2019-2020学年高中物理 第五章 磁场与回旋加速器 第4课时 探究洛伦兹力同步课时检测 沪科版选修3-1.doc
高中物理 第5章 磁场与回旋加速器 4 探究洛伦兹力导学案 沪科版选修31
学案4 探究洛伦兹力[目标定位] 1.通过实验,观察阴极射线在磁场中的偏转,认识洛伦兹力.2.会判断洛伦兹力的方向,会计算洛伦兹力的大小.3.知道带电粒子在匀强磁场中做匀速圆周运动,并会推导其运动半径公式和周期公式.一、洛伦兹力的方向[问题设计]如图1所示,用阴极射线管研究磁场对运动电荷的作用,不同方向的磁场对电子束径迹有不同影响.那么电荷偏转方向与磁场方向、电子运动方向的关系满足怎样的规律?图1答案左手定则[要点提炼]1.洛伦兹力:运动电荷在磁场中受到的力.通电导线在磁场中受到的安培力,实际是洛伦兹力的宏观表现.2.洛伦兹力的方向判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向正电荷运动的方向,这时拇指所指的方向就是运动的正电荷在磁场中所受洛伦兹力的方向.负电荷受力的方向与正电荷受力的方向相反.3.洛伦兹力的方向与电荷运动方向和磁场方向都垂直,即洛伦兹力的方向总是垂直于v和B 所决定的平面(但v和B的方向不一定垂直).二、洛伦兹力的大小[问题设计]如图2所示,将直导线垂直放入磁场中,直导线中自由电荷的电荷量为q,定向移动的速度为v,单位体积的自由电荷数为n,导线长度为L,横截面积为S,磁场的磁感应强度为B.图2(1)导线中的电流是多大?导线在磁场中所受安培力是多大?(2)长为L 的导线中含有的自由电荷数为多少?如果把安培力看成是每个自由电荷所受洛伦兹力的合力,则每个自由电荷所受的洛伦兹力是多少? 答案 (1)I =nqvS F =BIL =BnqvSL (2)N =nSL f =F N=qvB [要点提炼]1.洛伦兹力的大小:f =qvB sin θ,θ为电荷运动的方向与磁感应强度方向的夹角. (1)当电荷运动方向与磁场方向垂直时:f =qvB ; (2)当电荷运动方向与磁场方向平行时:f =0; (3)当电荷在磁场中静止时:f =0.2.洛伦兹力与安培力的关系安培力是导体中所有定向移动的自由电荷受到的洛伦兹力的宏观表现.而洛伦兹力是安培力的微观本质.三、研究带电粒子在磁场中的运动 [问题设计]如图3所示的装置是用来演示电子在匀强磁场中运动轨迹的装置.图3(1)当不加磁场时,电子的运动轨迹如何?当加上磁场时,电子的运动轨迹如何?(2)如果保持电子的速度不变,增大磁感应强度,圆半径如何变化?如果保持磁场强弱不变,增大电子的速度,圆半径如何变化? 答案 (1)是一条直线 是一个圆周 (2)半径减小 半径增大 [要点提炼]1.带电粒子所受洛伦兹力与速度方向垂直,只改变速度方向,不改变速度大小,对运动电荷不做功.2.沿着与磁场垂直的方向射入磁场中的带电粒子,在匀强磁场中做匀速圆周运动.洛伦兹力提供向心力f =qvB ,由qvB =mv 2r 可知半径r =mv Bq ,又T =2πr v ,所以T =2πm Bq.一、对洛伦兹力方向的判定例1 下列关于图中各带电粒子所受洛伦兹力的方向或带电粒子的带电性的判断错误的是( )A.洛伦兹力方向竖直向上B.洛伦兹力方向垂直纸面向里C.粒子带负电D.洛伦兹力方向垂直纸面向外解析 根据左手定则可知A 图中洛伦兹力方向应该竖直向上,B 图中洛伦兹力方向垂直纸面向里,C 图中粒子带正电,D 图中洛伦兹力方向垂直纸面向外,故A 、B 、D 正确,C 错误. 答案 C二、对洛伦兹力公式的理解例2 如图4所示,各图中的匀强磁场的磁感应强度均为B ,带电粒子的速率均为v ,带电荷量均为q .试求出图中带电粒子所受洛伦兹力的大小,并指出洛伦兹力的方向.图4解析 (1)因v ⊥B ,所以f =qvB ,方向垂直v 指向左上方.(2)v 与B 的夹角为30°,将v 分解成垂直磁场的分量和平行磁场的分量,v ⊥=v sin 30°,f =qvB sin 30°=12qvB .方向垂直纸面向里.(3)由于v 与B 平行,所以不受洛伦兹力. (4)v 与B 垂直,f =qvB ,方向垂直v 指向左上方.答案 (1)qvB 垂直v 指向左上方 (2)12qvB 垂直纸面向里 (3)不受洛伦兹力 (4)qvB垂直v 指向左上方三、带电粒子在磁场中的圆周运动例3 质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图5中虚线所示,下列表述正确的是( )图5A.M 带负电,N 带正电B.M 的速率小于N 的速率C.洛伦兹力对M 、N 做正功D.M 的运行时间大于N 的运行时间解析 根据左手定则可知N 带正电,M 带负电,A 正确;因为r =mv Bq,而M 的半径大于N 的半径,所以M 的速率大于N 的速率,B 错误;洛伦兹力不做功,C 错误;M 和N 的运行时间都为t =πmBq,D 错误.故选A.答案 A针对训练 质子和α粒子由静止出发经过同一加速电场加速后,沿垂直磁感线方向进入同一匀强磁场,则它们在磁场中的各物理量间的关系正确的是( ) A.速度之比为2∶1 B.周期之比为1∶2 C.半径之比为1∶2 D.