电磁场理论知识点总结

合集下载

电磁场复习纲要

电磁场复习纲要

《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。

二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。

在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。

3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。

6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。

第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。

三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。

2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。

3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。

求任意点的电场强度及电位。

电磁感应、电磁场电磁波的知识点总结全

电磁感应、电磁场电磁波的知识点总结全

可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。

2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

其中四指指向还可以理解为:感应电动势高电势处。

*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。

②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。

③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。

④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。

*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。

(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。

3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。

三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

物理学中的电磁场理论知识点

物理学中的电磁场理论知识点

物理学中的电磁场理论知识点电磁场理论是物理学中重要的一部分,它描述了电荷体系所产生的电磁场以及电磁场与电荷之间的相互作用。

本文将介绍电磁场的概念、电场和磁场的性质以及麦克斯韦方程组等电磁场的基本知识点。

一、电磁场的概念电磁场是指由电荷或电流体系所产生的电场和磁场的总和。

电场是由电荷引起的一种力场,可使带电粒子受力;磁场则是由电流引起的一种力场,可对磁性物质施加力。

二、电场的性质1. 电场的强度:电场强度定义为单位正电荷所受的电场力,通常用E 表示,其大小与电荷量和距离有关。

2. 电场线:电场线是用来表示电场分布的曲线,其方向与电场强度方向相同。

电场线的密度反映了电场强度的大小。

3. 高斯定律:高斯定律描述了电场与电荷之间的关系,它指出电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。

三、磁场的性质1. 磁感应强度:磁感应强度是磁场的基本物理量,用 B 表示,其大小与电荷量和距离无关。

它描述了磁场对磁性物质产生的作用力。

2. 磁场线:磁场线是用来表示磁场分布的曲线,其方向与磁感应强度的方向相同。

磁场线呈环状,从北极经南极形成闭合曲线。

3. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电动势的现象。

它说明了磁场变化对电荷运动的影响。

四、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,它由麦克斯韦总结了电场和磁场的性质而得出。

麦克斯韦方程组包括四个方程,分别是:1. 麦克斯韦第一方程(高斯定律):它描述了电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。

2. 麦克斯韦第二方程(法拉第电磁感应定律):它描述了磁场变化引起感应电动势的现象,即电场沿闭合回路的环路积分与磁场变化的速率成正比。

3. 麦克斯韦第三方程(安培环路定律):它描述了环绕闭合回路的磁场强度与通过闭合回路的总电流之间的关系。

4. 麦克斯韦第四方程(法拉第电磁感应定律的推广):它说明了变化的电场可以产生磁场,反之亦然。

电场和磁场之间存在着相互转化的关系。

电磁学知识点

电磁学知识点

电磁学知识点引言:电磁学是物理学领域中的一个重要分支,研究电荷和电流所产生的电场与磁场及它们之间的相互作用。

本文将重点介绍电磁学的基础知识点,包括库仑定律、安培定律、麦克斯韦方程组以及电磁波等内容,以帮助读者更好地理解电磁学的基本原理和应用。

一、库仑定律库仑定律是电磁学的基础之一,描述了两个电荷之间的相互作用力。

根据库仑定律,两个电荷之间的力与它们的电荷量成正比,与它们之间的距离的平方成反比。

这一定律可以用以下公式表示:F = k * |q1 * q2| / r^2其中F是两个电荷之间的作用力,q1和q2分别是这两个电荷的电荷量,r是它们之间的距离,k是一个常数,被称为库仑常数。

二、安培定律安培定律是描述电流所产生的磁场的原理。

根据安培定律,通过一段导线的电流所产生的磁场的大小与电流的大小成正比,与导线到磁场点的距离成反比,磁场的方向则由右手螺旋定则确定。

安培定律可以用以下公式表示:B = (μ0 / 4π) * (I / r)其中B是磁场的大小,μ0是真空中的磁导率,约等于4π x 10^-7 T·m/A,I是电流的大小,r是观察点到电流所在导线的距离。

三、麦克斯韦方程组麦克斯韦方程组是电磁学的基本方程组,总结了电磁学的基本定律和规律。

麦克斯韦方程组包括四个方程,分别描述了电荷和电流的电场和磁场之间的关系,以及它们的传播规律。

这些方程是:1. 麦克斯韦第一方程(电场高斯定律):∇·E = ρ / ε02. 麦克斯韦第二方程(磁场高斯定律):∇·B = 03. 麦克斯韦第三方程(法拉第电磁感应定律):∇×E = -∂B/∂t4. 麦克斯韦第四方程(安培环路定律):∇×B = μ0 * J + μ0ε0 *∂E/∂t其中E是电场,B是磁场,ρ是电荷密度,ε0是真空中的介电常数,J是电流密度。

