云南省丽江市永北镇中学2013-2014学年八年级数学学科竞上学期赛试题
2013-2014学年第二学期八年级竞赛数学试卷(含答案)人教新课标
ADCB2013学年第二学期八年级竞赛数学试卷学号___________ 姓名____________ 得分___________一、 细心选一选(每题3分,共36分) 1.下列计算正确的是( ) A.B.C.D.2.要使二次根式有意义,则x 的取值范围是( )A .x B.x C. D.x3.一位卖运动鞋的经销商到一所学校对200名学生的鞋号进行了抽样调查,经销商最感兴趣的是这组鞋号的( )A .中位数 B.平均数 C.众数 D.方差 4.如果一个多边形的内角和为1800°则这是个( )边形A .9 B.10 C.11 D.125.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( ) A .5 B.4 C.2 D.86.若代数式x 2+5x +6与-x +1的值相等,则x 的值为( ) **=-1,x2=-5B.x1=-6,x2=1**=-2,x2=-3D.x=-17.在下列图形中,既是轴对称图形,又是中心对称图形的是( )8.如果等边三角形的边长为6,那么连接各边中点所成的三角形的周长为( ) ** B.9 C.12 D.18 9.用配方法解下列方程时,配方有错误的是( )**-2x -99=0化为(x -1)2=100 B.x2+8x+9=0化为(x+4)2=25 **-7t -4=0化为 D.3y2-4y -2=0化为10.平行四边形的对角线分别为a和b ,一边长为12,则a和b的值可能是下面各组的数据中的()A.8和4 B.10和14 C.18和20 D.10和3811. 如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是()A.70 B. 110 C. 140 D. 15012.设min{,}x y表示x,y两个数中的最小值,例如min{0,2}=0 ,min{12,8}8=,则关于函数min{2,2}y x x=+可表示为()A.2(2)2(2)x xyx x<⎧=⎨+≥⎩B.2(2)2(2)x xyx x+<⎧=⎨≥⎩C.2y x= D.2y x=+二、填空题(每题3分,共24分)13.在直角坐标系中,点A(2,-3)关于原点对称的点的坐标是__________,关于x轴对称的点的坐标是_____________.14.已知x=-1是关于x的方程的一个根,则a=_____________15. 一组正整数2,3,4,x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是______________16.用反证法证明“在三角形中,至少有一个内角大于或等于60°”时,应假设__________________________________17.函数与y=x-2图象的交点的横坐标分别为a,b,则的值为______18. 如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为______________第18题图19题图第20题图19. 学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星,若想得到一个正五角星(如图④,正五角星的5个角都是36°),则在图③中应沿什么角度剪即∠ABC的度数为_____________20.如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是________;四边形A 2012B 2012C 2012D 2012的周长是________ 三、 解答题(共60分) 21.(8分)化简计算:(1)1691214⨯⨯ (2)182)12)(12(12⨯+-++22.(8分)解方程(1)x 2+3x +1=0 (2)(x -2)(x -5)=-223.(8分)已知:如图,在正方形ABCD 中,AE ⊥BF ,垂足为P ,AE 与CD 交于点E ,•BF •与AD 交于点F ,求证:AE =BF .24.(8分)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:(1)共抽取了_____________名学生的体育测试成绩进行统计;(2)随机抽取的这部分学生中男生体育成绩的平均数是______,众数是______,女生体育成绩的中位数是___________(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?25.(8分)某百货大楼服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1050元,那么每件童装应降价多少元?26.(8分) 如图,病人按规定的剂量服用某药物,测得服药后2小时,每毫升血液中含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中含药量y (毫克)与时间x (小时)成正比例;2小时后y 与x 成反比例.(1)当0≤x ≤2时;x >2时,分别求y 与x 的函数关系式?(2)如果每毫升血液中含药量不低于2毫克时治疗有效,则那么服药一次,治疗疾病的有效时间是多长?27. (12分)将正方形ABCD 绕中心O 顺时针旋转角α得到正方形1111D C B A ,如图1所示. (1)当α=45o时(如图2),若线段OA 与边11D A 的交点为E ,线段1OA 与AB 的交点为F ,可得下列结论成立 ①EOP ∆≌FOP ∆②1PA PA =,试选择一个证明.(2)当o o 900<<α时,第(1)小题中的结论1PA PA =还成立吗?如果成立,请证明;如果不成立,请说明理由.(3)在旋转过程中,记正方形1111D C B A 与AB 边相交于P ,Q 两点,探究POQ ∠的度数是否发生变化?如果变化,请描述它与α之间的关系;如果不变,请直接写出POQ ∠的度数.答题卷一.选择题 (本大题共12小题, 每小题3分, 共36分)APBQ1B C1C D1DO图1DC1B BPFEOA1C1D图21A 1A二.填空题(本大题有8小题, 每小题3分, 共24分)13. 、 14. . 15. . 16. . 17. . 18. . 19. . 20. . 三、解答题(共8道小题,共50分) 21、(本题满分6分)化简计算:(1)1691214⨯⨯ (2)182)12)(12(12⨯+-++22、(本题满分6分)解方程(1)x 2+3x +1=0 (2)(x -2)(x -5)=-2 23.(8分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案24.(8分)(1)共抽取了_____________名学生的体育测试成绩进行统计;(2)随机抽取的这部分学生中男生体育成绩的平均数是______,众数是______;女生体育成绩的中位数是___________(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?25.(8分)26.(8分)27.(12分)APBQ1B C1C D1DO图1DC1B BP FEOA 1C1D图21A 1A参考答案一.选择题 (本大题共12小题, 每小题3分, 共36分) 二.填空题(本大题有8小题, 每小题3分, 共24分)13. (-2,3) 、 (2,3) 14. -2或1 . 15. 5 . 16. 三个内角都小于60° . 17. -2 . 18. 3 . 19. 126°. 20. 20 、21.(1)286 (2)7+22.(1) (2)x =3,或x =423.解:在(ASA ) AE =BF24.(1)80 (2) 26.4 27 27 (3)25.解:设每件童装应降价X 元,则26 (1) .(2)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACDCACBBCDA1A B1B C1CD1DOEFPQA 治疗疾病的有效时间是4小时。
八年级上学期数学竞赛试题(含答案)
分解因式:
解:原式=
=
=
=
=
此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:
(1)分解因式: ;
(2)无论 取何值,代数式 总有一个最小值,请你尝试用配方法求出它的最小值.