角速度之比为1∶1答案 B解析 由qU =12mv2① qvB =mv 2R②得R =1B2mU q ,而m α=4m H ,q α=2q H ,故R H ∶R α=1∶2,又T =2πm qB,故T H ∶T α=1∶2.同理可求其他物理量之比.四、带电物体在匀强磁场中的运动问题例4 一个质量为m =0.1 g 的小滑块,带有q =5×10-4C 的电荷量,放置在倾角α=30°的光滑斜面上(绝缘),斜面固定且置于B =0.5 T 的匀强磁场中,磁场方向垂直纸面向里,如图6所示,小滑块由静止开始沿斜面滑下,斜面足够长,小滑块滑至某一位置时,要离开斜面(g 取10 m/s 2).求:图6(1)小滑块带何种电荷?(2)小滑块离开斜面时的瞬时速度是多大? (3)该斜面长度至少为多长?解析 (1)小滑块在沿斜面下滑的过程中,受重力mg 、斜面支持力N 和洛伦兹力f 作用,如图所示,若要使小滑块离开斜面,则洛伦兹力f 应垂直斜面向上,根据左手定则可知,小滑块应带负电荷.(2)小滑块沿斜面下滑的过程中,由平衡条件得f +N =mg cos α,当支持力N =0时,小滑块脱离斜面.设此时小滑块速度为v max ,则此时小滑块所受洛伦兹力f =qv max B , 所以v max =mg cos αqB =0.1×10-3×10×325×10-4×0.5m/s ≈3.5 m/s(3)设该斜面长度至少为l ,则小滑块离开斜面的临界情况为小滑块刚滑到斜面底端时.因为下滑过程中只有重力做功,由动能定理得mgl sin α=12mv 2max -0,所以斜面长至少为l =v 2max 2g sin α= 3.522×10×0.5m≈1.2 m.答案 (1)负电荷 (2)3.5 m/s (3)1.2 m规律总结 1.带电物体在磁场或电场中运动的分析方法和分析力学的方法一样,只是比力学多了洛伦兹力和电场力.2.对带电粒子受力分析求合力,若合力为零,粒子做匀速直线运动或静止;若合力不为零,粒子做变速直线运动,再根据牛顿第二定律分析粒子速度变化情况洛伦兹力—⎪⎪⎪⎪⎪⎪⎪—洛伦兹力的方向——左手定则(注意正、负电荷)—洛伦兹力的大小—⎪⎪⎪—f =0(v ∥B )—f =qvB (v ⊥B )—f =qvB sin θ(v 与B 的夹角为θ)—带电粒子的轨道半径和周期—⎪⎪⎪⎪—r =mvqB—T =2πmqB1.(对洛伦兹力方向的判定)如图所示,带负电的粒子在匀强磁场中运动.关于带电粒子所受洛伦兹力的方向,下列各图中判断正确的是( )答案 A解析 本题考查了左手定则的直接应用,根据左手定则即可正确判断磁场、运动方向、洛伦兹力三者之间的关系,特别注意的是四指指向和正电荷运动方向相同和负电荷运动方向相反.根据左手定则可知A 图中洛伦兹力方向应该向下,故A 正确;B 图中洛伦兹力方向向上,故B 错误;C 图中所受洛伦兹力方向垂直纸面向里,故C 错误;D 图中所受洛伦兹力方向垂直纸面向外,故D 错误.故选A.2.(对洛伦兹力公式的理解)一带电粒子在匀强磁场中沿着磁感线方向运动,现将该磁场的磁感应强度增大一倍,则带电粒子受到的洛伦兹力( ) A.增大两倍 B.增大一倍 C.减小一半 D.依然为零答案 D解析 本题考查了洛伦兹力的计算公式F =qvB ,注意公式的适用条件.若粒子速度方向与磁场方向平行,洛伦兹力为零,故A 、B 、C 错误,D 正确.3.(带电粒子在磁场中的圆周运动)在匀强磁场中,一个带电粒子做匀速圆周运动,如果又垂直进入另一磁感应强度是原来的磁感应强度2倍的匀强磁场,则( ) A.粒子的速率加倍,周期减半 B.粒子的速率不变,轨道半径减半C.粒子的速率减半,轨道半径变为原来的四分之一D.粒子的速率不变,周期减半 答案 BD解析 洛伦兹力不改变带电粒子的速率,A 、C 错.由r =mv qB,T =2πm qB知,磁感应强度加倍时,轨道半径减半、周期减半,故B 、D 正确.4.(带电物体在匀强磁场中的运动)光滑绝缘杆与水平面保持θ角,磁感应强度为B 的匀强磁场充满整个空间,一个带正电q 、质量为m 、可以自由滑动的小环套在杆上,如图7所示,小环下滑过程中对杆的压力为零时,小环的速度为 .图7答案mg cos θqB解析 以带电小环为研究对象,受力如图所示.f =mg cos θ,f =qvB ,解得v =mg cos θqB.题组一 对洛伦兹力方向的判定1.在以下几幅图中,对洛伦兹力的方向判断正确的是( )答案ABD2.一束混合粒子流从一发射源射出后,进入如图1所示的磁场中,分离为1、2、3三束,则下列判断正确的是( )图1A.1带正电B.1带负电C.2不带电D.3带负电答案ACD解析根据左手定则,带正电的粒子左偏,即1;不偏转说明不带电,即2;带负电的粒子向右偏,即3,因此答案为A、C、D.题组二对洛伦兹力特点及公式的应用3.一个运动电荷在某个空间里没有受到洛伦兹力的作用,那么( )A.这个空间一定没有磁场B.这个空间不一定没有磁场C.这个空间可能有方向与电荷运动方向平行的磁场D.这个空间可能有方向与电荷运动方向垂直的磁场答案BC解析由题意,运动电荷在某个空间里没有受到洛伦兹力,可能空间没有磁场,也可能存在磁场,磁场方向与电荷运动方向平行.故A错误,B、C正确.若磁场方向与电荷运动方向垂直,电荷一定受到洛伦兹力,不符合题意,故D错误.故选B、C.4.关于带电粒子在匀强电场和匀强磁场中的运动,下列说法中正确的是( )A.