小学奥数最大值最小值问题汇总

合集下载

最新小学奥数 最大最小问题

最新小学奥数  最大最小问题

最新小学奥数最大最小问题同学们在学习中经常能碰到求最大最小或最多最少的问题,这一讲就来讲解这个问题。

例1两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?分析与解:将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,1×14=14;15=2+13,2×13=26;15=3+12,3×12=36;15=4+11,4×11=44;15=5+10,5×10=50;15=6+9,6×9=54;15=7+8,7×8=56。

由此可知把15分成7与8之和,这两数的乘积最大。

结论1如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。

特别地,当这两个数相等时,他们的乘积最大。

例2比较下面两个乘积的大小:a=57128463×87596512,b=57128460×87596515。

分析与解:对于a,b两个积,它们都是8位数乘以8位数,尽管两组对应因数很相似,但并不完全相同。

直接计算出这两个8位数的乘积是很繁的。

仔细观察两组对应因数的大小发现,因为57128463比57128460多3,87596512比87596515少3,所以它们的两因数之和相等,即57128463+87596512=57128460+87596515。

因为a的两个因数之差小于b的两个因数之差,根据结论1可得a >b。

例3用长36米的竹篱笆围成一个长方形菜园,围成菜园的最大面积是多少?分析与解:已知这个长方形的周长是36米,即四边之和是定数。

长方形的面积等于长乘以宽。

因为长+宽=36÷2=18(米),由结论知,围成长方形的最大的面积是9×9=81(米2)。

例3说明,周长一定的长方形中,正方形的面积最大。

例4两个自然数的积是48,这两个自然数是什么值时,它们的和最小?分析与解:48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。

小学五年级奥数第38讲 最大最小问题(含答案分析)

小学五年级奥数第38讲 最大最小问题(含答案分析)

第38讲最大最小问题一、专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。

解答最大最小问题通常要用下面的方法:1、枚举比较法。

当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。

二、精讲精练例题1把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。

问这个和最大值是多少?练习一1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。

例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。

把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?练习二1、一把钥匙只能开一把锁。

现有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁。

最多要试开多少次才能配好全部钥匙和锁?2、如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。

那么年龄最大的最多是几岁?例题3 一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)练习三1、一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。

2、如下图,有两条垂直相交的线段AB、CD,交点为E。

已知DE=2CE,BE=3AE。

在AB和CD取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?例题4一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。

五年级奥数最值问题

五年级奥数最值问题

五年级奥数最值问题一、最值问题题目及解析。

(一)题目1。

1. 题目。

用1、2、3、4、5、6这六个数字组成两个三位数,使这两个三位数的乘积最大,这两个三位数分别是多少?2. 解析。

要想让乘积最大,较大的数应在高位。

所以百位分别为6和5;十位分别为4和3;个位分别为2和1。

根据“和一定,差小积大”的原则,两个数为631和542时乘积最大。

(二)题目2。

1. 题目。

将1 - 9这九个数字填入下面的九个方格中,使得三个三位数的乘积最大,该怎么填?□□□×□□□×□□□.2. 解析。

要使得乘积最大,就要让每个因数都尽可能大。

首先百位分别为9、8、7;十位分别为6、5、4;个位分别为3、2、1。

按照“和一定,差小积大”的原则,最大的组合是941×852×763。

(三)题目3。

1. 题目。

一个长方形的周长是20厘米,它的长和宽都是整数厘米,那么这个长方形面积的最大值是多少平方厘米?2. 解析。

长方形周长 = 2×(长 + 宽),已知周长为20厘米,则长+宽=10厘米。

长和宽是整数,当长 = 5厘米,宽 = 5厘米(此时为正方形,正方形是特殊的长方形)时面积最大,面积为5×5 = 25平方厘米。

(四)题目4。

1. 题目。

有10个互不相同的自然数,它们的和是55,其中最大的数最大可能是多少?2. 解析。

要使最大的数最大,那么其他的数就要尽可能的小。

最小的9个自然数为0、1、2、3、4、5、6、7、8,它们的和为0 +1+2+3+4+5+6+7+8 = 36。

那么最大的数为55 - 36=19。

(五)题目5。

1. 题目。

若干个连续自然数的和是1994,这些自然数中最小的一个数是多少?2. 解析。

设这些连续自然数中最小的数为n,共有m个连续自然数。

根据等差数列求和公式S=((n + n + m - 1)m)/(2)=1994,即(2n+m - 1)m = 3988。

小学奥数分类型讲解(60种)

小学奥数分类型讲解(60种)

小学奥数类型集锦1、最值问题【最小值问题】例1 外宾由甲地经乙地、丙地去丁地参观。

甲、乙、丙、丁四地和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。

为了保证安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都相等。

现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。

(《中华电力杯》少年数学竞赛决赛第一试试题)讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。

他们将上面的线段分为了2个2500米,2个4000米,2个2000米。

现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。

由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数是(5000+8000+4000)÷500+1=35(名)。

