ∆相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答....这样的点P 共有几个?2019年广东省初中学业水平考试数学试卷参考答案1.A2.B3.A4.C5.C6.C7.D8.B9.D10.C11.4 12.105︒ 13.8 14.2115.(15+ 16.8a b + 三、解答题(一) 17.解不等式①,得3x >, 解不等式②,得1x >, 则不等式组的解集是3x >. 18.解:原式()()()22121x x x x x x +--=⋅--22x +=.当x =1==. 19.解:(1)如图.(2)∵ADE B ∠=∠, ∴//DE BC . ∴ADE ABC ∆∆:. ∴2AE ADEC DB==. 四、解答题(二) 20.(1)440 36(2)解:画树状图如图:∴()2163P ==同时抽到甲、乙. 21.解:(1)设篮球、足球各买了x ,y 个,根据题意,得60,70804600,x y x y +=⎧⎨+=⎩ 解得20,40.x y =⎧⎨=⎩∴篮球、足球各买了20个,40个. (2)设购买了a 个篮球, 根据题意,得()708060a a ≤-.解得32a ≤.∴最多可购买篮球32个.22.解:(1)AB =AC ==BC ==(2)由(1)得222AB AC BC +=,∴90BAC∠=︒.连接AD ,AD = ∴=ABC AEF S S S ∆-阴扇形21124AB AC AD π=⋅-⋅ 205π=-.五、解答题(三)23.解:(1)1x <-或04x <<. (2)把()1,4A -代入2k y x=,得24k =-. ∴4y x=-. ∵点()4,B n 在4y x=-上,∴1n =-. ∴()4,1B -.把()1,4A -,()4,1B -代入11y k x b =+得114,41,k b k b -+=⎧⎨+=-⎩解得11,3.k b =-⎧⎨=⎩ ∴3y x =-+.(3)设AB 与y 轴交于点C ,∵点C 在直线3y x =-+上,∴()0,3C .()()113147.522AOB A B S OC x x ∆=⋅+=⨯⨯+=,又:1:2AOD BOP S S ∆∆=, ∴17.5 2.53AOP S ∆=⨯=,5BOP S ∆=. 又131 1.52AOCS ∆=⨯⨯=,∴点P 在第一象限. ∴ 2.5 1.51COP S ∆=-=.又3OC =,∴1312P x ⨯⨯=,解得23P x =. 把23P x =代入3y x =-+,得73P y =.∴27,33P ⎛⎫⎪⎝⎭. 24.(1)证明:∵AB AC =,∴ABC ACB ∠=∠. 又∵ACB BCD ∠=∠,ABC ADC ∠=∠, ∴BCD ADC ∠=∠.∴ED EC =. (2)证明:连接OA , ∵AB AC =,∴»»AB AC =. ∴OA BC ⊥.∵CA CF =,∴CAF CFA ∠=∠. ∴2ACD CAF CFA CAF ∠=∠+∠=∠. ∵ACB BCD ∠=∠,∴2ACD ACB ∠=∠. ∴CAF ACB ∠=∠.∴//AF BC . ∴OA AF ⊥.∴AF 为O e 的切线.(3)∵ABE CBA ∠=∠,BAD BCD ACB ∠=∠=∠, ∴ABE CBA ∆∆:.∴AB BEBC AB=. ∴2AB BC BE =⋅.∵25BC BE ⋅=,∴5AB =.连接AG ,∴BAG BAD DAG ∠=∠+∠, BGA GAC ACB ∠=∠+∠.∵点G 为内心,∴DAG GAC ∠=∠. 又∵BAD BCD ACB ∠=∠=∠,∴BAD DAG GAC ACB ∠+∠=∠+∠. ∴BAG BGA ∠=∠.∴5BG AB ==.25.(120x x =,解得1x =或7-.故()1,0A ,()7,0B-.配方得)23y x =+-(3,D --.(2)证明:∵CF CA =,1OA OF ==, 易证1DD F COF ∆∆:.∴11D DCO FD OF=.∴OC =∴2CA CF FA ===,即ACF ∆为等边三角形. ∴60AFC ECF ∠=∠=︒.∴//EC BF .又∵6EC DC==,6BF =,∴//EC BF .∴四边形BFCE 是平行四边形.(3)设点P的坐标为2,848x x x ⎛⎫+- ⎪ ⎪⎝⎭,①当点P 在B 点左侧时,则1)11DD D APM MA =,∴11x =(舍),211x =-.2)11DD D APA AM =,∴11x =(舍),2373x =-.②当点P 在A 点右侧时,因为PAM ∆与1DD A ∆相似, 则3)11DD PMMA D A=,∴11x =(舍),23x =-(舍). 4)11D APMMA DD =,∴11x =(舍),253x =-(舍). ③当点P 在AB 之间时,∵PAM ∆与1DD A ∆相似,则5)11DD PMMA D A=,11x =(舍),23x =-(舍). 6)11D APMMA DD =,11x =(舍),253x =-.综上所述,点P 的横坐标为53-,11-,373-,点共有3个.。
2019年广东省中考数学试卷(含解析)完美打印版
2019年广东省中考数学试卷、选择题(本大题 10小题,每小题3分,共30分)在每小题列出的四个选项中 ,只有一个是正确的题卡上对应题目所选的选项涂黑D . 土 2A . 2.21 x 106B . 2.21 x 105 3C . 221x 10D . 0.221 x 106(3分)如图,由4个相同正方体组合而成的几何体,它的左视图是10 . ( 3分)如图,正方形 ABCD 的边长为4,延长CB 至E 使EB = 2,以EB 为边在上方作正方形延长FG 交DC 于M ,连接 AM , AF , H 为AD 的中点,连接 FH 分别与 AB , AM 交于点N 、1.(3分)-2的绝对值是( 2. (3分)某网店 2019年母亲节这天的营业额为 221000元,将数 221000用科学记数法表示为(,请把答C .3. 4. 5. 6. 7. (3分)下列计算正确的是( A . b 6* b 3= b 2B . b 3?b 3= b 9C . a 2+a 2 =2a 2(3分)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(3分)数据3, 3, 5, 8, 11的中位数是(C .C . 5D .(3分)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(1 : 11 2 1y-2 -10^ 尹C . a+b > 0(3分)化简 1的结果是((3分)已知x 1, x 2是一元二次方程2x = 0的两个实数根, F 列结论错误的是(A . x 1 工 x 22B . x 1 - 2x 1= 0C . x 1+x 2= 2D . x 1?x 2= 2EFGB , K :则下A .)D .D .(a 3) 3= a 6A . a > bB . |a|v |b|列结论:①△ ANH ◎△ GNF ;②/ AFN = Z HFG ;③ FN = 2NK ;④ S ^AFN : S ^ADM= 1 : 4.其中正确的6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上 4(4分计算:2019。
2019年广东中考数学试题(解析版)
{题目}8.(2019年广东第8题)化简 42 的结果是
A.-4
B.4
C.