带电粒子沿电场线方向射入,则电场力对带电粒子做正功,粒子动能一定增加B.带电粒子垂直于电场线方向射入,则电场力对带电粒子不做功,粒子动能不变C.带电粒子沿磁感线方向射入,洛伦兹力对带电粒子做正功,粒子动能一定增加D.不管带电粒子怎样射入磁场,洛伦兹力对带电粒子都不做功,粒子动能不变 答案 D解析 带电粒子在电场中受到的电场力F =qE ,只与电场有关,与粒子的运动状态无关,做功的正负由θ角(力与位移方向的夹角)决定.对选项A ,只有粒子带正电时才成立;垂直射入匀强电场的带电粒子,不管带电性质如何,电场力都会做正功,动能增加.带电粒子在磁场中的受力——洛伦兹力F ′=qvB sin θ,其大小除与运动状态有关,还与θ角(磁场方向与速度方向之间的夹角)有关,带电粒子沿平行磁感线方向射入,不受洛伦兹力作用,粒子做匀速直线运动.在其他方向上由于洛伦兹力方向始终与速度方向垂直,故洛伦兹力对带电粒子始终不做功.综上所述,正确选项为D.5.有一个带正电荷的离子,沿垂直于电场的方向射入带电平行板的匀强电场,离子飞出电场后的动能为E k .当在带电平行板间再加入一个垂直纸面向里的如图2所示的匀强磁场后,离子飞出电场后的动能为E k ′,磁场力做功为W ,则下列判断正确的是( )图2A.E k <E k ′,W =0B.E k >E k ′,W =0C.E k =E k ′,W =0D.E k >E k ′,W >0答案 B解析 磁场力即洛伦兹力,不做功,故W =0,D 错误;有磁场时,带正电的粒子受到洛伦兹力的作用使其所受的电场力做功减少,故B 选项正确. 题组三 带电粒子在磁场中的圆周运动6.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α.则下列选项正确的是( ) A.R p ∶R α=1∶2,T p ∶T α=1∶2 B.R p ∶R α=1∶1,T p ∶T α=1∶1 C.R p ∶R α=1∶1,T p ∶T α=1∶2 D.R p ∶R α=1∶2,T p ∶T α=1∶1 答案 A解析 由qvB =mv 2R ,有R =mv qB ,而m α=4m p ,q α=2q p ,故R p ∶R α=1∶2,又T =2πm qB,故T p ∶T α=1∶2.故A 正确.7.如图3所示是在匀强磁场中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直于纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是( )图3A.粒子先经过a 点,再经过b 点B.粒子先经过b 点,再经过a 点C.粒子带负电D.粒子带正电 答案 AC解析 由于粒子的速率减小,由r =mvqB知,轨道半径不断减小,所以A 对,B 错;由左手定则得粒子应带负电,C 对,D 错.8.图4为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( )图4A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中运动轨迹的半径越小 答案 AC解析 电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力的方向与其电性有关,由左手定则可知A 正确.由轨道公式r =mv Bq知,若电子与正电子进入磁场时的速度不同,则其运动轨迹的半径也不相同,故B 错误.由r =mv Bq=2mE kBq知,D 错误.因质子和正电子均带正电,且运动轨迹的半径大小无法计算出,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,C 正确.9.如图5所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于图示平面的匀强磁场(未画出).一带电粒子从紧帖铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为( )图5 A.2 B. 2 C.1 D.22 答案 D 解析 设带电粒子在P 点时初速度为v 1,从Q 点穿过铝板后速度为v 2,则E k1=12mv 21;E k2=12mv 22,由题意可知E k1=2E k2,即12mv 21=mv 22,则v 1v 2=21.由洛伦兹力提供向心力,即qvB =mv 2R ,得R =mv qB ,由题意可知R 1R 2=21,所以B 1B 2=v 1R 2v 2R 1=22,故选项D 正确. 题组四 带电物体在磁场中的运动问题10.带电油滴以水平速度v 0垂直进入磁场,恰做匀速直线运动,如图6所示,若油滴质量为m ,磁感应强度为B ,则下述说法正确的是( )图6A.油滴必带正电荷,电荷量为mg v 0B B.油滴必带正电荷,比荷q m =q v 0BC.油滴必带负电荷,电荷量为mg v 0BD.油滴带什么电荷都可以,只要满足q =mg v 0B 答案 A解析 油滴水平向右匀速运动,其所受洛伦兹力必向上,且与重力平衡,故带正电,其电荷量q =mg v 0B,A 正确.11.如图7所示,在竖直平面内放一个光滑绝缘的半圆形轨道,水平方向的匀强磁场与半圆形轨道所在的平面垂直.