变压器的各类中性点接地知识

合集下载

变压器中性点接地的要求

变压器中性点接地的要求

变压器中性点接地的要求
一、国家电网采用“三线一地”方式远距离高压输电,也就是说,零线(中性线)是接地的。

二、作为终端的电力变压器的金属外壳从安全方面考虑也必须可靠接本地。

“接地”和“接本地”这两个概念是有所区别的,“接本地”的含义应该理解为“尽可能就近接地”。

三、终端电力变压器二次侧一般采用“三相四线”向用户供电,零线也是接地的。

四、为了防止电器设备的外壳带电危及人身安全,通常都要求将电器设备的外壳接本地。

五、尽管在正常情况下零线也是接地的,但电器设备外壳的接地端绝对不能接零线,因为当零线在远端断开时,近处原来的零线就通过用电器变成了火线,这样很危险!所以安全插座多一个“本地端”的道理就在这里。

但遗憾的是,“本地端”常常没接本地线而成为安全隐患。

六、如果三相电流基本平衡,确实零线电流也就接近于零,这也是“三相四线”电缆中零线比相线细的原因所在。

不过一定要知道,如果轻易取掉零线而三相电流不平衡时,这个供电线路上几乎所有电器都将因中性点发生偏移而不能正常工作。

主变压器中性点接地方式

主变压器中性点接地方式

主变压器中性点接地方式
(1)对于主变压器110kV及以上侧中性点:
l)330kV及以上变压器的中性点宜全部接地。

2)发电厂有多台220kV及以下升压变压器时,应有1~2台变压器中性点接地。

3) 凡是自耦变压器,其中性点需要直接接地或经小电阻接地。

4) 终端变电所的变压器中性点一般不接地。

5) 中、低压侧有电源的变电站或枢纽变电站每条母线应有一台变压器中性点接地。

6) 所有普通变压器的中性点都应经隔离开关接地,以便于调度灵活选择接地点。

当变压器中性点可能断开运行时,若该变压器中性点绝缘不是按线电压设计的应在中性点装设避雷器保护。

7)变压器中性点接地数量应使电网短路点的综合零序电抗与综合正序电抗之比X/X1不大于3:X/X,尚应大于1~1.5,以使单相接地短路电流不超过三相短路电流。

(2)主变压器6~66kV侧中性点采用不接地或消弧线圈接地方式。

变压器中性点三种接法浅析

变压器中性点三种接法浅析

电力系统中性点接地方式是一个很重要的综合性问题,它不仅涉及到电网本身的安全可靠性、过电压绝缘水平的选择,而且对用电设备和人身安全有重要影响。

汤河水库管理局发电厂,原有1号主变为SJL4000/60型,于1984年4月10日正式投入使用,至今使用20多年超过正常使用年限,变损较大,运行得不到安全保障。

于2007年4月更换1号主变为S11—M—4000/66型。

该变压器无论从节能、安全和免维护等方面都远远优于SJL4000/60型变压器。

变压器中性点采用TN—S方式接地。

1 分析对比根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将变压器中性点接法分为三种,即TN、TT、IT三种形式。

其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。

第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。

TN系统:电源变压器中性点接地,设备外露部分与中性线相连。

TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。

IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。

电力系统中通常采用TN系统。

本文就我厂为何选用TN-S方式接地进行对比分析。

电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN-C系统、TN-S系统、TN-CS系统。

下面分别进行介绍。

1.1 TN—C系统其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。

(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。

TN-C系统一般采用零序电流保护;(2)TN-C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN-C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。

主变中性点知识Microsoft Word 文档

主变中性点知识Microsoft Word 文档

变压器中性点接地刀闸的作用变压器中性点接地,就形成了“中性点直接接地系统”,也叫“大电流接地系统”。

具有以下特点:1,变压器中性点接地,使变压器中性点锁定为零电位,在三相负载不平衡时,避免中性点位移而造成相电压不平衡。

2,变压器中性点接地,可以将系统发生单相接地变为单相短路,保障继电保护装置迅速可靠动作跳闸。

3,在变压器中性点可以按照零序CT监视三相不平衡电流。

当然还有更深奥的道理,例如:可以降低变压器部分线圈的绝缘要求,使用半绝缘变压器。

可以提供零序电流等等。

中性点放电间隙的作用放电间隙,主要是为保护避雷器的.当雷击电压超过避雷器所能保护的值时,为防止避雷器被击穿损坏,装设放电间隙.当有很高的雷击电压时,间隙被击穿放电,从而保护了避雷器.至于避雷器和放电间隙之间如何配合,要依避雷器的防雷电压而定.2.防止接地变跳闸后,高压侧故障中性点出现危险过电压3.110KV及以上系统中性点的间隙保护主要是:为了防止过电压!因为在这种电压等级的设备由于绝缘投资的问题所以都采用分级绝缘,在靠近中性点的地方绝缘等级比较低。

