高中数学第二章函数2.3函数的应用Ⅰ课堂导学案
高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理
2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。
高中数学《抛物线的简单几何性质》(导学案)
第二章 圆锥曲线与方程 2.3.2抛物线的简单几何性质一、学习目标1.掌握抛物线的性质、焦半径、焦点弦的应用. 2.掌握直线与抛物线位置关系的判断. 【重点难点】1.会用抛物线的性质解决与抛物线相关的综合问题.(重点)2.直线与抛物线的位置关系的应用.(难点) 二、学习过程 【问题导思】类比椭圆、双曲线的几何性质,你认为可以讨论抛物线的哪些几何性质? 【提示】 范围、对称性、顶点、离心率. 【导入新课】标准方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py(p >0)x 2=-2py(p >0)图形性质焦点 (p2,0) (-p2,0) (0,p2)(0,-p2)准线x =-p 2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈R x ≤0,y ∈R________________对称轴 ____________顶点 ______ 离心率 ______ 开口方向向右 向左向上向下特征:1.2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1. 【典型例题】例1. 已知抛物线的顶点在原点,对称轴重合于椭圆x 29+y 216=1短轴所在的直线,抛物线的焦点到顶点的距离为5,求抛物线的标准方程.例2 斜率为1的直线l 经过抛物线24y x 的焦点F ,且与抛物线相交于A,B 两点,求线段AB 的长.例3 求过点P(0,1)且与抛物线y2=2x只有一个公共点的直线方程.【变式拓展】1.已知抛物线的顶点在原点,对称轴为y轴,顶点到准线的距离为4,求该抛物线的方程并指出焦点坐标与准线方程.2.直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C有:(1)一个公共点;(2)两个公共点;(3)没有公共点.3.求顶点在原点,焦点在x轴上且截直线2x-y+1=0所得弦长为15的抛物线方程.三、总结反思(1)本节课我们学习了抛物线的几个简单几何性质:范围、对称性、顶点坐标、离心率等概念及其几何意义. (2)了解了研究抛物线的焦半径,焦点弦和通径这对我们解决抛物线中的相关问题有很大的帮助.(3)在对曲线的问题的处理过程中,我们更多的是从方程的角度来挖掘题目中的条件,认识并熟练掌握数与形的联系.在本节课中,我们运用了数形结合,待定系数法来求解抛物线方程,在解题过程中,准确体现了函数与方程以及分类讨论的数学思想.求抛物线弦长问题的方法:(1)一般弦长公式|AB|=|x1-x2|·1+k2=|y1-y2|·1+1k2.(2)焦点弦长设AB是抛物线y2=2px(p>0)的一条过焦点F的弦,A(x1,y1),B(x2,y2),则弦长:|AB|=|AF|+|BF|=x1+x2+p.即求抛物线的焦点弦长,通常是利用焦半径,把点点距转化为点线距(点到准线的距离)解决,这体现了抛物线的特殊性以及求抛物线焦点弦的便捷特点.四、随堂检测1.抛物线x2=-8y的通径为线段AB,O为抛物线的顶点,则AB长是( )A.2B.4C.8D.12.(2015·兰州高二检测)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|= ( )A.6B.8C.9D.103.(2015·阜新高二检测)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,点P为C的准线上一点,则△ABP的面积为( )A.18B.24C.36D.484.已知过抛物线y2=6x焦点的弦长为12,则该弦所在直线的倾斜角是( )A.错误!未找到引用源。
高中数学 第二章 函数 3 函数的单调性(一)学案 北师大
3 函数的单调性(一)学习目标 1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一 函数的单调性思考 画出函数f (x )=x 、f (x )=x 2的图像,并指出f (x )=x 、f (x )=x 2的图像的升降情况如何?梳理 单调性是相对于区间来说的,函数图像在某区间上上升,则函数在该区间上为增函数.反之则为减函数.很多时候我们不知道函数图像是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义:一般地,在函数y =f (x )的定义域内的一个区间A 上,如果对于任意两数x 1,x 2∈A ,当x 1<x 2时,都有f (x 1)<f (x 2),那么,就称函数y =f (x )在区间A 上是__________,有时也称函数y =f (x )在区间A 上是__________.在函数y =f (x )的定义域内的一个区间A 上,如果对于任意两数x 1,x 2∈A ,当x 1<x 2时,都有f (x 1)>f (x 2),那么,就称函数y =f (x )在区间A 上是__________,有时也称函数y =f (x )在区间A 上是__________.如果函数y =f (x )在定义域的某个子集上是增加的或是减少的,就称函数y =f (x )在该子集上具有单调性;如果函数y =f (x )在整个定义域内是增加的或是减少的,我们分别称这个函数是增函数或减函数,统称为单调函数. 知识点二 函数的单调区间思考 我们已经知道f (x )=x 2在(-∞,0]上是减少的,f (x )=1x在区间(-∞,0)上是减少的,这两个区间能不能交换?梳理一般地,有下列常识:(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D⊆定义域I.(3)遵循最简原则,单调区间应尽可能大.类型一求单调区间并判断单调性例1 如图是定义在区间[-5,5]上的函数y=f(x),根据图像说出函数的单调区间,以及在每一单调区间上,它是增加的还是减少的?反思与感悟函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D上函数要么是增加的,要么是减少的,不能二者兼有.跟踪训练1 写出函数y =|x 2-2x -3|的单调区间,并指出单调性.类型二 证明单调性命题角度1 证明具体函数的单调性例2 证明f (x )=x 在其定义域上是增函数.反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x 1,x 2且x 1<x 2的条件下,转化为确定f (x 1)与f (x 2)的大小,要牢记五大步骤:取值→作差→变形→定号→小结.跟踪训练2 求证:函数f (x )=x +1x在[1,+∞)上是增函数.命题角度2 证明抽象函数的单调性例3 已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1.求证:函数f(x)在R上是增函数.反思与感悟因为抽象函数不知道解析式,所以不能代入求f(x1)-f(x2),但可以借助题目提供的函数性质来确定f(x1)-f(x2)的大小,这时就需要根据解题需要对抽象函数进行赋值.跟踪训练3 已知函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.求证:f(x)在R上是减函数.类型三 单调性的应用命题角度1 利用单调性求参数范围例4 若函数f (x )=⎩⎪⎨⎪⎧a -x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围为( ) A .[18,13)B .(0,13)C .[18,+∞)D .(-∞,18]∪[13,+∞)反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要接口处不能反超.另外,函数在单调区间上的图像不一定是连续不断的.跟踪训练4 已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.命题角度2 用单调性解不等式例5 已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.反思与感悟若已知函数f(x)的单调性,则由x1,x2的大小,可得f(x1),f(x2)的大小;由f(x1),f(x2)的大小,可得x1,x2的大小.跟踪训练5 在例5中若函数y=f(x)的定义域为R,且为增函数,f(1-a)<f(2a-1),则a 的取值范围又是什么?1.函数y =f (x )在区间[-2,2]上的图像如图所示,则此函数的增区间是( )A .[-2,0]B .[0,1]C .[-2,1]D .[-1,1]2.函数y =6x的减区间是( )A .[0,+∞)B .(-∞,0]C .(-∞,0),(0,+∞)D .(-∞,0)∪(0,+∞)3.在下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ) A .f (x )=x 2B .f (x )=1xC .f (x )=|x |D .f (x )=2x +14.已知函数y =f (x )满足:f (-2)>f (-1),f (-1)<f (0),则下列结论正确的是( ) A .函数y =f (x )在区间[-2,-1]上递减,在区间[-1,0]上递增 B .函数y =f (x )在区间[-2,-1]上递增,在区间[-1,0]上递减 C .函数y =f (x )在区间[-2,0]上的最小值是f (-1) D .以上的三个结论都不正确5.若函数f (x )在R 上是减函数,且f (|x |)>f (1),则x 的取值范围是( ) A .x <1 B .x >-1 C .-1<x <1D .x <-1或x >11.若f (x )的定义域为D ,A ⊆D ,B ⊆D ,f (x )在A 和B 上都递减,未必有f (x )在A ∪B 上递减.2.对增函数的判断,对任意x 1<x 2,都有f (x 1)<f (x 2),也可以用一个不等式来替代: (x 1-x 2)[f (x 1)-f (x 2)]>0或f x 1-f x 2x 1-x 2>0.对减函数的判断,对任意x 1<x 2,都有f (x 1)>f (x 2),相应地也可用一个不等式来替代:(x 1-x 2)[f (x 1)-f (x 2)]<0或f x 1-f x 2x 1-x 2<0.3.熟悉常见的一些单调性结论,包括一次函数,二次函数,反比例函数等.4.若f (x ),g (x )都是增函数,h (x )是减函数,则:①在定义域的交集(非空)上,f (x )+g (x )递增,f (x )-h (x )递增,②-f (x )递减,③1f x递减(f (x )≠0).5.对于函数值恒正(或恒负)的函数f (x ),证明单调性时,也可以作商f x 1f x 2与1比较.答案精析问题导学 知识点一思考 两函数的图像如下:函数f (x )=x 的图像由左到右是上升的;函数f (x )=x 2的图像在y 轴左侧是下降的,在y 轴右侧是上升的.梳理 增加的 递增的 减少的 递减的 知识点二思考 f (x )=x 2的减区间可以写成(-∞,0),而f (x )=1x的减区间(-∞,0)不能写成(-∞,0],因为0不属于f (x )=1x的定义域.题型探究例1 解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是减少的,在区间[-2,1],[3,5]上是增加的.跟踪训练1 解 先画出f (x )=⎩⎪⎨⎪⎧x 2-2x -3,x <-1或x >3,-x 2-2x -,-1≤x ≤3的图像,如图.所以y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中递减区间是(-∞,-1],[1,3];递增区间是[-1,1],[3,+∞). 例2 证明 f (x )=x 的定义域为[0,+∞).设x 1,x 2是定义域[0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1-x 2=x 1-x 2x 1+x 2x 1+x 2=x 1-x 2x 1+x 2.∵0≤x 1<x 2,∴x 1-x 2<0,x 1+x 2>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴f (x )=x 在定义域[0,+∞)上是增函数.跟踪训练2 证明 设x 1,x 2是实数集R 上的任意实数,且1≤x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2)=(x 1-x 2)+(1x 1-1x 2)=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-1x 1x 2)=(x 1-x 2)(x 1x 2-1x 1x 2).∵1≤x 1<x 2,∴x 1-x 2<0,1<x 1x 2, ∴x 1x 2-1x 1x 2>0,故(x 1-x 2)(x 1x 2-1x 1x 2)<0, 即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )=x +1x在区间[1,+∞)上是增函数.例3 证明 方法一 设x 1,x 2是实数集上的任意两个实数,且x 1>x 2. 令x +y =x 1,y =x 2,则x =x 1-x 2>0.f (x 1)-f (x 2)=f (x +y )-f (y )=f (x )+f (y )-1-f (y )=f (x )-1.∵x >0,∴f (x )>1,f (x )-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴函数f (x )在R 上是增函数. 方法二 设x 1>x 2,则x 1-x 2>0, 从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0.f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是增函数.跟踪训练3 证明 ∵对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),令m =1,n =0,可得f (1)=f (1)·f (0), ∵当x >0时,0<f (x )<1, ∴f (1)≠0,∴f (0)=1. 令m =x <0,n =-x >0,则f (m +n )=f (0)=f (-x )·f (x )=1,∴f (x )f (-x )=1,又∵-x >0时,0<f (-x )<1,∴f (x )=1f -x>1. ∴对任意实数x ,f (x )恒大于0.设任意x 1<x 2,则x 2-x 1>0,∴0<f (x 2-x 1)<1,∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)f (x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0, ∴f (x )在R 上是减少的.例4 A [要使f (x )在R 上是减函数,需满足:⎩⎪⎨⎪⎧ 3a -1<0,-a <0,a -+4a ≥-a ·1. 解得18≤a <13.] 跟踪训练4 a ≤1或a ≥2解析 由于二次函数开口向上,故其增区间为[a ,+∞),减区间为(-∞,a ],而f (x )在区间[1,2]上单调,所以[1,2]⊆[a ,+∞)或[1,2]⊆(-∞,a ],即a ≤1或a ≥2. 例5 解 f (1-a )<f (2a -1)等价于⎩⎪⎨⎪⎧ -1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23, 即所求a 的取值范围是0<a <23. 跟踪训练5 解 ∵y =f (x )的定义域为R ,且为增函数,f (1-a )<f (2a -1),∴1-a <2a -1,即a >23, ∴所求a 的取值范围是(23,+∞). 当堂训练1.C 2.C 3.B 4.D 5.C。
16.函数的应用(1)
整理巩固 要求:整理巩固探究问题
落实基础知识 完成知识结构图
课堂评价
学科班长:1.回扣目标 总结收获 2.评出优秀小组和个人
课后完成训练学案并整理巩固
1、 B , 2、 A , 3、 B , 4 、 B , 5、 C , 6 、 7 、 y 2 x 8 x 7 , 8、 m ( 6,
2
)
2
4ac b 4a
2
2
思考:如何研究二次函数 f(x)=ax² +bx+c(a≠0) 在【m,n】上的最值
方法:讨论a和对称轴,利用二次函数图像
学习目标
• 1.能熟练应用一次、二次函数的性质解决函数 实际应用问题。 • 2.自主探究、合作学习,探究函数模型应用的 规律和方法。 • 3.激情投入,体验学习的快乐。
2
1 3
, ),
9、 ,1) [ 2, ) (
高效展示(约5分钟)
展示问题 展示方式 及位置 展示 小组
要求
1.展示人书写认真快 速;总结规律方法 (用彩笔) 2.其他同学讨论完毕 总结整理完善,并迅 速浏览展示同学的答 案,准备点评。 3.提高效率,不浪费 一分钟。
深化提高1
深化提高2 深化提高3 深化提高4
前黑板
前黑板 前黑板 后黑板
1组
三案导学· 高中数学必修一(人教B 版)
第二章 函数 第一课时 2.3函数的应用(Ⅰ)
思考:如何研究二次函数 f(x)=ax² +bx+c(a≠0)的最值
• 配方法,将其化为顶点式
f (x) a(x b 2a
a 0, f ( x ) m in a 0, f ( x ) m ax 4ac b 4a 4ac b 4a
人教A版高中同步学案数学必修第一册精品课件 第二章 2.3 二次函数与一元二次方程、不等式
重难探究•能力素养全提升
探究点一 一元二次不等式的求解
【例1】 解下列不等式.
