2019-2020年高中数学 《2.1.1函数(二)》教案 新人教B版必修1

合集下载

高中数学 第二章《函数》学案 新人教B版必修1

高中数学 第二章《函数》学案 新人教B版必修1

必修1函数复习 学案知识点解读:1、函数的定义、表示法:2、单调性:会用定义判断或证明函数的单调性 3、奇偶性:(1)奇函数在x=0时有定义,则必有f (0)=0 (2)偶函数f (x )必有f (-x )=f (x )= f (︱x ︱) (3)会用定义证明、判断函数的奇偶性4、反函数:基础达标:1、设集合A 和集合B 都是自然数集合N ,映射B A f →:把集合A 中的元素n 映射到集合B 中的元素n n+2,则在映射f 下,象20的原象是 (A )2(B )3(C )4(D )52、函数xx x f -+=11)(的定义域为A ,函数)]([x f f y =的定义域为B ,则(A )B B A = (B )B A ⊆ (C )B B A =(D )B A =3、若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(-(B))4,1(--(C))1,4(--(D))4,1(-4、已知函数)(x f y =的反函数)(1x f-的定义域为]1,0[,那么函数))((R m m x f y ∈+=的值域是(A )]1,[m m -- (B )]0,1[- (C )]1,0[ (D )R5、已知函数1)()(32+-+=x a a ax x f 在]1,(--∞上递增,则a 的取值范围是 (A )3≤a (B )33≤≤-a (C )30≤<a (D )03<≤-a6、已知二次函数c x b a ax x f +++=)()(22的图像开口向上,且1)0(=f ,0)1(=f ,则实数b 取值范围是 (A) ]43,(--∞ (B) )0,43[-(C) ),0[+∞ (D) )1,(--∞参考答案1.C2.B3.B4.C5.D6.D能力提高:1.设()124+-=x x x f ,则()=-01f________2.函数),(1R x mx y ∈+=与)(2R n n x y ∈-=互为反函数的充要条件是___________3.若点)41,2(既在函数bax y +=2的图象上,又在它的反函数的图象上,则a =__________________,b =_________________。

人教B版2020年高一必修1第二章2.1 函数 2.1.1 函数 教案

人教B版2020年高一必修1第二章2.1   函数  2.1.1   函数  教案

2.1.1 函数教学设计一、教学目标(1)知识与技能目标:(1)会用集合与对应的语言刻画函数;(2)会求一些简单函数的定义域和值域,初步掌握换元法的简单应用.(2)过程与方法目标:通过对实例的探究,让学生感受、体验对应关系在刻画函数概念中的作用,使学生对数学的高度抽象性、严密的逻辑性和广泛的应用性有进一步的认识,提高抽象概括、分析总结、数学表达交流等基本数学思维能力;培养学生分析、解决问题的能力。

(3)情感、态度与价值观目标:通过师生、生生互动的教学活动过程中,让学生体会成功的愉悦,培养学生热爱数学的态度,提高学生学习数学的兴趣,树立学好数学的信心.二、教学重点、难点本节课的教学重点是函数概念的理解,难点是对函数符号的理解。

三、教学方法与教学手段教学方法:采用“学案教学”的教学方法,通过不同实例的探究,让学生积极参与教学活动。

教学手段:采用多媒体辅助教学,增强直观性,增大课堂容量,提高课堂效率。

教学环节教学内容师生互动设计意图课题引入1.实例引入复习初中的常量、变量与函数的概念。

问题1:在加油站为汽车加油,油价为每升4.16元,启动加油机开关后表示加油量和金额的两个窗口的数字不停地跳动直到加油量为12升时停下。

问金额y元与加油量x升之间的关系式是什么?学生积极思考,回答教师提出的问题。

从多媒体展示的生活问题入手,再现初中变量观点描述函数的概念,为后面用集合和对应的观点来定义函数奠定基础。

通过实例:(1)认识生活中充满变量间的依赖关系;(2)激发学生学习兴趣,提高发散思维能力。

概念形成让同学们看课本第32页例1~3,回答下列问题:问题2:(1)你从例题中了解到哪些信息?(2)自变量的取值范围是多少?学生独立思考2~3分钟,然后分组讨论,交流。

讨论、整理出本组同学所想到的各种想法。

教师巡视,关注学生讨论的情况。

实际问题引出概念,激发学生学习兴趣,给学生思考、探索的空间,让学生体验数学发现和创造的历程,提高分析和解决问题的能力。

最新高中数学新课标人教B版必修一2.1.1《函数》教案(1).doc

最新高中数学新课标人教B版必修一2.1.1《函数》教案(1).doc

2.1.1函数教案(1)教学目标:(1)通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。

(2)学习用集合语言刻画函数。

(3)了解构成函数的要素,会求一些简单函数的定义域、值域和解析式。

教学重点:函数的概念.教学过程:1.通过多教材上四个例子的研究,进一步体会函数是描述变量之间的依赖关系的重要数学模型。

2.引出用集合语言刻画函数(见教材第33页)函数的定义,设集合A是一个__________数集,对A中的__________,按照__________,都有__________数y与它对应,则__________叫集合A上的一个函数,记作__________。

函数的定义域是指:____________________。

值域是指______________________________。

3.函数的两要素:对应法则、定义域。

只有当这两要素完全相同时,两个函数才能称为同一函数。

4.区间概念axx=≤≤ba[]},|{baxx=≤b<a[)},|{baxx=≤b<,(a}]|{baxx=<b<{ba)(,}|x-∞xb≤=,{b(]}|≤axa=x}),[{+∞|【例题讲解】例1、求函数2314)(2+---=x x x x f 的定义域。

例2、求下列函数的值域。

(1)}4,3,2,1{,12∈+=x x y(2)1+=x y [例3、已知23)1(2+-=+x x x f(1)求f(2)和f(a)的值。

(2)求f(x)和f(x-1)的值。

参考答案:例1.解:由⎩⎨⎧≠≠≤⎩⎨⎧≠+-≥-214023042x x x x x x 且得 ∴定义域为}214|{≠≠≤x x x x 且且例2.解:(1)值域为{3,5,7,9}(2)∵ 0≥x ∴11≥+x ∴值域为),1[∞+ 例3.解:(1)02131)11()2(2=+⨯-=+=f f652)1(3)1()11()(22+-=+---=+-=a a a a a f a f(2)652)1(3)1()11()(22+-=+---=+-=x x x x x f x f 276)1(5)1()1(22+-=+---=-x x x x x f课堂练习:教材第35页练习A、B小结:学习用集合语言刻画函数,了解构成函数的要素,会求一些简单函数的定义域、值域和解析式[课后作业:第58页习题1-1B第1题。

高中数学 2.1.1《函数》 教案三 新人教B版必修1

高中数学 2.1.1《函数》 教案三 新人教B版必修1
【巩固练习】
1.已知 ,对任意的 , 是从 的函数,若输出4则应输入。
2.设 对任意 表示从 的函数,则实数 的值为.
3.判断下列对应:



其中能够构成从集合 到集合 的函数的为
(把你认为正确的序号都填上)
4. 若 ,则a值为
5.已知: ,求:
6.已知 对任意 是从 的函数。
若输出值2和11分别对应的输入值为1和2,求输入值5对应的输出值.
一次函数f(x)=ax+b(a≠0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a≠0)和它对应.
反比例函数f(x)= (k≠0)的定义域是A={x|x≠0},值域是B={f(x)|f(x)≠0},对于A中的任意一个实数x,在B中都有一个实数f(x)= (k≠0)和它对应.
⑤f(x)是一个符号,绝对不能理解为f与x的乘积.
[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示
二、例题讲解
例1:设 ,给出下列4个图形,其中能表示集合M到集合N的函数关系的有个
2222
1
11 222
例题2、判断下列各组中的两个函数是否是同一函数?为什么?
理解函数的定义,我们应该注意些什么呢?
(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)
注意:①函数是非空数集到非空数集上的一种对应.
②符号“f:A→B”表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.
③集合A中数的任意性,集合B中数的惟一性.
④f表示对应关系,在不同的函数中,f的具体含义不一样.
7.直线 和函数 的图象可能有几个交点?直线 和函数 的图象可能有几个交点?