如果发生过电压的话会造成设备损坏,间隙保护可以起到作用,但是又由于中性点接地的选择问题一个系统不要有太多的中性点接地,所以有的变压器的中性点接地刀闸没有合上(保护的配置原因)。

在这时候如果由于变压器本身发生过电压的话就会由间隙保护实现对变压器的保护,原理就是电压击穿,在一定电压下其间隙就会击穿,把电压引向大地。

间隙保护可以起到变压器绕组绝缘的作用,当系统出现过电压(大气过电压、操作过电压、谐振过电压、雷击过电压等)时,间隙被击穿时由零序保护动作、间隙未被击穿时有过电压保护动作切除变压器。

4.满足保护的灵敏度要求.5.防止合闸不同期等情况造成的过电压,损害绝缘.6.所谓保护间隙,是由两个金属电极构成的一种简单的防雷保护装置。

其中一个电极固定在绝缘子上,与带电导线相接,另一个电极通过辅助间隙与接地装置相接,两个电极之间保持规定的间隙距离。

变压器中性点接地

变压器中性点接地

,我们大家一直说的变压器中性点接地方式,其实是这个变压器所在的整个电压力系统的问题,而不单单是变压器中性点采用什么接地方式,这个是需要注意的.那么电力系统的中性点接地方式有那几种呢?主要有五种:1.不接地 2.经电阻接地 3.经阻抗接地 4.经消弧线圈(消弧电抗)接地 5.直接接地那么平常我们说的大电流接地系统和小电流接地系统是根据电流的大小,把上面的几种接地方式归类.有的书上是这样解释的,我感觉不错,说出来共大家参考:以系统的零序电抗X0和正序电抗X1的比值X0/X1的大小来决定.凡是X0/X1≤4~5的系统,属于大电流接地系统;X0/X1≥4~5的系统属于小电流接地系统.那么根据电力系统的实际情况,具体采用那种接地方式,需要综合很多方面的原因.我说说自己知道的几条:1.供电的可靠性与故障范围,有一些电力系统给一些非常用要的工厂公司,或者民用等,要求单相接地故障条件下运行.在中性点不接地系统中若发生单相接地可不跳闸,而直接接地系统就的跳闸.2.系统中内过电压的倍数问题,在小电流接地系统中,内过电压是在线电压的基础上产生和发展的,相对绝缘要求高,因为过电压的数值大.在大电流接地系统中,内过电压是在相电压的基础上产生的.3.电力系统的绝缘水平,电力设备的绝缘水平主要解决于大气过电压和内过电压,中性点直接接地可使内过电压降低20%~30%.因而这种系统的绝缘工频耐压水平也相应降低20%左右.从过电压与绝缘水平的观点看,中性点直接接地比经消弧线圈接地好,而消弧线圈接地比不接地好,这就是为什么11KV及其以上线路都选用有效接地方式了,主要就是降低对绝缘的要求.330KV及500kv系统中不允许变压器中性点不接地运行.都是为了降低对绝缘的要求.4.系统稳定性方面.在中性点直接接地系统中发生一相接地时,由于短路电流很大,电压的极距下降和输电线路的切断,可能导致系统动态稳定的破坏;而中性点不接地或经消弧线圈接地,就没有这个问题.5.断路器检修方面,因中性点有效接地时,单相接地故障电流大,需要断路器跳闸,频繁.那么断路器检修次数相应上升.二.变压器中性点在什么情况下需要装设保护装置.中性点装设保护,首先应该对于单个(不对应系统)变压器中性点不接地运行时的情况,是否需要装设保护的问题.如直接接地系统中的中性点不接地变压器,而且此变压器是分级绝缘,那么一定要装设保护了,中性点绝缘未按线电压设计,为了防止因断路器非同期操作,线路非全相运行或断线,或因继电保护的原因造成中性点不接地的孤立系统带单相接地运行,引起中性点的避雷器爆炸和变压器绝缘损坏,应在变压器中性点装设保护间隙或将保护间隙与避雷器并接.如中性点的绝缘按线电压设计,非直接接地系统中的变压器中性点一般不用装设保护装置.但多雷区进线变电所应装设保护装置,中性点接有消弧绕组的变压器,如有单进线运行的可能,也应在中性点装设保护装置产品概述110kV、220kV是供电网络的主要电压等级,由于电压很高, 中性点一般采用直接接地方式,由于继电保护整定配置及防止通讯干扰等方面的要求,为了限制单相短路电流,其中有部分变压器采用中性点不接地方式。