一个带负电荷的小滑块由静止开始从半圆轨道的最高点M 下滑到最右端,则下列说法中正确的是( )图7A.滑块经过最低点时的速度比磁场不存在时大B.滑块从M 点到最低点的加速度比磁场不存在时小C.滑块经过最低点时对轨道的压力比磁场不存在时小D.滑块从M 点到最低点所用时间与磁场不存在时相等答案 D解析 由于洛伦兹力不做功,故与磁场不存在时相比,滑块经过最低点时的速度不变,选项A 错误;由a =v 2R,与磁场不存在时相比,滑块经过最低点时的加速度不变,选项B 错误;由左手定则,滑块经最低点时受的洛伦兹力向下,而滑块所需的向心力不变,故滑块经最低点时对轨道的压力比磁场不存在时大,选项C 错误;由于洛伦兹力始终与运动方向垂直,在任意一点,滑块经过时的速度均与不加磁场时相同,选项D 正确.12.如图8所示,一带负电的滑块从绝缘粗糙斜面的顶端滑至底端时的速率为v ,若加一个垂直纸面向外的匀强磁场,并保证滑块能滑至底端,则它滑至底端时的速率为( )图8A.变大B.变小C.不变D.条件不足,无法判断 答案 B解析 加上磁场后,滑块受到垂直斜面向下的洛伦兹力作用,使滑块所受摩擦力变大,滑块克服摩擦力所做的功增大,而洛伦兹力不做功,重力做功恒定,由能量守恒可知,滑块滑至底端时的速率变小.13.如图9所示,质量为m =1 kg 、电荷量为q =5×10-2 C 的带正电的小滑块,从半径为R=0.4 m 的光滑绝缘14圆弧轨道上由静止自A 端滑下.整个装置处在方向互相垂直的匀强电场与匀强磁场中.已知E =100 V/m ,方向水平向右,B =1 T ,方向垂直纸面向里,g =10 m/s 2.图9求:(1)滑块到达C 点时的速度;(2)在C 点时滑块所受洛伦兹力.答案 (1)2 m/s ,方向水平向左 (2)0.1 N ,方向竖直向下解析 以滑块为研究对象,自轨道上A 点滑到C 点的过程中,受重力mg ,方向竖直向下; 静电力qE ,方向水平向右;洛伦兹力f =qvB ,方向始终垂直于速度方向.(1)滑块从A 到C 过程中洛伦兹力不做功,由动能定理得mgR -qER =12mv 2C 得v C = 2mg -qE R m=2 m/s.方向水平向左. (2)根据洛伦兹力公式得:f =qv C B =5×10-2×2×1 N=0.1 N ,方向竖直向下.。
2018-2019学年高中物理 第5章 磁场与回旋加速器 5.5 探究洛伦兹力学案 沪科版选修3-1
5.5 探究洛伦兹力[知识梳理]一、洛伦兹力及其大小、方向 1.洛伦兹力磁场对运动电荷的作用力. 2.左手定则伸直左手,让大拇指与四指垂直且在同一平面内,四指指向正电荷运动方向,让磁感线穿入手心,大拇指所指的方向就是洛伦兹力的方向,如图551所示.对于负电荷,四指指向负电荷运动的相反方向.图5513.洛伦兹力的大小(1)推导过程:长为L 的导体垂直磁场放置,通入电流为I ,受到的安培力F =BIL ,而I =nqSv ,导体中的电荷总数为N =nLS ,所以每个电荷受到的磁场力(即洛伦兹力)为f =FN=qvB .(2)公式:f =qvB .(3)成立条件:速度方向与磁场方向垂直. 二、带电粒子在磁场中的运动1.带电粒子垂直进入磁场,只受洛伦兹力作用,带电粒子做匀速圆周运动,洛伦兹力提供向心力.2.轨道半径:由于洛伦兹力提供向心力,即qvB =m v 2r ,由此推得r =mvBq.3.运动周期:由T =2πr v 和r =mv Bq ,联立求得T =2πmBq.[基础自测]1.思考判断(正确的打“√”,错误的打“×”.) (1)只要将电荷放入磁场中,电荷就一定受洛伦兹力.(×) (2)洛伦兹力的方向只与磁场方向和电荷运动方向有关.(×) (3)判断电荷所受洛伦兹力的方向时,应同时考虑电荷的电性.(√) (4)当带电粒子的速度方向与磁场方向相同时,粒子做匀加速运动.(×) (5)带电粒子速度越大,在匀强磁场中做匀速圆周运动的半径越大.(√) (6)速度越大,带电粒子在匀强磁场中做匀速圆周运动的周期越大.(×) 【提示】(1)× 运动电荷的速度方向与磁场方向不平行时才会受洛伦兹力. (2)× 洛伦兹力方向还跟电荷的正、负有关.(4)× 方向相同,粒子不受洛伦兹力,故做匀速直线运动. (6)× 周期公式为T =2πm qB,周期大小与速度无关.2.图中带电粒子所受洛伦兹力的方向向上的是( )【导学号:69682272】A [A 图中带电粒子受力方向向上,B 图中带电粒子受力方向向外,C 图中带电粒子受力方向向左,D 图中带电粒子受力方向向外.故A 正确.]3.电子在匀强磁场中做匀速圆周运动,下列说法正确的是( ) A .速率越大,周期越大 B .速率越小,周期越大 C .速度方向与磁场方向平行 D .速度方向与磁场方向垂直D [由粒子在磁场中做匀速圆周运动的周期公式T =2πmqB可知,周期的大小与速率无关,A 、B 错误,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,速度方向与磁场方向垂直,C 错误,D 正确.]4.(多选)如图552所示,在两个不同的匀强磁场中,磁感强度关系为B 1=2B 2,当不计重力的带电粒子从B 1磁场区域运动到B 2磁场区域时(在运动过程中粒子的速度始终与磁场垂直),则粒子的( )【导学号:69682273】图552A .