高中数学第二章函数2.1.1函数2.1.2函数的表示方法学习导航学案新人教B版必修1

高中数学第二章函数2.1.1函数2.1.2函数的表示方法学习导航学案新人教B版必修1

函数-2.1.2 函数表示方法自主整理设集合A是一个非空数集,对A内任意数x,按照确定法那么f,都有唯一确定数值y与它对应,那么这种对应关系叫做集合A上一个函数,记作y=f(x),x∈A.其中,x叫做自变量,自变量取值范围A叫做函数定义域;如果自变量取值a,那么由法那么f确定值y称作函数在a处函数值,记作y=f(a)或y|x=a.所有函数值构成集合{y|y=f(x),x∈A}叫做函数值域.函数定义含有三个要素,即定义域A、值域C与对应法那么f.当且仅当两个函数定义域与对应法那么都分别一样时,这两个函数才是同一个函数.(1)在数轴上,区间可以用一条以a,b为端点线段来表示(如下表).用实心点表示端点包括在区间内,用空心点表示端点不包括在区间内.定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2)无穷区间概念:关于-∞,+∞作为区间一端或两端区间称为无穷区间,它定义与符号如下表:{x|x≥a}[a,+∞){x|x>a}(a,+∞){x|x≤a}(-∞,a]{x|x<a}(-∞,a)R(-∞,+∞)取遍数轴上所有值设A、B是两个非空集合,如果按某种对应法那么f,对A内任意一个元素x,在B中有一个且仅有一个元素y与x对应,那么称f是集合A 到集合B映射.这时,称y是x在映射f作用下象,记作f(x).于是y=f(x),x称作y原象,映射f也可记为f:A→B,x→f(x).其中A叫做映射f定义域(函数定义域推广),由所有象f(x)构成集合叫做映射f值域,通常记作f(A).(1)列表法:通过列出自变量与对应函数值表来表达函数关系方法;(2)图象法:就是用函数图象来表达函数关系;(3)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达,那么这种表达函数方法叫做解析法(也称公式法).在函数定义域内,对于自变量x不同取值区间,有着不同对应法那么,这样函数通常叫做分段函数.高手笔记1.(1)“y=f(x)〞中“f〞是函数符号,可以用任意字母表示,如“y=g(x)〞;(2)函数符号“y=f(x)〞中f(x)表示与x对应函数值,是一个数,而不是f 乘x.2.对应法那么可以有多种形式给出,可以是解析法,可以是列表法与图象法,不管是哪种形式,都必须是确定,且使集合A中每一个元素在B 中都有唯一元素与之对应.3.函数是建立在两个非空数集间一种对应,假设将其中条件“非空数集〞弱化为“任意两个非空集合〞,按照某种法那么可以建立起更为普通元素之间对应关系,这种对应就叫映射.A到B映射与B到A映射是截然不同.4.区间与数轴是严密联系在一起,在识别与使用区间符号时都不能脱离开数轴.区间端点值取舍是很容易出错地方,一定要准确判断是该用小括号还是中括号,正确书写.在用数轴表示时也要注意实心点与空心点区别.对于某些不能用区间表示集合就仍用集合符号表示.5.对于分段函数问题,一般要分别转化成在定义域内每一个区间上来解决.要明确分段函数是一个函数,不是多个函数,只是这个函数较为特殊,不像一般函数可以用一个解析式表示,而只能分段表示.分段函数画法要领是根据各段上函数解析式,分段画出各段图象.6.假设y=f(u),u=g(x),x∈(a,b),u∈(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它取值范围是g(x)值域与(m,n)交集.名师解惑1.如何理解构成函数三要素:定义域、对应关系与值域求值域有几种常用方法剖析:(1)解决一切函数问题必须认真确定该函数定义域,函数定义域包含三种形式:①自然型:指函数解析式有意义自变量x取值范围(如:分式函数分母不为零,偶次根式函数被开方数为非负数,等等);②限制型:指命题条件或人为对自变量x限制,这是函数学习重点,往往也是难点,因为有时这种限制比拟隐蔽,不容易注意,或者即使注意到,在解题时却忘记用到;③实际型:解决函数综合问题与应用问题时,应认真考察自变量x实际意义.(2)求函数值域是比拟困难数学问题,中学数学要求能用初等方法求一些简单函数值域问题.求法主要有以下几种:①配方法(转化为二次函数);②判别式法(转化为二次方程);③不等式法(运用不等式各种性质);④函数法(运用根本函数性质或抓住函数单调性、函数图象等).2.函数有哪几种表示法?各有什么优点与缺乏?剖析:(1)表示函数有三种方法:解析法,列表法,图象法.现实生活中如:商场各种商品与其价格之间函数关系就是用列表法表示;房地产公司出售商品房,总价格与面积之间函数关系就是用解析式来表示;工厂每月产量与月份之间函数关系是用图表来表示.(2)表示函数三种方法优点与缺乏,分别说明如下.①用解析式表示函数优点是简明扼要、标准准确.可以利用函数解析式求自变量x=a时对应函数值,还可利用函数解析式列表、描点、画函数图象,进而研究函数性质,又可利用函数解析式构造特点,分析与发现自变量与函数间依存关系,猜测或推导函数性质(如对称性、增减性等),探求函数应用等.缺乏之处是有些变量与函数关系很难或不能用解析式表示,求x与y对应值需要逐个计算、有时比拟繁杂.②列表法优点是能鲜明地显现出自变量与函数值之间数量关系,于是一些数学用表应运而生.如用立方表、平方根表分别表示函数.商店职员也制作售价与数量关系计价表,方便收款.列表法缺点是只能列出局部自变量与函数对应值,难以反映函数变化全貌.③用图象表示函数优点是形象直观,清晰呈现函数增减变化、点对称、最大(或小)值等性质.图象法缺乏之处是所画出图象是近似、局部,观察或由图象确定函数值往往不够准确.由于以上表示函数三种方法具有互补性,因此在实际研究函数时,通常是三种方法交替使用.3.如何理解映射?为什么说映射是一种特殊对应剖析:(1)理解映射概念,必须注意以下几点:①方向性,“集合A到集合B映射〞与“集合B到集合A映射〞往往不是同一个映射;②非空性,集合A、B必须是非空集合;③唯一性,对于集合A中任何一个元素,集合B中都是唯一确定元素与之对应,这是映射唯一性,也可以说“在集合B中〞,A中任一元素象必在集合B中,也叫映射封闭性.④存在性,就是说对集合A中任何一个元素,集合B中都有元素与它对应,这是映射存在性.(2)映射也是两个集合A与B元素之间存在某种对应关系.说其是一种特殊映射,就是因为它只允许存在“一对一〞与“多对一〞这两种对应,而不允许存在“一对多〞对应.映射中对应法那么f是有方向,一般来说从集合A到集合B映射与从集合B到集合A映射是不同.讲练互动【例题1】以下各组中两个函数表示同一个函数是…( )A.f(x)=x,g(x)=n n x22B.f(n)=2n+1(n∈Z),g(n)=2n-1(n∈Z)C.f(x)=x-2,g(t)=t-2D.f(x)=,g(x)=1+x解析:两个函数一样必须有一样定义域、值域与对应法那么.A中两函数值域不同;B中虽然定义域与值域都一样,但对应法那么不同;C 中尽管表示自变量两个字母不同,但两个函数三个要素是一致,因此它们是同一函数;D中两函数定义域不同.答案:C绿色通道给定两个函数,要判断它们是否是同一函数,主要看两个方面:一看定义域是否一样;二看对应法那么是否一致.只有当两函数定义域一样且对应法那么完全一致时,两函数才可称为同一函数.只要三者中有一者不同即可判断不是同一个函数,比方上面对A判断即属此.变式训练1.判断以下各组中两个函数是否为同一函数,并说明理由.(1)y=x-1,x∈R 与y=x-1,x∈N ; (2)y=42-x 与y=22+•-x x ; (3)y=1+x 1与u=1+v1;(4)y=x 2与y=x 2x ;(5)y=2|x|与y=分析:判断两个函数是否为同一函数,应着眼于两个函数定义域与对应法那么比拟,而求定义域时应让原始解析式有意义,而不能进展任何非等价变换,对应法那么判断需判断它本质是否一样而不是从外表形式上下结论.解:(1)不同,因为它们定义域不同.(2)不同,前者定义域是x≥2或x≤-2,后者定义域是x≥2.(3)一样,定义域均为非零实数,对应法那么都是自变量取倒数后加1.(4)不同,定义域是一样,但对应法那么不同.(5)一样,将y=2|x|利用绝对值定义去掉绝对值结果就是y=【例题2】设f,g 都是由A 到A 映射,其对应法那么(从上到下)如下表:表1 映射f 对应法那么原象1 2 3 象 2 3 1 表2 映射g 对应法那么原象123象213试求f[g(1)],g[f(2)],f{g[f(3)]}.分析:此题是将映射概念与复合函数求值相结合一道典型例题,解答此题首先要弄清f[g(x)]含义与映射中原象与象关系,然后再按照有关定义解题.解:∵g(1)=2,f(2)=3,∴f[g(1)]=f(2)=3.又∵g(3)=3,∴g[f(2)]=g(3)=3.∵f(3)=1,g(1)=2,∴f{g[f(3)]}=f[g(1)]=f(2)=3.绿色通道读懂对应法那么f与g含义是解题关键,要弄清在法那么f与g作用下,集合A中元素在集合A中象是什么,要掌握象与原象定义.变式训练2.以下各图中表示对应,其中能构成映射个数是…( )图2-1-1A.4B.3C.2解析:所谓映射,是指多对一或一对一对应且A中每一个元素都必须参与对应.只有图(3)所表示对应符合映射定义,即A中每一个元素在对应法那么下,B中都有唯一元素与之对应.图(1)不是映射,因A中元素c没有参与对应,即违背A中任一元素都必须参与对应原那么.图(2)、图(4)不是映射,这两个图中集合A中元素在B中有多个元素与之对应,不满足A中任一元素在B中有且仅有唯一元素与之对应原那么.综上,可知能构成映射个数为1.答案:D3.(2007山东济宁二模,理10)A={a,b,c},B={-1,0,1},函数f:A→B满足f(a)+f(b)+f(c)=0,那么这样函数f(x)有( )解析:对f(a),f(b),f(c)值分类讨论.当f(a)=-1时,f(b)=0,f(c)=1或f(b)=1,f(c)=0,即此时满足条件函数有2个;当f(a)=0时,f(b)=-1,f(c)=1或f(b)=1,f(c)=-1或f(b)=0,f(c)=0,即此时满足条件函数有3个;当f(a)=1时,f(b)=0,f(c)=-1或f(b)=-1,f(c)=0,即此时满足条件函数有2个.综上所得,满足条件函数共有2+3+2=7(个).应选C.答案:C【例题3】求以下函数值域:(1)y=x2-2x-1,x∈[0,3];(2)y=3x;-2+(3)y=;(4)y=|x-1|+|x-2|.分析:求二次函数值域一般要数形结合,先配方找出对称轴,再考察给定区间与对称轴关系,利用二次函数在对称轴两侧单调性,求出给定区间上最大值与最小值,即可得到函数值域.除数形结合之外,求函数值域方法还有逐步求解法、判别式法、别离常数法与利用有界性等.绝对值函数通常先化为分段函数.解:(1)将原式变形,得y=(x-1)2-2,此函数对称轴为x=1,由于x∈[0,3],∴当x=1时,y 有最小值-2.根据函数对称性知,x=3比x=0时值要大,∴当x=3时,y 有最大值2.∴这个函数值域为[-2,2].(2)易知x≥2,∴2-x ≥0. ∴y=2-x +3≥3.∴这个函数值域为[3,+∞).(逐步求解法)(3)先别离常数,y=1311311222222+-=+-+=+-x x x x x .① 解法一(逐步求解法):∵x 2+1≥1,∴0<≤1.∴1>1≥-2.∴y∈[-2,1).解法二(判别式法):两边同乘x 2+1并移项,得(y-1)x 2+y+2=0. 又由①可知y<1,∴Δ=-4(y-1)(y+2)≥0.∴y∈[-2,1).解法三(利用有界性):∵y≠1,易得x 2=.又∵x 2≥0,∴≥0.∴y∈[-2,1).(4)原函数可化为y=由图2-1-2可知y∈[1,+∞).图2-1-2绿色通道求值域一定要注意定义域限制,一定要在定义域范围内求函数值域.当然,求值域一定要根据函数对应关系来确定.如果我们抓住了这些解决问题关键,求这类问题就能得心应手.变式训练4.函数y=-x2+4x+5(1≤x≤4)值域是…( )A.[5,8]B.[1,8]C.[5,9]D.[8,9]解析:y=-x2+4x+5=-(x-2)2+9(x∈[1,4]).∴当x=2时,y最大=9;当x=4时,y最小=5.∴函数值域为{y|5≤x≤9}.答案:C【例题4】图2-1-3是一个电子元件在处理数据时流程图:图2-1-3(1)试确定y与x函数关系式;(2)求f(-3)、f(1)值;(3)假设f(x)=16,求x值.分析:此题是一个分段函数问题,当输入值x≥1时,先将输入值x加2再平方得输出值y;当输入值x<1时,那么先将输入值x平方再加2得输出值y.解:(1)y=(2)f(-3)=(-3)2+2=11;f(1)=(1+2)2=9.(3)假设x≥1,那么(x+2)2=16,解得x=2或x=-6(舍去).假设x<1,那么x2+2=16,解得x=14(舍去)或x=14-.综上,可得x=2或x=14-.绿色通道通过实例,了解简单分段函数并能简单应用是新课程标准根本要求.对于分段函数来说,给定自变量求函数值时,应根据自变量所在范围利用相应解析式直接求值;假设给定函数值求自变量,应根据函数每一段解析式分别求解,但应注意要检验该值是否在相应自变量取值范围内.变式训练5.(2007山东蓬莱一模,理13)设函数f(n)=k(k∈N*),k是π小数点后第n位数字,π=3.141 592 653 5…,那么等于____________.解析:由题意得f(10)=5,f(5)=9,f(9)=3,f(3)=1,f(1)=1,…,那么有=1.答案:1【例题5】函数f(x+1)=x2-1,x∈[-1,3],求f(x)表达式.分析:函数是一类特殊对应,函数f(x+1)=x2-1,即知道了x+1象是x2-1,求出x象,即是f(x)表达式.求解f(x)表达式此题可用“配凑法〞或“换元法〞.解法一(配凑法):∵f(x+1)=x2-1=(x+1)2-2(x+1),∴f(x)=x2-2x.又x∈[-1,3]时,(x+1)∈[0,4],∴f(x)=x2-2x,x∈[0,4].解法二(换元法):令x+1=t,那么x=t-1,且由x∈[-1,3]知t∈[0,4],∴由f(x+1)=x2-1,得f(t)=(t-1)2-1=t2-2t,t∈[0,4].∴f(x)=(x-1)2-1=x2-2x,x∈[0,4].绿色通道函数f[g(x)]表达式,求f(x)表达式,解决此类问题一般有两种思想方法,一种是用配凑方法,一种是用换元方法.所谓“配凑法〞即把f[g(x)]配凑成关于g(x)表达式,而后将g(x)全用x取代,化简得要求f(x)表达式;所谓“换元法〞即令f[g(x)]中g(x)=t,由此解出x,即用t表达式表示出x,后代入f[g(x)],化简成最简式.需要注意是,无论是用“配凑法〞还是用“换元法〞,在求出f(x)表达式后,都需要指出其定义域,而f(x)定义域即x取值范围应与条件f [g(x)]中g(x)范围一致,所以说求f(x)定义域就是求函数g(x)值域.变式训练6.函数f(x)对于任意实数x满足条件f(x+2)=,假设f(5)=-5,那么f [f(1)]=___________.解析:∵f(x+2)=,∴f(x)=.∴f(1)===f(5)=-5.∴f(1)=-5.∴f[f(1)]=f(-5).又f(-5)=)23(11)3(1)25(1+---=--=+--f f f =f(-1)=51)1(1)21(1--=-=+--f f =51, ∴f[f(1)]=51. 答案:51 7.f(x)=x +11(x∈R 且x≠-1),g(x)=x 2+2(x∈R ), (1)求f(2)、g(2)值.(2)求f [g(2)]值.(3)求f [g(x)]解析式.分析:在解此题时,要理解对应法那么“f〞与“g〞含义,在求f [g(x)]时,一般遵循先里后外原那么.解:(1)f(2)=,g(2)=22+2=6.(2)f [g(2)]=f(6)=.(3)f [g(x)]=f(x 2+2)=.教材链接[思考与讨论]如何检验一个图形是否是一个函数图象写出你检验法那么,图2-1-4所示各图形都是函数图象吗哪些是,哪些不是,为什么图2-1-42-1-4所示各图形中因为(1)、(3)、(4)符合“一对一〞或“多对一〞原那么,所以(1)、(3)、(4)是函数图象,而(2)中有一个x 值对应两个y 值,不满足函数“多对一〞或“一对一〞条件,所以(2)不是函数图象.。