∵ = ,∴ ,………………………………………………7分
,得 .……………………………………………………………………9分
24.(12分)解:(1)由图可知, , ;…………………………4分
(2)由(1)可知,关于直线 对称的点 ;……………………………………7分
(3)作出点E关于直线 对称点F,连接FD,则QF=QE,故EQ+QD=FQ+QD=FD.
∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°,
∴△DEF仍为等腰直角三角形.…………………………………………………11分
26.(本题12分)解:(1) …………1分
………………………………3分
;………………………………6分
(2) …………………………7分
,………………………………8分
∴△DEF为等腰直角三角形 …………………………… 5分
(2)若E,F分别是AB,CA延长线上的点,如图所示.连结AD
∵AB=AC,∠BAC=90°, D为BC的中点,∴AD=BD,AD⊥BC
∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,
又AF=BE,∴△DAF≌△DBE(SAS),∴FD=ED,∠FDA=∠EDB,
3.下列运算错误的是
A. B.
人教版2012-2013八年级上竞赛题(含答案)
丽江市涛源中学 2012-2013学年度上学期初二数学竞赛试卷(满分:120分,时间:120分钟)一、细心择一择,你一定很准!(本大题共8小题,每小题3分,共24分.每小题给出四个答案,其中只有一个是正确的). 1.38-等于 ( )A 、2B 、-2C 、 ±2D 、 B 不存在 、 2.下列各数中,有理数是 ( )A 、2B 、8C 、2πD 、0、212212221… 3.已知点P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b )2012的值为( ) A 、0 B 、-1 C 、1 D 、 32012 4.观察下面的汽车标志图,不是轴对称图形的是( )A B C D5.如图,在△ABC 中,边AB 的垂直平分线分别交于AB 、BC 于点E 、D ,AE=3cm , △ADC 的周长为9cm ,则△ABC 的周长是( )A 、15 cmB 、12 cmC 、17 cmD 、10 cm 6.已知等腰三角形的两条边长分别为4和8,则它的周长为( )A . 16B . 20C . 16或20D .147. 如图3,△ABC 是等边三角形,BC ⊥CD ,且AC =CD ,则∠BAD 的度数为( )A 、50°B 、45°C 、40°D 、35°8. 已知一次函数y =kx +b ,y 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是 ( )A B C D二、仔细审题,认真填写哟!(本大题共9小题,每小题3分,共27分.请你把答案填在横线的上方). 9.命题“全等三角形的对应角相等”的逆命题是_____________________________, 这个逆命题是______(填“真”或“假”)。
10.据宁波市假日办统计数据显示,今年五一黄金周期间,全市旅游总收入达10.9亿元人民币,创历年新高,用科学计数法可记作 元.11.(2011•铜仁)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km ?设他家到学校的路程是xkm ,则据题意列出的方程是1281的平方根是 ,比较大小: 8____60。
2013--2014年八年级数学竞赛-试卷
城东校区2013-2014年第二学期八年级数学竞赛试卷时间100 分钟 满分100分题目 一 二 三 总分 得分一、选择题(每题4分,共32分)1.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A.5B.25C.7D.5或72.已知:a 、b 、c 是△ABC 的三边,化简=( )A .2a ﹣2bB .2b ﹣2aC .2cD .﹣2c3.表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )4.如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABDC与S四边形ECDF的大小关系是( )A .S 四边形ABDC =S 四边形ECDFB .S 四边形ABDC < S 四边形ECDF C .S 四边形ABDC =S 四边形ECDF +1D .S 四边形ABDC =S 四边形ECDF +25.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .176.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第13个“口”字需用棋子颗数为()A .52B .50C .48D .46·····························装··············订·············线··········································· 姓名班级 考号7. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h 2B. a 2+b 2=2h 2C.a 1+b 1=h1 D.21a +21b=21h8.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE =CF ②∠AEB =750③BE+DF =EF ④S 正方形ABCD =2+3,其中正确的序号是( ) 。
2014初中数学联赛初二年级
.
17 n k 15
【答】144.
由条件得 7 k 8 ,由 k 的唯一性,得 k 1 7 且 k 1 8 ,所以 2 k 1 k 1 8 7 1 ,
8n9
n8 n9
n n n 9 8 72
所以 n 144 .
当 n 144 时,由 7 k 8 可得126 k 128 , k 可取唯一整数值 127. 8n9
()
A.21
B.20
C.31
D.30
【答】 C.
2014 年全国初中数学联合竞赛初二年级试题参考答案 第 1 页(共 4 页)
可以称出的重物的克数可以为 1、2、3、4、5、6、7、8、9、10、20、21、22、23、24、25、26、27、
28、29、30、31、32、33、34、35、36、37、38、39、40,共 31 种.
x 2, y 3, z 1, xyz 6 .
6.已知△ ABC 的三边长分别为 2,3,4, M 为三角形内一点,过点 M 作三边的平行线,交各边于
D 、 E 、 F 、 G 、 P 、 Q (如图),如果 DE FG PQ x ,则 x =
()
18
A.
13
20
B.
13
22
C.
13
24
PAE 1 (BAD CAE) 1 (66 30) 18 ,
2
2
所以 PAC PAE CAE 18 30 48 .
EP
C
D
A
4.已知 n 为正整数,且 n4 2n3 6n2 12n 25 为完全平方数,则 n =
.
【答】8.