D.2
{答案}B
{解析}本题考查了二次根式的化简,根据二次根式的性质化简可得 42 4 ,因此本题选B.
{分值}3 {章节:[1-16-1]二次根式} {考点:二次根式的定义} {类别:常考题} {难度:2-简单}
{题目}9.(2019年广东第9题)已知x1、x2是一元二次方程了x2-2x=0的两个实数根,下列结论错误 的是
10,n为整数,表示时关键要正确确定a的值以及n的值.因此本题选B.
{分值}3
{章节:[1-1-5-2]科学计数法}
{考点:将一个绝对值较大的数科学计数法}
{类别:常考题}
{难度:1-最简单}
{题目}3.(2019年广东第3题)如图,由4个相同正方体组合而成的几何体,它的左视图是
主视方向
A
B
C
D
{答案}A
{解析}本题考查了三视图的知识,理解左视图是从物体的左边看得到的视图是解题的关键了,因此
本题选A.
{分值}3
{章节: :[1-29-2]三视图}
{考点:简单组合体的三视图}
{类别:常考题}
{难度:1-最简单}
{题目}4.(2019年广东第4题)下列计算正确的是
A.b6÷b3=b2
B.b3·b3=b9
A.a>b C. a+b>0
B.|a|<|b|
a
D. <0
b
{答案}D {解析}本题考查了实数与数轴,实数的大小比较,通过数轴可知a<b,|a|>|b|,a+b<0,因此本题选 D. {分值}3 {章节:[1-6-3]实数} {考点:实数与数轴}{考点:实数与绝对值、相反数}{考点:实数的大小比较} {类别:常考题} {难度:3-中等难度}
2019年广东省广州市中考数学试卷(word版,含答案解析)
2019年广东省广州市中考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30.0分) 1. |−6|=( )A. −6B. 6C. −16D. 162. 广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是( ) A. 5 B. 5.2 C. 6 D. 6.4 3. 如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若tan∠BAC =25,则此斜坡的水平距离AC 为( )A. 75mB. 50mC. 30mD. 12m4. 下列运算正确的是( )A. −3−2=−1B. 3×(−13)2=−13 C. x 3⋅x 5=x 15D. √a ⋅√ab =a √b5. 平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线条数为( )A. 0条B. 1条C. 2条D. 无数条6. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A.120x=150x−8B. 120x+8=150xC. 120x−8=150xD.120x=150x+87. 如图,▱ABCD 中,AB =2,AD =4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是( )A. EH =HGB. 四边形EFGH 是平行四边形C. AC ⊥BDD. △ABO 的面积是△EFO 的面积的2倍8. 若点A(−1,y 1),B(2,y 2),C(3,y 3)在反比例函数y =6x 的图象上,则y 1,y 2,y 3的大小关系是( )A. y 3<y 2<y 1B. y 2<y 1<y 3C. y 1<y 3<y 2D. y 1<y 2<y 39. 如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( )A. 4√5B. 4√3C. 10D. 810. 关于x 的一元二次方程x 2−(k −1)x −k +2=0有两个实数根x 1,x 2,若(x 1−x 2+2)(x 1−x 2−2)+2x 1x 2=−3,则k 的值( ) A. 0或2 B. −2或2 C. −2 D. 2 二、填空题(本大题共6小题,共18.0分)11. 如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA =6cm ,PB =5cm ,PC =7cm ,则点P 到直线l 的距离是______cm . 12. 代数式1√x−8有意义时,x 应满足的条件是 . 13. 分解因式:x 2y +2xy +y =______.14. 一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.15. 如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为______.(结果保留π)16. 如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论: ①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值18a 2. 其中正确的结论是______.(填写所有正确结论的序号)三、解答题(本大题共9小题,共102.0分)17. 解方程组:{x −y =1x +3y =9.18.如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,求证:△ADE≌CFE.19.已知P=2aa2−b2−1a+b(a≠±b).(1)化简P;(2)若点(a,b)在一次函数y=x−√2的图象上,求P的值.20.某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<12B组1≤t<2mC组2≤t<310D组3≤t<412E组4≤t<57F组t≥54(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(−1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=n−3的图象相交于A,xP两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF//AB;(2)设△ABC的面积为S1,△ABF的面积为S2,记S=S1−S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.已知抛物线G:y=mx2−2mx−3有最低点.(1)求二次函数y=mx2−2mx−3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.答案和解析1.【答案】B【解析】【分析】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 根据负数的绝对值等于它的相反数解答. 【解答】解:−6的绝对值是|−6|=6. 故选:B . 2.【答案】A【解析】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A .众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 本题主要考查众数的定义,是需要熟练掌握的概念. 3.【答案】A【解析】【分析】本题考查解直角三角形的应用−坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解决. 【解答】解:∵∠BCA =90°,tan∠BAC =25,BC =30m , ∴tan∠BAC =25=BCAC =30AC , 解得,AC =75(m), 故选A . 4.【答案】D【解析】解:A 、−3−2=−5,故此选项错误; B 、3×(−13)2=13,故此选项错误; C 、x 3⋅x 5=x 8,故此选项错误; D 、√a ⋅√ab =a √b ,正确. 故选:D .直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【答案】C【解析】解:∵⊙O 的半径为1,点P 到圆心O 的距离为2, ∴d >r ,∴点P 与⊙O 的位置关系是:P 在⊙O 外, ∵过圆外一点可以作圆的2条切线, 故选:C .先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.【答案】D【解析】解:设甲每小时做x个零件,可得:120x =150x+8,故选:D.设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.【答案】B【解析】【分析】本题考查平行四边形的面积、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=12AD=2,HG=12CD=12AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=12AD=12BC=FG,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF//AB,,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.8.