速率将加倍B .轨道半径将加倍C .周期将加倍D .做圆周运动的角速度将加倍BC [粒子在磁场中只受到洛伦兹力,洛伦兹力不会对粒子做功,故速率不变,A 错;由半径公式r =mv Bq ,B 1=2B 2,则当粒子从B 1磁场区域运动到B 2磁场区域时,轨道半径将加倍,B 对;由周期公式T =2πm Bq,磁感应强度减半,周期将加倍,C 对;角速度ω=2πT,故做圆周运动的角速度减半,D 错.][合 作 探 究·攻 重 难]1(1)洛伦兹力的方向总是与电荷运动方向和磁场方向垂直,即洛伦兹力的方向总是垂直于电荷运动方向和磁场方向所决定的平面,F 、B 、v 三者的方向关系是:F ⊥B 、F ⊥v ,但B 与v 不一定垂直.(2)洛伦兹力的方向随电荷运动方向的变化而变化.但无论怎么变化,洛伦兹力都与运动方向垂直,故洛伦兹力永不做功,它只改变电荷运动方向,不改变电荷速度大小.2.洛伦兹力和安培力的关系(1)安培力是洛伦兹力的宏观表现,洛伦兹力是安培力的微观解释. (2)大小关系:F 安=Nf (N 是导体中定向运动的电荷数).(3)方向关系:洛伦兹力与安培力的方向一致,均可用左手定则进行判断. (4)洛伦兹力永远不做功,但安培力可以做功. 3.洛伦兹力与电场力的比较。
2019_2020版高中物理第5章磁场与回旋加速器5.6洛伦兹力与现代科技讲义精练(含解析)沪科版选修3_1
5.6 洛伦兹力与现代科技[学科素养与目标要求]物理观念:1.掌握带电粒子在匀强磁场中运动的规律.2.知道质谱仪、回旋加速器的构造和工作原理.科学思维:1.会分析带电粒子在匀强磁场中的圆周运动问题.2.会利用相关规律解决质谱仪、回旋加速器问题.一、回旋加速器图1是回旋加速器的构造图.图1回旋加速器中磁场和电场分别起什么作用?对交流电源的周期有什么要求?带电粒子获得的最大动能由哪些因素决定?答案 磁场的作用是使带电粒子回旋,电场的作用是使带电粒子加速.交流电源的周期应等于带电粒子在磁场中运动的周期.粒子的最大动能决定于磁感应强度B 和D 形盒的半径R .当带电粒子速度最大时,其运动半径也最大,即r m =mv m Bq ,再由动能定理得:E km =q 2B 2r2m 2m,所以要提高带电粒子获得的最大动能,应尽可能增大磁感应强度B 和D 形盒的半径r m . [要点总结]1.回旋加速器的工作原理:(1)回旋加速器采用多次加速的办法:用磁场控制带电粒子做圆周运动的轨道、用电场对带电粒子进行加速. (2)电场的特点及作用特点:两个D 形盒之间的窄缝区域存在周期性变化的电场. 作用:带电粒子经过该窄缝时被加速. (3)磁场的特点及作用特点:D 形盒处于与盒面垂直的匀强磁场中.作用:带电粒子在洛伦兹力作用下做匀速圆周运动,从而改变运动方向,半个周期后再次进入电场.2.回旋加速器中交流电源的周期等于带电粒子在磁场中运动的周期,一个周期内粒子被加速两次.3.带电粒子获得的最大动能E km =q 2B 2r 22m,决定于D 形盒的半径r 和磁感应强度B ,与加速次数无关,与加速电压U 的大小无关(填“有关”或“无关”).例1 回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D 形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒内的狭缝中形成匀强电场,使粒子每次穿过狭缝时都得到加速,两盒放在磁感应强度为B 的匀强磁场中,磁场方向垂直于盒底面,粒子源置于盒的圆心附近,若粒子源射出的粒子电荷量为q 、质量为m ,粒子最大回旋半径为R max .求:(1)粒子在盒内做何种运动; (2)所加交变电流频率及粒子角速度; (3)粒子离开加速器时的最大速度及最大动能. 答案 (1)匀速圆周运动 (2)qB 2πm qBm(3)qBR max m q 2B 2R 2max 2m解析 (1)带电粒子在盒内做匀速圆周运动,每次加速之后半径变大.(2)粒子在电场中运动时间极短,因此高频交变电流频率要等于粒子回旋频率,由qvB =m v 2R ,v =2πR T 得,T =2πm qB ,故频率f =1T =qB 2πm ,角速度ω=2πf =qBm. (3)由牛顿第二定律知mv2max R max=qBv max则v max =qBR maxm最大动能E kmax =12mv max 2=q 2B 2R 2max 2m二、质谱仪阅读教材,总结质谱仪的构造和各部分的作用,并简述质谱仪的工作原理.答案 质谱仪主要由以下几部分组成:离子源、加速电场U 1、速度选择器(U 2,B 1)、偏转磁场B 2及照相底片.工作原理:离子在加速电场中被加速:qU 1=12mv 2在速度选择器中匀速通过:q U 2d=qvB 1 在偏转磁场中做圆周运动:r =mv qB 2由此可求得离子的质量:m =qB 22r22U 1通过前两式也可求得离子的比荷:q m =U222B 21d 2U 1.[要点总结]1.用途:测量带电粒子的质量和分析同位素的重要工具.2.运动过程:(如图2所示)图2①带电粒子经过电压为U 的加速电场加速,qU =12mv 2①.②带电粒子进入速度选择器,设电场强度为E ,磁感应强度为B 1,满足qE =qvB 1,即v =EB 1的粒子匀速直线通过.