易知 n 1 , n 2 均不符合题意,所以 n 3 ,此时一定有
云南省丽江市八年级上学期数学期末考试试卷
云南省丽江市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2015八上·哈尔滨期中) 下列四个“QQ表情”图片中,不是轴对称图形的是()A .B .C .D .2. (2分) (2019八下·大名期中) 点关于轴对称点的坐标为()A .B .C .D .3. (2分) (2019八下·嘉兴期中) 在代数式和中,x均可以取的值为()A . 9B . 3C . 0D . -24. (2分) (2016八上·长春期中) 下列运算正确的是()A . a2+a3=2a5B . a6÷a2=a3C . a2•a3=a5D . (2ab2)3=6a3b65. (2分) (2017八上·山西月考) 下列等式从左到右的变形,属于因式分解的是()A . (a+b)(a﹣b)=a2﹣b2B . a2+4a+1=a(a+4)+1C . x3﹣x=x(x+1)(x﹣1)D .6. (2分) (2018八上·浦东期中) 下列根式是最简二次根式的是()A .B .C .D .7. (2分)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A . a2-b2=(a+b)(a-b)B . (a+b)2=a2+2ab+b2C . (a-b)2=a2-2ab+b2D . (a+2b)(a-b)=a2+ab-2b28. (2分)如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A . ①B . ②C . ③D . ①和②9. (2分)已知=,那么下列各式中一定成立的是()A . =B . =C . =D . =10. (2分)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2 ,则打开后梯形的周长是()A . (10+)cmB . (10+)cmC . 22cmD . 18cm二、填空题 (共4题;共4分)11. (1分) (2020八上·阳泉期末) 成人每天维生素D的摄入量约为0.000006克数据”0.0000046”用科学记数法表示为________。
2014年全国初中数学联合竞赛试题参考答案和评分标准
初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。
八年级数学上几何典型试题及答案
2013-2014学年八年级[上]数学期末试一.选择题(共10小题)1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.B C=EC,∠B=∠E B.B C=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.53.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()4.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.5.(2013•珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)6.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()223二.填空题(共10小题)11.(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是_________.12.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_________度.13.(2013•枣庄)若,,则a+b的值为_________.14.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n=_________.15.(2013•菏泽)分解因式:3a2﹣12ab+12b2=_________.16.(2013•盐城)使分式的值为零的条件是x=_________.17.(2013•南京)使式子1+有意义的x的取值范围是_________.18.(2012•茂名)若分式的值为0,则a的值是_________.19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:_________.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是_________.三.解答题(共8小题)21.(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE ⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC 上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C 运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=_________;如图2,若∠ACD=90°,则∠AFB= _________;如图3,若∠ACD=120°,则∠AFB=_________;(2)如图4,若∠ACD=α,则∠AFB=_________(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.2013-2014学年八年级[上]数学期末考试试卷参考答案与试题解析一.选择题(共10小题)1.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.B C=EC,∠B=∠E B.B C=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角应相等时,角必须是两边的夹角.2.(2011•恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()考点:角平分线的性质;全等三角形的判定与性质.专题:计算题;压轴题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三形的面积转化为另外的三角形的面积来求.3.(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△D ≌△DAC.4.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.6.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()8.(2013•烟台)下列各运算中,正确的是()A.3a+2a=5a2B.(﹣3a3)2=9a6C.a4÷a2=a3D.(a+2)2=a2+4考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可解答:解:A、3a+2a=5a,原式计算错误,故本选项错误;B、(﹣3a3)2=9a6,原式计算正确,故本选项正确;C、a4÷a2=a2,原式计算错误,故本选项错误;D、(a+2)2=a2+4a+4,原式计算错误,故本选项错误;故选B.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.9.(2012•西宁)下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.10.(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2考点:提公因式法与公式法的综合运用.分析:首先提取公因式y,再利用完全平方公式进行二次分解即可.解答:解:x2y﹣2y2x+y3=y(x2﹣2yx+y2)=y(x﹣y)2.故选:C.点评:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分要彻底.二.填空题(共10小题)11.(2013•资阳)如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是1+.考点:轴对称-最短路线问题;含30度角的直角三角形;翻折变换(折叠问题).专题:压轴题.分析:连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时BPE的周长最小,最小值是BE+PE+PB=BE+CD+DE=BC+BE,先求出BC和BE长,代入求出即可.解答:12.(2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.考点:等边三角形的性质;三角形的外角性质;等腰三角形的性质.专题:压轴题.分析:根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.点评:本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.13.(2013•枣庄)若,,则a+b的值为.考点:平方差公式.专题:计算题.分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.解答:14.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n=3.15.(2013•菏泽)分解因式:3a2﹣12ab+12b2=3(a﹣2b)2.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.解答:解:3a2﹣12ab+12b2=3(a2﹣4ab+4b2)=3(a﹣2b)2.故答案为:3(a﹣2b)2.