【答案】C【解析】解:∵点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,∴y1=6−1=−6,y2=62=3,y3=63=2,又∵−6<2<3,∴y1<y3<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.【答案】A【解析】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD//BC,∴∠OAF=∠OCE,在△AOF和△COE中,{∠AOF=∠COEOA=OC∠OAF=∠OCE,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB=√AE2−BE2=√52−32=4,∴AC=√AB2+BC2=√42+82=4√5;故选:A.连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=√AE2−BE2=4,再由勾股定理求出AC即可.本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.【答案】D【解析】解:∵关于x的一元二次方程x2−(k−1)x−k+2=0的两个实数根为x1,x2,∴x1+x2=k−1,x1x2=−k+2.∵(x1−x2+2)(x1−x2−2)+2x1x2=−3,即(x1+x2)2−2x1x2−4=−3,∴(k−1)2+2k−4−4=−3,解得:k=±2.∵关于x的一元二次方程x2−(k−1)x−k+2=0有实数根,∴Δ=[−(k−1)]2−4×1×(−k+2)≥0,解得:k≥2√2−1或k≤−2√2−1,∴k=2.故选:D.由根与系数的关系可得出x1+x2=k−1,x1x2=−k+2,结合(x1−x2+2)(x1−x2−2)+2x1x2=−3可求出k的值,根据方程的系数结合根的判别式Δ≥0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1−x2+2)(x1−x2−2)+2x1x2=−3,求出k的值.11.【答案】5【解析】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.【答案】x>8【解析】【分析】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,属于基础题.直接利用分式、二次根式的定义求出x的取值范围.【解答】有意义时,解:代数式√x−8x−8>0,解得:x>8.故答案为:x>8.13.【答案】y(x+1)2【解析】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.首先提取公因式y,再利用完全平方进行二次分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】15°或60°【解析】【分析】分情况讨论:①DE⊥BC;②AD⊥BC.本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°−∠BAD=15°;②当AD⊥BC时,∠BAD=30°,即α=60°.故答案为15°或60°.15.【答案】2√2π【解析】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2√2,则底面圆的周长为2√2π,∴该圆锥侧面展开扇形的弧长为2√2π,故答案为2√2π.根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】①④【解析】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=√2BE,∵AF=√2BE,∴AF=EH,∵∠DAM =∠EHB =45°,∠BAD =90°, ∴∠FAE =∠EHC =135°, ∵BA =BC ,BE =BH , ∴AE =HC ,∴△FAE≌△EHC(SAS),∴EF =EC ,∠AEF =∠ECH , ∵∠ECH +∠CEB =90°, ∴∠AEF +∠CEB =90°, ∴∠FEC =90°,∴∠ECF =∠EFC =45°,故①正确,如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),∴∠ECB =∠DCH ,∴∠ECH =∠BCD =90°, ∴∠ECG =∠GCH =45°, ∵CG =CG ,CE =CH , ∴△GCE≌△GCH(SAS), ∴EG =GH ,∵GH =DG +DH ,DH =BE , ∴EG =BE +DG ,故③错误,∴△AEG 的周长=AE +EG +AG =AG +GH =AD +DH +AE =AE +EB +AD =AB +AD =2a ,故②错误,设BE =x ,则AE =a −x ,AF =√2x ,∴S △AEF =12⋅(a −x)×x =−12x 2+12ax =−12(x 2−ax +14a 2−14a 2)=−12(x −12a)2+18a 2,∵−12<0,∴x =12a 时,△AEF 的面积的最大值为18a 2.故④正确,故答案为①④.①正确.如图1中,在BC 上截取BH =BE ,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE =x ,则AE =a −x ,AF =√2x ,构建二次函数,利用二次函数的性质解决最值问题.本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题. 17.【答案】解:{x −y =1 ①x +3y =9 ②,②−①得,4y =8,解得y =2,把y =2代入①得,x −2=1,解得x =3,故原方程组的解为{x =3y =2.【解析】运用加减消元解答即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】证明:∵FC//AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵{∠A=∠FCF ∠ADE=∠F DE=EF,∴△ADE≌△CFE(AAS).【解析】利用AAS证明:△ADE≌CFE.本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.【答案】解:(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)∵点(a,b)在一次函数y=x−√2的图象上,∴b=a−√2,∴a−b=√2,∴P=√22;【解析】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)将点(a,b)代入y=x−√2得到a−b=√2,再将a−b=√2代入化简后的P,即可求解;20.【答案】解:(1)m=40−2−10−12−7−4=5;(2)B组的圆心角=360°×540=45°,C组的圆心角=360°×1040=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为612=12.【解析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.【答案】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G 基站的数量是6万座.(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,依题意,得:6(1+x)2=17.34,解得:x 1=0.7=70%,x 2=−2.7(舍去).答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)2020年全省5G 基站的数量=目前广东5G 基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,根据2020年底及2022年底全省5G 基站数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.22.【答案】(1)解:将点P(−1,2)代入y =mx ,得:2=−m ,解得:m =−2,∴正比例函数解析式为y =−2x ;将点P(−1,2)代入y =n−3x ,得:2=−(n −3), 解得:n =1,∴反比例函数解析式为y =−2x .联立正、反比例函数解析式成方程组,得:{y =−2xy =−2x, 解得:{x 1=−1y 1=2,{x 2=1y 2=−2, ∴点A 的坐标为(1,−2).(2)证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,AB//CD ,∴∠DCP =∠BAP ,即∠DCP =∠OAE .∵AB ⊥x 轴,∴∠AEO =∠CPD =90°,∴△CPD∽△AEO .(3)解:∵点A 的坐标为(1,−2),∴AE =2,OE =1,AO =√AE 2+OE 2=√5.∵△CPD∽△AEO ,∴∠CDP =∠AOE ,∴sin∠CDB =sin∠AOE =AEAO =√5=2√55.