(1)2x2-3x-2>0;(2)-3x2+6x-2>0;
(3)4x2-4x+1≤0;(4)x2-2x+2>0.
解(1)方程 2x -3x-2=0 的解是
2
1
x1=-2,x2=2.
因为对应函数的图象是开口向上的抛物线,
解原不等式可化为ax2+(a-2)x-2≥0,
即(ax-2)(x+1)≥0,
①当a=0时,原不等式化为x+1≤0,解得x≤-1.
②当 a>0 时,原不等式化为
2
-
(x+1)≥0,解得
③当 a<0 时,原不等式化为
2
-
(x+1)≤0.
2
当 >-1,即
a<-2
2
时,解得-1≤x≤ ;
2
x≥或
关系?
提示一元二次不等式ax2+bx+c>0恒成立的含义是指不等式的解集为R,系
数a,b,c之间的关系是a>0且Δ=b2-4ac<0.
(3)对任意的一元二次不等式,求解集的关键点有哪些?
提示①抛物线y=ax2+bx+c与x轴的位置情况,也就是一元二次方程
ax2+bx+c=0的根的情况;②抛物线y=ax2+bx+c的开口方向,也就是a的正负.
所以原不等式的解集是 <
1
- 2 ,或
>2 .
(2)不等式可化为 3x2-6x+2<0.
高中数学第二章函数2.1.1函数2.1.2函数的表示方法学习导航学案新人教B版必修1
函数-2.1.2 函数表示方法自主整理设集合A是一个非空数集,对A内任意数x,按照确定法那么f,都有唯一确定数值y与它对应,那么这种对应关系叫做集合A上一个函数,记作y=f(x),x∈A.其中,x叫做自变量,自变量取值范围A叫做函数定义域;如果自变量取值a,那么由法那么f确定值y称作函数在a处函数值,记作y=f(a)或y|x=a.所有函数值构成集合{y|y=f(x),x∈A}叫做函数值域.函数定义含有三个要素,即定义域A、值域C与对应法那么f.当且仅当两个函数定义域与对应法那么都分别一样时,这两个函数才是同一个函数.(1)在数轴上,区间可以用一条以a,b为端点线段来表示(如下表).用实心点表示端点包括在区间内,用空心点表示端点不包括在区间内.定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2)无穷区间概念:关于-∞,+∞作为区间一端或两端区间称为无穷区间,它定义与符号如下表:{x|x≥a}[a,+∞){x|x>a}(a,+∞){x|x≤a}(-∞,a]{x|x<a}(-∞,a)R(-∞,+∞)取遍数轴上所有值设A、B是两个非空集合,如果按某种对应法那么f,对A内任意一个元素x,在B中有一个且仅有一个元素y与x对应,那么称f是集合A 到集合B映射.这时,称y是x在映射f作用下象,记作f(x).于是y=f(x),x称作y原象,映射f也可记为f:A→B,x→f(x).其中A叫做映射f定义域(函数定义域推广),由所有象f(x)构成集合叫做映射f值域,通常记作f(A).(1)列表法:通过列出自变量与对应函数值表来表达函数关系方法;(2)图象法:就是用函数图象来表达函数关系;(3)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达,那么这种表达函数方法叫做解析法(也称公式法).在函数定义域内,对于自变量x不同取值区间,有着不同对应法那么,这样函数通常叫做分段函数.高手笔记1.(1)“y=f(x)〞中“f〞是函数符号,可以用任意字母表示,如“y=g(x)〞;(2)函数符号“y=f(x)〞中f(x)表示与x对应函数值,是一个数,而不是f 乘x.2.对应法那么可以有多种形式给出,可以是解析法,可以是列表法与图象法,不管是哪种形式,都必须是确定,且使集合A中每一个元素在B 中都有唯一元素与之对应.3.函数是建立在两个非空数集间一种对应,假设将其中条件“非空数集〞弱化为“任意两个非空集合〞,按照某种法那么可以建立起更为普通元素之间对应关系,这种对应就叫映射.A到B映射与B到A映射是截然不同.4.区间与数轴是严密联系在一起,在识别与使用区间符号时都不能脱离开数轴.区间端点值取舍是很容易出错地方,一定要准确判断是该用小括号还是中括号,正确书写.在用数轴表示时也要注意实心点与空心点区别.对于某些不能用区间表示集合就仍用集合符号表示.5.对于分段函数问题,一般要分别转化成在定义域内每一个区间上来解决.要明确分段函数是一个函数,不是多个函数,只是这个函数较为特殊,不像一般函数可以用一个解析式表示,而只能分段表示.分段函数画法要领是根据各段上函数解析式,分段画出各段图象.6.假设y=f(u),u=g(x),x∈(a,b),u∈(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它取值范围是g(x)值域与(m,n)交集.名师解惑1.如何理解构成函数三要素:定义域、对应关系与值域求值域有几种常用方法剖析:(1)解决一切函数问题必须认真确定该函数定义域,函数定义域包含三种形式:①自然型:指函数解析式有意义自变量x取值范围(如:分式函数分母不为零,偶次根式函数被开方数为非负数,等等);②限制型:指命题条件或人为对自变量x限制,这是函数学习重点,往往也是难点,因为有时这种限制比拟隐蔽,不容易注意,或者即使注意到,在解题时却忘记用到;③实际型:解决函数综合问题与应用问题时,应认真考察自变量x实际意义.(2)求函数值域是比拟困难数学问题,中学数学要求能用初等方法求一些简单函数值域问题.求法主要有以下几种:①配方法(转化为二次函数);②判别式法(转化为二次方程);③不等式法(运用不等式各种性质);④函数法(运用根本函数性质或抓住函数单调性、函数图象等).2.函数有哪几种表示法?各有什么优点与缺乏?剖析:(1)表示函数有三种方法:解析法,列表法,图象法.现实生活中如:商场各种商品与其价格之间函数关系就是用列表法表示;房地产公司出售商品房,总价格与面积之间函数关系就是用解析式来表示;工厂每月产量与月份之间函数关系是用图表来表示.(2)表示函数三种方法优点与缺乏,分别说明如下.①用解析式表示函数优点是简明扼要、标准准确.可以利用函数解析式求自变量x=a时对应函数值,还可利用函数解析式列表、描点、画函数图象,进而研究函数性质,又可利用函数解析式构造特点,分析与发现自变量与函数间依存关系,猜测或推导函数性质(如对称性、增减性等),探求函数应用等.缺乏之处是有些变量与函数关系很难或不能用解析式表示,求x与y对应值需要逐个计算、有时比拟繁杂.②列表法优点是能鲜明地显现出自变量与函数值之间数量关系,于是一些数学用表应运而生.如用立方表、平方根表分别表示函数.商店职员也制作售价与数量关系计价表,方便收款.列表法缺点是只能列出局部自变量与函数对应值,难以反映函数变化全貌.③用图象表示函数优点是形象直观,清晰呈现函数增减变化、点对称、最大(或小)值等性质.图象法缺乏之处是所画出图象是近似、局部,观察或由图象确定函数值往往不够准确.由于以上表示函数三种方法具有互补性,因此在实际研究函数时,通常是三种方法交替使用.3.如何理解映射?为什么说映射是一种特殊对应剖析:(1)理解映射概念,必须注意以下几点:①方向性,“集合A到集合B映射〞与“集合B到集合A映射〞往往不是同一个映射;②非空性,集合A、B必须是非空集合;③唯一性,对于集合A中任何一个元素,集合B中都是唯一确定元素与之对应,这是映射唯一性,也可以说“在集合B中〞,A中任一元素象必在集合B中,也叫映射封闭性.④存在性,就是说对集合A中任何一个元素,集合B中都有元素与它对应,这是映射存在性.(2)映射也是两个集合A与B元素之间存在某种对应关系.说其是一种特殊映射,就是因为它只允许存在“一对一〞与“多对一〞这两种对应,而不允许存在“一对多〞对应.映射中对应法那么f是有方向,一般来说从集合A到集合B映射与从集合B到集合A映射是不同.讲练互动【例题1】以下各组中两个函数表示同一个函数是…( )A.f(x)=x,g(x)=n n x22B.f(n)=2n+1(n∈Z),g(n)=2n-1(n∈Z)C.f(x)=x-2,g(t)=t-2D.f(x)=,g(x)=1+x解析:两个函数一样必须有一样定义域、值域与对应法那么.A中两函数值域不同;B中虽然定义域与值域都一样,但对应法那么不同;C 中尽管表示自变量两个字母不同,但两个函数三个要素是一致,因此它们是同一函数;D中两函数定义域不同.答案:C绿色通道给定两个函数,要判断它们是否是同一函数,主要看两个方面:一看定义域是否一样;二看对应法那么是否一致.只有当两函数定义域一样且对应法那么完全一致时,两函数才可称为同一函数.只要三者中有一者不同即可判断不是同一个函数,比方上面对A判断即属此.变式训练1.判断以下各组中两个函数是否为同一函数,并说明理由.(1)y=x-1,x∈R 与y=x-1,x∈N ; (2)y=42-x 与y=22+•-x x ; (3)y=1+x 1与u=1+v1;(4)y=x 2与y=x 2x ;(5)y=2|x|与y=分析:判断两个函数是否为同一函数,应着眼于两个函数定义域与对应法那么比拟,而求定义域时应让原始解析式有意义,而不能进展任何非等价变换,对应法那么判断需判断它本质是否一样而不是从外表形式上下结论.解:(1)不同,因为它们定义域不同.(2)不同,前者定义域是x≥2或x≤-2,后者定义域是x≥2.(3)一样,定义域均为非零实数,对应法那么都是自变量取倒数后加1.(4)不同,定义域是一样,但对应法那么不同.(5)一样,将y=2|x|利用绝对值定义去掉绝对值结果就是y=【例题2】设f,g 都是由A 到A 映射,其对应法那么(从上到下)如下表:表1 映射f 对应法那么原象1 2 3 象 2 3 1 表2 映射g 对应法那么原象123象213试求f[g(1)],g[f(2)],f{g[f(3)]}.分析:此题是将映射概念与复合函数求值相结合一道典型例题,解答此题首先要弄清f[g(x)]含义与映射中原象与象关系,然后再按照有关定义解题.解:∵g(1)=2,f(2)=3,∴f[g(1)]=f(2)=3.又∵g(3)=3,∴g[f(2)]=g(3)=3.∵f(3)=1,g(1)=2,∴f{g[f(3)]}=f[g(1)]=f(2)=3.绿色通道读懂对应法那么f与g含义是解题关键,要弄清在法那么f与g作用下,集合A中元素在集合A中象是什么,要掌握象与原象定义.变式训练2.以下各图中表示对应,其中能构成映射个数是…( )图2-1-1A.4B.3C.2解析:所谓映射,是指多对一或一对一对应且A中每一个元素都必须参与对应.只有图(3)所表示对应符合映射定义,即A中每一个元素在对应法那么下,B中都有唯一元素与之对应.图(1)不是映射,因A中元素c没有参与对应,即违背A中任一元素都必须参与对应原那么.图(2)、图(4)不是映射,这两个图中集合A中元素在B中有多个元素与之对应,不满足A中任一元素在B中有且仅有唯一元素与之对应原那么.综上,可知能构成映射个数为1.答案:D3.(2007山东济宁二模,理10)A={a,b,c},B={-1,0,1},函数f:A→B满足f(a)+f(b)+f(c)=0,那么这样函数f(x)有( )解析:对f(a),f(b),f(c)值分类讨论.当f(a)=-1时,f(b)=0,f(c)=1或f(b)=1,f(c)=0,即此时满足条件函数有2个;当f(a)=0时,f(b)=-1,f(c)=1或f(b)=1,f(c)=-1或f(b)=0,f(c)=0,即此时满足条件函数有3个;当f(a)=1时,f(b)=0,f(c)=-1或f(b)=-1,f(c)=0,即此时满足条件函数有2个.综上所得,满足条件函数共有2+3+2=7(个).应选C.答案:C【例题3】求以下函数值域:(1)y=x2-2x-1,x∈[0,3];(2)y=3x;-2+(3)y=;(4)y=|x-1|+|x-2|.分析:求二次函数值域一般要数形结合,先配方找出对称轴,再考察给定区间与对称轴关系,利用二次函数在对称轴两侧单调性,求出给定区间上最大值与最小值,即可得到函数值域.除数形结合之外,求函数值域方法还有逐步求解法、判别式法、别离常数法与利用有界性等.绝对值函数通常先化为分段函数.解:(1)将原式变形,得y=(x-1)2-2,此函数对称轴为x=1,由于x∈[0,3],∴当x=1时,y 有最小值-2.根据函数对称性知,x=3比x=0时值要大,∴当x=3时,y 有最大值2.