变压器中性点接地规范要求

变压器中性点接地规范要求

变压器中性点接地规范要求
变压器中性点接地,指的是将变压器的中性点接地,以保证变压
器的安全使用。

通常情况下,用户可以根据使用场合的要求和安装位
置来决定接地方式。

总体而言,变压器中性点接地规范要求,主要是以下四块内容:
一是要求变压器中性点必须接地,确保其电压接触安全;
二是在变压器安装之前,应尽量充分地研究调查,以确保变压器
中性点通过接地达到电气安全;
三是变压器安装后,应进行定期检查,以检查接地是否达到规范
要求;
四是必须建立完善的用电规程,对变压器进行定期的维护和管理,以确保其电压接触安全。

除此之外,如果变压器安装在潮湿的环境中,那么接地系统的选
择和安装方式也应当十分小心,以确保变压器的正常使用。

在潮湿环
境中,安装金属管地线或非金属管(桥架)地线并非最优选择;只有
采用横穿性能较优的接地电缆,才能保证变压器获得最优的电压接触
安全。

综上所述,变压器中性点接地规范要求主要是为了确保变压器的
电压接触安全,在设计安装时,应根据使用场合的要求和安装位置,
采取必要的介质隔离手段,合理设置接地系统,确保变压器安全工作,及时检查接地、完善用电规程,才能做到“安全使用电气”。

主变压器和发电机的中性点接地方式

主变压器和发电机的中性点接地方式
优缺点
系统过电压水平较低,但单相接地 故障电流大,需要装设自动选线装 置。
经消弧线圈接地系统
系统特点
中性点经消弧线圈接地,系统发 生单相接地故障时,消弧线圈产 生的感性电流补偿接地点的容性
电流。
适用范围
适用于35kV及以下电网,特别 是对接地故障电流有严格限制的
场所。
优缺点
减小了接地故障电流,降低了弧 光接地过电压的概率,但需要装
系统特点
优缺点
中性点不接地或经高阻抗接地,系统 发生单相接地故障时,故障电流很小。
系统结构简单,供电连续性好,但系 统过电压水平较高,需要装设绝缘监 测装置。
适用范围
适用于3~10kV电网,特别是供电连 续性要求较高、接地故障对设备影响 不大的场所。Leabharlann 03 发电机中性点接地方式
发电机中性点直接接地
考虑当地供电条件及环境因素
当地供电条件包括电网电压、频率、谐波等,这 些因素会影响中性点接地方式的选择。
环境因素如气候、海拔、地质等也会对中性点接 地方式产生影响,需进行综合考虑。
在选择接地方式时,应充分了解当地供电条件和 环境因素,并进行必要的现场测试和评估。
遵循相关标准规范,确保安全可靠
中性点接地方式的选择应遵循国家和行业相关标准规范,如《电力变压 器 第1部分:总则》、《旋转电机 定额和性能》等。
主变压器和发电机的中性点接地方 式
contents
目录
• 中性点接地基本概念与重要性 • 主变压器中性点接地方式 • 发电机中性点接地方式 • 中性点接地方式对系统运行影响 • 选择合适中性点接地方式原则与建议
01 中性点接地基本概念与重 要性
中性点定义及作用
中性点定义

电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!

电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!