点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再其他方法进行因式分解,注意因式分解要彻底.16.(2013•盐城)使分式的值为零的条件是x=﹣1.考点:分式的值为零的条件.分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:由题意,得x+1=0,解得,x=﹣1.经检验,x=﹣1时,=0.故答案是:﹣1.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0两个条件缺一不可.17.(2013•南京)使式子1+有意义的x的取值范围是x≠1.考点:分式有意义的条件.分析:分式有意义,分母不等于零.解答:解:由题意知,分母x﹣1≠0,即x≠1时,式子1+有意义.故填:x≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.18.(2012•茂名)若分式的值为0,则a的值是3.考点:分式的值为零的条件.专题:探究型.分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.解答:∴,解得a=3.故答案为:3.点评:本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.19.在下列几个均不为零的式子,x2﹣4,x2﹣2x,x2﹣4x+4,x2+2x,x2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:.考点:最简分式.专题:开放型.分析:在这几个式子中任意选一个作分母,任意另选一个作分子,就可以组成分式.因而可以写出的分式有很个,把分式的分子分母分别分解因式,然后进行约分即可.解答:解:==,故填:.点评:本题主要考查分式的定义,分母中含有字母的有理式就是分式.并且考查了分式的化简,首先要把分子分母分解因式,然后进行约分.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是.考点:最简分式.分析:首先将分子、分母均乘以100,若不是最简分式,则一定要约分成最简分式.本题特别注意分子、分母的一项都要乘以100.解答:解:分子、分母都乘以100得,,约分得,.点评:解题的关键是正确运用分式的基本性质.三.解答题(共8小题)21.(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.考点:分式的化简求值.分析:先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.解答:解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.点评:此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化乘法,最后约分;化简求值题要将原式化为最简后再代值.22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.考点:分式的化简求值;解二元一次方程组.专题:探究型.分析:先根据分式混合运算的法则把原式进行化简,再求出a、b的值代入进行计算即可.解答:23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).考点:因式分解-运用公式法.专题:规律型.分析:(1)利用平方差公式,将(2n+1)2﹣(2n﹣1)2化简,可得结论;(2)理解完全平方数的概念,通过计算找出规律.解答:解:(1)∵a n=(2n+1)2﹣(2n﹣1)2=4n2+4n+1﹣4n2+4n﹣1=8n,(3分)又n为非零的自然数,∴a n是8的倍数.(4分)这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数(5分)说明:第一步用完全平方公式展开各(1),正确化简(1分).(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.(7分)n为一个完全平方数的2倍时,a n为完全平方数(8分)说明:找完全平方数时,错一个扣(1),错2个及以上扣(2分).点评:本题考查了公式法分解因式,属于结论开放性题目,通过一系列的式子,找出一般规律,考查了同学们探究发现的能力.24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:(1)过点D作DM⊥AB于M,DN⊥AC于N,根据角平分线上的点到角的两边的距离相等可得DM=D 再根据∠AED+∠AFD=180°,平角的定义得∠AFD+∠DFN=180°,可以推出∠DFN=∠AED,然后利用角边定理证明△DME与△DNF全等,根据全等三角形对应边相等即可证明;(2)不一定成立,若DE、DF在点D到角的两边的垂线段上或垂线段与点A的两侧,则成立,若是同则不成立.解答:解:(1)DE=DF.25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.专题:压轴题;动点型.分析:(1))由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP 则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQ 是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,当点P、Q运动时,线段DE的长度不会改变.解答:解:(1)∵△ABC是边长为6的等边三角形,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,∴在△APE和△BQF中,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴当点P、Q运动时,线段DE的长度不会改变.点评:本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅线构造出全等三角形是解答此题的关键.26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.解答:证明:(1)由题意得,∠A+∠B=90°,∠A=∠D,∴∠D+∠B=90°,∴AB⊥DE.(3分)(2)∵AB⊥DE,AC⊥BD∴∠BPD=∠ACB=90°,∴在△ABC和△DBP,,∴△ABC≌△DBP(AAS).(8分)说明:图中与此条件有关的全等三角形还有如下几对:△APN≌△DCN、△DEF≌△DBP、△EPM≌△BFM.点评:此题考查了翻折变换及全等三角形的判定方法等知识点,常用的判定方法有SSS、SAS、AAS、HL等.27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.考点:翻折变换(折叠问题).分析:(1)由Rt△ABC中,∠C=90°,CM与AB垂直,易证得△ACM∽△ABC,然后由相似三角形的对应边比例,即可求得AM的长,即可得点M运动的时间;(2)分别从当点A′落在AB上时与当点A′落在BC上时去分析求解即可求得答案.解答:解:(1)∵Rt△ABC中,∠C=90°,CM⊥AB,28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;如图3,若∠ACD=120°,则∠AFB=60°;(2)如图4,若∠ACD=α,则∠AFB=180°﹣α(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.1.生活如意,事业高升。
八年级初二数学竞赛试习题及参考答案
欢迎阅读八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,ca b a b c k k +=-==++=,且那么的值为( ). A .2A .0x <C .3-<35++A .1015- C .10154E 、F 分别在A .100C .1105.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分) 7.方程组2008200200720062008x y x y -=⎧⎨-=⎩的解8:79n 13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且.⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .1314、⑴ ⑵ ∴554343322322x y x x y y x x x x y y y y +=+++=+++++++ 15、证明:作∠OBF=∠OAE 交AD 于F∵∠BAD=∠ABE ∴OA=OB又∠AOE=∠BOF∴△AOE ≌△BOF (ASA ) ∴AE=BF ∵AE=BD∴BF=BD ∴∠BDF=∠BFD1、。
2014八年级第一学期学科竞赛数学试卷附答案
2014八年级第一学期学科竞赛数学试卷附答案八年级第一学期学科竞赛数学试卷请同学们注意:1、本试卷分试题卷和答题卷两部分,满分为120分,考试时间为100分钟。
2、所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
3、考试结束后,只需上交答题卷,试卷请同学们妥然保管。
一、选择题(每小题3分,共3 6分)1.在平面直角坐标系中,点P(-1,2)的位置在 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列语句是命题的是( ) A.作直线AB的平行线 B.在线段AB上取一点CC.同角的余角相等D.垂线段最短是吗?3.满足不等式的最小整数是( ) A.-1 B.1C.2 D.34.如图所示,在Rt△ABC中,∠A90°,BD平分∠ABC,交AC于点D,且AB4,BD5,则点D到BC的距离是 A.3 B.4 C.5 D.65.下列判断正确的是( )A 、顶角相等的两个等腰三角形全等; B、有一边及一锐角相等的两个直角三角形全等;C、腰相等的两个等腰三角形全等;D、顶角和底边分别相等的两个等腰三角形全等。