2019-2020年高中数学 《2.2.1 一次函数的性质与图像》教案 新人教B版必修1

2019-2020年高中数学 《2.2.1 一次函数的性质与图像》教案 新人教B版必修1

2019-2020年高中数学 《2.2.1 一次函数的性质与图像》教案 新人教B版必修1教学目标:研究一次函数的性质与图像 教学重点:研究函数和利用函数的方法 教学过程:1、 复习一次函数的定义2、 通过以下几方面研究函数(1)、函数的改变量(2)、斜率的符号与函数单调性的关系 (3)、的取值对函数的奇偶性的影响 (4)、函数的图像与坐标轴的交点坐标3、课内练习1. 函数Y=2x 3n -2,当n=____时,Y 是x 的正比例函数。

2. 试验表明小树原高为1.5米,在成长期间,每月增长20厘米,试写出小树高度Y(米)与月份x 之间的函数关系式。

问半年后小树的高度是多少?3. 某电信局收取网费如下:163网费为每小时3元,169网费为每小时2元,但要收取15元月租费。

设网费为Y元,上网时间为x小时, (1) 分别写出Y与x的函数关系式。

(2) 某网民每月上网19小时,他应选择哪种上网方式。

4、函数Y=2mx+3-m是 正比例函数,则m=____。

5、已知蜡烛燃掉的长度与点燃的时间成正比例。

一只蜡烛点燃6分钟,剩下的烛长为12厘米,点燃16分钟,剩下的烛长为7厘米,假设蜡烛点燃x分钟,剩下的烛长为Y厘米,求Y与x之间的函数关系式。

问这只蜡烛点完需要多少时间?课堂练习:教材第60页 练习A 、B小结:通过本节课的学习应明确应该从那几个方面研究函数. 课后作业:(略)2019-2020年高中数学 《2.2.1 一次函数的性质与图像》评估训练 新人教B 版必修11.下列函数中一次函数的个数为( ).①y =-x 7;②y =7x;③y =3;④y =1+8x .A .1B .2C .3D .4解析 ①④是一次函数,②是反比例函数,③是常数函数.答案 B2.已知直线y =kx +b 过点A (x 1,y 1)和B (x 2,y 2),若k <0且x 1<x 2,则y 1与y 2的大小关系是( ).A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定解析 ∵k <0,∴函数在R 上单调递减,∵x 1<x 2,则y 1>y 2. 答案 A3.已知f (x -1)=3x -1,则f (x )等于( ).A .3x -2B .3x +2C .2x -3D .2x解析 令x -1=t ,则x =t +1,∴f (t )=3(t +1)-1=3t +2,∴f (x )=3x +2. 答案 B4.已知函数y =2x +b 在区间[-1,3]上的最大值是7,则b =________. 解析 函数y =2x +b 在[-1,3]上单调递增,∴最大值为2×3+b =7,∴b =1. 答案 15.当m =________时,函数y =(m +1)x2m -1+4x -5是一次函数.解析 由2m -1=1,知m =1时,函数为y =2x +4x -5=6x -5为一次函数. 答案 16.设函数f (x )=(2a -1)x +b 在R 上是增函数.求a 的取值范围. 解 ∵f (x )=(2a -1)x +b ,在R 上是增函数, ∵k =2a -1>0,∴a >12.综合提高限时25分钟7.若函数g (x +2)=2x +3,则g (3)的值是( ).A .9B .7C .5D .3解析 法一 令x +2=t ,则x =t -2, ∴g (t )=2(t -2)+3=2t -1, ∴g (x )=2x -1,∴g (3)=6-1=5.法二 令x +2=3,则x =1.∴g (3)=2x +3=5. 答案 C8.设f (x )在(-∞,+∞)上是奇函数,f (x +2)=-f (x )当0≤x ≤1时,f (x )=x ,则f (7.5)等于( ).A .0.5B .-0.5C .1.5D .-1.5解析 由f (x +2)=-f (x )知f (x +4)=-f (x +2), ∴f (x +4)=f (x )∴f (7.5)=f (3.5)=f (-0.5)=-f (0.5)=-0.5. 答案 B9.当x ∈(0,1)时,不等式-ax +a -5<0恒成立,则实数a 的范围为________.解析 由⎩⎪⎨⎪⎧a +5≤0-5≤0得a ≤-5.答案 (-∞,-5]10.已知点A (-4,a ),B (-2,b )都在直线y =12x +k (k 为常数),则a 与b 的大小关系是a ________b (填“>”、“<”、“=”).解析 由y =12x +k 在R 上是增函数,且-4<-2,∴a <b . 答案 < 11.已知是一次函数,且为增函数,求m 的值.解 由⎩⎪⎨⎪⎧m -1>0m 2-3m +3=1得m =2.12.(创新拓展)对于每个实数x ,设f (x )是y 1=4x +1,y 2=x +3,y 3=-2x +4三个函数值的最小值,则f (x )的最大值为________.解析 在同一个坐标系内作出三个函数的图象,依题意,f (x )的图象是三个函数图象的最下面的部分构成的折线,由图知f (x )的最大值是y 2与y 3图象交点的纵坐标,解⎩⎪⎨⎪⎧y 2=x +2y 3=-2x +4⇒y =83,f (x )的最大值为83.答案 83。