【解析】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m ,n 的值;(2)利用菱形的性质,找出∠DCP =∠OAE ,∠AEO =∠CPD =90°;(3)利用相似三角形的性质,找出∠CDP =∠AOE .(1)根据点P 的坐标,利用待定系数法可求出m ,n 的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A 的坐标(利用正、反比例函数图象的对称性结合点P 的坐标找出点A 的坐标亦可);(2)由菱形的性质可得出AC ⊥BD ,AB//CD ,利用平行线的性质可得出∠DCP =∠OAE ,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.23.【答案】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC=√AB2−AC2=√102−82=6,∵BC=CD,∴BC⏜=CD⏜,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2−EC2=OB2−OE2,∴62−(5−x)2=52−x2,解得x=75,∵BE=DE,BO=OA,∴AD=2OE=145,∴四边形ABCD的周长=6+6+10+145=1245.【解析】本题考查作图−复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.24.【答案】证明:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,由折叠可知:DF=DC,当点F在AC上时,有∠DFC=∠C=60°,∴∠DFC=∠A,∴DF//AB;解:(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2,∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°,∴MD=2√3,∴S△ABF的最小值=12×6×(2√3−2)=6√3−6,∴S最大值=√34×62−(6√3−6)=3√3+6;(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE,∴DF=DC=2,∠EFD=∠C=60°,∵GD⊥EF,∠EFD=60°,∴FG=1,DG=√3FG=√3,∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=√13−1,∴BG=√13,∵EH⊥BC,∠C=60°,∴CH=EC2,EH=√3HC=√32EC,∵∠GBD=∠EBH,∠BGD=∠BHE=90°,∴△BGD∽△BHE,∴DGBG =EHBH,∴√3√13=√32EC6−EC2,∴EC=√13−1,∴AE=AC−EC=7−√13.【解析】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.(1)由折叠的性质和等边三角形的性质可得∠DFC =∠A ,可证DF//AB ;(2)过点D 作DM ⊥AB 交AB 于点M ,由题意可得点F 在以D 为圆心,DF 为半径的圆上,由△ABC 的面积为S 1的值是定值,则当点F 在DM 上时,S △ABF 最小时,S 最大;(3)过点D 作DG ⊥EF 于点G ,过点E 作EH ⊥CD 于点H ,由勾股定理可求BG 的长,通过证明△BGD∽△BHE ,可求EC 的长,即可求AE 的长.25.【答案】解:(1)∵y =mx 2−2mx −3=m(x −1)2−m −3,抛物线有最低点, ∴二次函数y =mx 2−2mx −3的最小值为−m −3;(2)∵抛物线G :y =m(x −1)2−m −3∴平移后的抛物线G 1:y =m(x −1−m)2−m −3∴抛物线G 1顶点坐标为(m +1,−m −3)∴x =m +1,y =−m −3∴x +y =m +1−m −3=−2即x +y =−2,变形得y =−x −2∵m >0,m =x −1∴x −1>0∴x >1∴y 与x 的函数关系式为y =−x −2(x >1);(3)法一:如图,函数H :y =−x −2(x >1)图象为射线x =1时,y =−1−2=−3;x =2时,y =−2−2=−4∴函数H 的图象恒过点B(2,−4)∵抛物线G :y =m(x −1)2−m −3x =1时,y =−m −3;x =2时,y =m −m −3=−3∴抛物线G 恒过点A(2,−3)由图象可知,若抛物线与函数H 的图象有交点P ,则y B <y P <y A ,∴点P 纵坐标的取值范围为−4<y P <−3;法二:{y =−x −2y =mx 2−2mx −3整理的:m(x 2−2x)=1−x∵x >1,且x =2时,方程为0=−1不成立∴x ≠2,即x 2−2x =x(x −2)≠0∴m =1−x x(x −2)>0 ∵x >1∴1−x <0∴x(x −2)<0∴x −2<0∴x <2即1<x <2∵y P =−x −2∴−4<y P <−3.【解析】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.(1)抛物线有最低点即开口向上,m >0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G 的顶点式,根据平移规律即得到抛物线G 1的顶点式,进而得到抛物线G 1顶点坐标(m+1,−m−3),即x=m+1,y=−m−3,x+y=−2即消去m,得到y 与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,−4),函数H图象恒过点A(2,−3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.。
2019年广东省中考数学真题(含答案)
2019年广东省中考数学真题(含答案)2019年广东省初中学业水平考试数学部分已经结束,以下是选择题和填空题部分的答案及解析。
选择题:1.A,绝对值指的是一个数到0的距离,而-2到0的距离是2.2.A,科学计数法表示一个数为a×10^n,其中1≤a<10且n为整数,因此=2.21×10^5.3.B,根据左视图可知,几何体由4个正方体组成,因此它的底面是正方形,依次向上叠加的正方体的上下底面都是正方形,因此它是一个正方体。
4.B,b6÷b3=b3,b3×b3=b6,a2+a2=2a2,a3÷a3=a1.5.C,只有图C同时具有中心对称和轴对称性质。
6.B,数据按照从小到大的顺序排列为3,3,5,8,11,因此中位数为5.7.A,根据数轴可知a在b的右侧,因此a>b。
8.C,42可以分解为2×3×7,因此42的因数有1、2、3、6、7、14、21、42,其中只有2和21是相邻的,因此它们的差为19.9.A,由于x1和x2是同一个方程的两个实数根,因此它们的和等于方程的一次项系数的相反数,即x1+x2=2,因此x1≠x2;x1-2x1=-x1=2x2,因此x1-2x1≠x2;x1+x2=2,因此x1+x2≠2;x1×x2=0,因此x1×x2≠2.10.B,由于正方形ABCD的边长为4,因此CB的长度也为4,因此CE的长度为6,因此正方形EFGB的边长为6.由于FH是AD的中点,因此FH的长度为2,因此AN的长度为2.由于AB和GN平行,因此∠ANH=∠GNF,因此△ANH≅△GNF。
由于AF和GF是正方形的对角线,因此AF=GF,因此∠AFN=∠HFG。
由于FN=2NK,因此S△.填空题:11.2019+(1/3)=2019⅓。
12.∠2=180-∠1=180-75=105.13.一个n边形的内角和为180×(n-2)度,因此n=1080/180+2=8.14.4x-8y+9=4(2y+3)-8y+9=8y+12-8y+9=21.15.根据勾股定理,AC^2+CD^2=AD^2,因此AC^2+153^2=AD^2.由于AC和BD平行,因此∠ACD=∠BDC,因此△ACD∽△BDC,因此___,因此AD=153×BD/AC。
2019年广东省中考数学试卷以及解析答案