∴这个函数值域为[-2,2].(2)易知x≥2,∴2-x ≥0. ∴y=2-x +3≥3.∴这个函数值域为[3,+∞).(逐步求解法)(3)先别离常数,y=1311311222222+-=+-+=+-x x x x x .① 解法一(逐步求解法):∵x 2+1≥1,∴0<≤1.∴1>1≥-2.∴y∈[-2,1).解法二(判别式法):两边同乘x 2+1并移项,得(y-1)x 2+y+2=0. 又由①可知y<1,∴Δ=-4(y-1)(y+2)≥0.∴y∈[-2,1).解法三(利用有界性):∵y≠1,易得x 2=.又∵x 2≥0,∴≥0.∴y∈[-2,1).(4)原函数可化为y=由图2-1-2可知y∈[1,+∞).图2-1-2绿色通道求值域一定要注意定义域限制,一定要在定义域范围内求函数值域.当然,求值域一定要根据函数对应关系来确定.如果我们抓住了这些解决问题关键,求这类问题就能得心应手.变式训练4.函数y=-x2+4x+5(1≤x≤4)值域是…( )A.[5,8]B.[1,8]C.[5,9]D.[8,9]解析:y=-x2+4x+5=-(x-2)2+9(x∈[1,4]).∴当x=2时,y最大=9;当x=4时,y最小=5.∴函数值域为{y|5≤x≤9}.答案:C【例题4】图2-1-3是一个电子元件在处理数据时流程图:图2-1-3(1)试确定y与x函数关系式;(2)求f(-3)、f(1)值;(3)假设f(x)=16,求x值.分析:此题是一个分段函数问题,当输入值x≥1时,先将输入值x加2再平方得输出值y;当输入值x<1时,那么先将输入值x平方再加2得输出值y.解:(1)y=(2)f(-3)=(-3)2+2=11;f(1)=(1+2)2=9.(3)假设x≥1,那么(x+2)2=16,解得x=2或x=-6(舍去).假设x<1,那么x2+2=16,解得x=14(舍去)或x=14-.综上,可得x=2或x=14-.绿色通道通过实例,了解简单分段函数并能简单应用是新课程标准根本要求.对于分段函数来说,给定自变量求函数值时,应根据自变量所在范围利用相应解析式直接求值;假设给定函数值求自变量,应根据函数每一段解析式分别求解,但应注意要检验该值是否在相应自变量取值范围内.变式训练5.(2007山东蓬莱一模,理13)设函数f(n)=k(k∈N*),k是π小数点后第n位数字,π=3.141 592 653 5…,那么等于____________.解析:由题意得f(10)=5,f(5)=9,f(9)=3,f(3)=1,f(1)=1,…,那么有=1.答案:1【例题5】函数f(x+1)=x2-1,x∈[-1,3],求f(x)表达式.分析:函数是一类特殊对应,函数f(x+1)=x2-1,即知道了x+1象是x2-1,求出x象,即是f(x)表达式.求解f(x)表达式此题可用“配凑法〞或“换元法〞.解法一(配凑法):∵f(x+1)=x2-1=(x+1)2-2(x+1),∴f(x)=x2-2x.又x∈[-1,3]时,(x+1)∈[0,4],∴f(x)=x2-2x,x∈[0,4].解法二(换元法):令x+1=t,那么x=t-1,且由x∈[-1,3]知t∈[0,4],∴由f(x+1)=x2-1,得f(t)=(t-1)2-1=t2-2t,t∈[0,4].∴f(x)=(x-1)2-1=x2-2x,x∈[0,4].绿色通道函数f[g(x)]表达式,求f(x)表达式,解决此类问题一般有两种思想方法,一种是用配凑方法,一种是用换元方法.所谓“配凑法〞即把f[g(x)]配凑成关于g(x)表达式,而后将g(x)全用x取代,化简得要求f(x)表达式;所谓“换元法〞即令f[g(x)]中g(x)=t,由此解出x,即用t表达式表示出x,后代入f[g(x)],化简成最简式.需要注意是,无论是用“配凑法〞还是用“换元法〞,在求出f(x)表达式后,都需要指出其定义域,而f(x)定义域即x取值范围应与条件f [g(x)]中g(x)范围一致,所以说求f(x)定义域就是求函数g(x)值域.变式训练6.函数f(x)对于任意实数x满足条件f(x+2)=,假设f(5)=-5,那么f [f(1)]=___________.解析:∵f(x+2)=,∴f(x)=.∴f(1)===f(5)=-5.∴f(1)=-5.∴f[f(1)]=f(-5).又f(-5)=)23(11)3(1)25(1+---=--=+--f f f =f(-1)=51)1(1)21(1--=-=+--f f =51, ∴f[f(1)]=51. 答案:51 7.f(x)=x +11(x∈R 且x≠-1),g(x)=x 2+2(x∈R ), (1)求f(2)、g(2)值.(2)求f [g(2)]值.(3)求f [g(x)]解析式.分析:在解此题时,要理解对应法那么“f〞与“g〞含义,在求f [g(x)]时,一般遵循先里后外原那么.解:(1)f(2)=,g(2)=22+2=6.(2)f [g(2)]=f(6)=.(3)f [g(x)]=f(x 2+2)=.教材链接[思考与讨论]如何检验一个图形是否是一个函数图象写出你检验法那么,图2-1-4所示各图形都是函数图象吗哪些是,哪些不是,为什么图2-1-42-1-4所示各图形中因为(1)、(3)、(4)符合“一对一〞或“多对一〞原那么,所以(1)、(3)、(4)是函数图象,而(2)中有一个x 值对应两个y 值,不满足函数“多对一〞或“一对一〞条件,所以(2)不是函数图象.。
高中数学 第二章 函数概念与基本初等函数I 2.1 函数的概念 2.1.4 函数的表示方法课堂导学案
2.1.4 函数的表示方法课堂导学三点剖析一、用适当方法表示函数及分段函数【例1】 已知f(x)=⎩⎨⎧<+≥+.012,012x x x x(1)求f(1),f(-2),f(a 2+1),f [f(0)]的值;(2)画出f(x)的图象.思路分析:(1)先确定自变量的取值属于哪一段,再用该段的解析式求函数值.(2)分两段作函数的图象,每一段一般都先作出端点.解析:(1)f(1)=12+1=2,f(-2)=2×(-2)+1=-3,f(a 2+1)=(a 2+1)2+1=a 4+2a 2+2,f [f(0)]=f(1)=12+1=2.(2)f(x)的图象如下图所示.温馨提示(1)关键是理解分段函数的意义,即自变量在不同范围内取值时,相应的函数解析式不同.(2)f [g(x)]是g(x)作为自变量执行“f ”这个对应法则,求f [f(x 0)]的值应从里向外求.二、求函数解析式【例2】 (1)已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x);(2)已知f(x +4)=x+8x ,求f(x 2).思路分析:(1)可设出二次函数,根据已知条件,确定待定系数.(2)中应先求出f(x),再求f(x 2).解析:(1)∵f(x)是二次函数,设f(x)=ax 2+bx+c(a ≠0).由f(0)=1得c=1.由f(x+1)-f(x)=2x,得a(x+1)2+b(x+1)+1-(ax 2+bx+1)=2x.左端展开整理得2ax+(a+b)=2x.由恒等式原理知⎩⎨⎧=+=,0,22b a a ∴⎩⎨⎧-==.1,1b a ∴f(x)=x 2-x+1.(2)设t=x +4.∴x =t-4(t ≥4).由f(x +4)=x+8x 可得f(t)=(t-4)2+8(t-4)=t 2-16(t ≥4).∴f(x)=x 2-16(x ≥4).∴f(x 2)=x 4-16(x ≥2或x ≤-2).温馨提示在(2)中求f(x 2),千万不能直接代入f(x +4)=x+8x ,得f(x 2)=x 2+8|x|,这是没明白x 2与x +4有同等地位,都执行“f ”这个对应法则导致的.三、利用分段函数解决实际问题【例3】 在国内投寄外埠平信,每封信不超过20克付邮资80分,超过20克不超过40克付邮资160分,超过40克不超过60克付邮资240分,依此类推,每封x 克(0<x ≤100)的信应付多少分邮资?写出函数的表达式,作出函数的图象,并求函数的值域.解析:设每封信的邮资为y ,则y 是信件重量x 的函数.这个函数关系的表达式为f(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈∈∈∈],100,80(,400],80,60(,320],60,40(,240],40,20(,160],20,0(,80x x x x x函数值域为{80,160,240,320,400}.在直角坐标系中描点作图,函数图象如下图.温馨提示用函数知识解实际问题,一要注意自变量的取值范围;二要注意自变量x 和函数y 的取值是否具有实际意义.各个击破类题演练 1已知函数y=f(x),f(0)=1,且当n∈N *时,有f(n)=nf(n-1),求f(0),f(1),f(2),f(3),f(4),f(5).解析:f(0)=1;f(1)=1·f(1-1)=1·f(0)=1;f(2)=2·f(2-1)=2·f(1)=2×1=2;f(3)=3·f(3-1)=3·f(2)=3×2=6;f(4)=4·f(4-1)=4·f(3)=4×6=24;f(5)=5·f(5-1)=5·f(4)=5×24=120;变式提升 1已知x∈N *,f(x)=⎩⎨⎧<+≥-),6()2(),6(5x x f x x 则f(3)=__________. 解析:∵f(x)= ⎩⎨⎧<+≥-),6()2(),6(5x x f x x∴f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2,故f(3)=2.答案:2类题演练 2(2004湖北卷高考理,3)已知f(x x +-11)=2211xx +-,则f(x)的解析式可取为( ) A.21x x + B.-212x x + C.212x x + D.-21xx + 解析:设x x +-11=t ,则x=tt +-11. ∴f(t)=)11(1)11(12tt t t +-++--=2224t t +=212tt + 即f(x)=212x x +,故选C. 答案:C变式提升 2已知函数φ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且φ(31)=16,φ(1)=8,求φ(x)的表达式. 解析:设f(x)=k 1x,g(x)=x k 2,则φ(x)=k 1x+xk 2, ∵φ(31)=16,φ(1)=8, ∴⎪⎩⎪⎨⎧+=+=,8,33162121k k k k 解得⎩⎨⎧==,5,321k k ∴φ(x )=3x+x5. 类题演练 3某地出租车的出租费为4千米以内(含4千米),按起步费收10元,超过4千米按每千米加收2元,超过20千米(不含20千米)每千米再加收0.2元,若将出租车费设为y ,所走千米数设为x ,试写出y=f(x)的表示式.解析:当0<x ≤4,y=10.当4<x ≤20时,y=10+(x-4)×2=2x+2.当x>20时,y=10+32+(x-20)×2.2=2.2x-2.综上所述,y 与x 的函数关系为y=⎪⎩⎪⎨⎧>-≤<+≤<).20(22.2),204(22),40(10x x x x x变式提升 3如下图,在边长为4的正方形ABCD 上有一点P ,沿着折线BC 、CD 、DA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x,△ABP 的面积为y=f(x).(1)求△ABP 的面积与P 移动的路程间的函数关系式;(2)作出函数的图象,并根据图象求y 的最大值.解析:函数定义域为(0,12).当0<x ≤4时,S=f(x)=21×4×x=2x ; 当4<x ≤8时,S=f(x)=8; 当8<x<12时,S=f(x)=21×4×(12-x)=24-2x, ∴函数解析式为f(x)=⎪⎩⎪⎨⎧∈-∈∈].12,8(224],8,4(8(0,4],x 2x x x x(2)作出f(x)的图象(下图).由图象看出[f(x)]max =8.。
高中数学专题函数教案模板
高中数学专题函数教案模板
一、教学目标:
1. 理解函数的基本概念;
2. 掌握函数的定义和性质;
3. 能够求解函数的定义域、值域和单调性;
4. 能够绘制函数的图像。