2019_2020学年新教材高中数学第二章等式与不等式2.1.1等式的性质与方程的解集教师用书新人教B版必修第一册

2019_2020学年新教材高中数学第二章等式与不等式2.1.1等式的性质与方程的解集教师用书新人教B版必修第一册

2.1.1 等式的性质与方程的解集问题导学预习教材P43-P46的内容,思考以下问题: 1.等式的性质有哪些? 2.恒等式的概念是什么? 3.十字相乘法的内容是什么? 4.方程的解集的概念是什么?1.等式的性质(1)等式的两边同时加上(减去)同一个数或代数式,等式仍成立; (2)等式的两边同时乘以(除以)同一个不为零的数或代数式,等式仍成立. [注意] 等式性质成立的条件,特别是性质(2)中的“不为零”. 2.恒等式一般地,含有字母的等式,如果其中的字母取任意实数时等式都成立,则称其为恒等式,也称等式两边恒等.3.方程的解集一般地,把一个方程所有解组成的集合称为这个方程的解集.判断正误(正确的打“√”,错误的打“×”) (1)若a =b ,则a -c =b -c .( ) (2)若a =b ,则a c =b c.( ) (3)若a c =b c,则a =b .( )(4)x 3+1=(x +1)(x 2-x +1).( ) (5)x 2+5x +6=(x +2)(x +3).( )答案:(1)√ (2)× (3)√ (4)√ (5)√下列各式由左边到右边的变形为因式分解的是( ) A .a 2-b 2+1=(a +b )(a -b )+1 B .m 2-4m +4=(m -2)2C .(x +3)(x -3)=x 2-9D .t 2+3t -16=(t +4)(t -4)+3t 答案:B已知x 2+kxy +64y 2是一个完全式,则k 的值是( ) A .8 B .±8 C .16 D .±16答案:D方程2x +13-3x +42=12的解集为________.解析:由2x +13-3x +42=12,得2(2x +1)-3(3x +4)=3,即-5x -10=3,所以x =-135.所以方程的解集为⎩⎨⎧⎭⎬⎫-135.答案:⎩⎨⎧⎭⎬⎫-135方程x 2+2x -15=0的解集为________. 解析:x 2+2x -15=(x -3)(x +5)=0, 所以x =3或x =-5. 所以方程的解集为{3,-5}. 答案:{3,-5}利用十字相乘法分解单变量多项式角度一 x 2+(p +q )x +pq 型式子的因式分解分解因式: (1)x 2-3x +2; (2)x 2+4x -12.【解】 (1)如图,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以x2-3x+2=(x-1)(x-2).说明:今后在分解与本例类似的二次三项式时,可以直接将图中的两个x用1来表示(如图).(2)由图,得所以x2+4x-12=(x-2)(x+6).x2+(p+q)x+pq此类二次三项式的特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.其分解因式为:x2+(p+q)x+pq=(x+p)(x+q).角度二ax2+bx+c型式子的因式分解分解因式:(1)6x2+5x+1;(2)6x2+11x-7;(3)42x2-33x+6;(4)2x4-5x2+3.【解】(1)由图,得所以6x2+5x+1=(2x+1)(3x+1).(2)由图,得所以6x2+11x-7=(2x-1)(3x+7).(3)由图,得所以42x2-33x+6=(6x-3)(7x-2).(4)由图,得所以2x 4-5x 2+3=(x 2-1)(2x 2-3)=2(x +1)(x -1)⎝ ⎛⎭⎪⎫x +62⎝ ⎛⎭⎪⎫x -62.对于ax 2+bx +c ,将二次项的系数a 分解成a 1×a 2,常数项c 分解成c 1×c 2,并且把a 1,a 2,c 1,c 2排列如图:,按斜线交叉相乘,再相加,就得到a 1c 2+a 2c 1,如果它正好等于ax 2+bx +c 的一次项系数b ,那么ax 2+bx +c 就可以分解成(a 1x +c 1)(a 2x +c 2),其中a 1,c 1位于上图中上一行,a 2,c 2位于下一行.把下列各式分解因式:(1)x 2-3x +2=________; (2)x 2+37x +36=________;(3)(a -b )2+11(a -b )+28=________; (4)4m 2-12m +9=________.解析:(1)x 2-3x +2=(x -1)(x -2). (2)x 2+37x +36=(x +1)(x +36). (3)(a -b )2+11(a -b )+28 =[(a -b )+4][(a -b )+7] =(a -b +4)(a -b +7). (4)4m 2-12m +9=(2m -3)2. 答案:(1)(x -1)(x -2) (2)(x +1)(x +36) (3)(a -b +4)(a -b +7) (4)(2m -3)2利用十字相乘法分解双变量多项式角度一 x 2+(p +q )xy +pqy 2型式子的因式分解把下列各式因式分解: (1)a 2-2ab -8b 2;(2)x +5xy -6y (x >0,y >0); (3)(x +y )2-z (x +y )-6z 2; (4)m 4+m 2n 2-6n 4.【解】 (1)(a +2b )(a -4b ); (2)(x +6y )(x -y ); (3)(x +y +2z )(x +y -3z );(4)(m +2n )(m -2n )(m 2+3n 2).x 2+(p +q )xy +pqy 2这类二次齐次式的特点是:(1)x 2的系数为1;(2)y 2的系数为两个数的积(pq ); (3)xy 的系数为这两个数之和(p +q ).x 2+(p +q )xy +pqy 2=x 2+pxy +qxy +pqy 2=x (x +py )+qy (x +py )=(x +py )(x +qy ).角度二 ax 2+bxy +cy 2型式子的因式分解把下列各式因式分解: (1)6m 2-5mn -6n 2; (2)20x 2+7xy -6y 2; (3)2x 4+x 2y 2-3y 4;(4)6(x +y )+7z (x +y )+2z (x >0,y >0,z >0). 【解】 (1)(3m +2n )(2m -3n ). (2)(4x +3y )(5x -2y ). (3)(x +y )(x -y )(2x 2+3y 2). (4)(3x +y +2z )(2x +y +z ).对ax 2+bxy +cy 2因式分解时,若将y 2也视为常数,则与ax 2+bx +c 的分解方法是一致的.1.分解下列各因式: (1)x 2-xy -2y 2-2x +7y -3; (2)ab -2a -b +2.解:(1)(x -2y )(x +y )-2x +7y -3=(x -2y +1)·(x +y -3); (2)(b -2)(a -1).2.分解因式:x 2+(2m +1)x +m 2+m .解:x 2+(2m +1)x +m (m +1)=(x +m )(x +m +1).一元一次方程的解集用适当的方法求下列方程的解集:(1)x 0.7-0.17-0.2x 0.03=1; (2)x -12⎣⎢⎡⎦⎥⎤x -12(x -1)=2(x -1)3.【解】 (1)原方程可化为107x -1003(0.17-0.2x )=1,即107x -17-20x3=1, 去分母,得30x -7(17-20x )=21, 去括号,得30x -119+140x =21, 移项,得30x +140x =21+119, 合并同类项,得170x =140, 系数化为1,得x =1417.所以该方程的解集为⎩⎨⎧⎭⎬⎫1417.(2)去小括号,得x -12⎝ ⎛⎭⎪⎫x -12x +12=2x -23,去括号,得x -12x +14x -14=2x -23,去分母,得12x -6x +3x -3=8x -8, 移项,得12x -6x +3x -8x =-8+3, 合并同类项,得x =-5. 所以该方程的解集为{-5}.解一元一次方程时,有些变形的步骤可能用不到,要根据方程的形式灵活安排求解步骤.(1)在分子或分母中有小数时,可以化小数为整数.注意根据分数的基本性质,分子、分母必须同时扩大同样的倍数.(2)当有多层括号时,应按一定的顺序去括号,注意括号外的系数及符号.1.求下列方程的解集: (1)4-3(10-y )=5y ; (2)2x -13=2x +16-1.解:(1)去括号,得4-30+3y =5y .移项,得3y -5y =30-4. 合并同类项,得-2y =26.系数化为1,得y =-13. 所以该方程的解集为{-13}.(2)去分母,得2(2x -1)=(2x +1)-6. 去括号,得4x -2=2x +1-6. 移项,得4x -2x =1-6+2.合并同类项,得2x =-3. 系数化为1,得x =-32.所以该方程的解集为⎩⎨⎧⎭⎬⎫-32.2.如果方程x -43-8=-x +22的解集与方程4x -(3a +1)=6x +2a -1的解集相同,求式子a -1a的值.解:解方程x -43-8=-x +22,去分母,得2(x -4)-48=-3(x +2), 去括号,得2x -8-48=-3x -6, 移项、合并同类项,得5x =50, 系数化为1,得x =10.把x =10代入方程4x -(3a +1)=6x +2a -1, 得4×10-(3a +1)=6×10+2a -1,解得a =-4. 当a =-4时,a -1a =-4-1-4=-154.因式分解法解一元二次方程用因式分解法求下列方程的解集. (1)6x (x +1)=5(x +1); (2)(2x -1)2-(x +1)2=0; (3)(x +3)(x +1)=6x +2.【解】 (1)分解因式,得(6x -5)(x +1)=0, 所以6x -5=0或x +1=0,所以x 1=56,x 2=-1.所以方程的解集为⎩⎨⎧⎭⎬⎫56,-1.(2)分解因式,得[(2x -1)+(x +1)][(2x -1)-(x +1)]=0, 所以3x (x -2)=0,所以x 1=0,x 2=2. 所以方程的解集为{0,2}.(3)整理,得x 2-2x +1=0.即(x -1)2=0,所以x 1=x 2=1. 所以方程的解集为{1}.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程的左边分解为两个一次因式的积;(3)令每个因式等于0,得两个一元一次方程,再求解.[提醒] ①用因式分解法解一元二次方程,经常会遇到方程两边含有相同因式的情况,此时不能将其约去,而应当移项将方程右边化为零,再提取公因式,若约去则会使方程失根;②对于较复杂的一元二次方程,应灵活根据方程的特点分解因式.用因式分解法求下列方程的解集:(1)x ⎝ ⎛⎭⎪⎫x -12=x ; (2)(x -3)2+2x -6=0; (3)9(2x +3)2-4(2x -5)2=0.解:(1)x ⎝ ⎛⎭⎪⎫x -12-1=0, 即x ⎝ ⎛⎭⎪⎫x -32=0, 所以x 1=0,x 2=32,所以该方程的解集为⎩⎨⎧⎭⎬⎫0,32.(2)(x -3)2+2(x -3)=0, (x -3)(x -3+2)=0, 所以x -3=0或x -1=0, 所以x 1=3,x 2=1,所以该方程的解集为{3,1}.(3)[3(2x +3)+2(2x -5)][3(2x +3)-2(2x -5)]=0, 所以(10x -1)(2x +19)=0, 所以10x -1=0或2x +19=0, 所以x 1=110,x 2=-192.所以该方程的解集为⎩⎨⎧⎭⎬⎫110,-192.1.分解因式x 3-x ,结果为( )C .x (x +1)2D .x (x +1)(x -1)解析:选D.x 3-x =x (x 2-1)=x (x +1)(x -1). 2.已知a +b =3,ab =2,计算:a 2b +ab 2等于( ) A .5 B .6 C .9D .1解析:选B.a 2b +ab 2=ab (a +b )=2×3=6. 3.分解因式a 2+8ab -33b 2得( ) A .(a +11)(a -3) B .(a +11b )(a -3b ) C .(a -11b )(a -3b )D .(a -11b )(a +3b )解析:选B.a 2+8ab -33b 2=(a -3b )(a +11b ). 4.方程3x (x -2)=2-x 的解集为________. 解析:因为3x (x -2)=2-x , 所以3x (x -2)-(2-x )=0, 即3x (x -2)+(x -2)=0, 所以(x -2)(3x +1)=0, 所以x =2或x =-13,所以方程的解集为⎩⎨⎧⎭⎬⎫2,-13.答案:⎩⎨⎧⎭⎬⎫2,-135.把下列各式分解因式: (1)x 2+15x +56; (2)6x 2+7x -3; (3)x 2-6xy -7y 2; (4)8x 2+26xy +15y 2.解:(1)x 2+15x +56=(x +7)(x +8); (2)6x 2+7x -3=(2x +3)(3x -1); (3)x 2-6xy -7y 2=(x -7y )(x +y ); (4)8x 2+26xy +15y 2=(2x +5y )(4x +3y ).[A 基础达标]1.多项式2x 2-xy -15y 2的一个因式为( )C .x +3yD .x -5y解析:选B.2x 2-xy -15y 2=(x -3y )(2x +5y ). 2.(a +b )2+8(a +b )-20分解因式得( ) A .(a +b +10)(a +b -2) B .(a +b +5)(a +b -4) C .(a +b +2)(a +b -10) D .(a +b +4)(a +b -5)解析:选A.(a +b )2+8(a +b )-20=[(a +b )-2][(a +b )+10]=(a +b -2)(a +b +10). 3.若多项式x 2-3x +a 可分解为(x -5)(x -b ),则a ,b 的值是( ) A .a =10,b =2 B .a =10,b =-2 C .a =-10,b =-2D .a =-10,b =2解析:选C.因为(x -5)(x -b )=x 2-(5+b )x +5b ,所以⎩⎪⎨⎪⎧-(5+b )=-35b =a ,即⎩⎪⎨⎪⎧b =-2a =-10. 4.方程2x -(x +10)=5x +2(x +1)的解集为( )A .⎩⎨⎧⎭⎬⎫43 B .⎩⎨⎧⎭⎬⎫-43 C .{-2} D .{2}解析:选C.因为2x -(x +10)=5x +2(x +1), 所以2x -x -10=5x +2x +2, 即-6x =12, 所以x =-2.5.下列说法正确的是( )A .解方程3x (x +2)=5(x +2)时,可以在方程两边同时除以(x +2),得3x =5,故x =53B .解方程(x +2)(x +3)=3×4时,对比方程两边知x +2=3,x +3=4,故x =1C .解方程(3y +2)2=4(y -3)2时,只要将两边开平方,方程就变形为3y +2=2(y -3),从而解得y =-8D .若一元二次方程的常数为0,则0必为它的一个根 答案:D6.若x 2+mx -10=(x +a )(x +b ),其中a ,b 为整数,则m 取值的集合为________. 解析:因为x 2+mx -10=(x +a )(x +b )=x 2+(a +b )x +ab , 所以⎩⎪⎨⎪⎧m =a +b ab =-10.又因为a ,b 为整数,所以⎩⎪⎨⎪⎧a =-1b =10或⎩⎪⎨⎪⎧a =1b =-10或⎩⎪⎨⎪⎧a =2b =-5或⎩⎪⎨⎪⎧a =-2b =5, 所以m =±9或±3,所以m 取值的集合为{-9,-3,3,9}.答案:{-9,-3,3,9}7.已知y =1是方程2-13(m -y )=2y 的解,则关于x 的方程m (x -3)-2=m (2x -5)的解集为________.解析:因为y =1是方程2-13(m -y )=2y 的解,所以2-13(m -1)=2,即m =1.所以方程m (x -3)-2=m (2x -5)⇒(x -3)-2=2x -5,解得x =0.所以方程的解集为{0}.答案:{0}8.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =________.解析:设a +b =x ,则原方程可化为4x (4x -2)-8=0,整理,得(2x +1)(x -1)=0,解得x 1=-12,x 2=1,则a +b =-12或1. 答案:-12或1 9.把下列各式分解因式:(1)6x 2+7x -3;(2)12x 2+25x +12;(3)42x 2-5x -2;(4)72x 2+7x -2.解:(1)(2x +3)(3x -1);(2)(3x +4)(4x +3);(3)(6x +1)(7x -2);(4)(9x +2)(8x -1).10.把下列各式分解因式:(1)x 2-y 2-x +3y -2;(2)6xy +4x +3y +2;(3)x 2-(a +b )x +ab ;(4)(x +y )2-(3+a )|x +y |+3a .解:(1)(x +y )(x -y )-x +3y -2=(x +y -2)(x -y +1);(2)(2x +1)(3y +2);(3)(x -a )(x -b );(4)(|x +y |-3)(|x +y |-a ).[B 能力提升]11.规定一种运算:⎪⎪⎪⎪⎪⎪ab c d =ad -bc .例如:⎪⎪⎪⎪⎪⎪x21 5=8,运算得5x -2=8,解得x =2.按照这种运算的规定,那么⎪⎪⎪⎪⎪⎪x 2x 2 x =5时,x 的值为________. 解析:由题意,得⎪⎪⎪⎪⎪⎪x 2x 2 x =x 2-4x =5, 即x 2-4x -5=0,解得x =5或x =-1.答案:5或-112.小奇设计了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数a2-3b -5,例如把(1,-2)放入其中,就会得到12-3×(-2)-5=2.现将实数对(m ,3m )放入其中,得到实数5,则m =________.解析:因为将实数对(m ,3m )放入其中,得到实数5,所以m 2-9m -5=5,解得m =10或-1.答案:10或-113.用因式分解法求下列方程的解集:(1)x 2-10x +9=0;(2)2(x -3)=3x (x -3);(3)4(3x -2)(x +1)=3x +3;(4)2(2x -3)2-3(2x -3)=0;(5)2x 2-16=x 2+5x +8;(6)(3x -1)2+3(3x -1)+2=0.解:(1)(x -1)(x -9)=0,所以x 1=1,x 2=9;所以该方程的解集为{1,9}.(2)整理,得(x -3)(2-3x )=0,所以x -3=0或2-3x =0,所以x 1=3,x 2=23;所以该方程的解集为⎩⎨⎧⎭⎬⎫3,23. (3)4(3x -2)(x +1)-3(x +1)=0,所以(x +1)(12x -11)=0,所以x 1=-1,x 2=1112; 所以该方程的解集为⎩⎨⎧⎭⎬⎫-1,1112. (4)(2x -3)[2(2x -3)-3]=0,(2x -3)(4x -9)=0,所以x 1=32,x 2=94; 所以该方程的解集为⎩⎨⎧⎭⎬⎫32,94. (5)2x 2-x 2-5x -16-8=0, x 2-5x -24=0,(x -8)(x +3)=0,所以x 1=8,x 2=-3;所以该方程的解集为{8,-3}.(6)[(3x -1)+1][(3x -1)+2]=0,3x (3x +1)=0,所以x 1=0,x 2=-13; 所以该方程的解集为⎩⎨⎧⎭⎬⎫0,-13. 14.阅读材料,解答问题.为解方程(x 2-1)2-3(x 2-1)=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则(x 2-1)2=y 2,原方程化为y 2-3y =0,解得y 1=0,y 2=3.当y =0时,x 2-1=0,所以x 2=1,x =±1;当y =3时,x 2-1=3,所以x 2=4,x =±2.所以原方程的解为x 1=1,x 2=-1,x 3=2,x 4=-2.[问题]解方程:(x 2+3)2-4(x 2+3)=0.解:设x 2+3=y ,原方程可化为y 2-4y =0,即y (y -4)=0,所以y1=0,y2=4.当y=0时,x2+3=0,此时方程无解;当y=4时,x2+3=4,所以x=±1,所以x1=1,x2=-1.所以该方程的解集为{-1,1}.[C 拓展探究]15.已知方程(2 018x)2-2 017×2 019x-1=0的较大根为m,方程x2+2 018x-2 019=0的较小根为n.求m-n的值.解:将方程(2 018x)2-2 017×2 019x-1=0化为(2 0182x+1)(x-1)=0,所以x1=-12 0182,x2=1,所以m=1.同理,由方程x2+2 018x-2 019=0可得(x+2 019)(x-1)=0,所以x1=-2 019,x2=1,所以n=-2 019,所以m-n=2 020.。