四、电磁波电磁波是由电场和磁场相互作用而形成的一种传播现象。

高中物理知识点电磁场问题

高中物理知识点电磁场问题

高中物理知识点电磁场问题在高中物理中,电磁场是一个重要的知识点。

电磁场是由电荷在空间中产生的作用力而形成的一种理论模型。

它描述了带电粒子周围的电场和磁场的相互作用,是电磁学的基础。

本文将从电磁场的基本概念、磁场的特性、电流产生的磁场、电磁感应和电磁波等方面进行讲解。

一、电磁场的基本概念电磁场是指空间中存在的电场和磁场。

电场是由电荷体系周围存在的一种力场,可以描述电荷体系对周围电荷的作用力。

磁场则是由运动电荷所产生,它的特点是具有方向性和旋转性。

在电磁场中,电荷体系通过它所引发的电场和磁场相互作用。

二、磁场的特性磁场是运动电荷所产生的场,是由电流所产生的磁荷形成的。

磁场具有方向性和旋转性。

磁感线是表示磁场的线,磁场的强度可以通过磁感线密度表示。

在磁场中,磁场的力是与磁场的磁通量密度和电流成正比的,与导线长度成反比的。

三、电流产生的磁场当电流通过通电线圈时,会形成一个磁场,这就是电流产生的磁场。

电流产生的磁场的强度与电流的大小、导线的长度和线圈的匝数有关,可以通过安培定律来描述。

磁场的方向与电流的方向相垂直,在通电线圈中形成环状的磁感线。

四、电磁感应电磁感应是指时间变化的磁场能够诱发通过导体中的电流。

电磁感应是电磁场的一个重要应用,它是产生电动势的基础。

最著名的电磁感应效应是法拉第电磁感应定律,它描述了磁场的变化导致的感应电动势大小与磁场的变化率成正比。

五、电磁波电磁场的重要表现形式是电磁波。

电磁波是指电场与磁场的振荡所产生的波动,是光学、通信和雷达等现代科学技术的基础。

电磁波的特点是可以传播,它的速度是真空中的光速。

综上所述,电磁场是一个重要的物理概念,涉及到电场、磁场、电流产生的磁场、电磁感应和电磁波等方面。

理解电磁场理论是在物理学中学习和研究电磁学、电学等其他知识的基础。

(完整版)高中物理电磁学知识点

(完整版)高中物理电磁学知识点

二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。

定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。

4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。

单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。

电磁场理论知识点总结

电磁场理论知识点总结

电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。

高二物理电磁学知识点总结大全

高二物理电磁学知识点总结大全

高二物理电磁学知识点总结大全电磁学是物理学中重要的分支之一,它研究电荷和磁荷之间相互作用的规律,涉及到许多重要的概念和定律。

下面是对高二物理电磁学知识点的总结,希望能够对同学们的学习有所帮助。

一、静电场1. 电荷和电场电荷:原子中的负电子和正电子之间存在着相互作用力,当电子和质子数目相等时,物质是电中性的,否则就带有电荷。

电荷有正负之分,同性相斥,异性相吸。

电场:电荷周围存在着电场,电场是指电荷感受到的力的作用范围。

2. 电场强度电场强度E是指单位正电荷所受到的电场力F与正电荷之间的比率,用公式E=F/q表示,单位是N/C。

3. 受力与受力分析带电粒子在电场中受到电场力的影响,当电荷体系中存在多个电荷时,合力等于各个电荷的叠加。

二、恒定磁场1. 磁场与磁感线磁场:指物体周围存在的磁力作用范围。

磁场包括磁场强度B 和磁感应强度。

磁感线:是描述磁场的一种图示方法,磁感线的方向是磁力线的方向,磁感线的密度表示磁场的强弱。

2. 洛伦兹力当一个带电粒子以速度v进入磁场时,将受到垂直于速度和磁感应强度方向的洛伦兹力F。

洛伦兹力公式为F=qvBsinθ,其中q是电荷量,v是粒子速度,B是磁感应强度,θ是v和B夹角。

3. 荷质比的测定荷质比是指带电粒子的电荷量和质量之比,可以通过在磁场中测定带电粒子的运动轨迹来进行测定。

三、电磁感应和电动势1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的定律,它表明当一个导体中的磁通量发生变化时,该导体两端会产生感应电动势。

法拉第电磁感应定律的数学表示为ε=-dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。

2. 楞次定律和自感现象楞次定律:当电路中的电流发生变化时,由于电路的自感作用,电路中会产生感应电动势,其方向与变化前的电流方向相反。

自感现象:由于导线本身存在自感作用,当电流发生变化时,导线两端会产生感应电动势,导致电路中电流的改变。

3. 电磁感应定律的应用电磁感应定律的应用包括发电机、变压器等重要的实际应用,它们都是基于电磁感应现象的原理。

电磁场理论知识点总结

电磁场理论知识点总结

电磁场理论知识点总结1.麦克斯韦方程组:麦克斯韦方程组是电磁场理论的核心方程,它由四个方程组成,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应定律的积分形式。