例2 在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图5.92所示,它们爬行的速度相等。

若要求它们同时出发会面,那么,应选择哪点会面最省时?(湖南怀化地区小学数学奥林匹克预赛试题)讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须三者同时到达,即各自行的路程相等。

我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。

这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。

所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB。

故,O点即为三只蚂蚁会面之处。

【最大值问题】例1 有三条线段a、b、c,并且a<b<c。

判断:图5.94的三个梯形中,第几个图形面积最大?(全国第二届“华杯赛”初赛试题)讲析:三个图的面积分别是:三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。

小学奥数最大值最小值问题汇总

小学奥数最大值最小值问题汇总

小学奥数最大值最小值问题汇总1. _____________________________________________________ 三个自然数的和为15,这三个自然数的乘积最大可能是 _______________ 。

3. _________________________________________________ —个长方形周长为24厘米,当它的长和宽分别是_____________________ 厘米、_______ 厘米时面积最大,面积最大是__________ 平方厘米。

4. 现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应是_________ 米,宽应是 _________ 米。

5 .将16拆成若干个自然数的和,要使和最大,应将16拆成__________ 。

6 .从1, 2 , 3,…,2003这些自然数中最多可以取 ____________ 个数,才能使其中任意两个数之差都不等于5。

7. __________________________________________________ —个两位小数保留整数是6,这个两位小数最大是____________________ ,最小是________ O8. 用1克、2克、4克、8克、16克的砝码各一个和一架天平,最多可以称出________ 种不同的整数的重量。

9. 有一架天平,左右都可以放砝码,要称出1〜80克之间所有整克数的重量,如果使砝码个数尽可能少,应该用__________ 的砝码。

10 .如下图,将1〜9这9个数填入圆圈中,使每条线上的和相等,使和为A,A最大是_______ 。

二、解答题(30分)1. 把19分成若干个自然数的和,如何分才能使它们的积最大?2. 把1〜6这六个数分别填在下图中三角形三条边的六个圆圈内,使每条边上三个圆圈内的数的和相等,求这个和的最大值与最小值。

(完整版)最大和最小问题

(完整版)最大和最小问题

华西英语培训学校——四年级奥数第三讲最大和最小问题1、最短的时间内完成作业,有更多时间去发展自己的业余爱好2、怎样乘车路程最短,话费时间最少3、怎样做可以使原材料最省4、大桥在什么位置,才能方便附件可能多数居民例1:幼儿园老师要把100根小棒分给小朋友做数学游戏,每个小朋友分的小棒根数不同。

那么,最多能分给几个小朋友?例2:把自然数1、2、3……19依次排列,1234567891011……1819,划去24个数字后得到一个多位数,这个数最大是多少?练习:1、先从0、1、2、4、6、8、9这七个数字中,选出5个数字组成一个能被5整除并且尽可能大的五位数,这个五位数是多少?2、小明看一本90页的童话故事,每天看的页数不同,而且一天中最少看3页,那么小明看完这本说最多需要几天?3、把自然数1、2、3……39、40依次排列,1234567891011……3940,划去65个数字后得到一个多位数,这个数最大是多少?观察下面两组算式的结果怎样变化,由此得出什么规律10=1+9 1×9=910=2+8 2×8=1610=3+7 3×7=2110=4+6 4×6=2410=5+5 5×5=25规律1:两个数的,这两个数和一定时,这两个数越接近,它们的乘积越大;当两个数相等时,它们的乘积最大。

例3:周长为36米的竹篱笆围成一个长方形菜园,要使菜园的面积最大,它的长和宽应该是多少?这时的最大面积是多少?观察下面两组算式的结果怎样变化,由此得出什么规律?16=1×16 1+16=1716=2×8 2+8=1016=4×4 4+4=8规律2:两数的积一定时,这两个数越接近,它们的和越小;当两个数相等时,它们的和最小。

例4:用竹篱笆围一个面积为25平方米的长方形菜园。

这个长方形的长、宽各是多少米时,最省材料?练习:1、a,b是两个自然数,a+b=16,那么a×b最大是多少?2、a,b是两个自然数,a×b=49,那么a+b最小是多少?3、用40厘米长的铁丝围成的长方形(不计接头长度)中,最大一个的面积是多少平方米?4、教室一个窗户的面积是225平方分米,怎样设计窗户的形状和尺寸最省材料?5、把14拆成两个数的和。