2019-2020年高中数学 2.1.1.2映射与函数教学设计 新人教B版必修1

2019-2020年高中数学 2.1.1.2映射与函数教学设计 新人教B版必修1

2019-2020年高中数学 2.1.1.2映射与函数教学设计新人教B版必修1教学分析课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.三维目标1.了解映射的概念及表示方法,会利用映射的概念来判断“对应关系”是否是映射.2.感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的认识.重点难点教学重点:映射的概念,映射与函数关系.教学难点:理解映射的概念.课时安排1课时教学过程导入新课思路1.复习初中常见的对应关系.1.对于任何一个实数a,数轴上都有唯一的点P和它对应.2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应.3.对于任意一个三角形,都有唯一确定的面积和它对应.4.某影院的某场电影的每一张电影票有唯一确定的坐位与它对应.5.函数的概念.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).思路2.前面学习了函数的概念是:一般地,设A,B是两个非空数集,如果按照某种对应法则f,对于集合A中的每个元素x,在集合B中都有唯一的元素y和它对应.(1)对于任意一个实数,在数轴上都有唯一的点与之对应.(2)班级里的每一位同学在教室内都有唯一的坐位与之对应.(3)对于任意的三角形,都有唯一确定的面积与之对应.那么这些对应又有什么特点呢?这种对应称为映射.引出课题.推进新课新知探究提出问题①给出以下对应关系:这三个对应关系有什么共同特点?②阅读教材例4、例5、例6,请给出映射的定义.③“有一个且仅有一个”是什么意思?④函数与映射有什么关系?⑤图中第1个映射与其他映射有何特点?讨论结果:①集合A、B均为非空集合,并且集合A中的元素在集合B中都有唯一的元素与之对应.②一般地,设A,B是两个非空的集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.这时,称y是x在映射f的作用下的象,记作f(x).于是y=f(x),x称作y的原象.映射f也可记为:f:A→B,x→f(x).其中A叫做映射f的定义域,由所有象f(x)构成的集合叫做映射f的值域,通常记作f(A).③包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思,即是一对一或多对一.④函数是特殊的映射,映射是函数的推广.⑤B中任一元素在A中有唯一的原象,这种映射称为一一映射.应用示例思路1例1在图(1)(2)(3)(4)中,用箭头所标明的A中元素与B中元素的对应法则,试判断由A到B是不是映射?是不是函数关系?解:在图(1)中,集合A中任一个数,通过“开平方”运算,在B中有两个数与之对应,这种对应法则不符合上述的映射定义,所以这种由A到B的对应关系不是映射,当然也不是函数关系.在图(2)中,元素6在B中没有象,所以这种由A到B的对应关系不是映射,当然也不是函数关系.在图(3)中,对A中任一个数,通过“2倍”的运算,在B中有且只有一个数与之对应,所以这种由A到B的对应法则是数集到数集的映射,并且是一一映射.这两个数集之间的对应关系是函数关系.在图(4)中的平方运算法则,同样是映射,因为对A 中每一个数,通过平方运算,在B 中都有唯一的一个数与之对应,但不是一一映射.数集A 到B 之间的对应关系是函数关系.点评:从集合A 到集合B 的映射,允许多个元素对应一个元素,而不允许一个元素对应多个元素.答案:(1)不是;(2)是;(3)是;(4)是.在图中的映射中,A 中元素60°的对应的元素是什么?在A 中的什么元素与B 中元素60°的对应的元素是12,在A 中的元素 思路2例1下列对应是不是从集合A 到集合B 的映射,为什么? (1)A =R ,B ={x∈R |x≥0},对应法则是“求平方”; (2)A =R ,B ={x∈R |x >0},对应法则是“求平方”; (3)A ={x∈R |x >0},B =R ,对应法则是“求平方根”;(4)A ={平面内的圆},B ={平面内的矩形},对应法则是“作圆的内接矩形”.活动:学生回顾映射的概念,教师适时点拨或提示.判断一个对应是否是映射,关键是确定是否是“一对一”或“多对一”的对应,即集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应.解:(1)是映射,因为A 中的任何一个元素,在B 中都能找到唯一的元素与之对应. (2)不是从集合A 到集合B 的映射,因为A 中的元素0,在集合B 中没有对应的元素. (3)不是从集合A 到集合B 的映射,因为任何正数的平方根都有两个值,即集合A 中的任何元素,在集合B 中都有两个元素与之对应.(4)不是从集合A 到集合B 的映射.因为一个圆有无穷多个内接矩形,即集合A 中任何一个元素在集合B中有无穷多个元素与之对应.点评:本题主要考查映射的概念.给定两集合A、B及对应法则f,判断是否是从集合A 到集合B的映射,主要利用映射的定义.用通俗的语言讲:A→B的对应有“多对一”,“一对一”,“一对多”,前两种对应是A到B的映射,而后一种不是A到B的映射.2设映射f:x→-x2是实数集R=M到实数集R=N的映射,若对于实数p∈N,在M中不存在原象,则实数p的取值范围是( )A.(0,+∞) B.[0,+∞) C.(-∞,0) D.(-∞,0]活动:让学生思考:若对于实数p∈N,在M中不存在原象,与函数f(x)=-x2有什么关系?若对于实数p∈N,在M中不存在原象是指实数p表示函数f(x)=-x2值域中的元素,转化为求函数f(x)=-x2,x∈R的值域.集合M是函数f(x)=-x2的定义域,集合N是函数f(x)=-x2的值域.解析:由于集合M,N都是数集,则映射f:x→-x2就是函数f(x)=-x2,其定义域是M=R,则有值域Q={y|y≤0} N=R.对于实数p∈N,在M 中不存在原象,则实数p 的取值范围是N Q =R Q ={y|y >0}, 即p 的取值范围是(0,+∞). 答案:A点评:本题主要考查映射的概念和函数的值域,以及综合应用知识解决问题的能力.解决本题的关键是转化思想的应用.把映射问题转化为函数的值域问题,进一步转化为求函数的值域在实数集中的补集.其转化的依据是对映射概念的理解以及对函数与映射关系的把握知能训练1.下列对应是从集合S 到T 的映射的是( )A .S =N ,T ={-1,1},对应法则是(-1)n,n∈SB .S ={0,1,4,9},T ={-3,-2,-1,0,1,2,3},对应法则是开平方C .S ={0,1,2,5},T ={1,12,15},对应法则是取倒数D .S ={x|x∈R },T ={y|y∈R },对应法则是x→y=1+x1-x解析:判断映射方法简单地说应考虑A 中的元素是否都可以受f 作用,作用的结果是否一定在B 中,作用的结果是否唯一这三个方面.很明显A 符合定义;B 是一对多的对应;C命题中的元素0没有象;D 命题集合S 中的元素1也无象.答案:A2.已知集合M ={x|0≤x≤6},P ={y|0≤y≤3},则下列对应关系中不能看作从M 到P 的映射的是( )A .f :x→y=12xB .f :x→y=13xC .f :x→y=xD .f :x→y=16x解析:选项C 中,集合M 中元素6没有象,不是映射. 答案:C3.已知集合A =N +,B ={a|a =2n -1,n∈Z },映射f :A→B,使A 中任一元素a 与B 中元素2a -1对应,则与B 中元素17对应的A 中元素是( )A .3B .5C .17D .9解析:利用对应法则转化为解方程.由题意得2a -1=17,解得a =9. 答案:D4.若映射f :A→B 的象的集合是Y ,原象的集合是X ,则X 与A 的关系是________;Y 与B 的关系是________.解析:根据映射的定义,可知集合A 中的元素必有象且唯一; 集合B 中的元素在集合A 中不一定有原象. 故象的集合是B 的子集.所以X =A ,Y B. 答案:X =A Y B5.已知集合M ={a ,b ,c ,d},P ={x ,y ,z},则从M 到P 能建立不同映射的个数是________.解析:集合M 中有4个元素,集合P 中有3个元素,则从M 到P 能建立34=81个不同的映射.答案:816.下列对应哪个是集合M 到集合N 的映射?哪个不是映射?为什么? (1)设M ={矩形},N ={实数},对应法则f 为矩形到它的面积的对应.(2)设M ={实数},N ={正实数},对应法则f 为x→1|x|.(3)设M ={x|0≤x≤100},N ={x|0≤x≤100},对应法则f 为开方再乘10. 解:(1)是M 到N 的映射,因为它是一对一的对应.(2)不是映射,因为当x =0时,集合M 中没有元素与之对应. (3)是映射,因为它是一对一的对应.7.设集合A 和B 都是自然数集,映射f :A→B 把A 中的元素n 映射到B 中的元素2n+n ,则在映射f 下,A 中的元素________对应B 中的元素3.( )A .1B .3C .9D .11解析:对应法则为f :n→2n +n ,根据选项验证2n+n =3,可得n =1. 答案:A 拓展提升问题:集合M 中有m 个元素,集合N 中有n 个元素,则从M 到N 能建立多少个不同的映射?探究:当m =1,n =1时,从M 到N 能建立1=11个不同的映射;当m =2,n =1时,从M 到N 能建立1=12个不同的映射;当m=3,n=1时,从M到N能建立1=13个不同的映射;当m=2,n=2时,从M到N能建立4=22个不同的映射;当m=2,n=3时,从M到N能建立9=32个不同的映射.集合M中有m个元素,集合N中有n个元素,则从M到N能建立n m个不同的映射.课堂小结本节课学习了:(1)映射是一种特殊的对应,元素之间的对应必须满足“一对一或多对一”.(2)映射由三个部分组成:集合A,集合B及对应法则f,称为映射的三要素.(3)映射中集合A,B中的元素可以为任意的.作业课本本节练习B 3、4、5.设计感想本节教学设计的内容拓展较深,在实际教学中根据学生实际选取例题和练习.本节重点设计了映射的概念,对于映射来说,只需要掌握概念即可,不要求拓展其内容,以免加重学生的负担,也偏离了课标要求和高考的方向.备课资料[备选例题]例1区间[0,m]在映射f:x→2x+m所得的象集区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,则m等于( )A.5 B.10 C.2.5 D.1解析:函数f(x)=2x+m在区间[0,m]上的值域是[m,3m],则有[m,3m]=[a,b],则a=m,b=3m,又区间[a,b]的长度比区间[0,m]的长度大5,则有b-a=(m-0)+5,即b-a=m+5,所以3m-m=m+5,解得m=5.答案:A例2已知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N,k∈N,x∈A,y∈B,映射f:A→B,使B中元素y=3x+1和A中元素x对应,求a及k的值.分析:先从集合A和对应法则f入手,同时考虑集合中元素的互异性.可以分析出此映射必为一一映射,再由3→10,求得a值,进而求得k值.解:∵B中元素y=3x+1和A中元素x对应,∴A中元素1的象是4;2的象是7;3的象是10,即a4=10或a2+3a=10.∵a∈N,∴由a2+3a=10,得a=2.∵k的象是a4,∴3k+1=16,得k=5.∴a=2,k=5.例3A={(x,y)|x+y<3,x∈N,y∈N},B={0,1,2},f:(x,y)→x+y,这个对应是否为映射?是否为函数?说明理由.解:是映射,不是函数.由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},显然对于A中的每一个有序实数对,它们的和是0或1或2,则在B中都有唯一一个数与它对应,所以是映射,因为集合A不是数集而是点集,所以不是函数.例4下列哪些对应是从集合A到集合B的映射?(1)A={P|P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)A={P|P是平面直角坐标系中的点},B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x|x是新华中学的班级},B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.解:(1)是映射,因为A中的任何一个元素,在B中都能找到唯一的元素与之对应.(2)不是从集合A到集合B的映射,因为A中的元素0,在集合B中没有对应的元素.(3)不是从集合A到集合B的映射,因为任何正数的平方根都有两个值,即集合A中的任何元素,在集合B中都有两个元素与之对应.(4)不是从集合A到集合B的映射.因为一个圆有无穷多个内接矩形,即集合A中任何一个元素在集合B中有无穷多个元素与之对应.2019-2020年高中数学 2.1.1 函数的概念和图象(1)教案苏教版必修1教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?如图,A (-2,0),B (2,0),点C 在直线y =2上移动.则△ABC 的面积S 与点C 的横坐标x 之间的变化关系如何表达?面积S 是C 的横坐标x 的函数么?二、学生活动1.复述初中所学函数的概念;2.阅读课本21页的问题(1)、(2)、(3),并分别说出对其理解; 3.举出生活中的实例,进一步说明函数的对应本质. 三、数学建构1.用集合的语言分别阐述21页的问题(1)、(2)、(3); 问题1 某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少? 问题2 略.问题3 略(详见21页).2.函数:一般地,设A 、B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有惟一的元素y 和它对应,这样的对应叫做从A 到B 的一个函数,通常记为y =f (x ),x ∈A .其中,所有输入值x 组成的集合A 叫做函数y =f (x )的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系; (2)函数的本质是一种对应;(3)对应法则f 可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在A 、B 两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f (x )=2x ,(x =0).3.函数y =f (x )的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没 有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合A 到 B 的函数:(1)A ={1,2,3,4,5},B ={2,4,6,8,10},f :x →2x ; (2)A ={1,2,3,4,5},B ={0,2,4,6,8},f :x →2x ; (3)A ={1,2,3,4,5},B =N ,f :x →2x . 练习:判断下列对应是否为函数: (1)x →2x,x ≠0,x ∈R ;(2)x →y ,这里y 2=x ,x ∈N ,y ∈R . 例2 求下列函数的定义域:(1)f (x )=x -1;(2)g(x )=x +1+1x.例3 下列各组函数中,是否表示同一函数?为什么? A .y =x 与y =(x )2; B .y =x 2与y =3x 3;C .y =2x -1(x ∈R)与y =2t -1(t ∈R);D .y =x +2·x -2与y =x 2-4 练习:课本24页练习1~4,6. 五、回顾小结1.生活中两个相关变量的刻画→函数→对应(A →B ) 2.函数的对应本质; 3.函数的对应法则和定义域. 六、作业:课堂作业:课本28页习题2.1(1)第1,2两题.函数的本质是对应,但并非所有的对应都是函数,一个必须是建立在两个非空数集间的对应,二是对应只能是单值对应.判断两个函数是否为同一函数,一看对应法则,二看定义域.。