这些方程描述了电场和磁场随空间和时间的变化规律。

2.电场和磁场的相互作用:根据麦克斯韦方程组,电场和磁场相互作用,通过电场的变化会产生磁场,而通过磁场的变化会产生电场。

这种相互作用是电磁波传播的基础。

3.电磁波的传播:根据麦克斯韦方程组的解,电磁波以光速在真空中传播,它是由电场和磁场相互耦合而成的波动现象。

电磁波的传播速度不同于物质中的电磁波传播速度,它是真空中的最大可能速度。

4.电磁感应现象:根据法拉第电磁感应定律,当一个导体中的磁场发生变化时,会在导体中产生感应电流。

这个现象被广泛应用于发电机、变压器等电磁设备中。

5.静电场和静磁场:当电荷和电流都不随时间变化时,产生的电场和磁场称为静电场和静磁场。

在静电场中,电场符合高斯定律;在静磁场中,磁场符合安培环路定律。

静电场和静磁场的研究对于理解电磁场的基本性质和应用具有重要意义。

6.电磁辐射和辐射场:根据麦克斯韦方程组的解,加速的电荷会辐射出电磁波。

这种辐射就是电磁辐射,它是电磁波传播的一种形式。

辐射场是指由电磁辐射产生的电场和磁场。

7.电磁波的频率和波长:电磁波的频率和波长是描述电磁波特性的两个重要参数。

频率指的是电磁波单位时间内振动的次数,单位是赫兹;波长指的是电磁波的一个完整振动周期所对应的空间距离,单位是米。

8.电磁场的能量和动量:根据电磁场的能量密度和动量密度的定义,可以推导出电磁场的能量和动量公式。

电磁场携带能量和动量,可以与物质相互作用,这是实现无线通信、光学传输等现代科技的基础。

9.电磁场的边界条件:电磁场在介质边界上的反射和折射现象可以通过电磁场的边界条件来描述。

边界条件包括麦克斯韦方程组的边界条件和介质的边界条件,它们确定了电磁场在边界上的行为和传播规律。

高中物理电磁学知识点整理

高中物理电磁学知识点整理

高中物理电磁学知识点整理电磁学是物理学的一个重要分支,研究电荷在空间中的运动和相互作用。

在高中物理课程中,电磁学是一个重点内容,学生需要掌握许多基本的电磁学知识点。

下面将对高中物理电磁学知识点进行整理和归纳。

一、电荷和电场1. 电荷的性质:正电荷和负电荷、它们之间的相互作用。

2. 元电荷:电荷的最小单位,一个质子和一个电子的电荷量。

3. 超导体:电荷自由运动的材料,内部电场强度为零。

4. 电场概念:在空间中某点的场强与电荷之间的相互作用力。

二、电场中的电荷运动1. 静电平衡:电场中的电荷受力平衡的状态。

2. 静电场中的电荷分布:在电场中,电荷会向场强方向移动。

3. 电场力与电场强度:电场力的大小与电荷的大小和电场强度有关。

4. 电场线:用以表示电场强度方向的曲线。

5. 等势面:垂直于电场线的曲面,上面点的电势相同。

三、电场与电势1. 电势差与电势能:电荷在电场中移动时所具有的能量。

2. 电势差与电场强度之间的关系:沿电场线方向,电势降低的速率等于场强。

3. 等电势面上电场强度的性质:等电势面上电场强度与电场力垂直。

4. 电势差的计算:电势差等于电场力沿路径做功的量。

四、电流和电阻1. 电流的概念:单位时间内电荷通过导体横截面的数量。

2. 电流的方向:正电荷流动的方向。

3. 电阻的影响:电阻导致电流受阻,产生热量。

4. 电流的大小与方向:电流大小与导体中电荷的数量成正比,方向由正极到负极。

五、电路中的基本元件1. 电动势:电源供电的原动力。

2. 内阻和外阻:电源内部电阻和外部电路电阻的区别。

3. 电阻、电容和电感的特性:不同元件导致电路特性的差异。

4. 阻抗的计算:交流电路中的阻抗由电阻、电容和电感共同组成。

综上所述,高中物理电磁学知识点包括电荷和电场、电场中的电荷运动、电场与电势、电流和电阻以及电路中的基本元件等内容,通过理解这些知识点,学生能够更好地掌握电磁学的基本理论,为今后的学习和研究打下坚实的基础。