6奥—25最大最小问题

6奥—25最大最小问题
把16拆成几个自然数的和,再求出这些数的 乘积,如何拆解可以使乘积最大?
动动手,动动脑
把50拆成几个自然数的和,再求出这些数的 乘积,如何拆解可以使乘积最大?
动动手,动动脑
把2001拆成几个自然数的和,再求出这些数 的乘积,如何拆解可以使乘积最大?
例题
04
三个连续自然数,后面两个数的积与前面 两个数的积之差是114。这三个数中最小的 是多少?
03 数字是最小数字的2倍,这6个三位数中最小的数是
多少?
02Βιβλιοθήκη 练一练1、三个连续的奇数,后两个数的积与前两 个数的积之差是252。三个数中最小的数是______.
练一练
2、a、b、c是从小到大排列的三个数, 且a-b=b-c,前两个数的积与后两个 数的积之差是280。如果b=35,那么c是_____。
练一练
例题5
三个数字能组成6个不同的三位数。这6 个三位数的和是2886。求所有这样的6 个三位数中的最小的三位数。
05
练一练
1、有三个数字能组成6个不同的三位数。这6个不同的
01
三位数的和是3108。所有这样的6个三位数中最大的一 个是多少?
练一练
02
2、 有三个数字能组成6个不同的三位数。这6 个不同的三位数的和是2220。所有这样的6
个三位数中最小的一个是多少?
练一练
3、用a、b、c能组成6个不同的三位数。这6个三位数 相加的和是2886。已知a、b、c三个数字中,最大的
a和b是小于100的两个不同的自然数, 求的最大值。
例题1
练习1: 11111
练一练
练一练
练一练
例题2
111111
练一练
2、111111111

小学奥数最大值最小值问题汇总只是分享

小学奥数最大值最小值问题汇总只是分享

小学奥数最大值最小值问题汇总1.三个自然数的和为15,这三个自然数的乘积最大可能是_______。

3.一个长方形周长为24厘米,当它的长和宽分别是_______厘米、_______厘米时面积最大,面积最大是_______平方厘米。

4.现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应是_______米,宽应是_______米。

5.将16拆成若干个自然数的和,要使和最大,应将16拆成_______。

6.从1,2,3,…,2003这些自然数中最多可以取_______个数,才能使其中任意两个数之差都不等于5。

7.一个两位小数保留整数是6,这个两位小数最大是_______,最小是_______。

8.用1克、2克、4克、8克、16克的砝码各一个和一架天平,最多可以称出_______种不同的整数的重量。

9.有一架天平,左右都可以放砝码,要称出1~80克之间所有整克数的重量,如果使砝码个数尽可能少,应该用_______的砝码。

10.如下图,将1~9这9个数填入圆圈中,使每条线上的和相等,使和为A,A最大是_____。

二、解答题(30分)1.把19分成若干个自然数的和,如何分才能使它们的积最大?2.把1~6这六个数分别填在下图中三角形三条边的六个圆圈内,使每条边上三个圆圈内的数的和相等,求这个和的最大值与最小值。

3.自行车的前轮轮胎行驶9000千米后要报废,后轮轮胎行驶7000千米后要报废。

前后轮可在适当时候交换位置。

问一辆自行车同时换上一对新轮胎,最多可行驶多少千米?4.如下图,有一只轮船停在M点,现需从OA岸运货物到OB岸,最后停在N点,这只船应如何行走才能使路线最短?5.甲、乙两厂生产同一型号的服装,甲厂每月生产900套,其中上衣用18天,裤子用12天;乙厂每月也生产900套,但上衣用15天,裤子也要用15天。

两厂合并后,每月最多可以生产多少套衣服? 6.现在有若干千克苹果,把苹果装入筐中,要求能取出1~63千克所有整千克数的苹果,并且每次都是整筐整筐地取出。

(完整版)小学奥数最值问题

(完整版)小学奥数最值问题

最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

(完整版)小学奥数最值问题

(完整版)小学奥数最值问题

最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

最大值最小值问题

最大值最小值问题
5、1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。那么这两个四位数各是多少?
例6、某国家的货币中有1元、3元、5元、7元、9元五种,为了能支付1元、2元……100元的钱数(整数元),那么至少需要准备货币多少张?
例7、a和b是小于100的两个不同的自然数,求 的最大值。
例8、有甲、乙两个两位数,甲数 等于乙数的 。这两个两位数的差最多是多少?
5、甲、乙两数都是三位数,如果甲数的 恰好等于乙数的 。这两个两位数的和最小是多少?
6、如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。问:这样的数对共有多少个?
7、要砌一个面积为72米2的长方形猪圈,长方形的边长以米为单位都是自然数,这个猪圈的围墙最少长多少米?
8、某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有多少人?
例11、某学校,星期一有15名学生迟到,星期二有12名学生迟到,星期三有9名学生迟到,如果有22名学生在这三天中至少迟到过一次,则这三天都迟到的学生最多有多少人?
例3、如图,司机开车按顺序到五个车站接学生到学校,每个站都有学生上车。第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半。车到学校时,车上最少有多少学生?
P(Practice-Oriented)——实战演练
课堂狙击
1、两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?
2、设自然数n有下列性质:从1、2……n中任取50个不同的数,其中必有两数之差等于7,这样的n最大不能超过多少?
4、有甲、乙两个两位数,甲数的 等于乙数的 。这两个两位数的差最多是多少?
9、一个布袋中有红、黄、绿三种颜色的小球各10个,这些小球的大小均相同,红色小球上标有数字“4”,黄色小球上标有数字“5”,绿色小球上标有数字“6”。小明从袋中摸出8个球,它们的数字和是39,其中最多可能有多少个球是红色的?