二、教学重点:
1. 函数的定义和性质;
2. 函数的图像绘制。
三、教学难点:
1. 函数的单调性;
2. 函数的图像绘制。
四、教学准备:
1. 课件、教材、作业本;
2. 黑板、彩色粉笔;
3. 实验器材。
五、教学过程:
1. 导入:通过举例引入函数的概念,让学生了解函数的意义;
2. 讲解:讲解函数的定义和性质,重点讲解函数的单调性;
3. 实验:让学生通过实验验证函数的性质,如函数的定义域和值域;
4. 练习:让学生通过练习巩固所学内容,并解决相关问题;
5. 辅导:对学生提出的问题进行解答和辅导;
6. 总结:对本节课的内容进行总结,并布置下节课的作业。
六、教学反思:
1. 学生的学习情况:学生是否理解了函数的定义和性质;
2. 教学方法的效果:教师采用的教学方法是否得当;
3. 改进措施:针对学生的学习情况和教学效果,进行相应的改进措施。
七、作业布置:
1. 完成课堂练习;
2. 阅读教材相关章节。
以上就是本次高中数学专题函数教案的模板范本,可根据实际情况进行调整和完善。
希望对您有所帮助!。
高中物理函数应用教案全册
高中物理函数应用教案全册
第一课:引言
目标:了解物理函数应用的重要性和意义。
第二课:函数的概念
目标:学习函数的基本概念,了解函数的定义和性质。
第三课:函数的图像
目标:学习如何根据函数的相关信息绘制函数的图像,掌握函数图像的基本特点。
第四课:函数的变化
目标:学习函数的变化规律,了解函数的增减性、奇偶性等性质。
第五课:函数的应用
目标:探讨函数在物理问题中的应用,学习如何利用函数解决实际问题。
第六课:函数的求导
目标:介绍函数的求导概念,学习如何求函数的导数。
第七课:函数的积分
目标:介绍函数的积分概念,学习如何求函数的不定积分。
第八课:函数的微分方程
目标:学习如何利用微分方程描述物理现象,探讨微分方程在物理问题中的应用。
第九课:复习与总结
目标:复习本册课程内容,总结所学知识,并进行综合应用练习。
第十课:考试与评估
目标:进行期末考试,评估学生对物理函数应用的掌握程度。
通过以上教案设计,学生可以系统地学习和掌握物理函数应用的相关知识,提高解决实际问题的能力和水平,为将来的学习和工作打下坚实的基础。
高中数学第二章函数2.2.2函数的表示法一学案含解析北师大版必
学习资料2.2 函数的表示法(一)内容标准学科素养1。
掌握函数的三种表示法:解析法、列表法、图像法以及各自的优缺点.2。
在实际问题中,能够选择恰当的表示法来表示函数.3。
能利用函数图像求函数的值域,并确定函数值的变化趋势。
加强逻辑推理提升数学运算增强直观想象授课提示:对应学生用书第20页[基础认识]知识点函数的表示法错误!某同学计划买x(x∈{1,2,3,4,5})支2B铅笔,每支铅笔的价格为0。
5元,共需y元,于是y与x之间建立起了一个函数关系.(1)函数的定义域是什么?提示:{1,2,3,4,5}.(2)y与x有何关系?提示:y=0.5 x。
(3)试用表格表示y与x之间的关系.提示:表格如下:支数(x)1234 5钱数(y)0。
51 1.52 2.5知识梳理函数的表示方法错误!思考:1。
任何一个函数都能用解析法表示吗?提示:不一定.如一年内每天的气温与日期间的关系,每日股票的价格同开盘时间的关系等等,都不能用解析法表示.2.你能说一下三种表示法各自的优缺点吗?提示:表示法优点缺点解析法简明、全面概括了变量间的关系;利用解析式可以求任一点处的函数值不够形象、直观而且并非所有的函数都有解析式列表法不需计算可以直接看出自变量对应的函仅能表示自变量取较少的有限的对应关数值系图像法能形象直观地表示函数的变化情况只能近似求出自变量的值所对应的函数值,而且有时误差较大3。
如何判断一个图形是否可以作为函数的图像?提示:任取一条垂直于x轴的直线l,在定义域上移动此直线,若直线l与图形只有一个交点,则是函数的图像,若有两个或两个以上的交点,则不是函数的图像.[自我检测]1.下列各图像中,不可能是函数y=f(x)的图像的有()A.1个B.2个C.3个D.4个解析:判断一个图像是否是函数图像,其关键是分析是否满足定义域内的任意一个x,都有唯一确定的y与之对应.故①②可能是函数图像.③④一定不是y=f(x)的图像.答案:B2.下列用图表给出的函数关系中,当x=6时,对应的函数值y=()x 0<x≤11<x≤55<x≤10x>10y 123 4A.2 B.解析:5<x≤10时,y=3,∴x=6时,y=3.答案:B3.已知f(x)是正比例函数且过点(1,1),则f(x)=________.解析:设f(x)=kx(k≠0),由题意可知f(1)=k=1,∴f(x)=x.答案:x授课提示:对应学生用书第21页探究一函数的三种表示方法[例1]下列式子或表格:①y=2x,其中x∈{0,1,2,3},y∈{0,2,4};②x2+y2=2;③y=x-2+1-x;④x 1234 5y 9089888595其中表示y是x[思路点拨]解答本题的关键是分析所给式子或表格是否满足函数的定义.[解析]①不表示y是x的函数,因为当x=3时,y没有值与其对应;②不表示y是x的函数,因为当x=1时,y=±1,即y有两个值与x的值对应;③不表示y是x的函数,因为原表达式中x∈∅;④能表示y是x的函数,因为该表格既满足函数概念中的确定性也满足唯一性.[答案]④方法技巧函数表示法的注意事项:(1)列表法、图像法、解析法均是函数的表示方法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图像、表格、解析式是否表示函数的关键在于是否满足函数的定义.跟踪探究1。
高中数学《抛物线及其标准方程》(导学案)
第二章 圆锥曲线与方程 2.3.1抛物线及其标准方程一、学习目标1.掌握抛物线的定义及焦点、准线的概念. 2.会求简单的抛物线的方程. 【重点、难点】1.抛物线的定义及其标准方程的求法.(重点)2.抛物线定义及方程的应用.(难点) 二、学习过程 【复习旧知】在初中,我们学习过了二次函数2y ax bx c =++,知道二次函数的图象是一条抛物线 例如:(1)24y x =,(2)24y x =-的图象(自己画出函数图像)【导入新课】 1.抛物线的定义探究1观察抛物线的作图过程,探究抛物线的定义:抛物线的定义: 2.抛物线的标准方程要求抛物线的方程,必须先建立直角坐标系.探究2 设焦点F 到准线l 的距离为(0)p p >,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程. 推导过程:我们把方程22(0)y px p =>叫做抛物线的标准方程,它表示的抛物线的焦点坐标是,02p ⎛⎫⎪⎝⎭,准线方程是2p x =-。
在建立椭圆、双曲线的标准方程的过程中,选择不同的坐标系得到了不同形式的标准方程,对于抛物线,当我们选择如图三种建立坐标系的方法,我们也可以得到不同形式的抛物线的标准方程:【典型例题】【例1】分别求满足下列条件的抛物线的标准方程:(1)焦点为(-2,0);(2)准线为y=-1;(3)过点A(2,3);【例2】如图,已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求此时P点坐标.【例3】 (12分)一辆卡车高3 m,宽1.6 m,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m,求使卡车通过的a的最小整数值.【变式拓展】1.根据下列条件写出抛物线的标准方程:(1)经过点(-3,-1);(2)焦点为直线3x-4y-12=0与坐标轴的交点.2.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ).A.172B .2C. 5D.923.某河上有一座抛物线形的拱桥,当水面距拱顶5米时,水面宽8米,一木船宽4米,高2米,载货的木船露在水面上的部分为0.75米,当水面上涨到与拱顶相距多少时,木船开始不能通航?三、总结反思1.抛物线定义的理解(1)抛物线定义的实质可归结为“一动三定”,一个动点,设为M ;一个定点F 即抛物线的焦点;一条定直线l 即抛物线的准线;一个定值即点M 与点F 的距离和它到直线l 的距离之比等于1.(2)在抛物线的定义中,定点F 不能在直线l 上,否则,动点M 的轨迹就不是抛物线,而是过点F 垂直于直线l 的一条直线.如到点F (1,0)与到直线l :x +y -1=0的距离相等的点的轨迹方程为x -y -1=0,轨迹为过点F 且与直线l 垂直的一条直线.2.抛物线标准方程的特点四种抛物线及其标准方程的共同特点是:(1)原点在抛物线上;(2)对称轴为坐标轴;(3)p 为大于0的常数,其几何意义表示焦点到准线的距离;(4)准线与对称轴垂直,垂足与焦点关于原点对称;(5)焦点、准线到原点的距离都等于2p 4=p2.抛物线的焦点坐标、准线方程以及开口方向取决于抛物线的标准方程形式,规律是: 焦点决定于一次项,开口决定于正负号,即标准方程中,如果含的是x 的一次项,则焦点就在x 轴上,并且焦点的横坐标为p 2(或-p2),相应的准线是x =-p 2(或x =p2),如果含的是y 的一次项,有类似的结论.四、随堂检测1.对抛物线y =4x 2,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为(0,116)C .开口向右,焦点为(1,0)D .开口向右,焦点为(0,116)2.焦点在直线x =1上的抛物线的标准方程是( ) A .y 2=2x B .x 2=4y C .y 2=-4x D .y 2=4x3.若抛物线y 2=ax 的焦点与椭圆x 26+y 22=1的左焦点重合,则a 的值为( )A .-4B .2C .-8D .44.抛物线y 2=x 上一点P 到焦点的距离是2,则点P 坐标为( )5.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )A .x 2=2y -1B .x 2=2y -116C .x 2=y -12D .x 2=2y -2。
高中数学必修一新教材第二章导学案
一元二次函数、方程和不等式2.1 等式性质与不等式性质 第1课时 不等关系与不等式1.不等关系不等关系常用不等式来表示. 2.实数a ,b 的比较大小一般地,∀a ,b ∈R ,有a 2+b 2≥2ab , 当且仅当a =b 时,等号成立.1.大桥头竖立的“限重40吨”的警示牌,是指示司机要安全通过该桥,应使车货总重量T 不超过40吨,用不等式表示为( )A .T <40B .T >40C .T ≤40D .T ≥402.某高速公路要求行驶的车辆的速度v 的最大值为120 km/h ,同一车道上的车间距d 不得小于10 m ,用不等式表示为( )A .v ≤120 km/h 且d ≥10 mB .v ≤120 km/h 或d ≥10 mC.v≤120 km/h D.d≥10 m3.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t℃,那么t应满足的关系式是________.4.设M=a2,N=-a-1,则M、N的大小关系为________.用不等式(组)表示不等关系【例1】京沪线上,复兴号列车跑出了350 km/h的速度,这个速度的2倍再加上100 km/h,不超过民航飞机的最低时速,可这个速度已经超过了普通客车的3倍,请你用不等式表示三种交通工具的速度关系.在用不等式(组)表示不等关系时,要进行比较的各量必须具有相同性质,没有可比性的两个(或几个)量之间不可用不等式(组)来表示.另外,在用不等式(组)表示实际问题时,一定要注意单位的统一.1.用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,要求菜园的面积不小于216 m2,靠墙的一边长为x m.试用不等式表示其中的不等关系.比较两数(式)的大小【例2】已知x≤1,比较3x3与3x2-x+1的大小.把本例中“作差法比较两个实数大小的基本步骤:2.比较2x2+5x+3与x2+4x+2的大小.不等关系的实际应用【例3】某单位组织职工去某地参观学习需包车前往.