电⼒系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地⼤全!电⼒系统中性点运⾏⽅式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。

我国电⼒系统⽬前所采⽤的中性点接地⽅式主要有三种:即不接地、经消弧线圈接地和直接接地。

⼩电阻接地系统在国外应⽤较为⼴泛,我国开始部分应⽤。

1、中性点不接地(绝缘)的三相系统各相对地电容电流的数值相等⽽相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位⼀致。

这时中性点接地与否对各相对地电压没有任何影响。

可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运⾏状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。

这种现象的产⽣,多是由于架空线路排列不对称⽽⼜换位不完全的缘故造成的。

在中性点不接地的三相系统中,当⼀相发⽣接地时:⼀是未接地两相的对地电压升⾼到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘⽔平应根据线电压来设计。

⼆是各相间的电压⼤⼩和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运⾏⼀段时间,这是这种系统的最⼤优点。

但不许长期接地运⾏,尤其是发电机直接供电的电⼒系统,因为未接地相对地电压升⾼到线电压,⼀相接地运⾏时间过长可能会造成两相短路。

所以在这种系统中,⼀般应装设绝缘监视或接地保护装置。

当发⽣单相接地时能发出信号,使值班⼈员迅速采取措施,尽快消除故障。

⼀相接地系统允许继续运⾏的时间,最长不得超过2h。

三是接地点通过的电流为电容性的,其⼤⼩为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发⽣电弧。

弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场⽽产⽣过电压,损坏电⽓设备或发展成相间短路。

故在这种系统中,若接地电流⼤于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。

2、中性点经消弧线圈接地的三相系统中性点不接地三相系统,在发⽣单相接地故障时虽还可以继续供电,但在单相接地故障电流较⼤,如35kV系统⼤于10A,10kV系统⼤于30A时,就⽆法继续供电。

中性点接地

中性点接地

中性点接地
中性点接地是一种电气保护装置,被广泛应用于电气系统中,用于对电流进行限制和分配,以保护设备和人身安全。

中性点接地是指将电气系统中的中性点(通常为变压器或发电机组的中性点)通过较低的电阻与地相连,以限制电流的流动。

在正常情况下,电荷在电气系统中的流动是从发电机组经过变压器到负荷,然后通过返回中性点回到发电机组。

然而,由于一些外部因素(如线路故障或设备故障),电流可能会逆流,从而导致电气设备损坏、引发火灾等严重后果。

为了避免这种情况的发生,中性点接地被引入到电气系统中。

中性点接地的原理是通过将电气系统的中性点与地相连,形成一个低阻抗的回路,使电流能够通过地回到中性点,从而实现电流的限制和分配。

在正常情况下,电流流向负载,然后返回中性点,而不会流向地。

但是,当线路故障或设备故障发生时,电流会通过地回路流回中性点,从而迅速地切断电流,保护设备和人身安全。

中性点接地有许多不同的类型,包括低阻抗接地、星形接地和零序电流接地等。

其中,低阻抗接地是最常见和最常用的一种。

它通过将中性点与地相连,形成一个低阻抗回路,从而限制电流的流动。

这种接地方式具有响应时间短、电流限制能力强等优点,广泛应用于各种类型的电气系统中。

此外,中性点接地还可以提供准确的故障电流测量和过电流保护,以及检测和记录系统中的故障情况。

通过监测系统中的故障电流,可以及时发现并排除潜在的故障,以确保电气
设备和人身安全。

总之,中性点接地在电气系统中起着非常重要的作用,能够有效地限制和分配电流,保护设备和人身安全。

它的应用范围广泛,具有多种类型和功能,对于维护电力系统的稳定运行至关重要。

电力系中性点各种接地方式

电力系中性点各种接地方式

配电网中性点接地方式1 引言三相交流电网中性点与大地间电气连接的方式,称为电网中性点接地方式。

电力系统中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性,人身安全,设备安全,绝缘水平,过电压保护,继电保护,通信干扰(电磁环境)及接地装置等问题有密切关系。