高中数学 第二章 函数 2.1 函数 2.1.2.1 函数的表示方法教案 新人教B版必修1-新人教B

高中数学 第二章 函数 2.1 函数 2.1.2.1 函数的表示方法教案 新人教B版必修1-新人教B

2.1.2.1 函数的表示方法整体设计教学分析课本从引进函数概念开始就比较注重函数的不同表示方法:列表法,图象法,解析法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.三维目标1.了解函数的一些基本表示法(列表法、图象法、解析法),会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.2.会用描点法画一些简单函数的图象,培养学生应用函数的图象解决问题的能力.重点难点教学重点:函数的三种表示方法.教学难点:分段函数的表示及其图象的初步认识.课时安排1课时教学过程导入新课思路 1.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!〞用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!西班牙文中称iFeliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd met jeverj aardag!在俄语中那么是С днем рождения!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.思路 2.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).推进新课新知探究提出问题初中学过的三种表示法:列表法、图象法和解析法各是怎样表示函数的?讨论结果:(1)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.(3)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫作解析法,这个数学表达式叫做函数的解析式.应用示例思路1例1作函数y=x的图象.分析:函数的定义域是[0,+∞),在直角坐标系中,由函数y=x所确定的有序实数对有无限多个.可以想象,当自变量x在区间[0,+∞)上从0开始连续无限增大时,相应的点(x,y)会形成一条连续不断的曲线.我们不可能作出一个定义在无穷区间内函数的完整图象,只能画出它在有限区间上的图象.也不可能作出函数图象上的无限多个点,但可以画出有限个坐标为(x,y)的点.现在的问题是,如何选取x值,通过描点、连线较准确地画出这个函数的图象.解:在这个函数的定义域内,从0开始适当地取假设干个x的值:0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,….算出对应的函数值,列出函数的对应值表(精确到0.1):以这11个有序数对(x,y)为坐标,在直角坐标系中画出所对应的11个点,由这些点连成的一条光滑曲线就是函数y=x的图象,如下图所示.点评:“数形结合〞是我们研究函数的重要方法,画函数的图象是学习数学必须掌握的一个重要技能.在学习中要养成画图的习惯,并会利用函数的图象来理解函数的性质.例2某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元,试用三种表示法表示函数y=f(x).活动:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)〞有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.此题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为如下图所示.思路2例1设x是任意的一个实数,y是不超过x的最大整数,试问x和y之间是否是函数关系?如果是,画出这个函数的图象.解:对每一个实数x,都能够写成等式:x=y+α,其中y是整数,α是一个小于1的非负数.例如,6.48=6+0.48,6=6+0,π=3+0.141 592…,-1.35=-2+0.65,-12.52=-13+0.48,….由此可以看到,对于任一个实数x,都有唯一确定的y值与它对应,所以说x和y之间是函数关系.这个“不超过x的最大整数〞所确定的函数通常记为y=[x].这个函数的定义域是实数集R,值域是整数集Z.例如,当x=6时,y=[6]=6;当x=π时,y=[π]=3;当x=-1.35时,y=[-1.35]=-2.这个函数的图象,如下图所示.点评:此题中的函数通常称为取整函数,记为y=[x],x∈R.例2函数y=f(n),满足f(0)=1,且f(n)=nf(n-1),n∈N+.求f(1),f(2),f(3),f(4),f(5).分析:这个函数用两个等式定义,第一个等式首先给出自变量的初始值对应的函数值,然后由这个函数值用第二个等式依次递推地计算下一个函数值.解:因为f(0)=1,所以f(1)=1·f(1-1)=1·f(0)=1,f(2)=2·f(2-1)=2·f(1)=2×1=2,f(3)=3·f(3-1)=3·f(2)=3×2=6,f(4)=4·f(4-1)=4·f(3)=4×6=24,f(5)=5·f(5-1)=5·f(4)=5×24=120.点评:例题中的函数定义所用到的运算,通常叫做递归运算.这种定义函数的方法在计知能训练1.等腰三角形的周长是20,底边长y是一腰长x的函数,那么( )A.y=10-x(0<x≤10)B.y=10-x(0<x<10)C.y=20-2x(5≤x≤10)D.y=20-2x(5<x<10)解析:根据等腰三角形的周长列出函数解析式.∵2x+y=20,∴y=20-2x.那么20-2x>0.∴x<10.由构成三角形的条件(两边之和大于第三边)可知2x>20-2x,得x>5,∴函数的定义域为{x|5<x<10}.∴y=20-2x(5<x<10).答案:D2.定义在R上的函数y=f(x)的值域为[a,b],那么y=f(x+1)的值域为( )A.[a,b] B.[a+1,b+1]C.[a-1,b-1] D.无法确定解析:将函数y=f(x)的图象向左平移一个单位得函数y=f(x+1)的图象,由于定义域均是R,那么这两个函数图象上点的纵坐标的取值范围相同,所以y=f(x+1)的值域也是[a,b].答案:A3.函数f(x)=11+x2(x∈R)的值域是( )A.(0,1) B.(0,1] C.[0,1) D.[0,1]解析:(观察法)定义域是R,由于x2≥0,那么1+x2≥1,从而0<11+x2≤1.答案:B4.集合A={1,2,3,4,5},集合B={2,4,6,8}.集合A中的元素乘2.假设A中的元素为自变量,B中的元素为因变量,能形成函数吗?解:不能.因为A中的元素5的2倍为10,并没有在集合B中.5.在矩形中,假设面积值作为自变量,其中一边长为因变量,能形成函数吗?解:不能.因为面积一定时,其中一边的长不确定.6.某人骑车的速度是20千米/时.他骑1.5小时,走的路程是多少?你能写出时间与路程的函数吗?解:1.5小时走的路程是20×1.5=30(千米).设时间为t,路程为s,那么s=20t(t≥0).7.由以下式子是否能确定y是x的函数?(1)x2+y2=2;(2)x-1+y-1=1;(3)y=x-2+1-x.解:(1)由x2+y2=2,得y=±2-x2,因此由它不能确定y是x的函数.(2)由x-1+y-1=1,得y=(1-x-1)2+1,所以当x在{x|x≥1}中任取一值时,由它可以确定一个唯一的y 与之对应,故由它可以确定y 是x 的函数.(3)由⎩⎪⎨⎪⎧ x -2≥0,1-x≥0得x∈∅,故x 无值可取,y 不是x 的函数.拓展提升问题:画函数图象时,除去描点法外,还有其他方法吗?解答:还有变换法作图.变换法画函数的图象有三类:1.平移变换:(1)将函数y =f(x)的图象向左平移a(a >0)个单位得函数y =f(x +a)的图象;(2)将函数y =f(x)的图象向右平移a(a >0)个单位得函数y =f(x -a)的图象;(3)将函数y =f(x)的图象向上平移b(b >0)个单位得函数y =f(x)+b 的图象;(4)将函数y =f(x)的图象向下平移b(b >0)个单位得函数y =f(x)-b 的图象. 简记为“左加(+)右减(-),上加(+)下减(-)〞.2.对称变换:(1)函数y =f(x)与函数y =f(-x)的图象关于直线x =0即y 轴对称;(2)函数y =f(x)与函数y =-f(x)的图象关于直线y =0即x 轴对称;(3)函数y =f(x)与函数y =-f(-x)的图象关于原点对称.3.翻折变换:(1)函数y =|f(x)|的图象可以将函数y =f(x)的图象位于x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留y =f(x)的x 轴上方部分即可得到.(2)函数y =f(|x|)的图象可以将函数y =f(x)的图象y 轴右边部分翻折到y 轴左边替代原y 轴左边部分并保留y =f(x)在y 轴右边部分图象即可得到.函数的图象是对函数关系的一种直观、形象的表示,可以直观地显示出函数的变化状况及其特性,它是研究函数性质时的重要参考,也是运用数形结合思想研究和运用函数性质的基础.另一方面,函数的一些特性又能指导作图,函数与图象是同一事物的两个方面,是函数的不同表现形式.函数的图象可以比喻成人的相片,观察函数的图象可以解决研究其性质.当然,也可以由函数的性质确定函数图象的特点.借助函数的图象来解决函数问题,函数的图象问题是高考的热点之一,应引起重视.课堂小结本节课学习了:函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数.作业课本本节练习B 2、3.设计感想本节教学设计容量较大,尽量借助于信息技术来完成.本节的设计重点是函数的三种表示方法,提出了表示法的应用.备课资料[备选例题]例1车管站在某个星期日保管的自行车和电动车共有3 500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每次一辆0.3元.(1)假设设自行车停放的辆次数为x ,总的保管费收入为y 元,试写出y 关于x 的函数关系式;(2)假设估计前来停放的3 500辆次中,电动车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.活动:让学生审清题意读懂题.求解析式时不要忘记函数的定义域,要考虑自变量的取值必须使解析式有意义.然后再根据解析式列不等式求解.总的保管费=自行车保管费+电动车保管费.解:(1)由题意得y =0.3x +0.5(3 500-x)=-0.2x +1 750,x∈N +且0≤x≤3 500.