甲车队说:“如领队买全票一张,其余人可享受7.5 折优惠”.乙车队说:“你们属团体票,按原价的8折优惠”.这两车队的原价、车型都是一样的,试根据单位去的人数,比较两车队的收费哪家更优惠.解决决策优化型应用题,首先要确定制约着决策优化的关键量是哪一个,然后再用作差法比较它们的大小即可.3.甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家旅行社价格更优惠?1.比较两个实数的大小,只要求出它们的差就可以了.a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.1.思考辨析(1)不等式x ≥2的含义是指x 不小于2.( )(2)若a <b 或a =b 之中有一个正确,则a ≤b 正确.( ) (3)若a >b ,则ac >bc 一定成立.( )2.下面表示“a 与b 的差是非负数”的不等关系的是( ) A .a -b >0 B .a -b <0 C .a -b ≥0 D .a -b ≤0 3.若实数a >b ,则a 2-ab ________ba -b 2.(填“>”或“<”).4.完成一项装修工程,请木工共需付工资每人500元,请瓦工共需付工资每人400元,现有工人工资预算20 000元,设木工x 人,瓦工y 人,试用不等式表示上述关系.第2课时 等式性质与不等式性质1.等式的性质(1) 性质1 如果a =b ,那么b =a ; (2) 性质2 如果a =b ,b =c ,那么a =c ; (3) 性质3 如果a =b ,那么a ±c =b ±c ; (4) 性质4 如果a =b ,那么ac =bc ; (5) 性质5 如果a =b ,c ≠0,那么a c =bc . 2.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c .(3)可加性:a >b ⇔a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n >0(n ∈N ,n ≥2).1.若a >b ,c >d ,则下列不等关系中不一定成立的是( )A .a -b >d -cB .a +d >b +cC .a -c >b -cD .a -c <a -d 2.与a >b 等价的不等式是( ) A .|a |>|b | B .a 2>b 2 C.ab >1 D .a 3>b 3 3.设x <a <0,则下列不等式一定成立的是( )A .x 2<ax <a 2B .x 2>ax >a 2C .x 2<a 2<axD .x 2>a 2>ax 利用不等式性质判断命题真假【例1】 对于实数a ,b ,c 下列命题中的真命题是( ) A .若a >b ,则ac 2>bc 2 B .若a >b >0,则1a >1bC .若a <b <0,则b a >a bD .若a >b ,1a >1b ,则a >0,b <0运用不等式的性质判断时,要注意不等式成立的条件,不要弱化条件,尤其是不能凭想当然随意捏造性质.解有关不等式选择题时,也可采用特殊值法进行排除,注意取值一定要遵循如下原则:一是满足题设条件;二是取值要简单,便于验证计算.1.下列命题正确的是( )A .若a 2>b 2,则a >bB .若1a >1b ,则a <b C .若ac >bc ,则a >b D .若a <b ,则a <b 利用不等式性质证明简单不等式【例2】 若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2. [思路点拨] 可结合不等式的基本性质,分析所证不等式的结构,有理有据地导出证明结果.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.2.已知a >b ,e >f ,c >0,求证:f -ac <e -bc . 不等式性质的应用[探究问题]1.小明同学做题时进行如下变形: ∵2<b <3, ∴13<1b <12, 又∵-6<a <8, ∴-2<ab <4.你认为正确吗?为什么?提示:不正确.因为不等式两边同乘以一个正数,不等号的方向不变,但同乘以一个负数,不等号方向改变,在本题中只知道-6<a <8.不明确a 值的正负.故不能将13<1b <12与-6<a <8两边分别相乘,只有两边都是正数的同向不等式才能分别相乘.2.由-6<a <8,-4<b <2,两边分别相减得-2<a -b <6,你认为正确吗? 提示:不正确.因为同向不等式具有可加性.但不能相减,解题时要充分利用条件,运用不等式的性质进行等价变形,而不可随意“创造”性质.3.你知道下面的推理、变形错在哪儿吗? ∵2<a -b <4, ∴-4<b -a <-2. 又∵-2<a +b <2, ∴0<a <3,-3<b <0, ∴-3<a +b <3.这怎么与-2<a +b <2矛盾了呢?提示:利用几个不等式的范围来确定某不等式的范围要注意:同向不等式两边可以相加(相乘),这种转化不是等价变形.本题中将2<a -b <4与-2<a +b <2两边相加得0<a <3,又将-4<b -a <-2与-2<a +b <2两边相加得出-3<b <0,又将该式与0<a <3两边相加得出-3<a +b <3,多次使用了这种转化,导致了a +b 范围的扩大.【例3】 已知1<a <4,2<b <8,试求a -b 与ab 的取值范围.求含字母的数(或式子)的取值范围时,一要注意题设中的条件,二要正确使用不等式的性质,尤其是两个同方向的不等式可加不可减,可乘不可除.3.已知-π2≤α<β≤π2,求α+β2,α-β2的取值范围.1.在应用不等式性质时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件.2.要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.1.思考辨析(1)若a>b,则ac>bc一定成立.()(2)若a+c>b+d,则a>b,c>d.()2.如果a>b>0,c>d>0,则下列不等式中不正确的是()A.a-d>b-c B.-ad<-bc C.a+d>b+c D.ac>bd3.若-1<α<β<1,则下列各式中恒成立的是()A.-2<α-β<0 B.-2<α-β<-1 C.-1<α-β<0 D.-1<α-β<14.若bc-ad≥0,bd>0.求证:a+bb≤c+dd.2.2基本不等式第1课时基本不等式1.重要不等式∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.2.基本不等式(1)有关概念:当a,b均为正数时,把a+b2叫做正数a,b的算术平均数,把ab叫做正数a,b的几何平均数.(2)不等式:当a,b是任意正实数时,a,b的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.1.不等式a 2+1≥2a 中等号成立的条件是( ) A .a =±1 B .a =1 C .a =-1 D .a =0 2.已知a ,b ∈(0,1),且a ≠b ,下列各式中最大的是( ) A .a 2+b 2 B .2ab C .2ab D .a +b 3.已知ab =1,a >0,b >0,则a +b 的最小值为( ) A .1 B .2 C .4 D .8 4.当a ,b ∈R 时,下列不等关系成立的是________. ①a +b2≥ab ;②a -b ≥2ab ;③a 2+b 2≥2ab ;④a 2-b 2≥2ab . 对基本不等式的理解【例1】 给出下面四个推导过程: ①∵a 、b 为正实数,∴b a +ab ≥2b a ·a b =2; ②∵a ∈R ,a ≠0,∴4a +a ≥24a ·a =4; ③∵x 、y ∈R ,xy <0,∴x y +y x =-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x y +⎝ ⎛⎭⎪⎫-y x ≤-2⎝ ⎛⎭⎪⎫-x y ⎝ ⎛⎭⎪⎫-y x =-2. 其中正确的推导为( )A .①②B .①③C .②③D .①②③1.基本不等式ab ≤a +b2(a >0,b >0)反映了两个正数的和与积之间的关系. 2.对基本不等式的准确掌握要抓住以下两个方面:(1)定理成立的条件是a 、b 都是正数.(2)“当且仅当”的含义:当a =b 时,ab ≤a +b2的等号成立,即a =b ⇒a +b 2=ab ;仅当a =b 时,a +b 2≥ab 的等号成立,即a +b2=ab ⇒a =b .1.下列不等式的推导过程正确的是________. ①若x >1,则x +1x ≥2x ·1x =2.②若x <0,则x +4x =-⎣⎢⎡⎦⎥⎤(-x )+⎝ ⎛⎭⎪⎫-4x ≤-2(-x )·⎝ ⎛⎭⎪⎫-4x =-4. ③若a ,b ∈R ,则b a +ab ≥2b a ·a b =2.利用基本不等式比较大小【例2】 (1)已知a ,b ∈R +,则下列各式中不一定成立的是( ) A .a +b ≥2ab B.b a +a b ≥2 C.a 2+b 2ab≥2ab D.2aba +b ≥ab(2)已知a ,b ,c 是两两不等的实数,则p =a 2+b 2+c 2与q =ab +bc +ca 的大小关系是________.1.在理解基本不等式时,要从形式到内含中理解,特别要关注条件. 2.运用基本不等式比较大小时应注意成立的条件,即a +b ≥2ab 成立的条件是a >0,b >0,等号成立的条件是a =b ;a 2+b 2≥2ab 成立的条件是a ,b ∈R ,等号成立的条件是a =b .2.如果0<a <b <1,P =a +b2,Q =ab ,M =a +b ,那么P ,Q ,M 的大小顺序是( )A .P >Q >MB .M >P >QC .Q >M >PD .M >Q >P 利用基本不等式证明不等式【例3】 已知a ,b ,c 是互不相等的正数,且a +b +c =1,求证:1a +1b +1c >9.1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用基本不等式创造条件,另一方面可实现约分与不等式的右边建立联系.2.先局部运用基本不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用基本不等式时的一种重要技能,也是证明不等式时的一种常用方法.3.已知a ,b ,c ∈R ,求证:a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.4.已知a >1,b >0,1a +3b =1,求证:a +2b ≥26+7.1.应用基本不等式时要时刻注意其成立的条件,只有当a >0,b >0时,才会有ab ≤a +b 2.对于“当且仅当……时,‘=’成立…”这句话要从两个方面理解:一方面,当a =b 时,a +b 2=ab ;另一方面:当a +b 2=ab 时,也有a =b .2.应用基本不等式证明不等式的关键在于进行“拼”、“凑”、“拆”、“合”、“放缩”等变形,构造出符合基本不等式的条件结构..1.思考辨析(1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( )(2)若a ≠0,则a +1a ≥2a ·1a =2.( )(3)若a >0,b >0,则ab ≤⎝ ⎛⎭⎪⎫a +b 22.( ) 2.设a >b >0,则下列不等式中一定成立的是( )A .a -b <0B .0<a b <1 C.ab <a +b 2 D .ab >a +b3.不等式9x -2+(x -2)≥6(其中x >2)中等号成立的条件是( )A .x =3B .x =-3C .x =5D .x =-54.设a >0,b >0,证明:b 2a +a 2b ≥a +b .第2课时 基本不等式的应用已知x 、y 都是正数,(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p .上述命题可归纳为口诀:积定和最小,和定积最大.