(完整)四年级奥数之最值问题

(完整)四年级奥数之最值问题

四年级奥数之最值问题知识点睛:在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”。

“最大”、“最小”是我们所熟悉的两个概念,多年来各级数学竞赛中经常会出现求最值问题,解决办法有:一、枚举法例1一把钥匙只能开一把锁,现在有4把钥匙4把锁。

但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?(北京市第三届“迎春杯”数学竞赛试题)分析与解开第一把锁,按最坏情况考虑试了3把还未成功,则第4把不用试了,它一定能打开这把锁,因此需要3次。

同样的道理开第二把锁最多试2次,开第三把锁最多试1次,最后一把锁则不用再试了。

这样最多要试的次数为:3+2+1=6(次)。

二、综合法例2x3=84A(x、A均为自然数)。

A的最小值是______。

(1997年南通市数学通讯赛试题)分析与解根据题意,84A开立方的结果应为自然数,于是我们可以把84分解质因数,得84=2×2×3×7,因此x3=2×2×3×7×A,其中A的质因数至少含有一个2、两个3、两个7,才能满足上述要求。

即A的最小值为(2×3×3×7×7=)882。

三、分析法例3一个三位数除以43,商是a,余数是b,(a、b均为自然数),a+b 的最大值是多少?(广州市五年级数学竞赛试题)分析与解若要求a+b的最大值,我们只要保证在符合题意之下,a、b尽可能大。

由乘除法关系得43a+b=一个三位数因为b是余数,它必须比除数小,即b<43b的最大值可取42。

根据上面式子,考虑到a不能超过23。

(因为24×43>1000,并不是一个三位数)当a=23时,43×23+10=999,此时b最大值为10。

当a=22时,43×22+42=988,此时b最大值为42。

显然,当a=22,b=42时,a+b的值最大,最值为22+42=64。

小学奥数最大值最小值问题汇总讲解学习

小学奥数最大值最小值问题汇总讲解学习

小学奥数最大值最小值问题汇总1.三个自然数的和为15,这三个自然数的乘积最大可能是_______。

3.一个长方形周长为24厘米,当它的长和宽分别是_______厘米、_______厘米时面积最大,面积最大是_______平方厘米。

4.现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应是_______米,宽应是_______米。

5.将16拆成若干个自然数的和,要使和最大,应将16拆成_______。

6.从1,2,3,…,2003这些自然数中最多可以取_______个数,才能使其中任意两个数之差都不等于5。

7.一个两位小数保留整数是6,这个两位小数最大是_______,最小是_______。

8.用1克、2克、4克、8克、16克的砝码各一个和一架天平,最多可以称出_______种不同的整数的重量。

9.有一架天平,左右都可以放砝码,要称出1~80克之间所有整克数的重量,如果使砝码个数尽可能少,应该用_______的砝码。

10.如下图,将1~9这9个数填入圆圈中,使每条线上的和相等,使和为A,A最大是_____。

二、解答题(30分)1.把19分成若干个自然数的和,如何分才能使它们的积最大?2.把1~6这六个数分别填在下图中三角形三条边的六个圆圈内,使每条边上三个圆圈内的数的和相等,求这个和的最大值与最小值。

3.自行车的前轮轮胎行驶9000千米后要报废,后轮轮胎行驶7000千米后要报废。

前后轮可在适当时候交换位置。

问一辆自行车同时换上一对新轮胎,最多可行驶多少千米?4.如下图,有一只轮船停在M点,现需从OA岸运货物到OB岸,最后停在N点,这只船应如何行走才能使路线最短?5.甲、乙两厂生产同一型号的服装,甲厂每月生产900套,其中上衣用18天,裤子用12天;乙厂每月也生产900套,但上衣用15天,裤子也要用15天。

两厂合并后,每月最多可以生产多少套衣服? 6.现在有若干千克苹果,把苹果装入筐中,要求能取出1~63千克所有整千克数的苹果,并且每次都是整筐整筐地取出。

小学奥数最大值最小值问题汇总

小学奥数最大值最小值问题汇总

小学奥数最大值最小值问题汇总1。

三个自然数得与为15,这三个自然数得乘积最大可能就是_______。

3ﻫ。

一个长方形周长为24厘米,当它得长与宽分别就是_______厘米、_______厘米时面积最大,面积最大就是_______平方厘米。

ﻫ4.现在有20米得篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应就是_______米,宽应就是_______米。