6. 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为( )A. 20°B. 120°C. 20°或120°D. 36°7..根据下列条件判断,以a,b,c为边的三角形不是直角三角形的是A.a3,b4,c5B.a30, b60, c90C.a1, b, cD.a:b:c5:12:138. 已知点P1(a-1,4)和P2(2,b)关于x轴对称,则(a+b)2013 的值为( )A.72013B. -1C.1D.(-3)20139.下列判断正确的是( )A.若,则B.若,则C.若,则一定不等于D.若,且,则10..已知点E,F,A,B在直线上,正方形EFGH从如图所示的位置出发,沿直线向右匀速运动,直到EH与BC重合.运动过程中正方形EFGH与正方形ABCD重合部分的面积随时间变化的图像大致是() A B C D11.一次函数y1kx+b与y2x+a的图象如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是A.0 B.1C.2D.3如图,将一个等腰直角三角形ABC按图示方式依次翻折,若DE=,第11题则下列结论正确的有( )个。
2014年全国初中数学联赛(初二组)初赛试卷(含答案)
四川省2014年全国初中数学联赛(初二组)初赛试卷(3 月7 日下午4:00 —6:00)题号 ---------- *■-二二-三四五合计得分评卷人复核人、选择题(本小题满分42分,每小题7 分)1、化简1.3 2的值是( )\ H J IJzzLACL-3 2A、0B、2、、3C、 2.3D、42、实数a、b c 满足a b c0,abc1,则a、b c中正数的个数是( ).开始时4、如图,在矩形ABCD 中, AB=2,BC=3,AE是/ BAD的平分线,EF垂直于A E贝U AF的长为5、方程x6、在△ABC中,锐角、2、、5、•: 10x 3 1的解的Z B和/C的角平分线交点是、直角、无数个I,则Z BIC 是(C 、钝角D 、无法确定FA、0B、1C、2D、33、在一个圆柱形水池内,有一个进水管和一个出水管,进水管流水速度是出水管流水速度的两倍有一满池水,出水管开始放水,至叶也水只有一半池时,打开进水管放水(此时出水管不关)直到放满池水V随时间t的变化关系的图像是关闭进水管,再由出水管放完池水。
则在这一过程水池中的水量、填空题(本大题满分28分,每小题7分)1用火柴棍按照如下图所示的规律搭建三角形,“…”表示按照前面的规律一直搭建下去,当搭建到第n 个编号三角形的时候,所用火柴棍的根数是(用含有n的式子表示).A3狂厂???厶)\2、若a为整数,则关于x的方程(a 1)x a 1的所有整数解的和是x 3 a b3、a b为常数,且对任何实数x,都有 = 2 2 2成立,则b a= ______________ .(x +1)(x 2) x 1 x 24、在长方形纸片ABCD中,AB 1 BC 2,设E为边BC的中点,现将纸片折叠,使A E重合,则折痕将长方形纸片分成两部分中,较大部分面积与较小部分面积之比的值为_____________ .(本大题满分20分)解不等式x 2 3x 1如图,在等腰梯形ABCD中,A D//BC, DE BC于E,若DE 3, BD 5 ,求梯形ABCD的面积.E2 3 3已知正整数a、b满足(a b) a b ,试求a、b的值2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准 •第一试,选择题和填空题只设 7分和0分两档;第二试各题 请严格按照本评分标准规定的评分档次给分 ,不要再增加其他中间档次 •如果考生的解答方法和本解答不 同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次 ,给予相应的分数.一、选择题(本题满分42分,每小题7 分)1、C 2、B 3、B 4、D 5、D 6、C 二、填空题(本题满分 28分,每小题 7 分)1、 4n 1 2、4 3、 1 4、3三、(本大题满分20分)解不等式|X 2| 3X1解:(1)当X 2时,不等式化为2X 3X1,解此不等式得 X 3-故此时3X 2 ; (10 分)4 54(2)当X 2时,不等式化为X 23X 1, 解此不等式得X1 2此时X2.(15 分)3综上所述,不等式的解为:X . (20 分)4求梯形ABCD 的面积.因为a 、b 均为正整数,故四、(本大题满分25分)如图,在等腰梯形 ABCD 中,AD//BC ,DEBC 于 E .若 DE 3,BD 5 ,解:在直角△ BDE 中,由勾股定理有:BE .BD 2 DE 2 4 ;过D 作AC 的平行线交BC 的延长线于F ,连接DF 、CF , 则ACFD 是平行四边形,故 CF=AD , DF 所以DE 是等腰A DBF 底边上的高,故BF (5分)所以 S ABCD 1(BC AD)DE五、(本25分)已知正整数a 、 b 满足(a b ) 解:由已知得a ab b 则(a b)2 (a 1)2 (b 1)2AC2BE〔BF DE 122a 3b 3,试求 a 、 b , (5 分)2 .(10分)(25 分).b 的值. BD ,8 (15 分)(1)当 a=b 时,(a 1)2 (b 21) 1,即 a=b=2; (15 分)(2)当 ab 时,(a b)2从而(a 1)2 1 且(b 1)20 ;或者(a 1)20 且(b 1)2所以,a2,b1,b 2 . (20 分)综上所述,所求a,b的值是:a b 2;或者a 1,b 2 ;或者a 2,b 1 .(25分)。
云南省丽江市八年级上学期数学开学考试试卷
云南省丽江市八年级上学期数学开学考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题共有10小题,每小题3分,共30分) (共10题;共30分)1. (3分)在﹣6,2.0 ,,,π﹣1,中无理数的个数为()A . 2B . 3C . 4D . 52. (3分)在平面直角座标系xoy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().A . 10B . 9C . 7D . 53. (3分) (2017八下·朝阳期中) 平行四边形中,若,则的度数为()A .B .C .D .4. (3分)下列方程中2x﹣3y=1,x+y2=5,﹣=2,x﹣y=z,不是二元一次方程的有()个.A . 1B . 2C . 3D . 45. (3分) (2016八下·番禺期末) 在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A .B .C .D .6. (3分)某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A . 不赔不赚B . 赚了10元C . 赔了10元D . 赚了50元7. (3分)下列说法正确的是()A . 0.25是0.5 的一个平方根B . 正数有两个平方根,且这两个平方根之和等于0C . 7 2的平方根是7D . 负数有一个平方根8. (3分)若a>b,则下列关系一定成立的是()A . ac>bc;B . ac<bcC . a-c>b -cD . ac>bc9. (3分)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A .B .C .D .10. (3分)如图,已知DB⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=()A . 130°B . 150°C . 100°D . 140°二、填空题:(本大题共6个小题,每小题4分,共24分) (共6题;共24分)11. (4分)已知,则= ________12. (4分) (2017七下·保亭期中) ± =________; =________;|﹣ |=________;π﹣3.14的相反数是________.13. (4分)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问,需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?若设需安排x名工人加工大齿轮,y名工人加工小齿轮,则根据题意可得方程组________.14. (4分)一个三角形的三边长分别为xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,则x的取值范围是________15. (4分)已知直线a,b被直线c,d所截,a∥b,且直线c⊥直线a,直线d⊥直线b,则直线c与直线d 之间的位置关系是________ .(填“平行”“相交”或“垂直”)16. (4分) (2016七上·莘县期末) 两根细木条,一根长80厘米,另一根长130厘米,将它们其中的一端重合,放在同一条直线上,此时两根细木条的中点间的距离是________.三、解答题(本题共有5小题,共66分) (共5题;共66分)17. (12分) (2017七下·无锡期中) 解方程组:(1)(2)18. (14分)已知一元一次不等式mx﹣3>2x+m.(1)若它的解集是x<,求m的取值范围(2)若它的解集是x>,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.19. (14.0分) (2018九下·潮阳月考) 某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球 B.