③垂直进入磁感应强度为B 的匀强磁场中,做匀速圆周运动,r =mv qB②,由①②式得r =2mqUqB,打在底片上的位置距S 3的距离L =2qB2mqU .3.分析判断:根据带电粒子在磁场中做圆周运动的半径大小,就可以判断带电粒子比荷的大小,如果测出半径且已知电荷量,就可求出带电粒子的质量.例2 现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图3所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量的比值为( )图3A.11B.12C.121D.144 答案 D解析 设质子的质量和电荷量分别为m 1、q 1,一价正离子的质量和电荷量分别为m 2、q 2.对于任意带正电粒子,在加速电场中,由动能定理得qU =12mv 2-0,得v =2qUm① 在磁场中qvB =m v 2r②由①②式联立得m =B 2r 2q2U,由题意知,两种粒子在磁场中做匀速圆周运动的半径r 相同,加速电压U 不变,其中B 2=12B 1,q 1=q 2,可得m 2m 1=B22B21=144,故选项D 正确.例3 (2018·全国卷Ⅲ)如图4,从离子源产生的甲、乙两种离子,由静止经加速电压U 加速后在纸面内水平向右运动,自M 点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v 1,并在磁场边界的N 点射出;乙种离子在MN 的中点射出;MN 长为l .不计重力影响和离子间的相互作用.求:图4(1)磁场的磁感应强度大小; (2)甲、乙两种离子的比荷之比. 答案 (1)4Ulv 1(2)1∶4解析 (1)设甲种离子所带电荷量为q 1、质量为m 1,在磁场中做匀速圆周运动的半径为R 1,磁场的磁感应强度大小为B ,由动能定理有q 1U =12m 1v 12①由洛伦兹力公式和牛顿第二定律有q 1v 1B =m 1v 21R 1②由几何关系知 2R 1=l ③由①②③式得 B =4U lv 1④(2)设乙种离子所带电荷量为q 2、质量为m 2,射入磁场的速度为v 2,在磁场中做匀速圆周运动的半径为R 2.同理有q 2U =12m 2v 22⑤ q 2v 2B =m 2v22R 2⑥由题给条件有 2R 2=l2⑦由①②③⑤⑥⑦式得,甲、乙两种离子的比荷之比为q 1m 1∶q 2m 2=1∶4 学科素养 例3这道高考题是质谱仪知识的应用,主要考查带电粒子在电场中的加速、在匀强磁场中的圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决实际问题的能力,体现了“科学思维”的学科素养.1.(回旋加速器)(多选)(2018·“商丘九校”上学期期中)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交变电流两极相连接的两个D 形金属盒,在两盒间的狭缝中形成的周期性变化的匀强电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场中,如图5所示,设匀强磁场的磁感应强度为B ,D 形金属盒的半径为R ,狭缝间的距离为d ,匀强电场间的加速电压为U ,要增大带电粒子(电荷量为q 、质量为m ,不计重力)射出时的动能,则下列方法中可行的是( )图5A.增大匀强电场间的加速电压B.减小狭缝间的距离C.增大磁场的磁感应强度D.增大D 形金属盒的半径 答案 CD解析 由qvB =m v 2R ,解得v =qBR m .则粒子射出时的动能E k =12mv 2=q 2B 2R22m,知动能与加速电压无关,与狭缝间的距离无关,与磁感应强度大小和D 形盒的半径有关,增大磁感应强度和D 形盒的半径,可以增加粒子的最大动能,故C 、D 正确,A 、B 错误.2.(回旋加速器)用回旋加速器分别加速α粒子和质子时,若磁场相同,则加在两个D 形盒间的交变电压的频率之比为( ) A.1∶1 B.1∶3 C.2∶1 D.1∶2 答案 D解析 带电粒子在磁场中运动,洛伦兹力提供向心力,由牛顿第二定律得qvB =m v 2r,又v =2πr T ,所以在磁场中运动的周期T =2πm qB ,因此质子和α粒子在磁场中运动的周期之比为T 质T α=m 质q 质·q αm α=12,因为在回旋加速器中,加速电场的变化周期与粒子在磁场中运动的周期相等,故 加在两个D 形盒间的交变电压的频率之比为f αf 质=T 质T α=12,所以选D. 3.(质谱仪)质谱仪是测带电粒子质量和分析同位素的一种仪器,它的工作原理是带电粒子(不计重力)经同一电场加速后垂直进入同一匀强磁场做圆周运动,然后利用相关规律计算出带电粒子的质量.其工作原理如图6所示,虚线为某粒子的运动轨迹,由图可知( )图6A.此粒子带负电B.下极板S 2比上极板S 1电势高C.若只增大加速电压U ,则半径r 变大D.若只增大入射粒子的质量,则半径r 变小 答案 C解析 由题图结合左手定则可知,该粒子带正电,故A 错误;粒子经过电场要加速,因粒子带正电,所以下极板S 2比上极板S 1电势低,故B 错误;根据动能定理得qU =12mv 2,由qvB =m v 2r得,r =2mUqB 2,若只增大加速电压U ,由上式可知,半径r 变大,故C 正确;若只增大入射粒子的质量,由上式可知,半径也变大,故D 错误.