5ﻫ.将16拆成若干个自然数得与,要使与最大,应将16拆成_______。

ﻫ6。

从1,2,3,…,2003这些自然数中最多可以取_______个数,才能使其中任意两个数之差都不等于5. 7ﻫ.一个两位小数保留整数就是6,这个两位小数最大就是_______,最小就是_______。

8ﻫ.用1克、2克、4克、8克、16克得砝码各一个与一架天平,最多可以称出_______种不同得整数得重量。

9.有一架天平,左右都可以放砝码,要称出1~80克之间所有整克数得重量,如果使砝码个数尽可能少,应该用_______得砝码。

10.如下图,将1~9这9个数填入圆圈中,使每条线上得与相等,使与为A,A 最大就是_____. 二、解答题(30分) 1ﻫ。

把19分成若干个自然数得与,如何分才能使它们得积最大?2.把1~6这六个数分别填在下图中三角形三条边得六个圆圈内,使每条边上三个圆圈内得数得与相等,求这个与得最大值与最小值. 3。

自行车得前轮轮胎行驶9000千米后要报废,后轮轮胎行驶7000千米后要报废。

前后轮可在适当时候交换位置.问一辆自行车同时换上一对新轮胎,最多可行驶多少千米?4.如下图,有一只轮船停在M点,现需从OA岸运货物到OB岸,最后停在N点,这只船应如何行走才能使路线最短? 5ﻫ.甲、乙两厂生产同一型号得服装,甲厂每月生产900套,其中上衣用18天,裤子用12天;乙厂每月也生产900套,但上衣用15天,裤子也要用15天。

两厂合并后,每月最多可以生产多少套衣服? 6.现在有若干千克苹果,把苹果装入筐中,要求能取出1~63千克所有整千克数得苹果,并且每次都就是整筐整筐地取出。

小四奥数《最大和最小》

小四奥数《最大和最小》

小四奥数简单的最大和最小班级姓名【知识要点】在日常生活中,经常会遇到有关最多、最小、最大、最小、最长、最短等问题,这类问题称之为“最值问题”。

最值问题涉及的知识较多,题目也比较复杂,没有固定模式,求解时要根据题目的特点,具体问题具体分析。

常用知识:1、两个数的和一定,那么这两个数的差最小(即相等),则这两个数的乘积最大;如果两个数的差最大,则两个数的乘积最小。

2、把一个数拆成若干个自然数的和,只有当这些数全是3或2(其中2至多2两个)时,这些数的乘积最大。

【经典例题】例1.有40枚棋子分别放入8个盒子里,要使每个盒子里都有棋子,那么其中的一个盒子里,最多能有多少枚棋子?如果要求每个盒子里都有棋子,但每个盒子的棋子数量不相同,那么其中一个盒子最多能放多少枚棋子?例2、一把钥匙只能开一把锁,现在有5把锁5把钥匙,现在不知道哪把钥匙开哪把锁,至少要试多少次就一定保证配好全部的钥匙和锁?例3、用34厘米的钢丝围成一个长方形,长和宽的长度都是整厘米数且不相等,围成的长方形的面积最大是多少?例4、一副扑克牌有54张牌(包括两张大、小王),至少要从中拿出几张牌才能保证其中的两张牌的点数相同?至少要从中拿出几张牌才能保证其中的两张牌的花色相同?【池中戏水】1、一个袋子中装有蓝、黄、黑、白四种袜子各10只,如果闭上眼睛只许用手摸,不许用眼看,至少从袋子中摸出()只袜子就能保证有3双是成对的。

2、下面是一个乘法算式,问:当乘积最大时,所填的四个数字的和是()。

3.用长和宽是4公分和3公分的长方形小木块,拼成一个正方形,最少要用这样的木块多少块?4.把1、2、3、4、5、6、7、8填入下面算式,使得数最大,这个最大得数是多少?【江中畅游】1.100个自然数,他们的总和是10000,在这些数里,奇数的个数比偶数是个数多,那么这些数里至多有多少个偶数?【海中冲浪】在一条公路上,每隔100千米有一个仓库,共5个仓库。

一号仓库存货10吨,二号仓库存货20吨,五号仓库存货40吨,三、四号仓库空着。

小学六年级奥数第25讲 最大最小问题(含答案分析)

小学六年级奥数第25讲 最大最小问题(含答案分析)

第25讲 最大最小问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。

最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。

二、精讲精练【例题1】a 和b 是小于100的两个不同的自然数,求a -ba+b的最大值。

根据题意,应使分子尽可能大,使分母尽可能小。

所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950 答:a -b a+b 的最大值是4950 。

练习1:1、 设x 和y 是选自前100个自然数的两个不同的数,求x -yx+y的最大值。

2、 a 和b 是小于50的两个不同的自然数,且a >b ,求a -ba+b的最小值。

3、 设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+yx -y的最大值;②求x+yx -y的最小值。