电磁学知识点归纳

电磁学知识点归纳

电磁学知识点归纳1. 电场与电荷- 电场是由电荷引起的,它是一种描述电荷间相互作用的物理量。

- 电荷分为正电荷和负电荷,它们之间存在相互吸引或排斥的力。

2. 静电场与电势- 静电场是指电荷分布不随时间变化的电场。

- 电势是描述电场能量的物理量,它表示单位正电荷在电场中所具有的电势能。

3. 多个电荷所产生的电场- 多个电荷同时存在时,在某一点的电势等于各个电荷在该点产生的电势的代数和。

- 如果电荷是同种的,它们之间的电势是可以相加的;如果电荷是异种的,则它们之间的电势是可以相减的。

4. 电场中的电场线- 电场线是用来描述电场强度和方向的线条,它始于正电荷并指向负电荷。

- 电场线的密度表示电场的强弱,密集的电场线表示电场强度大,稀疏的电场线表示电场强度小。

5. 电场中的电势能与电势差- 电势能是正电荷在电场中由于位置改变而具有的能量。

- 电势差是指单位正电荷由一个位置移动到另一个位置时所具有的电势能的变化量。

6. 电场中的电荷间力的计算- 电荷间的相互作用力由库仑定律描述。

- 库仑定律表明,两个点电荷之间的力与它们之间的距离的平方成反比。

7. 高斯定理- 高斯定理描述了电场通过一个闭合曲面的通量与该曲面内电荷的代数和之间的关系。

- 高斯定理可以简化计算电场对于不规则形状的闭合曲面的通量。

8. 电场中的电介质- 电介质是指那些在电场作用下可以发生电极化现象的物质。

- 电介质可以增强电场,同时也可以改变电场的分布。

9. 磁场与电流- 磁场是由电流引起的,它是一种描述电流间相互作用的物理量。

- 电流可以通过导线中的电子流动来产生磁场。

10. 安培定理与磁场中的磁场强度- 安培定理描述了通过一个闭合回路的磁场强度与该回路内电流的代数和之间的关系。

- 磁场强度表示单位电流在磁场中所受到的磁场力。

11. 磁场中的磁感应强度与法拉第定律- 磁感应强度表示单位面积垂直于磁场方向的平面上通过的磁通量。

- 法拉第定律描述了磁感应强度与磁场的变化率、电流的关系。

高中物理电磁学知识点归纳大全

高中物理电磁学知识点归纳大全

高中物理电磁学知识点归纳大全一、电场。

1. 电荷与库仑定律。

- 电荷:自然界存在两种电荷,正电荷和负电荷。

电荷的多少叫电荷量,单位是库仑(C)。

- 库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。

表达式为F = k(q_1q_2)/(r^2),其中k = 9.0×10^9N· m^2/C^2。

2. 电场强度。

- 定义:放入电场中某点的电荷所受的电场力F与它的电荷量q的比值,叫该点的电场强度,E=(F)/(q)。

单位是N/C或V/m。

- 点电荷的电场强度:E = k(Q)/(r^2)(Q为场源电荷电荷量)。

- 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和。

3. 电场线。

- 电场线是为了形象地描述电场而引入的假想曲线。

电场线从正电荷或无穷远出发,终止于负电荷或无穷远;电场线越密的地方电场强度越大。

4. 电势与电势差。

- 电势:电荷在电场中某一点的电势能与它的电荷量的比值,φ=(E_p)/(q)。

单位是伏特(V)。

- 电势差:电场中两点间电势的差值,U_AB=φ_A - φ_B,也等于把单位正电荷从A点移到B点电场力所做的功,U_AB=frac{W_AB}{q}。

5. 等势面。

- 电场中电势相等的点构成的面叫等势面。

等势面与电场线垂直;电场线总是从电势高的等势面指向电势低的等势面。

6. 电容器与电容。

- 电容器:两个彼此绝缘又相距很近的导体可组成一个电容器。

- 电容:电容器所带电荷量Q与电容器两极板间电势差U的比值,C=(Q)/(U),单位是法拉(F),1F = 1C/V。

平行板电容器的电容C=(varepsilon S)/(4πkd)(varepsilon为介电常数,S为极板正对面积,d为极板间距)。

二、电路。

1. 电流。

- 定义:电荷的定向移动形成电流,I=(Q)/(t),单位是安培(A)。

电磁场知识点总结

电磁场知识点总结

电磁场知识点总结电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。

下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。

电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:*均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场*均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场*电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。

(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:*电磁波的传播不需要介质,在真空中也可以传播*电磁波是横波*电磁波在真空中的传播速度为光速*电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B均随时间周期性变化振荡周期:T=2πsqrt[LC]4、电磁波的发射*条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间*调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。

调制分两类:调幅与调频#调幅:使高频电磁波的振幅随低频信号的改变而改变#调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收*电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

*调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程*解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波(收音机是如何接收广播的?收音机的天线接收所有电磁波,经调谐选择需要的电磁波(选台),经过解调取出携带的信号,放大后再还原为声音)5、电磁波的应用电视、手机、雷达、互联网6、电磁波普无线电波:通信红外线:加热物体(热效应)、红外遥感、夜视仪可见光:照明、摄影紫外线:感光、杀菌消毒、荧光防伪X射线:医用透视、检查、探测r射线:工业探伤、放疗。