考点一 回旋加速器1.(多选)一个用于加速质子的回旋加速器,其核心部分如图1所示,D 形盒半径为R ,垂直D 形盒底面的匀强磁场的磁感应强度为B ,两盒分别与交流电源相连.设质子的质量为m 、电荷量为q ,则下列说法正确的是( )图1A.D 形盒之间交变电场的周期为2πmqBB.质子被加速后的最大速度随B 、R 的增大而增大C.质子被加速后的最大速度随加速电压的增大而增大D.质子离开加速器时的最大动能与R 成正比 答案 AB解析 D 形盒之间交变电场的周期等于质子在磁场中运动的周期,A 对;由r =mvqB得:当r =R 时,质子有最大速度v m =qBRm,即B 、R 越大,v m 越大,v m 与加速电压无关,B 对,C 错;质子离开加速器时的最大动能E km =12mv m 2=q 2B 2R22m,故D 错.2.两个相同的回旋加速器,分别接在加速电压U 1和U 2的高频电源上,且U 1>U 2,两个相同的带电粒子分别从这两个加速器的中心由静止开始运动,设两个粒子在加速器中运动的时间分别为t 1和t 2,获得的最大动能分别为E k1和E k2,则( ) A.t 1<t 2,E k1>E k2B.t 1=t 2,E k1<E k2C.t 1<t 2,E k1=E k2D.t 1>t 2,E k1=E k2答案 C解析 粒子在磁场中做匀速圆周运动,由R =mv qB ,E km =12mv 2可知,粒子获得的最大动能只与磁感应强度和D 形盒的半径有关,所以E k1=E k2;设粒子在加速器中绕行的圈数为n ,则E k =nqU ,由以上关系可知n 与加速电压U 成反比,由于U 1>U 2,则n 1<n 2,而t =nT ,T 相同,所以t 1<t 2,故C 正确,A 、B 、D 错误.3.(多选)(2018·宜兴市高二期中)如图2所示,回旋加速器D 形盒的半径为R ,所加磁场的磁感应强度为B ,用来加速质量为m 、电荷量为q 的质子(11H),质子从下盒的质子源由静止出发,回旋加速后,由A 孔射出,则下列说法正确的是( )图2A.回旋加速器加速完质子在不改变所加交变电压和磁场的情况下,不可以直接对氦核(42He)进行加速B.只增大交变电压U ,则质子在加速器中获得的最大动能将变大C.回旋加速器所加交变电压的频率为Bq2πmD.加速器可以对质子进行无限加速 答案 AC解析 在加速粒子的过程中,电场的变化周期与粒子在磁场中运动的周期相等.由T =2πmBq知,氦核42He 在回旋加速器中运动的频率是质子的12,不改变B 和f ,该回旋加速器不能用于加速氦核粒子,A 正确;根据qvB =m v 2R 得,粒子的最大速度v =qBRm,即质子有最大速度,不能被无限加速,质子获得的最大动能E km =12mv 2=q 2B 2R22m ,最大动能与加速电压的大小无关,B 、D 错误;粒子在回旋加速器磁场中运动的频率和高频交流电的频率相等,由T =2πm Bq 知f =1T =Bq2πm ,C正确.4.如图3甲所示是用来加速带电粒子的回旋加速器的示意图,其核心部分是两个D 形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,两盒分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t 的变化规律如图乙所示.忽略带电粒子在电场中的加速时间,则下列判断中正确的是( )图3A.在E k -t 图像中应有t 4-t 3<t 3-t 2<t 2-t 1B.加速电压越大,粒子最后获得的动能就越大C.粒子加速次数越多,粒子最大动能一定越大D.要想粒子获得的最大动能增大,可增加D 形盒的面积 答案 D解析 带电粒子在匀强磁场中做匀速圆周运动的周期与速度大小无关,因此在E k -t 图中应有t 4-t 3=t 3-t 2=t 2-t 1,A 错误;由粒子做圆周运动的半径r =mv qB =2mE k qB 可知E k =q 2B 2r 22m,即粒子获得的最大动能决定于D 形盒的半径和匀强磁场的磁感应强度,与加速电压和加速次数无关,当轨道半径r 与D 形盒半径R 相等时就不再继续加速,故B 、C 错误,D 正确.5.(多选)质谱仪的构造原理如图4所示,从粒子源S 出来时的粒子速度很小,可以看作初速度为零,粒子经过电场加速后进入有界的垂直纸面向里的匀强磁场区域,并沿着半圆周运动而达到照相底片上的P 点,测得P 点到入口的距离为x ,则以下说法正确的是( )图4A.粒子一定带正电B.粒子一定带负电C.x 越大,则粒子的质量与电荷量之比一定越大D.x 越大,则粒子的质量与电荷量之比一定越小 答案 AC解析 根据粒子的运动方向和洛伦兹力方向,由左手定则知粒子带正电,故A 正确,B 错误.根据半径公式r =mv qB 知,x =2r =2mv qB ,又qU =12mv 2,联立解得x =8mUqB 2,知x 越大,质量与电荷量的比值越大,故C 正确,D 错误. 考点二 质谱仪6.(2018·临沂市高二上学期期末)质谱仪是一种测定带电粒子质量或分析同位素的重要设备,它的构造原理图如图5所示.离子源S 产生的各种不同正离子束(速度可视为零),经MN 间的加速电压U 加速后从小孔S 1垂直于磁感线进入匀强磁场,运动半周后到达照相底片上的P 点.