电力系统中性点接地方式是防止系统事故的一项重要应用技术,具有理论研究与实践密切结合的特点,因而是电力系统实现安全和经济运行的技术基础。

2 概念和术语1)“中性点不接地”和“中性点绝缘”我国常用中性点不接地这一术语,在有的国际场合称为“中心点绝缘”,后者容易使人误解为中性点零序阻抗是无限大。

而通常所讲的中性点不接地,实际上是经过集中于电力变压器中性点的等值电容(绝缘状态欠佳时还有泄漏电阻)接地的。

其零序阻抗多为一有限值,而且不一定是常数。

如在工频零序电压作用下,零序阻抗可能呈现较大的数值,而在3次或更高次谐波的零序电压作用下,零序容抗锐减,高次谐波电流骤增。

显然,中性点绝缘的概念对这一现象就解释不通了。

2)“中性点有效接地“和”中性点直接接地““中性点直接接地“这一术语对电力设备(如变压器)而言,含义是清晰的,它指该设备的中性点经过零阻抗接地。

但对整个电力系统其含义是不确切的,容易造成误解。

因为在高压电力系统,总有部分变压器的中性点不接地运行。

甚至在全接地的超高压电力系统中,仍然存在着有的变压器中性点经低电抗接地的情况。

IEEE32标准规定:当系统零序电抗与正序电抗之比不大于3,而且零序电阻对正序电抗之比不大于1是,该电力系统为中性点有效接地。

3)“中性谐振接地”和“中性经消弧线圈接地”4)“中性非有效接地”3 中性点接地方式的划分小电流接地方式的特点是其单相故障接地电弧能够自行熄灭。

电力系统的中心点接地方式根据上述原则,基本上可以划分为两大类:凡是需要断路器遮断单相接地故障者,属于大电流接地方式,凡是单相接地电弧能够瞬间自行熄灭者,属于小电流接地方式。

变压器中性点4种接线方式分析终极总结

变压器中性点4种接线方式分析终极总结
特点: 当发生单相接地时:(1)未接地两相的对地电压升高 到√3 倍,即等于线电压,所以,这种系统中,相对地的绝 缘水平应根据线电压来设计。(2)非故障的二相对地电压 将升高,但各相间的电压(即线电压)大小和相位仍然不变, 不会破坏系统的对称性,且对地电容电流小,若是瞬时故障, 一般能自动熄弧,因此可继续运行一段时间(最多 2h),这 是这种系统的最大优点。但不许长期接地运行,尤其是发电 机直接供电的电力系统,因为未接地相对地电压升高到线电 压,一相接地运行时间过长可能会造成两相短路。所以在这 种系统中,一般应装设绝缘监视或接地保护装置。当发生单 相接地时能发出信号,使值班人员迅速采取措施,尽快消除 故障。(3)当接地电流大于 10A 而小于 30A 时,有可能产
流,即 1.732*1.732I=3I)。
正常运行情况下,各相对地电容电流的数值相等而相位 相差 120°,其向量和等于零,地中没有电容电流通过,中 性点对地电位为零,即中性点与地电位一致。这时中性点接 地与否对各相对地电压没有任何影响。可是,当中性点不接 地系统的各相对地电容不相等时,即使在正常运行状态下, 中性点的对地电位便不再是零,通常此情况称为中性点位移 即中性点不再是地电位,这种现象的产生,多是由于架空线 路排列不对称而又换位不完全的缘故造成的。一般情况位移 电压不超过电源电压的 5%,对运行的影响不大。
பைடு நூலகம்
地,并引出地线入户和相线构成回路就是咱们民用的 220V 电压。
在拉合变压器的主断路器时,要将变压器中性点接地, 是因为如果拉合变压器的主断路器时,发生三相未能同时拉 开或合上,会产生过电压现象,变压器中性点接地就能将这 一过电压导入大地,保证主变不被过电压烧毁(也叫击穿)。
优缺点: 优点:绝缘方面减少了投资;因为在发生单相接地时, 中性点电压为零,非故障相电压不升高,设备和线路的对地 电压可以按相电压设计,从而降低了造价,有很大经济价值, 因为超高压电气设备的绝缘是影响设计和制造的关键。 缺点:(1)供电可靠性较低:因为中性点直接接地系 统发生单相接地时,短路电流很大,须断开故障线路,中断 对用户的供电。故供电可靠性较低。为了提高供电的可靠性, 在中性点直接接地系统的线路上,广泛装设自动重合闸装 置,当发生单相短路时,继电保护将电路断开,经一段时间 后,自动重合闸装置将电路重新合上。如果单相短路是暂时 性的,线路接通后对用户恢复供电。如果单相短路是永久性 的,继电保护将再一次断开电路。据统计,有 70%以上的短 路是暂时性的,因此,重合闸的成功率在 70%以上。 (2)单相短路电流很大:中性点直接接地系统发生单 相接地时,相当于将电源的正负极直接短路,故短路电流很