(整理)电磁场理论知识点总结

(整理)电磁场理论知识点总结

电磁场与电磁波总结第1章 场论初步一、矢量代数A •B =AB cos θA B ⨯=AB e AB sin θA •(B ⨯C ) = B •(C ⨯A ) = C •(A ⨯B ) A ⨯ (B ⨯C ) = B (A •C ) – C •(A •B ) 二、三种正交坐标系 1. 直角坐标系矢量线元 x y z =++l e e e d x y z矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系矢量线元 =++l e e e z d d d dz ρϕρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = ρ d ρ d ϕ d z 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元 d l = e r d r + e θ r d θ + e ϕ r sin θ d ϕ 矢量面元 d S = e r r 2sin θ d θ d ϕ 体积元 dv = r 2sin θ d r d θ d ϕ 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθcos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ϕϕϕϕϕsin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦θϕθϕθϕθθϕθϕθϕϕsin 0cos cos 0sin 010r r z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦θϕϕθθθθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()∂∂∂∇=++∂∂∂⋅A zA A A z ϕρρρρρϕ 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕx y z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A ∂∂∂∇⨯=∂∂∂e e e A z z z A A A ρϕρϕρρϕρ sin sin ∂∂∂∇⨯=∂∂∂e e e A r r zr r r A r A r A ρϕθθθϕθ 4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场 ()0∇⋅∇⨯=A =∇⨯F A2. 无旋场 ()0∇⨯∇=u =∇F u六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V ’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中 1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第2章 电磁学基本规律一、麦克斯韦方程组 1. 静电场基本规律真空中方程:d ⋅=⎰SE S qεd 0⋅=⎰lE l 0∇⋅=E ρε 0∇⨯=E 场位关系:3''()(')'4'-=-⎰r r E r r r r V q dV ρπε =-∇E φ 01()()d 4π''='-⎰r r |r r |V V ρφε介质中方程:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε 极化电荷:==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场基本规律电荷守恒定律:0∂∇⋅+=∂J tρ传导电流: =J E σ 与运流电流:ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0l⋅=⎰E l 0∇⋅=J 0∇⨯E =3. 恒定磁场基本规律真空中方程:0 d ⋅=⎰B l lI μ d 0⋅=⎰SB S 0∇⨯=B J μ 0∇⋅=B场位关系:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中方程:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μ m 00(1)=+B H =H =H r χμμμμ 磁化电流:m =∇⨯J M ms n =⨯J M e4. 电磁感应定律d d ⋅=-⋅⎰⎰S E l B S ld dt ∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S l S t ∂∇⨯=+∂DH J t 位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S l S l SSV Sl t l t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J B E D B t t ρ ()() ()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m e m e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H D B H J E J D B D B t t &t t ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B tt ρρ 三、边界条件 1. 一般形式12121212()0()()()0⨯-=⨯-=⋅-=⋅-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界面 和 理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第3章 静态场分析一、静电场分析1. 位函数方程与边界条件位函数方程: 220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解方法:2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 3. 静电场的能量N 个导体: 112==∑ne i i i W q φ 连续分布: 12=⎰e VW dV φρ 电场能量密度:12D E ω=⋅e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E l E l J SE SSSU R G Id d σ (L R =σS )4. 静电比拟法:C —— G ,ε —— σ2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ 连续分布:m 1d 2A J =⋅⎰V W V 磁场能量密度:m 12H B ω=⋅ 第4章 静电场边值问题的解一、边值问题的类型● 狄利克利问题:给定整个场域边界上的位函数值()=f s φ ● 纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ● 混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ ● 自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

大学物理电磁学知识点

大学物理电磁学知识点

真 空 中 的 静 电 场知识点:1. 场强 (1) 电场强度的定义0q F E (2) 场强叠加原理 iE E (矢量叠加) (3) 点电荷的场强公式rr qE ˆ420 (4) 用叠加法求电荷系的电场强度r r dq E ˆ4202. 高斯定理 真空中 内q S d E S 01电介质中自由内,01q S d D SE E D r 03. 电势 (1) 电势的定义 零势点p p l d E V对有限大小的带电体,取无穷远处为零势点,则 p p l d E V(2) 电势差b a b a l d E V V (3) 电势叠加原理 iV V (标量叠加)(4) 点电荷的电势 r q V 04 (取无穷远处为零势点)电荷连续分布的带电体的电势r dq V 04 (取无穷远处为零势点) 4. 电荷q 在外电场中的电势能a a qV w 5. 移动电荷时电场力的功 )(b a ab V V q A 6. 场强与电势的关系 V E静 电 场 中 的 导 体知识点:1.导体的静电平衡条件(1) 0 内E(2) 导体表面表面 E2. 静电平衡导体上的电荷分布导体内部处处静电荷为零.电荷只能分布在导体的表面上.0 表面E3. 电容定义U qC 平行板电容器的电容d S C r 0电容器的并联 i C C (各电容器上电压相等)电容器的串联 i C C 11 (各电容器上电量相等)4. 电容器的能量 222121CV C Q W e电场能量密度 221E W e5、电动势的定义L k i l d E 式中k E 为非静电性电场.电动势是标量,其流向由低电势指向高电势。