2019年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣2的绝对值是()A.2B.﹣2C.D.±22.(3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×106 3.(3分)如图,由4个相同正方体组合而成的儿何体,它的左视图是()A.B.C.D.4.(3分)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6 5.(3分)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.6.(3分)数据3,3,5,8,11的中位数是()A.3B.4C.5D.67.(3分)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b|C.a+b>0D.<08.(3分)化简的结果是()A.﹣4B.4C.±4D.29.(3分)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2 10.(3分)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)计算:20190+()﹣1=.12.(4分)如图,已知a∥b,∠1=75°,则∠2=.13.(4分)一个多边形的内角和是1080°,这个多边形的边数是.14.(4分)已知x=2y+3,则代数式4x﹣8y+9的值是.15.(4分)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B 点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).16.(4分)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)解不等式组:18.(6分)先化简,再求值:(﹣)÷,其中x=.19.(6分)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.21.(7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.(7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC 于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足kx+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.24.(9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.25.(9分)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△P AM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?2019年广东省中考数学试卷答案与解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.【分析】根据负数的绝对值是它的相反数,即可解答.【解答】解:|﹣2|=2,故选:A.【点评】本题考查了绝对值,解决本题的关键是明确负数的绝对值是它的相反数.2.【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将221000用科学记数法表示为:2.21×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:从左边看得到的是两个叠在一起的正方形,如图所示.故选:A.【点评】此题考查了简单几何体的三视图,解答本题的关键是掌握左视图的观察位置.4.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘法运算,正确掌握相关运算法则是解题关键.5.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6.【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是,5.故选:C.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.7.【分析】先由数轴可得﹣2<a<﹣1,0<b<1,且|a|>|b|,再判定即可.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.【点评】本题主要考查了实数与数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.8.【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.9.【分析】由根的判别式△=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C不符合题意,选项D符合题意.【解答】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.【点评】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.10.【分析】由正方形的性质得到FG=BE=2,∠FGB=90°,AD=4,AH=2,∠BAD=90°,求得∠HAN=∠FGN,AH=FG,根据全等三角形的定理定理得到△ANH≌△GNF (AAS),故①正确;根据全等三角形的性质得到∠AHN=∠HFG,推出∠AFH≠∠AHF,得到∠AFN≠∠HFG,故②错误;根据全等三角形的性质得到AN=AG=1,根据相似三角形的性质得到∠AHN=∠AMG,根据平行线的性质得到∠HAK=∠AMG,根据直角三角形的性质得到FN=2NK;故③正确;根据矩形的性质得到DM=AG=2,根据三角形的面积公式即可得到结论.【解答】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=FG=AH,∴∠AFH≠∠AHF,∴∠AFN≠∠HFG,故②错误;∵△ANH≌△GNF,∴AN=AG=1,∵GM=BC=4,∴==2,∵∠HAN=∠AGM=90°,∴△AHN∽△GMA,∴∠AHN=∠AMG,∵AD∥GM,∴∠HAK=∠AMG,∴∠AHK=∠HAK,∴AK=HK,∴AK=HK=NK,∵FN=HN,∴FN=2NK;故③正确;∵延长FG交DC于M,∴四边形ADMG是矩形,∴DM=AG=2,∵S△AFN=AN•FG=2×1=1,S△ADM=AD•DM=×4×2=4,∴S△AFN:S△ADM=1:4故④正确,故选:C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.【分析】分别计算负整数指数幂、零指数幂,然后再进行实数的运算即可.【解答】解:原式=1+3=4.故答案为:4.【点评】此题考查了实数的运算,解答本题关键是掌握负整数指数幂及零指数幂的运算法则,难度一般.12.【分析】根据平行线的性质及对顶角相等求解即可.【解答】解:∵直线L直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°【点评】此题考查平行线的性质,解题关键为:两直线平行,同旁内角互补,对顶角相等.13.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)可得方程180(x﹣2)=1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n ≥3).14.【分析】直接将已知变形进而代入原式求出答案.【解答】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.【点评】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.15.【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△BEC、△ABE,进而可解即可求出答案.【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.16.【分析】用9个这样的图形的总长减去拼接时的重叠部分,即可得到拼出来的图形的总长度.【解答】解:由图可得,拼出来的图形的总长度=9a﹣8(a﹣b)=a+8b.故答案为:a+8b.【点评】本题主要考查了利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.三.解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式①,得x>3解不等式②,得x>1则不等式组的解集为x>3【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式==当x=时,原式==【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.19.【分析】(1)利用基本作图(作一个角等于已知角)作出∠ADE=∠B;(2)先利用作法得到∠ADE=∠B,则可判断DE∥BC,然后根据平行线分线段成比例定理求解.【解答】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴==2.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).四、解答题(二)(本大题3小题,每小题7分,共21分)20.【分析】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°;(2)先画树状图,然后求得P(同时抽到甲,乙两名学生)==.【解答】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°.故答案为4,40,36;(2)画树状图如下:P(同时抽到甲,乙两名学生)==.【点评】本题考查了统计图与概率,熟练掌握列表法与树状图求概率是解题的关键.21.