变压器中性点的接地方式有几种中性点套管头上平时是否有电压

变压器中性点的接地方式有几种中性点套管头上平时是否有电压

1.变压器中性点的接地方式有几种?中性点套管头上平时是否有电压?
现代电力系统中变压器中性点的接地方式分为三种:中性点不接地;中性点经电阻或消弧线圈接地;中性点直接接地。

在中性点不接地系统中,当发生单相金属性接地时,三相系统的对称性不被破坏,在某些条件下,系统可以照常运行,但是其他两相对地电压升高到线电压水平。

当系统容量较大,线路较长时,接地电弧不能自行熄灭。

为了避免电弧过电压的发生,可采用经消弧线圈接地的方式。

在单相接地时,消弧线圈中的感性电流能够补偿单相接地的电容电流。

既可保持中性点不接地方式的优点,又可避免产生接地电弧的过电压。

随着电力系统电压等级的增高和系统容量的扩大,设备绝缘费用占的比重越来越大,采用中性点直接接地方式,可以降低绝缘的投资。

我国110、220、330kV及500kV系统中性点皆直接接地。

380V的低压系统,早期为方便的抽取相电压,也直接接地;现在新建的电厂,为保证供电可靠性,380V 低压系统多采用经高阻接地(照明变仍采用中性点直接接地方式)。

关于变压器中性点套管上正常运行时有没有电压问题,这要具体情况具体分析。

理论上讲,当电力系统正常运行时,如果三相对称,则无论中性点接地采用何种方式,中性点的电压均等于零。

但是,实际上三相输电线对地电容不可能完全相等,如果不换位或换位不当,特别是在导线垂直排列的情况下,对于不接地系统和经消弧线圈接地系统,由于三相不对称,变压器的中性点在正常运行时会有对地电压。

在消弧线圈接地系统,还和补偿程度有关。

对于直接接地系统,中性点电位固定为地电位,对地电压应为零。

变压器中性点接地的要求

变压器中性点接地的要求

变压器中性点接地的要求●变压器低压侧中性点接地电阻应该在0.5~10欧姆之间。

保护接地电阻不能大于4欧姆。

1.要有足够的深度2.在土壤电阻率部高的地层要增加接地体支数3.在土壤电阻率较高的地方,可在每支接地体周围0.5M以下0.8M以上的底层填充化学材料4.在土壤电阻率很高的地层,应该用挖坑换土的方法●变压器中性点直接接地的接地电阻不能大于4欧姆●电力设备试验规程规定:100KV以下的变压器接地点电阻不大于10欧姆,100KV以●的变压器接地电阻不大于4欧姆●变压器接地电阻过高的原因:1.接地装置的材料不符合规格,由于接地体埋设不规范安装工艺马虎,接地体与接地线的连接头松动,大地过于干燥,均有可能造成接地电阻过高2.变压器设计安装时由于外力破坏或接地体被盗等原因也可能造成接地线断线,接地电阻过高●预防措施:1.严格按照施工工艺规范接地体埋设1).接地装置一般由钢管、角钢、带钢以及钢绞线等材料制成,埋入深度应该不小于0.5米~0.8米2)接地体装置施工应与基础施工同时进行a.接地槽的深度应符合设计要求,一般为0.5M到0.8M,可耕地应敷设在耕地深度以下,接地槽宽度一般为0.3M~0.4M与、并清除槽中一切可影响接地体与土壤接触的杂物b.钢管的规格以及打入土壤中的深度应符合设计要求,接地体应垂直打入地中且固定,以免增加接地电阻,中山区以及土壤电阻率较高的地方应尽量少用管形接地体,而采用表面埋设的方式埋设接地体,c.接地体下引线应沿电杆敷设引下,尽可能短而直,以减少冲击电抗,接地体引下线以支持件固定中杆塔上,支持件之间的距离中直线部分常采用1~1.5M,在转弯部分采用1Md.接地体引下线除了为测量接地电阻而预留的断开处以外不得有街头,接地装置的连接应保证接触可靠,接地体引下线与接地体的连接以及接地体本身的连接均采用焊接,接地体引下线与为测量接地电阻而预留的断开处采用螺钉连接。