静 电 场 中 的 电 介 质知识点:1. 电介质中的高斯定理2. 介质中的静电场3. 电位移矢量真 空 中 的 稳 恒 磁 场知识点:1. 毕奥-萨伐定律电流元l Id产生的磁场 20ˆ4r r l Id B d式中, l Id 表示稳恒电流的一个电流元(线元),r 表示从电流元到场点的距离, rˆ表示从电流元指向场点的单位矢量..2. 磁场叠加原理在若干个电流(或电流元)产生的磁场中,某点的磁感应强度等于每个电流(或电流元)单独存在时在该点所产生的磁感强度的矢量和. 即 i B B3. 要记住的几种典型电流的磁场分布(1)有限长细直线电流 )cos (cos 4210a I B式中,a 为场点到载流直线的垂直距离, 1 、2 为电流入、出端电流元矢量与它们到场点的矢径间的夹角. a) 无限长细直线电流 r IB 20b) 通电流的圆环2/32220)(2R x I R B 圆环中心 04I B rad R单位为:弧度()(4) 通电流的无限长均匀密绕螺线管内nI B 0 4. 安培环路定律真空中 内I l d B L 0 磁介质中 内0I l d H LH H B r 0 当电流I 的方向与回路l 的方向符合右手螺旋关系时, I 为正,否则为负.5. 磁力(1) 洛仑兹力 B v q F质量为m 、带电为q 的粒子以速度v 沿垂直于均匀磁场B 方向进入磁场,粒子作圆周运动,其半径为qB mvR周期为qB m T 2(2) 安培力 B l Id F(3) 载流线圈的磁矩 nNIS p m ˆ 载流线圈受到的磁力矩B p M m (4) 霍尔效应 霍尔电压 b IB ne V1电 磁 感 应 电 磁 场知识点:1. 楞次定律:感应电流产生的通过回路的磁通量总是反抗引起感应电流的磁通量的改变.2. 法拉第电磁感应定律 dtd i N3. 动生电动势: 导体在稳恒磁场中运动时产生的感应电动势.l d B v b a ab )( 或l d B v )( 4. 感应电场与感生电动势: 由于磁场随时间变化而引起的电场成为感应电场. 它产生电动势为感生电动势. dt d l d E i 感局限在无限长圆柱形空间内, 沿轴线方向的均运磁场随时间均匀变化时, 圆柱内外的感应电场分别为 )(2R r dt dBr E 感)(22R r dt dBr R E 感5. 自感和互感自感系数 I L自感电动势 dt dIL L自感磁能 221LI W m互感系数 212121I I M互感电动势 dt dI M 1216. 磁场的能量密度BH B w m 21227. 位移电流 此假说的中心思想是: 变化着的电场也能激发磁场.通过某曲面的位移电流强度d I 等于该曲面电位移通量的时间变化率. 即S D d S d t D dt d I位移电流密度 t D j D8. 麦克斯韦方程组的积分形式V S dV q S d DS d t B dt d l d E S m L0 S S d BS d t D S d j l d H S S L第七章气体动理论主要内容一.理想气体状态方程:112212PV PV PV C T T T ; m PV RT M; P nkT 8.31J R k mol g ;231.3810J k k;2316.02210A N mol ;A R N k g 二. 理想气体压强公式23kt p n 212kt mv 分子平均平动动能 三. 理想气体温度公式21322kt mv kT四.能均分原理1. 自由度:确定一个物体在空间位置所需要的独立坐标数目。

高二电磁学物理知识点总结

高二电磁学物理知识点总结

高二电磁学物理知识点总结一、电磁场电磁场是指电荷或电流产生的电场和磁场以及它们相互作用的一种物理场。

电磁场的性质主要包括以下几个方面:1. 电场:电场是指物体周围由电荷引起的力场。

在一个电场中,一个测试电荷会受到电场力的作用,力的大小和方向取决于测试电荷的大小和电场中的电荷分布。

电场的强度可以用电场线代表,电场线的密集程度表示电场的强弱,电场线的方向表示电场力的方向。

2. 磁场:磁场是指物体周围由磁性物质或者电流产生的磁力场。

磁场是一种无源场,它的性质是由磁性物质或者电流的分布所确定的。

在一个磁场中,物体会受到磁场力的作用,力的大小和方向取决于物体的磁性和磁场的分布。

3. 电磁感应:电磁感应是指磁场和电场之间的相互作用导致的现象。

当磁场和电场发生相互作用时,会产生感应电流或感应电势,这是电磁感应的一种表现形式。

电磁感应是电磁学中的重要现象,在许多实际应用中都有重要的作用。

4. 麦克斯韦方程组:麦克斯韦方程组是电磁学的基本方程,它描述了电场和磁场的状况,包括了电荷和电流的分布、电场和磁场的产生和变化规律。

麦克斯韦方程组被认为是电磁学的重要成果,它对电磁学的发展产生了深远的影响。

二、电磁感应电磁感应是指磁场和电场之间相互作用的现象,它是电磁学中的重要内容之一。

在高二的电磁学中,学生需要了解电磁感应的相关知识,包括以下几个方面:1. 法拉第电磁感应定律:法拉第电磁感应定律是电磁学中的重要定律,它描述了磁场和电路之间的相互作用。