【分析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60﹣a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60﹣a)解得a≤32.答:最多可购买32个篮球.【点评】此题考查了一元一次不等式的应用和二元一次方程组的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.22.【分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD,由(1)得,AB2+AC2=BC2,则∠BAC=90°,根据S阴=S△ABC﹣S扇形AEF即可求得.【解答】解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.【点评】本题考查了勾股定理和扇形面积的计算,证得△ABC是等腰直角三角形是解题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据一次函数图象在反比例图象的上方,可求x的取值范围;(2)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)∵点A的坐标为(﹣1,4),点B的坐标为(4,n).由图象可得:kx+b>的x的取值范围是x<﹣1或0<x<4;(2)∵反比例函数y=的图象过点A(﹣1,4),B(4,n)∴k2=﹣1×4=﹣4,k2=4n∴n=﹣1∴B(4,﹣1)∵一次函数y=kx+b的图象过点A,点B∴,解得:k=﹣1,b=3∴直线解析式y=﹣x+3,反比例函数的解析式为y=﹣;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=×3×1=,∴S△AOB=S△AOC+S△BOC=×3×1+×4=,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∴S△COP=﹣=1,∴×3•x P=1,∴x P=,∵点P在线段AB上,∴y=﹣+3=,∴P(,).【点评】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.24.【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CF A知∠ACD=∠CAF+∠CF A=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC•BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG =∠GDC+∠ACB得∠BAG=∠BGA,从而得出BG=AB=5.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,∴=,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CF A,∴∠ACD=∠CAF+∠CF A=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴=,∴AB2=BC•BE,∴BC•BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GDC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.【点评】本题是圆的综合问题,解题的关键是掌握圆心角定理、切线的判定与性质、相似三角形的判定与性质等知识点.25.【分析】(1)利用抛物线解析式求得点A、B、D的坐标;(2)欲证明四边形BFCE是平行四边形,只需推知EC∥BF且EC=BF即可;(3)①利用相似三角形的对应边成比例求得点P的横坐标,没有指明相似三角形的对应边(角),需要分类讨论;②根据①的结果即可得到结论.【解答】解:(1)令x2+x﹣=0,解得x1=1,x2=﹣7.∴A(1,0),B(﹣7,0).由y=x2+x﹣=(x+3)2﹣2得,D(﹣3,﹣2);(2)证明:∵DD1⊥x轴于点D1,∴∠COF=∠DD1F=90°,∵∠D1FD=∠CFO,∴△DD1F∽△COF,∴=,∵D(﹣3,﹣2),∴D1D=2,OD=3,∵AC=CF,CO⊥AF∴OF=OA=1∴D1F=D1O﹣OF=3﹣1=2,∴=,∴OC=,∴CA=CF=F A=2,∴△ACF是等边三角形,∴∠AFC=∠ACF,∵△CAD绕点C顺时针旋转得到△CFE,∴∠ECF=∠AFC=60°,∴EC∥BF,∵EC=DC==6,∵BF=6,∴EC=BF,∴四边形BFCE是平行四边形;(3)∵点P是抛物线上一动点,∴设P点(x,x2+x﹣),①当点P在B点的左侧时,∵△P AM与△DD1A相似,∴或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣;当点P在A点的右侧时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣(不合题意舍去);当点P在AB之间时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣;综上所述,点P的横坐标为﹣11或﹣或﹣;②由①得,这样的点P共有3个.【点评】本题考查了二次函数的综合题,待定系数法求函数的解析式,全等三角形的判定和性质,平行四边形的判定,相似三角形的判定和性质,正确的理解题意是解题的关键.第21页(共21页)。
2019年广东省中考数学试题(含答案,解析版)
2019年广东省中考数学试题(含答案,解析版)2019年广东省初中学业水平考试数学本次考试共4页,满分120分,考试时间为100分钟。
考生在答题卡上填写准考证号、姓名、考场号和座位号,并用2B铅笔在对应号码的标号处涂黑。
选择题用2B铅笔涂黑答题卡上对应题目选项的答案信息点,非选择题必须用黑色字迹钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上。
如需改动,先划掉原来的答案,再写上新的答案。
不准使用铅笔和涂改液。
考试结束时,将试卷和答题卡一并交回。
答案无效若不按以上要求作答。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.求解-2的绝对值。
A。
2B。
-2C。
0D。
±2答案】A解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为。
A。
2.21×106B。
2.21×105C。
221×103D。
0.221×106答案】B解析】科学记数法的形式为a×10n,其中≤|a|<10.考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是。
答案】A解析】从左边看,得出左视图。
考点】简单组合体的三视图4.下列计算正确的是。
A。
b6÷b3=b2B。
b3·b3=b9C。
a2+a2=2a2D。
(a3)3=a6答案】C解析】合并同类项:字母部分不变,系数相加减。
考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是。
答案】C解析】轴对称与中心对称的概念。
考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是。
A。
3B。
4C。
5D。
6答案】C解析】按顺序排列,中间的数或者中间两个数的平均数。
广东省2019年中考数学试题及答案解析(WORD版)
2019年广东省初中毕业生学业考试数 学一、选择题 1.2-=A.2B.2-C.12D.12-【答案】A.【解析】由绝对值的意义可得,答案为A 。
2. 据国家统计局网站2019年12月4日发布消息,2019年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯ 【答案】B.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 13 573 000=71.357310⨯;3. 一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻的两个内角之和,所以, 75°=∠2+∠3,所以,∠3=40°,选C 。
5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形 【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.2(4)x -=A.28x -B.28xC.216x -D.216x【答案】D.【解析】原式=22-4x ()=216x 7. 在0,2,0(3)-,5-这四个数中,最大的数是A.0B.2C.0(3)-D.5-【答案】B.【解析】(-3)0=1,所以,最大的数为2,选B 。