【例题2】有甲、乙两个两位数,甲数27等于乙数的23。

这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。

由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56 答:这两个两位数的差最多是56。

练习2:1.有甲、乙两个两位数,甲数的310等于乙数的45。

这两个两位数的差最多是多少?2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。

这两个两位数的和最小是多少?3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?【例题3】如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。

问:这样的数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。

五年级奥数专题第四讲 最大最小问题

五年级奥数专题第四讲 最大最小问题

五年级奥数专题第四讲最大最小问题【一】有两个整数A和B,它们的和是8,当A和B各是多少时,A×B的积最大?练习1、□□□÷4=□……C,C最大是。

2、两个整数A和B,它们的和是9,当A和B各是多少时,A×B的积最大?【二】1、3、5、8组成的四位数中,最大的数比最小的数多多少?练习1、156-2A<75,A最小是。

2、□□□□-□□□=B,B最大是,最小是。

【三】把1、2、3……16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。

问这个和最大值是多少?练习1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2~9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。

【四】有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。

把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?练习1、一把钥匙只能开一把锁。

现在有10把钥匙和10把锁,但不知道哪把钥匙开哪把锁。

最多要试多少次才能配好全部的钥匙和锁?2、如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。

那么年龄最大的最多是几岁?【五】一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)练习1、一个三位数除以43,商a 余数是b (a 、b 都是整数)。

求a +b 的最大值。

2、如右图,有两条垂直相交的线段AB 、CD,交点为E 。

已知DE =2CE,BE =3AE 。

在AB 和CD 取3个点画三角形。

问:怎样取这三个点,画出的三角形面积最大?【六】 一个农场里收的庄稼有大豆、谷子、高粱、小米,每一种庄稼需要先收割好,捆好,然后往回运输。

现由两个小组分别承包这两项工作,工时如下表(一种庄稼不割好、捆好,不准运输),这两组从开工到完工最少经过多少小时?大豆谷子高粱小米割好、捆好 7 3 5 5 运完5619练习作 物小时工作1、三位老师为7位不同的扮演者化妆,这7位同学化妆需要的时间分别为8、12、14、17、18、23、30分钟。

奥数专题:最大与最小

奥数专题:最大与最小

最大与最小模块一、数论中的极端思想【例1】1〜8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。

那么这两个四位数各是多少?【解析】8531 和7642。

高位数字越大,乘积越大,所以它们的千位分别是8,7,百位分别是6,5。

两数和一定时,这两数越接近乘积越大,所以一个数的前两位是85,另一个数的前两位是76。

同理可确定十位和个位数.【巩固】两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?【解析】将两个自然数的和为 1 5的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7 种情况:15=1+14, 1 X 14=14;15=2+13, 2X 13=26;15=3+12,3X 12=36;15=4+11,4X 11=44;15=5+10,5X 10=50;15=6+9,6X 9=54;15=7+8,7X 8=56。

由此可知把15 分成7 与8 之和,这两数的乘积最大。

结论:如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。

特别地,当这两个数相等时,他们的乘积最大.【巩固】两个自然数的积是48,这两个自然数是什么值时,它们的和最小?【解析】48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。

所以,两个自然数的乘积是48,共有以下5种情况:48=1X 48,1+48=49;48=2X 24,2+24=26;48=3X 16,3+16=19;48=4X 12,4+12=16;48=6X 8,6+8=14。

两个因数之和最小的是6+8=14o结论:两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小【例2】有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257, 1459等等,这类数中最大的自然数是多少?【解析】要想使自然数尽量大,数位就要尽量多,所以数位高的数值应尽量小,故10112358 满足条件•如果最前面的两个数字越大,则按规则构造的数的位数较少,所以最前面两个数字尽可能地小,取1与0.【例3】有一类自然数,它的各个数位上的数字之和为2003,那么这类自然数中最小的是几?【解析】一个自然数的值要最小,首先要求它的数位最小,其次要求高位的数值尽可能地小•由于各数位上的和固定为2003,要想数位最少,各位数上的和就要尽可能多地取9,而2003-9=222......5,所以满足条件的最小自然数为:5g9 (9)222 个9【例4】将前100个自然数依次无间隔地写成一个192位数:1 2 3 4 5 6 7 8 9 10 11 12……9899100从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?【解析】要得到最大的数,左边应尽量多地保留9。