根据法拉第电磁感应定律,当磁场的磁通量发生变化时,会在电路中诱导出感应电流。

这个定律为电磁感应现象提供了定量的描述,也为电磁感应的应用提供了理论依据。

2. 楞次定律:楞次定律描述了电场和磁场之间的相互作用导致的现象。

根据楞次定律,当电路中有感应电流时,该电流会产生磁场,这个磁场会对原来的磁场产生反作用。

楞次定律是电磁学中的重要定律,它揭示了电磁感应的本质,也对电磁感应的应用有着重要的意义。

大物电磁学知识点总结

大物电磁学知识点总结

大物电磁学知识点总结一、静电场电荷:自然界只存在两种电荷,即正电荷和负电荷。

它们分别由丝绸摩擦过的玻璃棒和毛皮摩擦过的硬橡胶棒所带。

电荷的多少称为电量,其单位是库仑(C)。

库仑定律:在真空中,两个静止的点电荷之间的相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比。

同号电荷相斥,异号电荷相吸。

电场强度:描述电场中某点电场强弱的物理量,其方向为正电荷在该点所受电场力的方向。

二、稳恒电流电流:电荷的定向移动形成电流。

电流的定义、单位、电流密度矢量以及电流场是理解电流的基础。

欧姆定律:描述电路中电压、电流和电阻之间关系的定律。

其有两种表述方式,即积分型和微分型。

电阻:阻碍电流流动的物理量。

电阻的计算、电阻定律、电阻率以及电阻温度系数等是电阻相关的重要知识点。

三、磁场磁感应强度:描述磁场中某点磁场强弱的物理量,其方向为该点小磁针静止时N极所指的方向。

磁场对运动电荷的作用:包括洛伦兹力和霍尔效应等。

四、电磁感应法拉第电磁感应定律:描述磁通量变化时产生感应电动势的定律。

楞次定律:描述感应电流的方向的定律,其阻碍的表现包括产生一个反变化的磁场、导致物体运动或导致围成闭合电路的边框发生形变。

五、交流电与电磁波交流电:随时间周期性变化的电流或电压。

其幅值、频率和相位是描述交流电的重要参数。

电磁波:由电场和磁场相互激发产生的波动现象。

电磁波的传播、发射和接收是电磁学的重要应用。

这些只是电磁学的一部分知识点,实际上电磁学的内容非常丰富和深入。

在学习电磁学时,需要注重理解和应用这些知识点,并结合实验和实际问题进行学习和思考。

电磁学知识点总结

电磁学知识点总结

电磁学知识点总结1. 静电学- 电荷与库仑定律- 基本电荷的定义- 电荷守恒原理- 库仑定律的表述及应用- 电场与电场强度- 电场的物理意义- 电场强度的计算- 电场线的概念- 电势与电势能- 电势的定义- 电势能与电势差- 电势的计算- 电容与电容器- 电容的定义- 电容器的工作原理- 并联与串联电容器的计算- 静电感应与电介质- 静电感应现象- 电介质的极化- 电位移矢量D2. 直流电路- 欧姆定律- 欧姆定律的表述- 电阻的概念与计算- 基尔霍夫定律- 基尔霍夫电流定律- 基尔霍夫电压定律- 直流电路分析- 节点分析法- 环路分析法- 电功率与能量- 电功率的计算- 能量守恒原理3. 磁场- 磁场与磁力线- 磁场的描述- 磁力线的绘制- 安培定律与毕奥萨法尔定律 - 安培定律的表述- 毕奥萨法尔定律与磁矩 - 磁通与磁感应强度- 磁通的定义- 磁感应强度B的计算- 电磁感应- 法拉第电磁感应定律- 楞次定律- 互感与自感- 互感的概念- 自感系数的计算- RLC串联电路的谐振4. 交流电路- 交流电的基本概念- 交流电的周期与频率- 瞬时值、有效值与峰值- 交流电路中的电阻、电容与电感 - 阻抗的概念- 电容与电感在交流电路中的行为 - 交流电路分析- 相量法- 功率因数与功率- 变压器原理- 变压器的工作原理- 理想变压器的电压与功率变换5. 电磁波- 电磁波的产生- 振荡电路与电磁波的产生- 电磁波的传播- 电磁波的性质- 波长、频率与速度的关系- 电磁谱的分类- 电磁波的应用- 无线通信- 医学成像6. 电磁学的现代应用- 微波技术- 微波的特性与应用- 光纤通信- 光纤的工作原理- 光纤通信的优势- 电磁兼容性- 电磁干扰的来源与影响- 电磁兼容性设计的原则本文提供了电磁学的基础知识点总结,涵盖了从静电学到电磁波及其应用的主要内容。

每个部分都详细列出了关键概念、定律和应用,旨在为读者提供一个全面且系统的电磁学知识框架。

大学物理易考知识点电磁场的基本规律

大学物理易考知识点电磁场的基本规律

大学物理易考知识点电磁场的基本规律大学物理易考知识点:电磁场的基本规律电磁场是电荷和电流所产生的物理现象,在电磁学中起着至关重要的作用。

了解电磁场的基本规律不仅可以帮助我们解决实际问题,还可以为日常生活中的电器使用提供指导。

本文将介绍电磁场的基本规律,包括库仑定律、电场的叠加原理、高斯定律、法拉第电磁感应定律以及安培环路定理等。

一、库仑定律库仑定律是描述电荷之间相互作用的规律。

根据库仑定律,两个电荷之间的相互作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。

具体表达式为:\[F = k\frac{{|q_1q_2|}}{{r^2}}\]其中,\[F\]代表电荷之间的相互作用力,\[q_1\]和\[q_2\]分别代表两个电荷的电荷量,\[r\]代表两个电荷之间的距离,\[k\]为比例常数。