(2)假设电动车的辆次不小于25%,但不大于40%,那么3 500×(1-40%)≤x≤3 500×(1-25%),即2 100≤x≤2 625,画出函数y =-0.2x +1 750(2 100≤x≤2 625)的图象,可得函数y =-0.2x +1 750(2 100≤x≤2 625)的值域是[1 225,1 330],即收入在1 225元至1 330元之间.点评:此题主要考查函数的解析式和值域,以及应用函数知识解决实际问题的能力.解函数应用题的步骤是①审清题意读懂题;②恰当设未知数;③列出函数解析式,并指明定义域;④转化为函数问题,并解决函数问题;⑤将数学问题的答案还原为实际答案.例2水池有2个进水口,1个出水口,每个水口进出水的速度如下图甲、乙所示.某天0点到6点,该水池的蓄水量如下图丙所示(至少打开一个水口).给出以下三个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水;其中一定正确的论断是( )A .①B .①②C .①③D .①②③解析:由上图甲可看出,如果进水口与出水口同时打开,每个进水口的速度为出水口速度的一半,即v 进水=12v 出水. 由图丙可看出在0点到3点之间蓄水量以速度2匀速增加,所以在此时间段内一定是两个进水口均打开,出水口关闭,故①正确.由图丙可看出在3点到4点之间蓄水量以速度1匀速减少,所以在此时间段内一定是一个进水口打开,出水口打开,故②不正确.由图丙可看出在4点到6点之间蓄水量不变,所以在此时间段内一定是两个进水口打开,出水口打开,或者两个进水口关闭,出水口关闭,故③不正确.综上所述,论断仅有①正确.答案:A。

高中数学 2.1.1 函数教学设计 新人教B版必修1

高中数学 2.1.1 函数教学设计 新人教B版必修1

2.1.1 函数教学设计教学目标(1)知识与技能目标:会用集合与对应的语言描述函数,了解构成函数的要素,会求一些简单函数的定义域和值域,初步掌握换元法的简单应用.(2)过程与方法目标:从生活实际和学生已有知识出发,让学生感受、体验对应关系在刻画函数概念中的作用,在此基础上借助数字处理器的思想理解函数的实质.通过函数概念的学习,提高学生抽象概括、分析总结等基本数学思维能力.(3)情感、态度与价值观目标:通过对函数概念的教学,让学生体验到由具体到抽象,从特殊到一般,感性到理性的认知过程;使学生在初中数学学习的基础上,对数学的高度抽象性、概括性和广泛的应用性有进一步认识;通过课前预习、课上交流,培养学生良好的学习习惯,使学生获得成功体验,激发学生学习数学的兴趣,树立学好数学的信心.教学重难点由于函数概念中的“对应”本质是后继学习映射、函数图像与性质、指对幂函数等知识的基础,而学生初中对函数的学习是在“变量”观点下的定义,所以本节课的教学重点是函数概念的理解.学生在初中函数学习中,只停留在对一些具体函数的感知,所以本节课的教学难点是对函数符号的理解.学生的理解障碍有两个:一是符号的高度抽象性,二是函数中的任意性,学生对取的理解有一定困难,所以要充分铺垫,循序渐进.学情分析及教学内容分析一、学情分析:由于初中函数的概念是“变量说”定义,学生对这种定义已经很熟悉,应用起来得心应手,受先入为主思想的影响对“对应说”定义引入的必要性认识不足,对函数的“对应说”定义接受起来多少有一种排斥心理;学生初中对函数的理解仅停留在一些具体函数的层面上,更确切的说是限于对函数具体解析式的理解,初中数学学习学生重计算、重例题,对抽象的函数符号理解有一定困难.另外,学生受前几届学生的影响,认为函数难学的畏难心理较重,对函数的学习存在或多或少的恐惧.不过,学生生活中已经积累了丰富的函数的实例素材,这为函数教学做好了准备.从学生的学习习惯上看,学生初入高中自主学习的目的性、主动性还不够,知识的接受基本在课堂,有的学生甚至还不会听课.所以高中数学教学还肩负着教会学生学习的任务.在课堂教学中采用课前预习、引导发现、学生合作交流的教学方法,通过课前预习,实现课堂教学效益的最大化(区间有关概念学生是可以自己解决的);课堂教学通过创设问题情境,注意通过学生熟悉的实际生活问题,和已经具备的函数知识引入课题,注重创设情景,拉近数学与现实之间的距离,激发学生的求知欲,调动学生主体参与的积极性,教师引导、启发,带领学生讨论交流,实现知识的内化、迁移.二、教学内容分析:函数是贯穿整个数学课程的一个基本脉络.本节课是在学生前面学习了集合的有关知识和初中已经学习了函数概念的基础上进行的,是对函数概念的高度抽象、概括和深化,是接下来学习映射、函数的表示方法、函数的单调性、函数的奇偶性的基础.同时,函数概念的教学是对学生抽象概括、分析总结等基本数学思维能力培养的重要题材,对培养学生数学表达能力、分析问题解决问题能力有重要作用.教材在编写顺序上,先学习函数后学习映射,揭示出映射与函数的内在联系,即:映射是函数概念的推广,函数是一种特殊的映射.符合学生由特殊到一般的认知规律.教学过程1.课前预习:(1)对照初中数学和高中数学函数概念,谈一谈两概念的相同点、不同点?(2)根据你对函数概念的理解和生活经验,在你的身边找两个函数实例.(3)区间的有关概念教学中并不急于让学生展示预习成果,原因是预习题(1)函数概念学生理解肯定有偏差,通过预习能知道初高中两定义中相同字眼“唯一确定”就可以了,让学生理解不同角度“变量”与“对应”是不现实的,借此讲解概念效果不好;预习题(2)所找的函数让学生在概念学习后去自省自悟;预习题(3)区间的有关概念真正体现学生自己能学会的不讲,达到课堂教学的效益最大化.2.情境导入:中考结束后,大家急切想知道自己的成绩,你是怎样知道自己的总分的?通过电话或者是网络查询,输入一个准考证号得到一个总分,这是不是一个函数?在这一过程中,我们不像初中函数那样关注成绩与准考证号这两个变量的依赖关系,研究一个变量随另一个变量变化而变化的规律性;而是注重两个量之间的对应关系.高中数学的函数就是从对应的角度定义函数的.通过这一实例使学生对抽象的概念消除了畏难情绪,为后继学习做好心理的准备.(“变量说”到“对应说”的提升——实现函数概念的第一次认识)3.新课讲授:问题1:中考成绩查询系统实质上就是一个数字处理系统,因此函数可以看作是一个数字处理系统,结合这个例子和预习情况你认为函数这样一个数字处理系统应包含哪几部分?结论1:两个数据库和一个处理器.问题2:数据库有什么要求?处理器在处理过程中遵循的规则是什么?结论2:前面一个非空数集,后面一个是由前面一个产生的.处理器在处理过程中遵循的规则(对应法则)是“任意”——“唯一”.这样降低了知识门槛,使学生觉得函数概念并不难,既便于理解,又帮助记忆,将函数看做数字处理系统,为下面讲解函数符号表示做好铺垫.使学生明白:函数不过是一个数据处理器的数学化.(函数是一个数字处理系统——实现函数概念的第二次认识)问题3:分析教材第29-30页所列的四个实例,是否是函数?对应法则是怎样给出的?你是怎样检验任意给定实数,都有唯一确定的与它对应的?结论3:(1)、(2)的对应法则是图像,(3)的对应法则是数表,(4)的对应法则是解析式;其中图像借助“画”,数表借助“查”,解析式借助“算”,为将来讲解函数的表示方法做好铺垫.交流讨论:分析课前自己找到的生活实例,判断是否是函数?(通过学生对自己和小组成员所找函数实例的辨析,让学生自省自悟,体会成功的愉悦,加深对函数概念的理解).问题4:通过以上学习谈一谈对“任意实数”和“唯一确定”的理解.强化:这两点是函数的核心部分.讲解:对应法则的给出形式多样,我们用“”表示,记作,实现了图、表、数的高度抽象概括.由以上分析可知,函数就是一个数字处理系统,就是它的处理器.问题5:举例说明你在初中学过的函数的分别是什么?这样让学生将一个抽象的对应法则变为可以看得见的具体法则,并且有的可以用解析式表示有的不能用解析式表示,从而明确数学引进抽象符号的必要性.(对这一数字处理器的认识——实现函数概念的第三次认识)练习与巩固:教材第33页练习A第1题学生总结函数的概念并阅读教材第31页,小组讨论对函数概念的理解,并让小组代表发言,这是兵教兵的过程,又是对函数概念的内化过程,也是对函数概念的记忆过程.同时是对预习中函数值、定义域、区间等基础概念再一次强化的过程.学生独立完成教材第32页例1及第33页练习A第3题.教师强化解题格式,并小结求定义域的方法.例2.求函数,在处的函数值和值域.学生独立完成,教师适当点拨,简单总结求值域的方法.(针对初中一次函数、二次函数、反比例函数总结)练习与巩固:教材第33页练习A第3,7,8题.例3.(1)已知函数,求,,,;此题从特殊的2到再到最后到,使学生明确数字处理器既可以处理一个具体的数,也可以处理字母和代数式.(2)已知函数,求.此题让学生先独立思考,然后分组讨论、交流,启发学生运用整体代换进行变形.练习与巩固:教材第33页练习A第5,6题.4.课堂小结(师生共同完成):(1)函数的有关概念.(2)确定一个函数的两个要素.(3)如何检验两个变量之间是否具有函数关系.5.课堂检测(活页练习):⑴ 判断下列对应是否为函数:①②⑵求函数的定义域;⑶已知函数,求6.布置作业:(1)教材第33页练习B第3,4题,教材第52页习题A第4题,习题B第1题.(2)预习作业:什么叫映射?映射与函数有什么关系?(3)提高作业:①教材第33页练习B第1,2,5题;②若,求函数的解析式,并求的定义域和值域.分层布置作业,强化因材施教.教学反思:1.重视学生的亲身体验.借助学生印象深刻的生活经历,将新知识与学生的已有知识和生活经验联系起来.注意挖掘数学知识的现实背景,再现数学知识的抽象过程;问题情景的设置形成逐层深入环环相扣的问题链,以问题解决为线索,引导学生主动讨论、积极探索.2.体现学生学习方式的变革,倡导自主学习、合作学习、探究学习的学习方式;体现“以人为本”思想,强调课堂教学的有效性,不仅强调在实践中完成学生自身知识的建构,并要求在完成学习任务的同时有所感悟、有所创造.3.倡导课前预习,先学后教,以学定教,学生能课前自主解决的内容课堂不讲,增加课堂容量,追求课堂教学效益的最大化;引导学生学会阅读教材、理解教材,体会数学概念的形成过程,由具体实例到抽象知识再用抽象知识解决具体问题的认知过程,注重培养学生的自学能力和良好的学习习惯.4.在课件制作方面,并没有过多展示题目,而是设计了比较形象的“数字处理系统”,让学生看得见、摸得着,把抽象的函数概念形象化,效果很好.5.由于学生提前预习,先学后教,课堂教学中知识缺乏系统性、完整性;课堂容量大,时间有些紧,课堂留白不足.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学 《2.1.1函数(二)》教案 新人教B 版必修1
教学目标:理解映射的概念;
用映射的观点建立函数的概念. 教学重点:用映射的观点建立函数的概念. 教学过程:
1.通过对教材上例4、例5、例6的研究,引入映射的概念.
注:1,补充例子:投掷飞标时,每一支飞标射到盘上时,是射到盘上的唯一点上。