8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是A.2a ≥B.2a ≤C.2a >D.2a <【答案】C.【解析】△=1-4(94a -+)>0,即1+4a -9>0,所以,2a >9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D.【解析】显然弧长为BC +CD 的长,即为6,半径为3,则16392S =⨯⨯=扇形.10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【答案】D.【解析】根据题意,有AE=BF=CG ,且正三角形ABC 的边长为2, 故BE=CF=AG=2-x ;故△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,AE=x ,AG=2-x , 则S△AEG=12AE×AG×sinA= 34x (2-x );故y=S△ABC-3S△AEG=3-3⨯34x (2-x )=34(3x 2 -6x+4). 故可得其图象为二次函数,且开口向上,选D 。
2019年广东中考数学真题--含解析
2019年广东省初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019广东省,1,3分) 2-的绝对值是 A.2B.2-C.12D.2±【答案】A【解析】本题考查绝对值的概念,2-的绝对值是2,故选A 。
【知识点】绝对值2.(2019广东省,2,3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为 A.62.2110⨯ B.52.2110⨯ C.322110⨯ D.60.22110⨯【答案】B【解析】本题考查用科学记数法表示较大的数,221000=52.2110⨯,故选B 。
【知识点】科学记数法3.(2019广东省,3,3分) 如图,由4个相同正方体组合而成的几何体,它的左视图是A. B. C. D.【答案】A【解析】本题考查简单几何体的三视图,从左边看,看到的图形是,故选A 。
【知识点】三视图4.(2019广东省,4,3分) 下列计算正确的是 A.632b b b ÷=B.339b b b ⋅=C.2222a a a +=D.()336a a =【答案】C【解析】本题考查整式的相关运算,633b b b ÷=,33336b b b b +⋅==,2222a a a +=,()33339a a a ⨯==,正确的是C ,故选C 。
【知识点】整式的运算5.(2019广东省,5,3分) 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是A. B. C. D.【答案】C【解析】本题考查中心对称图形与轴对称图形的概念 【知识点】中心对称图形 轴对称图形6.(2019广东省,6,3分) 数据3、3、5、8、11的中位数是 A.3B.4C.5D.6【答案】C【解析】本题考查中位数的概念,将数据从小到大排列,位于最中间的一个数或两个数的平均数为中位数,在3、3、5、8、11五个数中最中间的数是5,所以中位数是5,故选C 【知识点】中位数7.(2019广东省,7,3分) 实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A.a b >B.a b <C.0a b +>D.0ab<【答案】D【解析】本题考查实数大小的比较,绝对值的大小比较,两数和与两数商的符号,在数轴上右边的点所表示的数,总比左边的点所表示的数大,观察点A ,B 在数轴上的位置及到原点的距离,可以判断a<b, a b >,a+b<0, 0a b <所以成立的式子为D ,故选D 。
(完整版)2019广东省中考数学试卷及答案
2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的绝对值是 A .2B .-2C .12D .±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为 A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是 A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是 A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a b >B .a b <C .0a b +>D .0ab<8的结果是 A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是 A .12x x ≠ B .2112=0x x - C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFNADMSS=④.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .12.如图,已知a b ,175∠=°,则∠2= .13.一个多边形的内角和是1080︒ ,这个多边形的边数是 . 14.已知23x y =+ ,则代数式489x y -+ 的值是 .15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号) .16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解不等式组:()12214x x ->⎧⎨+>⎩①②18.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x19.如图,在ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB ,求AEEC的值.四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC 的三个顶点均在格点上,以点A 为圆心的EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,一次函数y =k 1x +b 的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为(-1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.24.如题24-1图,在ABC 中,AB =AC ,⊙O 是ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是ACD 的内心,25BC BE ⋅=,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线2y x 与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD 绕点C 顺时针旋转得到CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作1DD x ⊥轴于点D 1,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM 与1DD A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答....这样的点P 共有几个?2019广东省中考数学答案一、选择题二、填空题 11、答案:4解析:本题考查了零次幂和负指数幂的运算 12、答案:︒105解析:本题考查了平行线的性质,互为补角的计算 13、答案:8解析:本题考查了多边形内角和的计算公式 14、答案:21解析:整体思想,考查了整式的运算 15、答案:31515+解析:本题利用了特殊三角函数值解决实际问题16、答案:b a 8+三 解答题(一)17、解: ①得:3>x ①得:1>x①不等式组的解集为:3>x18、解: 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x 时 原式=222+ =2222+ =21+19、解:(1)如图所示:①ADE 即为所求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年广东省初中毕业生学业考试数 学一、选择题 1.2-=A.2B.2-C.12D.12-【答案】A.【解析】由绝对值的意义可得,答案为A 。
2. 据国家统计局网站2019年12月4日发布消息,2019年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯ 【答案】B.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 13 573 000=71.357310⨯;3. 一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻的两个内角之和,所以, 75°=∠2+∠3,所以,∠3=40°,选C 。
5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形 【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.2(4)x -=A.28x -B.28xC.216x -D.216x【答案】D.【解析】原式=22-4x ()=216x 7. 在0,2,0(3)-,5-这四个数中,最大的数是A.0B.2C.0(3)-D.5-【答案】B.【解析】(-3)0=1,所以,最大的数为2,选B 。