二、电场的叠加原理电场是由电荷产生的一种物理场。

电场可以用来描述在电荷存在的情况下,其他电荷所受到的力的情况。

如果有多个电荷同时存在,它们所产生的电场的叠加效应可以通过电场的叠加原理来描述。

根据电场的叠加原理,电场叠加后的总电场强度等于各个电场强度的矢量和。

这一原理可以用公式表示为:\[E = E_1 + E_2 + E_3 + ... + E_n\]其中,\[E_1\],\[E_2\],\[E_3\]等分别代表各个电荷所产生的电场强度,\[E\]代表叠加后的总电场强度。

三、高斯定律高斯定律是描述电场的分布与电荷之间的关系的定律。

根据高斯定律,电场通过一个闭合曲面的通量与该闭合曲面内的电荷量成正比,与电荷分布无关。

具体表达式为:\[Φ = \frac{Q}{{ε_0}}\]其中,\[Φ\]代表电场通过闭合曲面的通量,\[Q\]代表闭合曲面内的电荷量,\[ε_0\]为真空中的介电常数。

四、法拉第电磁感应定律法拉第电磁感应定律描述了磁场的变化所产生的感应电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁场变化率成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波总结第1章 场论初步一、矢量代数A •B =AB cos θA B ⨯=AB e AB sin θA •(B ⨯C ) = B •(C ⨯A ) = C •(A ⨯B ) A ⨯ (B ⨯C ) = B (A •C ) – C •(A •B ) 二、三种正交坐标系 1. 直角坐标系矢量线元 x y z =++l e e e d x y z矢量面元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位矢量的关系 ⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系矢量线元 =++l e e e z d d d dz ρϕρρϕl 矢量面元 =+e e z dS d dz d d ρρϕρρϕ 体积元 dV = ρ d ρ d ϕ d z 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元 d l = e r d r + e θ r d θ + e ϕ r sin θ d ϕ 矢量面元 d S = e r r 2sin θ d θ d ϕ 体积元 dv = r 2sin θ d r d θ d ϕ 单位矢量的关系 ⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθcos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ϕϕϕϕϕsin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦θϕθϕθϕθθϕθϕθϕϕsin 0cos cos 0sin 010r r z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦θϕϕθθθθ三、矢量场的散度和旋度1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()∂∂∂∇=++∂∂∂⋅A zA A A z ϕρρρρρϕ 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕx y z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A ∂∂∂∇⨯=∂∂∂e e e A z z z A A A ρϕρϕρρϕρ sin sin ∂∂∂∇⨯=∂∂∂e e e A r r zr r r A r A r A ρϕθθθϕθ 4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy zu u uu x y z1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场 ()0∇⋅∇⨯=A =∇⨯F A2. 无旋场 ()0∇⨯∇=u =∇F u六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V ’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中 1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第2章 电磁学基本规律一、麦克斯韦方程组 1. 静电场基本规律真空中方程:d ⋅=⎰SE S qεd 0⋅=⎰lE l 0∇⋅=E ρε 0∇⨯=E 场位关系:3''()(')'4'-=-⎰r r E r r r r V q dV ρπε =-∇E φ 01()()d 4π''='-⎰r r |r r |V V ρφε介质中方程:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε 极化电荷:==⋅P e PS n n P ρ =-∇⋅P P ρ 2. 恒定电场基本规律电荷守恒定律:0∂∇⋅+=∂J tρ传导电流: =J E σ 与运流电流:ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0l⋅=⎰E l 0∇⋅=J 0∇⨯E =3. 恒定磁场基本规律真空中方程:0 d ⋅=⎰B l lI μ d 0⋅=⎰SB S 0∇⨯=B J μ 0∇⋅=B场位关系:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中方程:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μ m 00(1)=+B H =H =H r χμμμμ 磁化电流:m =∇⨯J M ms n =⨯J M e4. 电磁感应定律d d ⋅=-⋅⎰⎰S E l B S ld dt ∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S l S t ∂∇⨯=+∂DH J t 位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S l S l SSV Sl t l t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J B E D B t t ρ ()() ()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m e m e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H D B H J E J D B D B t t &t t ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B tt ρρ 三、边界条件 1. 一般形式12121212()0()()()0⨯-=⨯-=⋅-=⋅-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界面 和 理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第3章 静态场分析一、静电场分析1. 位函数方程与边界条件位函数方程: 220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解方法:2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε 3. 静电场的能量N 个导体: 112==∑ne i i i W q φ 连续分布: 12=⎰e V W dV φρ 电场能量密度:12D E ω=⋅e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E l E l J SE SSSUR G Id d σ (L R =σS )4. 静电比拟法:C —— G ,ε —— σ2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d q C Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ 连续分布:m 1d 2A J =⋅⎰V W V 磁场能量密度:m 12H B ω=⋅ 第4章 静电场边值问题的解一、边值问题的类型● 狄利克利问题:给定整个场域边界上的位函数值()=f s φ ● 纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ● 混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ ● 自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

相关文档
最新文档