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是()A.72 B .4 C.92 D .52.若x >0,则x +2x 的最小值是________. 3.设x ,y ∈N *满足x +y =20,则xy 的最大值为________.利用基本不等式求最值【例1】 (1)已知x <54,求y =4x -2+14x -5的最大值; (2)已知0<x <12,求y =12x (1-2x )的最大值.[思路点拨] (1)看到求y =4x -2+14x -5的最值,想到如何才能出现乘积定值;(2)要求y =12x (1-2x )的最值,需要出现和为定值.利用基本不等式求最值的关键是获得满足基本不等式成立条件,即“一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或定积;若不等,一般用后面第三章§3.2函数的基本性质中学习.1.(1)已知x >0,求函数y =x 2+5x +4x的最小值; (2)已知0<x <13,求函数y =x (1-3x )的最大值.利用基本不等式求条件最值【例2】 已知x >0,y >0,且满足8x +1y =1.求x +2y 的最小值. 81.本题给出的方法,用到了基本不等式,并且对式子进行了变形,配凑出满足基本不等式的条件,这是经常使用的方法,要学会观察、学会变形.2.常见的变形技巧有:(1)配凑系数;(2)变符号;(3)拆补项.常见形式有f (x )=ax +b x 型和f (x )=ax (b -ax )型.2.已知a >0,b >0,a +2b =1,求1a +1b 的最小值.利用基本不等式解决实际问题【例3】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36 m 长的钢筋网材料,每间虎笼的长、宽分别设计为多少时,可使每间虎笼面积最大?1.在应用基本不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.2.对于函数y =x +k x (k >0),可以证明0<x ≤k 及-k ≤x <0上均为减函数,在x ≥k 及x ≤-k 上都是增函数.求此函数的最值时,若所给的范围含±k 时,可用基本不等式,不包含±k 时,可用函数的单调性求解(后面第三章3.2函数的基本性质中学习).3.某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积1.利用基本不等式求最值,要注意使用的条件“一正二定三相等”,三个条件缺一不可,解题时,有时为了达到使用基本不等式的三个条件,需要通过配凑、裂项、转化、分离常数等变形手段,创设一个适合应用基本不等式的情境.2.不等式的应用题大都与函数相关联,在求最值时,基本不等式是经常使用的工具,但若对自变量有限制,一定要注意等号能否取到.1.思考辨析(1)两个正数的积为定值,一定存在两数相等时,它们的和有最小值.( )(2)若a >0,b >0且a +b =4,则ab ≤4.( )(3)当x >1时,函数y =x +1x -1≥2x x -1,所以函数y 的最小值是2x x -1.( ) 2.若实数a 、b 满足a +b =2,则ab 的最大值为( )A .1B .22C .2D .43.已知0<x <1,则x (3-3x )取最大值时x 的值为( )A.12B.34C.23D.254.已知x >0,求y =2x x 2+1的最大值. 2.3 二次函数与一元二次方程、不等式 第1课时 一元二次不等式及其解法1.一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).思考1:不等式x2-y2>0是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.3.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.4.三个“二次”的关系件?提示:结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则⎩⎨⎧ a >0,1+4a <0,解得a ∈∅,所以不存在a 使不等式ax 2+x -1>0的解集为R .1.不等式3+5x -2x 2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >3或x <-12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12≤x ≤3C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≥3或x ≤-12D .R C [3+5x -2x 2≤0⇒2x 2-5x -3≥0⇒(x -3)(2x +1)≥0⇒x ≥3或x ≤-12.]2.不等式3x 2-2x +1>0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -1<x <13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 13<x <1 C .∅ D .R3.不等式x 2-2x -5>2x 的解集是________.4.不等式-3x 2+5x -4>0的解集为________.一元二次不等式的解法【例1】 解下列不等式:(1)2x 2+7x +3>0;(2)-4x 2+18x -814≥0;(3)-2x 2+3x -2<0.解不含参数的一元二次不等式的一般步骤(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图.(5)写解集.根据图象写出不等式的解集.1.解下列不等式(1)2x 2-3x -2>0;(2)x 2-4x +4>0;(3)-x 2+2x -3<0;(4)-3x 2+5x -2>0. 含参数的一元二次不等式的解法【例2】解关于x的不等式ax2-(a+1)x+1<0.[思路点拨]①对于二次项的系数a是否分a=0,a<0,a>0三类进行讨论?②当a≠0时,是否还要比较两根的大小?解含参数的一元二次不等式的一般步骤提醒:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并.2.解关于x的不等式:ax2-2≥2x-ax(a<0).三个“二次”的关系[探究问题]1.利用函数y=x2-2x-3的图象说明当y>0、y<0、y=0时x的取值集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?提示:y=x2-2x-3的图象如图所示.函数y=x2-2x-3的值满足y>0时自变量x组成的集合,亦即二次函数y=x2-2x-3的图象在x轴上方时点的横坐标x的集合{x|x<-1或x>3};同理,满足y<0时x的取值集合为{x|-1<x<3},满足y=0时x的取值集合,亦即y=x2-2x-3图象与x轴交点横坐标组成的集合{-1,3}.这说明:方程ax 2+bx +c =0(a ≠0)和不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)是函数y =ax 2+bx +c (a ≠0)的一种特殊情况,它们之间是一种包含关系,也就是当y =0时,函数y =ax 2+bx +c (a ≠0)就转化为方程,当y >0或y <0时,就转化为一元二次不等式.2.方程x 2-2x -3=0与不等式x 2-2x -3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?提示:方程x 2-2x -3=0的解集为{-1,3}.不等式x 2-2x -3>0的解集为{x |x <-1或x >3},观察发现不等式x 2-2x -3>0解集的端点值恰好是方程x 2-2x -3=0的根.3.设一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则x 1+x 2,x 1x 2为何值?提示:一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则⎩⎪⎨⎪⎧ x 1+x 2=-b a ,x 1x 2=c a ,即不等式的解集的端点值是相应方程的根.【例3】 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.[思路点拨] 由给定不等式的解集形式→确定a <0及关于a ,b ,c 的方程组→用a 表示b ,c →代入所求不等式→求解cx 2+bx +a <0的解集1.(变结论已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循:(1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b,c用a表示出来并代入所要解的不等式;(3)约去a,将不等式化为具体的一元二次不等式求解.1.解一元二次不等式的常见方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:①化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);②求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c图象的简图;③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得{x|x>n或x<m};若(x-m)(x-n)<0,则可得{x|m<x<n}.有口诀如下:大于取两边,小于取中间.2.含参数的一元二次型的不等式在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.(2)关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).(3)关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.3.由一元二次不等式的解集可以逆推二次函数的开口及与x轴的交点坐标.1.思考辨析(1)mx2-5x<0是一元二次不等式.()(2)若a>0,则一元二次不等式ax2+1>0无解.()(3)若一元二次方程ax2+bx+c=0的两根为x1,x2(x1<x2),则一元二次不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2}.( )(4)不等式x 2-2x +3>0的解集为R .( )2.设a <-1,则关于x 的不等式a (x -a )⎝ ⎛⎭⎪⎫x -1a <0的解集为________.3.已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-2或x >-12,则ax 2-bx +c >0的解集为________.4.解下列不等式: (1)x (7-x )≥12; (2)x 2>2(x -1).第2课时 一元二次不等式的应用1.分式不等式的解法主导思想:化分式不等式为整式不等式思考1:x +2>0与(x -3)(x +2)>0等价吗?将x +2>0变形为(x -3)(x +2)>0,有什么好处?提示:等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.2.(1)不等式的解集为R (或恒成立)的条件(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系. (2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系). (3)解不等式(或求函数最值).(4)回扣实际问题.思考2:解一元二次不等式应用题的关键是什么?提示:解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x ,用x 来表示其他未知量,根据题意,列出不等关系再求解.1.