连接螺钉应镀锌防锈。

e.接地体敷设完毕应回填土,不得将石块等影响接地体与土壤接触的杂物埋入2.在变压器的中性线上选取合适的位置重复接地,当变压器中性线中某点断开的时,由于多点接地,中性线电流仍可经过大地回到变压器中性点,中性线的电位始终为零,每相电压始终为正常电压。

TN系统电源变压器中性点接地

TN系统电源变压器中性点接地

TN系统:电源变压器中性点接地根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。

其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。

第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。

TN系统:电源变压器中性点接地,设备外露部分与中性线相连。

TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。

IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳电气设备外壳采用保护接地。

1、TN系统电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。

下面分别进行介绍。

1.1、TN—C系统其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。

(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。

TN—C系统一般采用零序电流保护;(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。

由上可知,TN-C系统存在以下缺陷:(1)当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。

当三相负载严重不平衡时,触及零线可能导致触电事故。

(2)通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。

变压器中性点接地电阻柜工作原理

变压器中性点接地电阻柜工作原理

变压器中性点接地电阻柜工作原理
变压器的中性点实际上是一个剩磁,并且在变压器运行过程中存在电压,如果中性点不接地,会形成不均衡的电压,导致设备故障或人身伤害。

中性点接地电阻柜的工作原理即是通过接地电阻将变压器中的剩磁电压与
地接通,以确保设备的运行安全和可靠性。

中性点接地电阻柜主要由变压器、接地电阻、接地导线和接地开关等
组成。

当变压器中性点发生故障时,变压器内部的剩余电流将通过接地电
阻箱的接地电阻,从而将电流导向地。

接地电阻的设计通过合理选择接地
电阻的阻值和安装方式来限制中性点电流,在防止变压器内部电流增大的
同时保证人身安全。

接地电阻的阻值一般在10Ω-500Ω之间,具体取决于变压器的容量、电压等参数。

通常情况下,变压器容量越大,接地电阻的阻值也需要相应
增大。

阻值的选择应符合国家电气规范的要求,并在使用前进行检测和校正。

接地导线是将接地电阻器与变压器及地之间进行连接的导线,它的材
质和截面积应符合规范要求,以保证接地电阻的可靠性和稳定性。

接地开关是一种用于打开或关闭接地电阻器电路的装置,能够在需要
进行维护和检修时将接地电阻器与变压器分离,确保工作人员的安全。

总之,变压器中性点接地电阻柜通过接地电阻将变压器中的剩磁电压
与地接通,提供中性点的安全接地路径,保证变压器的安全运行。

在设计
和使用变压器中性点接地电阻柜时,需要合理选择接地电阻的阻值、导线
的材质和截面积,并确保接地电阻柜的可靠性和稳定性。

最后,在使用接
地电阻柜之前需要进行检测和校正,以确保其符合国家电气规范的要求。

变压器接地是怎么接的原理

变压器接地是怎么接的原理

变压器接地是怎么接的原理变压器的接地是为了保证人身安全和设备的正常运行。

1. 变压器接地的原理变压器接地的主要原理是为了防止漏电和电气设备的故障,保护人们的安全。

当变压器的金属外壳和中性线与地接触时,如果有电流泄漏,接地线会迅速导流,使电流通过接地,从而有效地防止触电事故发生,保护人身安全。

2. 变压器接地的方式变压器接地的方式一般有两种:接入中性点接地和不接入中性点接地。

- 接入中性点接地:当变压器的中性点接入地时,形成“星形接法”。

这种接法使得变压器的绕组电压与地之间有一个较高的绝缘阻抗,可以减小漏电流的流过,并能够使电流快速导入地,确保人身安全。

- 不接入中性点接地:当变压器的中性点不接入地时,形成“三角形接法”。

这种接法适用于电力传输和配电系统中,可以减少零序电流的流动,提高系统的可靠性。

3. 变压器接地的步骤变压器接地需要按照以下步骤进行:- 第一步是准备工作,包括检查变压器的工作状态和绝缘情况,确保安全可靠;- 第二步是选择接地方式,根据具体情况选择接入中性点接地或不接入中性点接地;- 第三步是连接接地线,将接地线连接到变压器的金属外壳和中性点上;- 第四步是进行接地测试,使用专用的测试仪器对接地系统进行测试,确保接地电阻符合要求;- 第五步是进行接地标识,将接地线与变压器的接地点做好标识,以便维护和检修时的识别。