小学奥数模块教程最大最小值

小学奥数模块教程最大最小值

最大最小值知识框架一、知识点概述:这类问题涉及的知识面广,没有固定的模式,方法多样,解答时要认真审题,根据题目的特点,灵活地选择解法.在日常生活和工作中,经常会遇到这样一类问题:怎样安排时间最省、怎样行走路线最短、怎样管理费用最低、怎样设计面积最大、怎样合作效率最高、怎样加工利用率最大等等,它们都可以归结为在一定条件下的最大值或最小值方面的数学问题.例题精讲模块一、数论中的极端思想【例 1】如果10个互不相同的两位单数之和等于898,那么这10个单数中最小的一个是多少?【例 2】有两个整数A和B,它们的和是8,当A和B各是多少时,A×B的积最大?【例 3】103除以一个一位数,余数最大是多少?【例 4】商店进玩具熊若干,每三个一数则余下一只,若每五个一数则还差4个。

问商店至少进了多少只玩具熊?【例 5】1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。

那么这两个四位数各是多少?【巩固】两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?【巩固】两个自然数的积是48,这两个自然数是什么值时,它们的和最小?【例 6】有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数中最大的自然数是多少?【例 7】有一类自然数,它的各个数位上的数字之和为2003,那么这类自然数中最小的是几?【例 8】将前100个自然数依次无间隔地写成一个192位数:1 2 3 4 5 6 7 8 9 10 11 12 (9899100)从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?【例 9】把17分成几个自然数的和,怎样分才能使它们的乘积最大?【巩固】把14拆成几个自然数的和,再求出这些数的乘积,如何拆可以使乘积最大?【例 10】某国家的货币中有1元、3元、5元、7元、9元五种,为了能支付1元、2元 (100)元的钱数(整数元),那么至少需要准备货币多少张?【例 11】在五位数 22576的某一位数码后面再插入一个该数码,能得到的六位数中最大的是几?【例 12】在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式。

四年级数学A班奥数专题“最大与最小”问题

四年级数学A班奥数专题“最大与最小”问题

->“最大与最小”问题在应用数学知识解决日常生活中的一些实际问题时,经常会出现解决方案不止一种,有时还会有无数种的情况。

在这种情况下,我们往往需要找最大量或最小量。

例1试求乘积为36,和为最小的两个自然数。

分析与解不考虑因数顺序,乘积是36的两个自然数有以下五种情况:1×36、2×18、3×12、4×9、6×6。

相应的两个乘数的和是:1+36=37、2+18=20、3+12=15、4+9=13、6+6=12。

显然,乘积是36,和为最小的两个自然数是6与6。

例2试求乘积是80,和为最小的三个自然数。

分析与解不考虑因数顺序,乘积是80的三个自然数有以下八种情况:1×2×40、1×4×20、1×5×16、1×8×10、2×2×20、2×4×10、2×5×8、4×4×5。

经过计算,容易得知,乘积是80,和为最小的三个自然数是4、4、5。

结论一:从上述两例可见,m个自然数的乘积是一个常数,则当这m 个乘数相等或最相近时,其和最小。

例3试求和为8,积为最大的两个自然数。

分析与解不考虑加数顺序,和为8的两个自然数有以下四种情况:1+7、2+6、3+5、4+4。

相对应的两个加数的积是:1×7=7、2×6=12、3×5=15、4×4=16。

显然,和为8,积为最大的两个自然数是4和4。

例4试求和为13,积为最大的两个自然数。

分析与解不考虑加数顺序,和为13的两个自然数有以下六种情况:1+12、2+11、3+10、4+9、5+8、6+7。

经过计算,不难发现,和为13,积为最大的两个结论二:从上述两例可知,m个自然数的和是一个常数,则当这m个数相等或最相近时,其积最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数最大值最小值问题汇总
1.三个自然数的和为15,这三个自然数的乘积最大可能是_______。

3.一个长方形周长为24厘米,当它的长和宽分别是_______厘米、_______厘米时面积最大,面积最大是_______平方厘米。

4.现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应是_______米,宽应是_______米。

5.将16拆成若干个自然数的和,要使和最大,应将16拆成_______。

6.从1,2,3,…,2003这些自然数中最多可以取_______个数,才能使其中任意两个数之差都不等于5。

7.一个两位小数保留整数是6,这个两位小数最大是_______,最小是_______。

8.用1克、2克、4克、8克、16克的砝码各一个和一架天平,最多可以称出_______种不同的整数的重量。

9.有一架天平,左右都可以放砝码,要称出1~80克之间所有整克数的重量,如果使砝码个数尽可能少,应该用_______的砝码。

10.如下图,将1~9这9个数填入圆圈中,使每条线上的和相等,使和为A,A最大是_____。

二、解答题(30分)
1.把19分成若干个自然数的和,如何分才能使它们的积最大?2.把1~6这六个数分别填在下图中三角形三条边的六个圆圈内,使每条边上三个圆圈内的数的和相等,求这个和的最大值与最小值。