乒乓球 C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1) .这次被调查的学生共有________人,在扇形统计图中“D”对应的圆心角的度数为________;(2) .请你将条形统计图补充完整;(3) .在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).20. (14分) (2016七下·夏津期中) 请写出满足下列条件的一个不等式.(1) 0是这个不等式的一个解:________;(2)﹣2,﹣1,0,1都是不等式的解:________;(3) 0不是这个不等式的解:________;(4)与X≤﹣1的解集相同的不等式:________.21. (12分)(2014·内江) 如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN 于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.参考答案一、选择题(本题共有10小题,每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题:(本大题共6个小题,每小题4分,共24分) (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本题共有5小题,共66分) (共5题;共66分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、20-4、21-1、21-2、。
八年级上册竞赛试题.docx
定边二中2013——2014学年第二学期八年级数学全能竞赛试题时间:90分钟总分:100分命题人:赵彩霞一. 选择题:(每小题3分,共30分)1.下列数中最大的数是()(A) 2 (B) -2 (C)o (D) -32.若分式有意义,则X 的取值范围是()X-1(A) x=l (B)x>l (C)x #1 (D)x<l3.不等式组<2x + 4<2的解集在数轴上表示正确的是()x + 3 > 4(A)T ° 1(B)T ° 1T 0 1(C) (D) -1 0 14.如图,△ ABC中,AB=AC,D是边BC ±的一点,且点C在AD的垂直平分线上,若/BAD=15°,则ZBAC的大小是((C) 65°(D) 50°(A) 85°(B) 80°5.要使a5<a3<a<a2<a4成立, 则a的取值范围是()(A)0<a<l (B) a>l (C) -l<a<0 (D)a<-16.若.x+— = 2 ,9 1 则X +、= %-(A) 1 (B) 2 (0 3 (D)7.已知实数m 满足2013-m| +J〃z — 2014=m,那么m-2O13‘=((A)2011 (B) 2012 (C) 2013 (0)20148.古希腊著名的毕达哥拉斯学派把1, 3;6;10,o ....这样的数称为“三角形数”,而把1, 4, 9, 16,...这样的数称为"正方形数”。
从下图中可以发现,任何一个大于1的“正方形数” 都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的是())(C)3(D) 3. 210. 一次函数yi = kx + b 与y2 = x + a 的图象如图,则下列结论①k<0;②a>0;③当x<3时,)1冲中,正确的个数是((A) 0 (B)l (C)2(D)3二. 填空题:(每题3分,共18分)11. 无论 a,b 为何值,a 2+b 2-4a-4b+12. 0(填“N” “W”或"=”)12. 如图,已知函数y = 3x + b 和y = ax —3的图象交于点 P( —2, —5),则根据图象可得不等式3x + b>ax-3的解集是•13. 若等腰三角形的底为a ,顶角是底角的4倍,则该等腰三角形腰上的高是.14. 如图,ZAOB= 70° .QCXOA 于 C.QDXOB 于 D,若 QC=QD 厕 /AOQ=3.v -2a <115.已知不等式组 的解集是-1<X <1,那么(a+1)2x — b>3(b-l)= _________ .1 i2 43 9 16. 数与数之间的关系非常奇妙.例如:①1-—= 一,②2 ------ =—,③3 ------- =—,2 23 34 4根据式中所蕴含的规律可知第n 个式子是. 三. 解答题:(共52分)17. (9分)因式分解:(A) 13=3+10 (B) 25=9+16 (C) 36=15+21 (D) 49=18+319.如图,在AABC 中, AB=AC=5, BC=6,点 M 为 BC 的中点,MN±AC 于点 N,则 MN=()(A) 4 (B) 2. 4(1) -ab+^b2(2) (x+2) (x-3)-3x+10 (3) (x2+9y2) 2 - 36.v2y22x + 5 < 3(x + 2)(4分)解不等式组x —1 x ,并把解集在数轴上表示出来。
云南省丽江市永胜县永北中学2015-2016学年八年级(上)期末数学试卷(解析)
2015-2016学年云南省丽江市永胜县永北中学八年级(上)期末数学试卷一、选择题(题型注释)1.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是()A.4<c<12 B.12<c<24 C.8<c<24 D.16<c<242.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.3.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.64.下列运算正确的是()A.3a+2a=5a2B.x2﹣4=(x+2)(x﹣2)C.(x+1)2=x2+1 D.(2a)3=6a35.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.35°6.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C. +4=9 D.7.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于E点,如果BC=10,△BDC 的周长为22,那么△ABC的周长是()A.24 B.30 C.32 D.348.△ABC中,∠C=90°,AD为角平分线,BC=32,BD:DC=9:7,则点D到AB的距离为()A.18cm B.16cm C.14cm D.12cm9.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.910.计算2x3•(﹣x2)的结果是()A.﹣2x5B.2x5C.﹣2x6D.2x6二、填空题(题型注释)11.分解因式:m2n﹣2mn+n=.12.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手讲:“另两条边长为3、6或4.5、4.5”,你认为小明回答是否正确:,理由是.13.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.14.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是.(只填一个即可)15.已知分式,当x=2时,分式无意义,则a=;当a为a<6的一个整数时,使分式无意义的x的值共有个.16.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有条对角线.17.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=3,则点D到AB的距离是.18.关于x的方程的解是正数,则a的取值范围是.19.计算:=.20.已知x为正整数,当时x=时,分式的值为负整数.三、计算题(题型注释)21.计算:(1)﹣22+30﹣(﹣)﹣1(2)(﹣2a)3﹣(﹣a)•(3a)2(3)(2a﹣3b)2﹣4a(a﹣2b)(4)(m﹣2n+3)(m+2n﹣3).22.解方程:.23.先化简,再求值:,其中x=2,y=﹣1.四、解答题(题型注释)24.化简求值:(1),其中a=﹣,b=1(2),其中x满足x2﹣2x﹣3=0.25.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,求该种干果的第一次进价是每千克多少元?26.如图,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求证:∠E=∠D.27.己知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.2015-2016学年云南省丽江市永胜县永北中学八年级(上)期末数学试卷参考答案与试题解析一、选择题(题型注释)1.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是()A.4<c<12 B.12<c<24 C.8<c<24 D.16<c<24【考点】三角形三边关系.【分析】根据三角形的三边关系可求得a的范围,进一步可求得周长的范围.【解答】解:∵三角形的三边分别为4,a,8,∴8﹣4<a<8+4,即4<a<12,∴4+4+8<4+a+8<4+8+12,即16<c<24.故选D.【点评】本题主要考查三角形三边关系,掌握三角形两边之和大于第三边、两边之差小于第三边是解题的关键.2.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意.D、不是轴对称图形,不符合题意;故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4 C.5 D.6【考点】多边形内角与外角.