4. 变压器接地的意义变压器接地的意义主要包括以下几个方面:- 保护人身安全:当变压器发生漏电时,接地能够迅速导流,避免触电事故发生,保护人的生命安全;- 保护设备:接地能够防止电器设备因漏电而受损,延长设备的使用寿命;- 提高系统可靠性:接地能够减小系统中的故障电流,提高系统的可靠性和稳定性;- 降低电磁辐射:接地能够降低电磁辐射的强度,减少对周围环境和人的影响。

总之,变压器接地是为了保护人们的生命安全和电气设备的正常运行而设计的。

通过选择适当的接地方式,并且按照正确的步骤进行接地,可以有效地预防漏电和故障,确保人身安全和系统的可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器的各类中性点接地知识变压器的各类中性点接地知识?
1、变压器停送电操作时,其中性点为什么一定要接地?
答:这主要是为防止过电压损坏被投退变压器而采取的一种措施。

对一侧有电源的受电变压器,当其断路器非全相断、合时,若其中性点不接地有以下危险:
(1)变压器电源侧中性对地电压最大可达相电压,这可能损坏变压器绝缘。

(2)当变压器高、低压绕组之间有电容,这种电容会造成高压对低压的“传递过电压”。

(3)当变压器高低压绕组之间电容耦合,低压侧会有电压达到谐振条件时,可能会出现谐振过电压,损坏绝缘。

对于低压侧有电源的送电变压器:
(1)由于低压侧有电源,在并入系统前,变压器高压侧发生单相接地,若中性点未接地,则其中性点对地电压将是相电压,这可能损坏变压器绝缘。

(2)非全相并入系统时,在一相与系统相连时,由于发电机和系统的频率不同,变压器中性点又未接地,该变压器中性点对地电压最高将是二倍相电压,未合相的电压最高可达2.73倍相电压,将造成绝缘损坏事故。


2、变压器中性点间隙接地保护是怎样构成的?
变压器中性点间隙接地保护采用零序电流继电器与零序电压继电器并联方式,带有0.5S的限时构成。

当系统发生接地故障时,在放电间隙放电时有零序电流,则使设在放电间隙接地一端的专用电流互感器的零序电流继电器动作;若放电间隙不放电,则利用零序电压继电器动作。

当发生间隙性弧光接地时,间隙保护共用的时间元件不得中途返回,以保证间隙接地保护的可靠动作。

3、对空载变压器送电时,变压器中性点必须接地。

答案电力系统的暂态稳定是指电力系统在某种运行方式下突然受到大的扰动后,经过一个机电暂态过程达到新的稳定运行状态或回到原来的稳定状态。

答:对空载变压器送电时,若中性点不接地会有以下危险:
⑴变压器电源侧中性点对地电压最大可达相电压,这可能损坏变压器绝缘;
⑵变压器的高、低压绕组之间有电容,这种电容会造成高压对低压的“传递过电压”;
⑶当变压器高、低压绕组之间电容耦合,可能会出现谐振过电压,损坏绝缘。

因此,对空载变压器送电时,变压器中性点必须接地。

4、变压器中性点接地方式的安排一般如何考虑?
变压器中性点接地方式的安排应尽量保持变电所的零序阻抗阻抗基本不变。

遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理。

变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地
5、切换变压器中性点接地开关如何操作?
答案:切换原则是保证电网不失去接地点,采用先合后拉的操作方法:
a) 合上备用接地点的隔离开关。

b) 拉开工作接地点的隔离开关。

c) 将零序保护切换到中性点接地的变压器上去。

6、在中性点直接接地的电网中,变压器中性点在什么情况下装设避雷器?作用是什么?
答:在中性点直接接地的电网中,有部分变压器中性点不陵地,在三相侵入雷电波时,中性点是电压很高(可达进线端电压副值的190%)。

若中性点绝缘不是按线电压设计,则应在中性点装一只阀型避雷器,以限制中性点过电压幅值,保护中性点绝缘。

7、为什么110KV及以上变压器在停电及送电前必须将中性点接地?答案我国的110KV电网一般采用中性点直接接地系统。

在运行中,为了满足继电保护装置灵敏度配合的要求,有些变压器的中性点不接地运行。

但因为断路器的非同期操作引起的过电压会危及这些变压器的绝缘,所以要求在切、合110KV及以上空栽变压器时,将变压器的中性点直接接地。

相关文档
最新文档