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,则A ∩B 等于( ) A .{x |-1≤x <0} B .{x |0<x ≤1}C .{x |0≤x <2} D .{x |0≤x ≤1} 2.不等式x +1x ≥5的解集是________.3.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.4.在如图所示的锐角三角形空地中,欲建一个面积不小于300m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是________.分式不等式的解法【例1】 解下列不等式: (1)x -3x +2<0;(2)x +12x -3≤1.1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.1.解下列不等式:(1)x +1x -3≥0;(2)5x +1x +1<3.一元二次不等式的应用【例2】国家原计划以2 400元/吨的价格收购某种农产品m吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x个百分点,收购量能增加2x个百分点.试确定x的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.[思路点拨]将文字语言转换成数学语言:“税率降低x个百分点”即调节后税率为(8-x)%;“收购量能增加2x个百分点”,此时总收购量为m(1+2x%)吨,“原计划的78%”即为2 400m×8%×78%.求解一元二次不等式应用问题的步骤2.某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.不等式恒成立问题[探究问题]1.若函数y=ax2+2x+2对一切x∈R,f(x)>0恒成立,如何求实数a的取值范围?2.若函数y=x2-ax-3对-3≤x≤-1上恒有x2-ax-3<0成立,如何求a的范围?3.若函数y =x 2+2(a -2)x +4对任意-3≤a ≤1时,y <0恒成立,如何求x 的取值范围?【例3】 已知y =x 2+ax +3-a ,若-2≤x ≤2,x 2+ax +3-a ≥0恒成立,求a 的取值范围.[思路点拨] 对于含参数的函数在某一范围上的函数值恒大于等于零的问题,可以利用函数的图象与性质求解.1.(变结论1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是:当a =0时,b =0,c >0;当a ≠0时,⎩⎨⎧ a >0,Δ<0.2.不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是:当a =0时,b =0,c <0;当a ≠0时,⎩⎨⎧a <0,Δ<0.3.解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.当不等式含有等号时,分母不为零.2.对于某些恒成立问题,分离参数是一种行之有效的方法.这是因为将参数分离后,问题往往会转化为函数问题,从而得以迅速解决.当然,这必须以参数容易分离作为前提.分离参数时,经常要用到以下简单结论:(1)若f (x )有最大值f (x )max ,则a >f (x )恒成立⇔a >f (x )max ;(2)若f (x )有最小值f (x )min ,则a <f (x )恒成立⇔a <f (x )min .3.在某集合A 中恒成立问题 设y =ax 2+bx +c (a ≠0)若ax 2+bx +c >0在集合A 中恒成立,则集合A 是不等式ax 2+bx +c >0的解集的子集,可以先求解集,再由子集的含义求解参数的取值(范围).1.思考辨析(1)不等式1x >1的解集为x <1.( )(2)求解m >ax 2+bx +c (a <0)恒成立时,可转化为求解y =ax 2+bx +c 的最小值,从而求出m 的范围.( )2.不等式(x +1)(x +2)2(x +3)x +4>0的解集为________.3.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是________.4.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?不等式的性质【例1】 如果a ,b ,c 满足c <b <a 且ac <0,则以下列选项中不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0不等式真假的判断,要依靠其适用范围和条件来确定,举反例是判断命题为假的一个好方法,用特例法验证时要注意,适合的不一定对,不适合的一定错,故特例只能否定选择项,只要四个中排除了三个,剩下的就是正确答案了.1.若a >b >c 且a +b +c =0,则下列不等式中正确的是( ) A .ab >ac B .ac >bc C .a |b |>c |b | D .a 2>b 2>c 22.若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围为________. 基本不等式【例2】 设x <-1,求y =(x +5)(x +2)x +1的最大值.基本不等式的主要应用是求函数的最值或范围,既适用于一个变量的情况,也适用于两个变量的情况.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能.解答此类问题关键是创设应用不等式的条件,合理拆分项或配凑因式是常用的解题技巧,而拆与凑的目的在于使等号能够成立.3.若x ,y 为实数,且x +2y =4,则xy 的最大值为________. 一元二次不等式的解法【例3】 解关于x 的不等式:x 2+(1-a )x -a <0.。
高中数学必修1第二 章 复习导学案
高中数学必修1第二章 复习导学案(1)第二章 基本初等函数一、教学目标1、巩固本章知识。
2、培养学生应用知识能力。
教学重点:培养学生应用知识能力教学难点:熟练应用知识解题。
二、问题导学:指数函数(一)指数与指数幂的运算1.根式的概念: .◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 时,a a n n =,当n 时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a a n m n m ,)1,,,0(11*>∈>==-n N n m a a aa n m n m n m◆ 0的正分数指数幂 ,0的负分数指数幂 3.实数指数幂的运算性质 (1)r a ·sr r a a +=),,0(R s r a ∈>;(2)rs s r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念: .注意:指数函数的底数的取值范围,底数不能是负数、零和1.(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;对数函数(一)对数1.对数的概念: ,记作: (a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ;○2 x N N a a x =⇔=log ; ○3 注意对数的书写格式. 两个重要对数:○1 常用对数: N lg ; ○2 自然对数: 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化幂值 真数2、对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N ; ○2 =NM a log ; ○3 n a M log n = )(R n ∈. 注意:换底公式ab bc c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =;(2)a b b a log 1log =. (二)对数函数1、对数函数的概念: 叫做对数函数,其中x 是自变量,函数的定义域是 .注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
高中数学(必修二)导学案
高中数学(必修二)导学案第一章:平面直角坐标系1.1 坐标系的引入- 了解平面直角坐标系的基本概念- 掌握点在平面直角坐标系中的坐标表示方法1.2 平面直角坐标系上的距离公式- 了解平面直角坐标系上两点之间距离的公式- 掌握如何使用距离公式计算两个点之间的距离1.3 直线的斜率- 了解直线斜率的概念及其计算方法- 掌握如何根据两点坐标计算直线的斜率第二章:二次函数2.1 二次函数的图像和性质- 了解二次函数的基本概念和特点- 掌握根据二次函数的参数确定二次函数图像的方法2.2 二次函数的最值和零点- 了解二次函数最值和零点的基本概念及其计算方法- 掌握如何根据二次函数求解实际问题2.3 二次函数与一次函数的比较- 了解二次函数和一次函数的基本概念及其图像特点- 掌握如何比较二次函数和一次函数的大小关系第三章:三角函数3.1 任意角及其测量- 了解任意角的基本概念及其测量方法- 掌握如何将任意角的三角函数转化为其它角度的三角函数3.2 常用角的三角函数值- 掌握常用角的三角函数值及其推导方法- 掌握如何根据三角函数值求解实际问题3.3 三角函数的图像和性质- 了解三角函数的图像及其性质- 掌握如何根据三角函数图像解决实际问题第四章:概率统计4.1 随机事件与概率- 掌握随机事件和概率的基本概念和运算法则- 掌握如何计算简单事件的概率4.2 条件概率和独立性- 了解条件概率和独立性的基本概念及其计算方法- 掌握如何根据条件概率和独立性计算事件的概率4.3 离散型随机变量及其分布律- 了解离散型随机变量及其分布律的概念- 掌握如何根据分布律计算离散型随机变量的期望值和方差以上是本章节的导学内容,希望同学们认真学习,做好课后习题。
祝学习愉快!。
高中数学第二章一元二次函数方程和不等式2.3一元二次不等式2.3.1一元二次不等式及其解法第1课时一
跟踪训练1 (1)不等式 x + 1 x − 2 <0的解集为( B )
A.{x|x<-1或x>2} B. x −1<x<2
C.{x|x<-2或x>1} D. x −2<x<1
(2)不等式-x2-3x+4<0的解集为( A )
A.{x|x>1或x<-4} B.{x|x>-1或x<-4}
C.{x|-4<x<1}
{x|1 −
1-
3 <x<1+
3
3}
3
.
所以不
等
式
−3x2
+
6x -
2
>
0
的
解
集是
{x|1-
3 3
<x<1+ 3}.
3
(2)方程4x2-4x+1=0的解是x1=x2=12,
画出二次函数y=4x2-4x+1的图象(如图②),
结合图象得不等式4x2-4x+1≤0的解集是 {x|x = 12}.
方法归纳
易错警示
易错原因
忽视a的范围致误, 易错选C.
纠错心得
根据题中所给的二次不等式的解集,结合三个二次的 关系得到a<0,由根与系数的关系求出a,b,c的关系, 再代入不等式a(x2+1)+b(x-1)+c>2ax,求解即可.
课堂十分钟
1.已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M ∩ N= ()
例3 解关于x的不等式2x2+ax+2>0.
角度2 对根的大小进行讨论 例4 解关于x的不等式x2+2x+1-a2≤0(a∈R).
解析:原不等式等价于(x+1+a)(x+1-a)≤0. (1)当-1-a<-1+a, 即a>0时,-1-a≤x≤-1+a; (2)当-1-a=-1+a, 即a=0时,不等式即(x+1)2≤0, ∴x=-1; (3)当-1-a>-1+a,即a<0时,-1+a≤x≤-1-a. 综上,当a>0时,原不等式的解集为{x|-1-a≤x≤-1+a}; 当a=0时,原不等式的解集为{x|x=-1}; 当a<0时,原不等式的解集为{x|-1+a≤x≤-1-a}.