【分析】设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【解答】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°=360°,n﹣2=2,n=4.故选B.【点评】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.4.下列运算正确的是()A.3a+2a=5a2B.x2﹣4=(x+2)(x﹣2)C.(x+1)2=x2+1 D.(2a)3=6a3【考点】幂的乘方与积的乘方;合并同类项;完全平方公式.【分析】A选项利用合并同类项得到结果,即可做出判断;B选项利用平方差公式计算得到结果,即可做出判断;C选项利用完全平方公式计算得到结果,即可做出判断;D选项利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3a+2a=5a,故原题计算错误;B、x2﹣4=(x+2)(x﹣2),故原题分解正确;C、(x+1)2=x2+2x+1,故原题计算错误;D、(2a)3=8a3,故原题计算错误.故选B.【点评】此题主要考查了平方差公式、合并同类项、幂的乘方与积的乘方、同底数幂的除法,关键是熟练掌握各计算法则.5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.35°【考点】平行线的性质.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.故选A.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.6.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C. +4=9 D.【考点】由实际问题抽象出分式方程.【专题】应用题.【分析】本题的等量关系为:顺流时间+逆流时间=9小时.【解答】解:顺流时间为:;逆流时间为:.所列方程为: +=9.故选A.【点评】未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.7.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于E点,如果BC=10,△BDC 的周长为22,那么△ABC的周长是()A.24 B.30 C.32 D.34【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由AB的中垂线DE交AC于点D,交AB于点E,可得AD=BD,又由BC=10,△DBC的周长为22,可求得AC的长,继而求得答案.【解答】解:∵AB的中垂线DE交AC于点D,交AB于点E,∴AD=BD,∵△DBC的周长为22,∴BC+CD+BD=BC+CD+AD=BC+AC=22,∵BC=10,∴AC=12,∵AB=AC,∴AB=12,∴△ABC的周长为12+12+10=34,故选D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.8.△ABC中,∠C=90°,AD为角平分线,BC=32,BD:DC=9:7,则点D到AB的距离为()A.18cm B.16cm C.14cm D.12cm【考点】角平分线的性质.【分析】根据题意画出图形分析.根据已知线段长度和关系可求DC的长;根据角平分线性质解答.【解答】解:如图所示.作DE⊥AB于E点.∵BC=32,BD:DC=9:7,∴CD=32×=14.∵AD平分∠CAB,∠C=90°,DE⊥DE,∴DE=DC=14.即D点到AB的距离是14cm.故选C.【点评】此题考查角平分线的性质,属基础题.9.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.10.计算2x3•(﹣x2)的结果是()A.﹣2x5B.2x5C.﹣2x6D.2x6【考点】单项式乘单项式.【分析】先把常数相乘,再根据同底数幂的乘法性质:底数不变指数相加,进行计算即可.【解答】解:2x3•(﹣x2)=﹣2x5.故选A.【点评】本题考查了同底数幂的乘法,牢记同底数幂的乘法,底数不变指数相加是解题的关键.二、填空题(题型注释)11.分解因式:m2n﹣2mn+n=n(m﹣1)2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取公因式后,利用完全平方公式分解即可.【解答】解:原式=n(m2﹣2m+1)=n(m﹣1)2.故答案为:n(m﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手讲:“另两条边长为3、6或4.5、4.5”,你认为小明回答是否正确:不正确,理由是两边之和不大于第三边.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】根据等腰三角形的性质,确定出另外两边后,还需利用“两边之和大于第三边”判断能否构成三角形.【解答】解:当另两条边长为3、6时,∵3+3=6,不能构成三角形,∴另两条边长为3、6错误;当另两条边长为4.5、4.5时,4.5+3>4.5,能构成三角形;∴另两条边长为3、6或4.5、4.5,不正确,故答案为:不正确,两边之和不大于第三边.【点评】本题主要考查了等腰三角形的性质与三角形三边关系,利用三角形三边关系作出判断是解答此题的关键.13.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.14.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE.(只填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE 等.【解答】解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.15.已知分式,当x=2时,分式无意义,则a=6;当a为a<6的一个整数时,使分式无意义的x的值共有2个.【考点】分式有意义的条件;根与系数的关系.【专题】计算题.【分析】根据分式无意义的条件:分母等于零求解.【解答】解:由题意,知当x=2时,分式无意义,∴分母=x2﹣5x+a=22﹣5×2+a=﹣6+a=0,∴a=6;当x2﹣5x+a=0时,△=52﹣4a=25﹣4a,∵a<6,∴△=25﹣4a>0,故当a<6的整数时,分式方程有两个不相等的实数根,即使分式无意义的x的值共有2个.故答案为6,2.【点评】本题主要考查了分式无意义的条件及一元二次方程根的判别式.(2)中要求当a<6时,使分式无意义的x的值的个数,就是判别当a<6时,一元二次方程x2﹣5x+a=0的根的情况.16.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6条对角线.【考点】多边形内角与外角;多边形的对角线.【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数.【解答】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,故答案为:6.【点评】此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n﹣2).17.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=3,则点D到AB的距离是3.【考点】角平分线的性质.【分析】作DE⊥AB于E,根据角平分线的性质得到答案.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DE=CD=3,故答案为:3.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.关于x的方程的解是正数,则a的取值范围是a<﹣1且a≠﹣2.【考点】分式方程的解.【分析】先去分母得2x+a=x﹣1,可解得x=﹣a﹣1,由于关于x的方程的解是正数,则x>0并且x﹣1≠0,即﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2.【解答】解:去分母得2x+a=x﹣1,解得x=﹣a﹣1,∵关于x的方程的解是正数,∴x>0且x≠1,∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,∴a的取值范围是a<﹣1且a≠﹣2.故答案为:a<﹣1且a≠﹣2.【点评】本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.19.计算:=.【考点】分式的混合运算.【专题】计算题.【分析】根据分式的减法和除法可以解答本题.【解答】解:===,故答案为:.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.20.已知x为正整数,当时x=3,4,5,8时,分式的值为负整数.【考点】分式的值.【分析】由分式的值为负整数,可得2﹣x<0,解得x>2,又因为x为正整数,代入特殊值验证,易得x的值为3,4,5,8.【解答】解:由题意得:2﹣x<0,解得x>2,又因为x为正整数,讨论如下:当x=3时,=﹣6,符合题意;当x=4时,=﹣3,符合题意;当x=5时,=﹣2,符合题意;当x=6时,=﹣,不符合题意,舍去;当x=7时,=﹣,不符合题意,舍去;当x=8时,=﹣1,符合题意;当x≥9时,﹣1<<0,不符合题意.故x的值为3,4,5,8.故答案为3、4、5、8.【点评】本题综合性较强,既考查了分式的符号,又考查了分类讨论思想,注意在讨论过程中要做到不重不漏.三、计算题(题型注释)21.