3.自行车的前轮轮胎行驶9000千米后要报废,后轮轮胎行驶7000千米后要报废。

前后轮可在适当时候交换位置。

问一辆自行车同时换
上一对新轮胎,最多可行驶多少千米?
4.如下图,有一只轮船停在M点,现需从OA岸运货物到OB岸,最后停在N点,这只船应如何行走才能使路线最短?
5.甲、乙两厂生产同一型号的服装,甲厂每月生产900套,其中上衣用18天,裤子用12天;乙厂每月也生产900套,但上衣用15天,裤子也要用15天。

两厂合并后,每月最多可以生产多少套衣服? 6.现在有若干千克苹果,把苹果装入筐中,要求能取出1~63千克所有整千克数的苹果,并且每次都是整筐整筐地取出。

问:至少需要多少个空筐?如何装?
B卷(50分)
一、填空题(每题2分,共20分) 1.在六位数865473的某一位数码后面再插入一个该数码,能得到的七位数中最小的是_____。

2.用1~8这八个数码组成两个四位数,要使这两个数的差尽量小,这个差是______。

3.三个质数的和是100,这三个质数的积最大是______。

4.有一类自然数,自左往右它的各个数位上的数字之和为8888,这类自然数中最小的
(1)求最大量的最大值:让其他值尽量小。

例:21棵树载到5块大小不同的土地上,要求每块地栽种的棵数不同,问栽树最多的土地最多可以栽树多少棵?
解析:要求最大量取最大值,且量各不相同,则使其他量尽可能的小且接近,即为从“1”开始的公差为“1”的等差数列,依次为1、
2、3、4,共10棵,则栽树最多的土地最多种树11棵。

(2)求最小量的最小值:让其他值尽量大。

例:6个数的和为48,已知各个数各不相同,且最大的数是11,则最小数最少是多少?
解析:要求最小数的最小值,则使其他量尽可能的大,又因为各数各不相同,那么其余5个数为差1的等差数列,依次为11、10、9、8、7,和为45,还余3,因此最小数最少为3。

(3)求最小量的最大值:求平均数,让其中一个尽可能最大,其余尽可能最小
例:五个人的体重之和是423斤,他们的体重都是整数,并且各不相同,则体重最轻的人,最重可能重多少?
解析:这五个体重的中位数是423÷5=84.6,五人体重呈82、83、84、85、89分布,这样才能保证最轻的人,体重最重。

因此,体重最轻的人,最重可能重82公。

需要注意的一定不能超过体重之和,否则计算就失去了意义。

(4)求最大量的最小值:求平均数,让其中一个尽可能最小,其余尽可能最大。

例:现有21朵鲜花分给5人,若每人分得的鲜花数各不相同,则分得鲜花最多的人至少分得多少朵鲜花。

解析:先分组,得鲜花数最多的那个人单拿出来,要令其分得鲜花数最少,那么其他四个分得的鲜花数尽可能最多。

于是其他四个分得鲜花数尽量接近分得鲜花最多的那个人,每人分得鲜花的平均数为
21÷5=4.2,为了使其尽可能最大,只有前四个人分别分得2、3、4、5朵,才能保证分得最多的人分得最少,即21-2-3-4-5=7。

综上所述,解决极值问题关键是让事物尽可能的“平均”“接近”。

怎么样,学会了吗?学会了就试着做一下下面的题目吧。

1、5个人的平均年龄是29,5个人中没有小于24的,那么年龄最大的人可能是多少岁?
2、现有100块糖,把这些糖分给10名小朋友,每名小朋友分得的糖数都不相同,则分得最多的小朋友至少分得多少块糖?
3、电视台要播放一部40集的电视剧,每天至少播放一集,如果要求每天播放的集数互不相等,则该电视剧最多可以播放多少天? 六年级奥数-最大与最小
1.用1~8这八个数码组成两个四位数,要使这两个数的差尽量小,这个差是几?
2.要砌一个面积是72米2的长方形猪圈,长方形的边长都是自然数(单位∶米),这个猪圈的围墙总长是多少米?
3.三个质数的和是100,这三个质数的积最大是几?
4.在下面的一排数字之间添上五个加号,组成一个连加算式,求这个连加算式的结果的最小值。

1 2 3 4 5 6 7 8 9
5.把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?
6.将546分解成四个不同自然数的乘积,这四个自然数的和最大是多少?
7.三个两位的连续偶数,它们的个位数字的和能被7整除,这三个数的和最少等于多少?
8.有两个三位数,构成它们的六个数码互不相同。

已知这两个三位数之和等于1771,求这两个三位数之积的最大可能值。

9.有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,如246,1347等等,这类数中最大的自然数是几?10用1~7七个数码组成三个两位数和一个一位数,并且使这四个数的和等于100。

选择组成的四个数中,最大的数最大是几?最小的两位数最小是几?
11.1 2 3 4 5 6 7 8 9 10 11 12……9899100从中划去170个数字,剩下的数字形成一个22位数,这个22位数最大是多少?最小是多少?。

相关文档
最新文档