学高中数学第二章函数函数函数的表示法教案北师大版必修第一册
第二章函数第2.2节函数的表示法教学设计函数的表示法是“函数及其表示”这一节的主要内容之一.学习函数表示法,可以加深对函数概念的理解,领悟数形结合,化归等函数思想,函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.一.教学目标:(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;a(3)通过具体实例,了解简单的分段函数及应用.二. 核心素养1.数学抽象:函数的表示方法的理解2.逻辑推理:通过引导学生回答问题,培养学生的自主学习能力;通过画图像,培养学生的动手操作能力;3.数学运算:会函数图像,根据图像分析函数的定义域,值域4.直观想象:通过一些实际生活应用题,让学生感受到学习函数表示的必要性,并体会数学源于生活用于生活的价值;通过函数的解析式与图像的结合,渗透数形结合思想方法。
5.数学建模:通过本节课的教学,使学生进一步认识到,数学源于生活,数学也可应用于生活,能够解决生活中的实际问题.教学重点函数的三种表示方法,分段函数的概念 教学难点根据题目的已知条件,写出函数的解析式并画出图像PPT1. 函数的表示方法(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。
如初中: 学习的一次函数、一元二次函数、反比例函数的关系式,都是解析法.(2)列表法:列表法直接通过表格读数,不必通过计算,就表示出了两个变量之间的对应值,非常直 观.但任何一个表格内标出的数都是有限个,也就只能表示有限个数值之间的函数关系.若 自变量有无限多个数,则只能给出局部的对应关系.(3)图象法:用函数图象表示两个变量之间的关系。
例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。
(见课本P 53页图2—2 我国人口出生变化曲线)比如心电图:但不是所有函数都可以用图像表示:如狄利克雷函数:{1,0()x x f x =为有理数,为无理数2. 函数表示的三种方法对比: 函数表示方法优点缺点 解析法1、简明、全面地概括了变量间的关系; 2、通过解析式求出任意一个自变量的值对应的函数值。
北京市高中数学教材目录
北京市高中数学教材目录必修1第一章集合1.1集合与集合的表示方法1.2集合之间的关系与运算第二章函数2.1函数••••2.2一次函数和二次函数•••2.3函数的应用(Ⅰ)2.4函数与方程••第三章基本初等函数(Ⅰ)3.1指数与指数函数••3.2对数与对数函数•••3.3幂函数3.4函数的运用(ⅠⅠ)必修2第一章立体几何初步1.1空间几何体•••••••1.2点、线、面之间的位置关系•••第二章平面解析几何初步2.1平面真角坐标系中的基本公式••2.2直线方程••••2.3圆的方程••••2.4空间直角坐标系必修3第一章算法初步1.1算法与程序框图•••1.2基本算法语句•••1.3中国古代数学中的算法案例第二章统计2.1随机抽样••••2.2用样本估计总体••2.3变量的相关性••第三章概率3.1事件与频率•3.2古典概型••3.3随机数的含义与应用••3.4概率的应用必修4第一章基本初等函(Ⅱ) 1.1任意角的概念与弧度制1.2任意角的三角函数••••1.3三角函数的图象与性质•••第二章平面向量2.1向量的线性运算•••••2.2向量的分解与向量的坐标运算2.3平面向量的数量积•••2.4向量的应用••第三章三角恒等变换3.1和角公式•••3.2倍角公式和半角公式••3.3三角函数的积化和差与和差化积必修5第一章解直角三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列2.2等差数列2.3等比数列第三章不等式3.1不等关系与不等式••3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的四种形式••第二章圆锥曲线与方程2.1椭圆••2.2双曲线••2.3抛物线••第三章导数及其应用3.1导数•••3.2导数的运算•••3.3导数的应用•••选修1-2第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明••第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入••第四章框图4.1流程图4.2结构图选修2-1第一章不等式的基本性质和证明的基本方法第二章柯西不等式与排序不等式及其应用第三章数学归纳法与贝努利不等式选修2-2第一章导数及其应用1.1 导数••••本节综合1.2 导数的运算•••1.3 导数的应用1.4 定积分与微积分基本定理••第二章推理与证明2.1 合情推理与演绎推理••2.2 直接证明与间接证明••2.3 数学归纳法••第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.2 复数的运算选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合•••本节综合1.3 二项式定理••本节综合第二章概率2.1 离散型随机变量及其分布列•••2.2 概率•••2.3 离散型随机变量的数学期望与方差••2.4 正态分布第三章统计3.1 独立性检验3.2 回归分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 函数的应用(Ⅰ)课堂导学三点剖析一、求函数的解析式【例1】设计一水槽,其横截面为等腰梯形,要求AB+BC+CD=3,∠ABC=120°.(1)写出横截面面积S 用腰长x 表示的函数关系式,并求出定义域.(2)问当腰长为多少时,横截面面积最大?最大值是多少?思路分析:这是几何图形方面的应用题,运用几何图形的性质求出与面积有关的量(用x 表示),据面积公式列出关系式,注意实际问题中的定义域.解:(1)设AB=CD=x,则BC=3-2x.又作BE⊥AD 于点E,∵∠ABC=120°,∴∠BAE=60°. ∴BE=23x,AE=2x ,AD=BC+2AE=3-2x+x=3-x. ∴S=21(AD+BC)∙BE =21(3-x+3-2x)∙23x =.2334332x x +- ∵AB>0,BC>0,∴⎩⎨⎧>>0.2x -30,x ∴0<x<23,即定义域为(0,23). (2)S=433-(x-1)2+433. ∴当x=1时,S max =433. 二、求实际问题的最值【例2】某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 思路分析:(2)根据所给数据关系,列出公司月收益函数关系从而求出最大值. 解:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为5030003600-=12, ∴租出了100-12=88辆.(2)设每辆车的月租金定为x 元,则租凭公司的月收益为 f(x)=(100503000--x )(x-150)503000--x ×50 =502x -+162x-21 000 =501-(x-4 050)2+307 050. 当x=4 050时,f(x)最大,其最大值为307 050元.温馨提示根据题意设出未知量,列出正确的函数关系式是解决应用题的基本方法之一. 利用二次函数求实际问题的最值时要配方并且由对称轴与定义域区间的相对位置求之.三、从不同的方案中选优问题【例3】某私营企业老板对企业有突出贡献的某员工加薪,有两种加薪方案供员工选择:方案一:每年年末加薪1 000元;方案二:每半年加薪300元.〔注:每年年末加薪a 元,即是原薪金为m 元,则加薪第一年总薪金应为m+a 元,第二年薪金应为(m+a)+a 元,第三年薪金应为(m+a)+a+a 元〕(1)设该员工在此私企再工作2年,试问该员工根据自己需继续工作的年限选择哪种加薪方案较实惠,请说明理由;(2)设该员工在此私企继续工作x 年,试问该员工根据自己需继续工作的年限选择哪种加薪方案较实惠,请说明理由.〔注:m+(m+a)+(m+2a)+(m+3a)+…+[m+(x-1)a ]=mx+2)1(-x x a 〕 解析:(1)选择方案一,第1年加薪=1000,第2年加薪=2000,2年加薪总额=3000;选择方案二,第1年加薪=900,第2年加薪=2100,2年加薪总额=3000,因此,该员工选择哪个加薪方案都一样.(2)选择方案一的加薪总额为1000x+10002)1(∙-x x =500x 2+500x. 选择方案二的加薪总额为3002)12(22300∙-+∙x x x =600x 2+300x. ∵(500x 2+500x)-(600x 2+300x)=-100(x 2-2x),∴0<x<2,即x=1(工作1年)时,选择方案一;x=2(工作2年)时,两种方案一样;x>2(工作3年以上)时,选择方案二.温馨提示若一个题目中含有2个或多个数学模型时,要想判断哪个模型更好,可以利用比较大小的方法,进行作差、判断符号,也可利用图象法,分别作出函数图象,由图象直接观察. 各个击破类题演练1某商人购货,进价已按原价30元/件扣去25%,他希望对货物定一新价,以便按新价让利20%销售后,仍可获得售价25%的纯利,那么此商人经营这种货物时,按新价让利总额y 与货物数x 之间的函数关系是________.解析:设每件货物的新价为a 元,则销售价为a(1-20%)=a×80%(元/件),而进价为30(1-25%)=30×75%(元/件),因此,销售每件货物的利润为a×80%-30×75%,由题意,知a×80%-30×75%=a×80%×25%,所以a=275,故y=a×20%x=215x, 即y 与x 之间的函数关系是y=215x(x∈N ). 答案:y=215x(x∈N ) 变式提升1某人开汽车以60 km/h 速度从A 地到150 km 远处的B 地,在B 地停留1 h 后,再以50 km/h 的速度返回A 地.把汽车离开A 地的路程x(km)表示为时间t(h)(从A 地出发时开始)的函数,并画出函数的图象.解析:汽车离开A 地的距离x km 与时间t h 之间的关系式是x=⎪⎩⎪⎨⎧∈--∈∈]5.6,5.3(),5.3(50150],5.3,5.2(,150],5.2,0[,60t t t t t 它的图象如图所示.类题演练2某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数 R(x)=⎪⎩⎪⎨⎧>≤≤400.x 000, 80400,x 0 ,x 21 -400x 2 其中x 是仪器的月产量.(1)将利润表示为月产量的函数f(x).(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润) 解析:(1)设月产量为x 台,则总成本为20 000+100x ,从而 f(x)=⎪⎩⎪⎨⎧>-≤≤-+-.400,10060000,4000,20000300212x x x x x(2)当0≤x≤400时,f(x)=21-(x-300)2+25 000; 当x=300时,f(x)max =25 000;当x>400时,f(x)=60 000-100x 是减函数,f(x)<60 000-100×400<25 000.∴当x=300时,利润最大为25 000元.变式提升2某厂生产一种机器的固定成本(即因定投入)为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售的收入函数为R(x)=5x 22x -(万元)(0≤x≤5),其中x 是产品售出的数量(单位:百台). (1)把利润表示为年产量的函数;(2)年产量是多少时,工厂所得利润最大?解析:(1)当x≤5时,产品能售出x 百台;当x>5时,只能售出5百台,故利润函数为L(x)=R(x)-C(x) =⎪⎪⎩⎪⎪⎨⎧>+--⨯≤≤+--5),25.05.0()2555(50),25.05.0()25(22x x x x x x =⎪⎩⎪⎨⎧>-≤≤--.5,25.012,50,5.0275.42x x x x x (2)当0≤x≤5时,L(x)=4.75x 22x --0.5,当x=4.75时得L(x)max =10.781 25万元. 当x>5时,L(x)<12-1.25=10.75(万元).∴生产475台时利润最大.类题演练3商店出售茶壶与茶杯,茶壶每个定价20元,茶杯每个5元,该商店推出两种优惠办法:①买一个茶壶送一个茶杯,②按购买总价的92%付款.某顾客购买茶壶4个,茶杯若干个(不少于4个).设购买茶杯数x 个,付款为y(元),试分别建立两种优惠办法中,y 与x 的函数关系式,并指出如果该顾客需要购买茶杯40个,应选择哪种优惠办法?解析:由优惠办法(1)得函数关系式为y 1=20×4+5(x -4)=5x+60(x≥4,x∈N *).由优惠办法(2)得函数关系式为y 2=(20×4+5x)×92%=4.6x+73.6(x≥4,x∈N *).当该顾客购买茶杯40个时,采用优惠办法(1)应付款y 1=5×40+60=260元;采用优惠办法(2)应付款y 2=4.6×40+73.6=257.6元,由于y 2<y 1,因此应选择优惠办法(2).变式提升3经过调查发现,某种新产品在投放市场的100天中,前40天其价格直线上升,而后60天其价格则呈直线下降趋势,现抽取其中4天的价格如下表所示:(2)若销售量g(x)与时间x 的函数关系是g(x)=31-x+3109(1≤x≤100,x∈N ),问该产品投放市场第几天时日销售额最高,最高值为多少千元?解析:(1)用待定系数法不难得到f(x)=⎪⎪⎩⎪⎪⎨⎧N ∈≤≤+-N ∈≤≤+,,10040,5221,,401,2241x x x x x x (2)设日销售额为S,当1≤x<40时,S=(41x+22)(31-x+3109) =121-(x 2-21x-9 592), ∴x=10或11时,S max =129702=808.5(千元). 当40≤x≤100时, S=(21-x+52)(31-x+3109) =61(x 2-213x+11 336), ∴x=40时,S max =736(千元).综上分析,日销售额最高是在第10及第11两天,最高销售额为808.5千元.。