计算:(1)﹣22+30﹣(﹣)﹣1(2)(﹣2a)3﹣(﹣a)•(3a)2(3)(2a﹣3b)2﹣4a(a﹣2b)(4)(m﹣2n+3)(m+2n﹣3).【考点】整式的混合运算.【专题】计算题.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方及幂的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【解答】解:(1)原式=﹣4+1﹣(﹣2)=﹣4+1+2=﹣1;(2)原式=﹣8a3+9a3=a3;(3)原式=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2;(4)原式=m2﹣(2n﹣3)2=m2﹣4n2+12n﹣9.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.22.解方程:.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5(x﹣1)﹣(x+3)=0,去括号得:5x﹣5﹣x﹣3=0,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.先化简,再求值:,其中x=2,y=﹣1.【考点】分式的化简求值.【分析】首先对分式进行化简,把分式化为最简分式,然后把x、y的值代入即可.【解答】解:==•=,当x=2,y=﹣1时,原式==.【点评】本题主要考查分式的化简、分式的四则混合运算、分式的性质,解题关键在于把分式化为最简分式.四、解答题(题型注释)24.化简求值:(1),其中a=﹣,b=1(2),其中x满足x2﹣2x﹣3=0.【考点】分式的化简求值.【专题】计算题.【分析】(1)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把a与b的值代入计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:(1)原式=1﹣•=1﹣==,当a=﹣,b=1时,原式=4;(2)原式=•(x﹣1)=x2﹣2x﹣1,由x2﹣2x﹣3=0,得到x2﹣2x=3,则原式=3﹣1=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,求该种干果的第一次进价是每千克多少元?【考点】分式方程的应用.【分析】设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元.根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解.【解答】解:设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.如图,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求证:∠E=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先由等角对等边得出AB=CB,再由HL证明Rt△EAB≌Rt△DCB,得出对应角相等即可.【解答】证明:在△ABC中,∵∠BAC=∠BCA,∴AB=CB,∵∠BAE=∠BCD=90°,在Rt△EAB和Rt△DCB中,,∴Rt△EAB≌Rt△DCB(HL),∴∠E=∠D.【点评】本题考查了等腰三角形的判定、全等三角形的判定与性质;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.27.己知:如图,E、F分别是▱ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连接MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.【考点】全等三角形的判定;平行四边形的判定.【专题】几何综合题.【分析】(1)根据平行四边形的性质和全等三角形的判定,在△ABE和△CDF中,很容易确定SAS,即证结论;(2)在已知条件中求证全等三角形,即△ABE≌△CDF,△MBF≌△NDE,得两对边分别对应相等,根据平行四边形的判定,即证.【解答】证明:(1)∵▱ABCD中,AB=CD,∠A=∠C,又∵AE=CF,∴△ABE≌△CDF;(2)四边形MFNE平行四边形.由(1)知△ABE≌△CDF,∴BE=DF,∠ABE=∠CDF,又∵ME=BM=BE,NF=DN=DF∴ME=NF=BM=DN,又∵∠ABC=∠CDA,∴∠MBF=∠NDE,又∵AD=BC,AE=CF,∴DE=BF,∴△MBF≌△NDE,∴MF=NE,∴四边形MFNE是平行四边形.【点评】此题考查了平行四边形的判定和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.。
云南省丽江市八年级上学期数学期末考试试卷
云南省丽江市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.则抽取的两张卡片上的算式都正确的概率是()A .B .C .D .2. (2分)下列变形,属于因式分解的有()①x2﹣16=(x+4)(x﹣4);②x2+3x﹣16=x(x+3)﹣16;③(x+4)(x﹣4)=x2﹣16;④.A . 1个B . 2个C . 3个D . 4个3. (2分) (2018八上·新乡期末) 如图,下列条件中,不能证明△ABD≌△ACD的是()A . BD=DC ,AB=ACB . ∠ADB=∠ADC,∠BAD=∠CADC . ∠B=∠C, BD=DCD . ∠B=∠C ,∠BAD=∠CAD4. (2分) (2020九下·信阳月考) 下列各式计算正确的是()A . a6÷a2=a3B . (﹣2a3)2=4a6C . 2a2﹣a2=2D . (a+b)2=a2+b25. (2分) (2020七下·顺德月考) 计算(x-3)(x+2)的结果为()A . -6B . -x+6C . -x-6D . +x-66. (2分) (2011七下·广东竞赛) 计算:的值等于()A .B . -C .D .7. (2分) (2019八上·和平期中) 等腰三角形的顶角为36°,则底角为()A .B .C .D .8. (2分) (2017七下·丰城期末) 如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()A . 70°B . 100°C . 110°D . 120°9. (2分)(2017·揭西模拟) 如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M,N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是()A .B .C .D .二、填空题 (共8题;共8分)10. (1分)(2018七上·平顶山期末) 设有理数a,b,c在数轴上的对应点如图,则|b-a|+|a+c|+|c-b|=________.11. (1分)(2018·覃塘模拟) 因式分解: ________.12. (1分)(2019·宝鸡模拟) 点A(3,﹣2)关于y轴的对称点B在反比例函数y=的图象上,则B点的坐标为________;k=________.13. (1分) (2020七下·门头沟期末) 计算: (p - 5)0= (________).14. (1分) (2019九上·北京期中) 如图,点A , B , C , D都在⊙O上,C是弧BD的中点,AB=CD .若∠ODC=50°,则∠ABC的度数为________°.15. (1分) (2018八上·潘集期中) 如图,在 ABC中,∠C=90°,AD平分∠BAC ,DE⊥AB于E ,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB .一定成立的结论有________(填序号).16. (1分)(2017·安顺) 如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________.17. (1分) (2019八下·乐清期末) 如图,正方形面积为1,延长至点G,使得,以为边在正方形另一侧作菱形,其中,依次延长类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点则四边形的面积为________.三、解答题 (共8题;共64分)18. (10分)(2017·老河口模拟) 先化简,再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ﹣,y= ﹣.19. (10分) (2020八上·郑州期末) 计算或因式分解(1)计算:(a2-4)÷ ;(2)因式分解:a(n-1)2-2a(n-1)+a.20. (5分) (2018七上·江岸期末) 化简求值:其中a=,b=-2.21. (5分) (2020八下·陇县期末) 如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A 作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.求证:△AHF为等腰直角三角形.22. (10分) (2019八上·蒙自期末) 如图,在平面直角坐标系中,,, .(1)在图中作出关于轴对称的;(2)写出的坐标;(3)在轴上是否存在点,使得最小,若存在,请直接写出点的坐标.23. (2分) (2017九上·安图期末) 如图,在平面直角坐标系中,点O为坐标原点,平移抛物线y=x2﹣2x+3,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A,O,B为顶点的三角形是等腰直角三角形,求平移后的抛物线的解析式.24. (7分) (2019七下·嵊州期末)(1)若m2+n2=13,m+n=3,则mn=________ 。