于是,如果我们把A 看作是飞标组成的集合,B 看作是盘上的点组成的集合,那么,刚才的投飞标相当于集合A 到集合B 的对应,且A 中的元素对应B 中唯一的元素,是特殊的对应.
同样,如果我们把A 看作是实数组成的集合,B 看作是数轴上的点组成的集合,或把A 看作是坐标平面内的点组成的集合,B 看作是有序实数对组成的集合,那么,这两个对应也都是集合A 到集合B 的对应,并且和上述投飞标一样,也都是A 中元素对应B 中唯一元素的特殊对应.
一般地,设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到集合B 的映射,记作f:A →B.其中与A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象.
2,强调象、原象、定义域、值域、一一对应和一一映射等概念 3.映射观点下的函数概念 如果A ,B 都是非空的数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作y=f(x),其中x ∈A ,y ∈B.原象的集合A 叫做函数y=f(x)的定义域,象的集合C (CB )叫做函数y=f(x)的值域.函数符号y=f(x)表示“y 是x 的函数”,有时简记作函数f(x).
这种用映射刻划的函数定义我们称之为函数的近代定义. 注:新定义更抽象更一般
如:(狄利克雷函数)是无理数)(
是有理数)
⎩⎨
⎧=x 0x (1)x (f
4.补充例子:
例1,已知下列集合A 到B 的对应,请判断哪些是A 到B 的映射?并说明理由:
⑴ A=N ,B=Z ,对应法则:“取相反数”;
⑵A={-1,0,2},B={-1,0,1/2},对应法则:“取倒数”; ⑶A={1,2,3,4,5},B=R ,对应法则:“求平方根”;
⑷A={|00900
},B={x|0x1},对应法则:“取正弦”. 例2,
1,(x ,y )在影射f 下的象是(x+y,x-y),则(1,2)在f 下的原象是_________
2,已知:f :xy=x 2
是从集合A=R 到B=[0,+]的一个映射,则B 中的元素1在A 中的原象是_________
3,已知:A={a,b},B={c,d},则从A 到B 的映射有几个
课堂练习:教材第39页 练习A 、B
小结:学习用映射观点理解函数,了解映射的性质。

课后作业:第56页 习题2-1A 第1、2题
2019-2020年高中数学 《2.1.1函数(二)》评估训练 新人教B 版必修1
1.下列集合A 到集合B 的对应中,构成映射的是
( ).
解析 按映射的定义判断知,D 项符合. 答案 D
2.设集合A 、B 都是坐标平面上的点集{(x ,y )|x ∈R ,y ∈R },映射f :A →B 使集合A 中的元素(x ,y )映射成集合B 中的元素(x +y ,x -y ),则在f 下,象(2,1)的原象是
( ).
A .(3,1) B.⎝ ⎛⎭
⎪⎫32,12
C.⎝ ⎛⎭⎪⎫3
2
,-12
D .(1,3)
解析 由⎩
⎪⎨
⎪⎧
x +y =2
x -y =1得⎩⎪⎨⎪⎧
x =32,y =1
2,
故选B.
答案 B
3.下列对应法则f 为A 到B 的映射的是 ( ).
A .A =R ,
B ={x |x >0},f :x →y =|x | B .A =Z ,B =N +,f :x →y =x 2
C .A =Z ,B =Z ,f :x →y =x
D .A =[-1,1],B ={0},f :x →y =0
解析 A 、B 选项中当x =0时,B 无元素与它对应,故A 、B 错,又C 中当x <0时,x 无意义,故C 错.
答案 D
4.已知集合A ={a ,b },B ={c ,d },则从A 到B 的不同映射有________个. 解析 a →c ,b →c ;a →d ;b →d ;a →c ,b →d ;a →d ,b →c ,共4个. 答案 4
5.设A =Z ,B ={x |x =2n +1,n ∈Z },C =R ,且从A 到B 的映射是x →2x -1,从B 到
C 的映射是y →
1
2y +1
,则经过两次映射,A 中元素1在C 中的象为________. 解析 1在B 中的象为2×1-1=1,在C 中的象为12×1+1=1
3.
答案 13
6.设f :A →B 是集合A 到集合B 的映射,其中A ={正实数},B =R ,f :x →x 2
-2x -1,求A 中元素1+2的象和B 中元素-1的原象.
解 当x =1+2时,x 2
-2x -1=(1+2)2
-2×(1+2)-1=0,所以1+2的象是0.
当x 2
-2x -1=-1时,x =0或x =2. 因为0∉A ,所以-1的原象是2.
综合提高
限时25分钟
7.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列不能表示从P 到Q 的映射的是
( ).
A .f :x →y =1
2x
B .f :x →y =13x
C .f :x →y =2
3
x
D .f :x →y =x
解析 C 中,y =23x ,当x =4时,y =8
3>2,即在Q 中不存在元素与之对应.
答案 C
8.设集合A ={1,2,3},集合B ={a ,b ,c },那么从集合A 到集合B 的一一映射的个数为
( ).
A .3
B .6
C .9
D .18
解析 A 中有3个元素,B 中也有3个元素,按定义一一列举可知有6个. 答案 B
9.已知(x ,y )在映射f 的作用下的象是(x +y ,xy ),则(3,4)的象为________;(1,-6)的原象为________.
解析 根据条件可知x =3,y =4,则x +y =3+4=7,xy =3×4=12,所以(3,4)的象为(7,12);
设(1,-6)的原象为(x ,y ),则有⎩
⎪⎨
⎪⎧
x +y =1
xy =-6,解得⎩
⎪⎨
⎪⎧
x =-2
y =3或⎩
⎪⎨
⎪⎧
x =3
y =-2,所以
(1,-6)的原象为(-2,3)或(3,-2).
答案(7,12),(-2,3)或(3,-2)
10.根据下列所给的对应关系
①A=N*,B=Z,f:x→y=3x+1,x∈A,y∈B;
②A=N,B=N*,f:x→y=|x-1|,x∈A,y∈B;
③A={x|x为高一(2)班的同学},B={x|x为身高},f:每个同学对应自己的身高;
④A=R,B=R,f:x→y=1
x+|x|
,x∈A,y∈B.
上述四个对应关系中,是映射的是________,是函数的是________.
解析①能构成映射,又A、B均为数集,因而能构成函数;②当x=1时,y=0∉B,故不能构成映射,从而不能构成函数;③能构成映射,但不是数集,故不能构成函数;④当x≤0
时,x+|x|=0,从而1
x+|x|
无意义,因而故不能构成映射.
答案①③①
11.已知集合A={0,2,4},B={0,4,m2},x∈A,y∈B,映射f:A→B使A中元素x 和B中元素y=2x对应,求实数m的值.
解由对应关系f可知,集合A中元素0,2分别和集合B中的元素0,4对应,所以集合A中的元素4和集合B中的元素m2对应.于是m2=2×4,解得m=±2 2.
12.(创新拓展)已知A、B∈R,f:A→B对应法则为:
f:x→y=x2-2x,对于实数m∈B在A中没有原象,求m的取值范围.
解∵m∈B,
∴m=x2-2x,
又∵在A中没有原象,
即x2-2x-m=0方程无实根,
∴Δ=4+4m<0,∴m<-1.。

相关文档
最新文档