8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是A.2a ≥B.2a ≤C.2a >D.2a <【答案】C.【解析】△=1-4(94a -+)>0,即1+4a -9>0,所以,2a >9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D.【解析】显然弧长为BC +CD 的长,即为6,半径为3,则16392S =⨯⨯=扇形.10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【答案】D.【解析】根据题意,有AE=BF=CG ,且正三角形ABC 的边长为2, 故BE=CF=AG=2-x ;故△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,AE=x ,AG=2-x , 则S△AEG=12AE×AG×sinA= 34x (2-x );故y=S△ABC-3S△AEG=3-3⨯34x (2-x )=34(3x 2 -6x+4). 故可得其图象为二次函数,且开口向上,选D 。
二、填空题11. 正五边形的外角和等于 (度). 【答案】360.【解析】n 边形的外角和都等于360度。
12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.【答案】6.【解析】三角形ABC 为等边三角形。
13. 分式方程321x x=+的解是.【答案】2x =.【解析】去分母,得:3x =2x +2,解得:x =2。
14. 若两个相似三角形的周长比为2:3,则它们的面积比是 . 【答案】4:9.【解析】相似三角形的面积比等于相似比的平方。
15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.【答案】1021. 【解析】分母为奇数,分子为自然数,所以,它的规律为:21nn +,将n =10代入可得。
16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.【答案】4. 【解析】由中线性质,可得AG =2GD ,则11212111222232326B G FCGE AB G A B D A B CS S SS S ===⨯=⨯⨯=⨯=△△△△△,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.三、解答题(一)17. 解方程:2320x x -+=. 【解析】(1)(2)0x x --=∴10x -=或20x -= ∴11x =,22x =18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【解析】原式=1(1)(1)x x x x x -⋅+-=11x + 当21x =+时,原式=122211=-+. 19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【解析】(1) 如图所示,MN 为所作;(2) 在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =AD ﹣BD =5﹣3=2.四、解答题(二)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.【解析】(1) 如图,补全树状图;(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P (积为奇数)=4921. 如题21图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延 长交BC 于点G ,连接AG .(1) 求证:△ABG ≌△AFG ; (2) 求BG 的长.【解析】(1) ∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB , 由折叠的性质可知AD =AF ,∠AFE =∠D =90°, ∴∠AFG =90°,AB =AF , ∴∠AFG =∠B , 又AG =AG ,∴△ABG ≌△AFG ; (2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6x -, ∵E 为CD 的中点, ∴CF =EF =DE =3, ∴EG =3x +,∴2223(6)(3)x x +-=+,解得2x =, ∴BG =2.22. 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润 120元.(1) 求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2) 商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的 计算器多少台?【解析】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,解得x=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元; (2) 设最少需要购进A 型号的计算a 台,得3040(70)2500a a +-≥解得30x ≥答:最少需要购进A 型号的计算器30台.五、解答题(三)23. 如题23图,反比例函数ky x =(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D.(1) 求k 的值;(2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.【解析】(1) ∵A (1,3),∴OB =1,AB =3, 又AB =3BD , ∴BD =1, ∴B (1,1), ∴111k =⨯=;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y xy x =⎧⎪⎨=⎪⎩,得333x y ⎧=⎪⎨⎪=⎩或333x y ⎧=-⎪⎨⎪=-⎩(舍去), ∴点C 的坐标为(33,3); (3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则3331k b k b ⎧+=⎪⎨⎪-+=⎩,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-, 当x =0时,y =232-, ∴点M 的坐标为(0,232-).24. ⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH⊥AB.【解析】(1) ∵AB 为⊙O 直径,BP PC =,∴PG ⊥BC ,即∠ODB =90°, ∵D 为OP 的中点,∴OD=1122OP OB=,∴cos∠BOD=12 ODOB=,∴∠BOD=60°,∵AB为⊙O直径,∴∠ACB=90°,∴∠ACB=∠ODB,∴AC∥PG,∴∠BAC=∠BOD=60°;(2) 由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK,∴CK=BP,∠OPB=∠CKD,∵∠AOG=∠BOP,∴AG=BP,∴AG=CK∵OP=OB,∴∠OPB=∠OBP,又∠G=∠OBP,∴AG∥CK,∴四边形AGCK是平行四边形;(3) ∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB∵∠G=∠OPB,∴PB∥AG,∴DH∥AG,∴∠OAG=∠OHD,∵OA=OG,∴∠OAG=∠G,∴∠ODH=∠OHD,∴OD=OH,又∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP,∴∠OHP=∠ODB=90°,∴PH⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中, △PMN 的面积y 存在最大值,请求出这个最大值.(参考数据:sin 75°=624+,sin 15°=624-)【解析】(1) 26;22;(2) 如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°, ∴∠NCF =75°,∠FNC =15°,∴sin 15°=FCNC,又NC =x ,∴624FC x -=, ∴NE =DF =62224x -+. ∴点N 到AD 的距离为62224x -+cm ; (3) ∵sin 75°=FNNC,∴624FN x +=,∵PD =CP =2, ∴PF =6224x -+, ∴162621162(26)(22)(26)2(2)244224y x x x x x +--=+-+--⨯-+·62()4x + 即22673222384y x x ---=++, 当732242628x --=--⨯=732262---时,y 有最大值为6673102304246+---.。