设P 到S 1的距离为x ,则( )图5A.若离子束是同位素,则x 越大对应的离子质量越小B.若离子束是同位素,则x 越大对应的离子质量越大C.只要x 相同,对应的离子质量一定相同D.只要x 相同,对应的离子的电荷量一定相等 答案 B解析 粒子在加速电场中做加速运动,由动能定理得:qU =12mv 2,解得:v =2qUm.粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB =mv 2r ,解得:r =mv qB =1B2Umq,所以:x =2r =2B2Umq;若离子束是同位素,则q 相同而m 不同,x 越大对应的离子质量越大,故A 错误,B 正确.由x =2B2Umq可知,只要x 相同,对应的离子的比荷一定相等,离子质量和电荷量不一定相等,故C 、D 错误.7.质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图6所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( )图6A.进入磁场时速度从大到小排列的顺序是氕、氘、氚B.进入磁场时动能从大到小排列的顺序是氕、氘、氚C.在磁场中运动时间由大到小排列的顺序是氕、氘、氚D.a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚答案 A解析 氢元素的三种同位素离子均带正电,电荷量大小均为e ,经过加速电场,由动能定理有:eU =E k =12mv 2,故进入磁场中的动能相同,B 项错误;且质量越大的离子速度越小,A 项正确;三种离子进入磁场后,洛伦兹力充当向心力,evB =m v 2R ,解得:R =mv eB =2meU eB,可见,质量越大的离子做圆周运动的半径越大,D 项错误;在磁场中运动时间均为半个周期,t =12T =πm eB,可见离子质量越大运动时间越长,C 项错误.。
2019_2020版高中物理第5章磁场与回旋加速器5.3探究电流周围的磁场讲义+精练含解析沪科版选修
5.3 探究电流周围的磁场[学科素养与目标要求]物理观念:1.掌握安培定则,知道几种电流周围的磁感线分布特点;2.知道磁现象的电本质,了解安培分子电流假说的内容.科学思维:1.会用安培定则判断电流周围的磁场方向;2.能用安培分子电流假说解释简单的磁现象.一、电流的磁场(1)让一直导线垂直穿过一块水平硬纸板,将小磁针放置在水平硬纸板各处,接通电源.观察小磁针在各处的指向,分析直线电流的磁感线的特点.(2)用相同的方法研究环形电流磁场的磁感线的分布,也可用细铁屑模拟磁感线的分布,分析其磁感线的特点.(3)用细铁屑模拟通电螺线管的磁感线分布,分析其磁感线的特点.答案见要点总结.[要点总结]1.电流周围的磁感线方向可根据安培定则判断.2.直线电流的磁场:用右手握住导线,让大拇指指向电流的方向,弯曲的四指所指的方向就是磁感线的环绕方向.特点:以导线上各点为圆心的同心圆,圆所在平面与导线垂直,越向外越稀疏.(如图1所示)图13.环形电流的磁场:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁感线的方向.特点:内部比外部强,磁感线越向外越疏.(如图2所示)图24.通电螺线管的磁场:用右手握住螺旋管,让弯曲的四指指向电流的方向,那么大拇指所指的方向就是螺旋管中心轴线上磁感线的方向.特点:内部为匀强磁场,且内部磁感应强度比外部强.内部磁感线方向由S极指向N极,外部由N极指向S极.(如图3所示)图3例1如图4所示为电流产生磁场的分布图,正确的分布图是( )图4A.①③B.②③C.①④D.②④答案 C解析由右手螺旋定则可以判断出直线电流产生的磁场方向,①正确,②错误.③和④为环形电流,注意让弯曲的四指指向电流的方向,可判断出③错误,④正确.故正确选项为C.例2电路没接通时两枚小磁针方向如图5,试确定电路接通后两枚小磁针的转向及最后的指向.图5答案见解析解析接通电源后,螺线管的磁场为:内部从左指向右,外部从右指向左,如图所示,故小磁针1逆时针转动至N极水平向左,小磁针2顺时针转动至N极水平向右.小磁针在磁场中受力的判断方法1.当小磁针处于磁体产生的磁场中,或环形电流、通电螺线管外部时,可根据同名磁极相斥,异名磁极相吸来判断小磁针的受力方向.2.当小磁针处于直线电流的磁场中或处于环形电流、通电螺线管内部时,应该根据小磁针N 极所指方向与通过该点的磁感线的切线方向相同,来判断小磁针的受力方向.针对训练1 当导线中分别通以图示方向的电流,小磁针静止时北极指向读者的是( )答案 C解析通电直导线电流从左向右,根据右手螺旋定则,则有小磁针所处的磁场方向垂直纸面向里,所以小磁针静止时北极背离读者,故A错误;通电直导线电流竖直向上,根据右手螺旋定则,磁场的方向为逆时针(从上向下看),因此小磁针静止时北极背离读者,故B错误;环形导线的电流方向如题图C所示,根据右手螺旋定则,则有小磁针所处的磁场方向垂直纸面向外,所以小磁针静止时北极指向读者,故C正确;根据右手螺旋定则,结合电流的方向,则通电螺线管的内部磁场方向由右向左,则小磁针静止时北极指向左,故D错误.二、探究磁现象的本质磁铁和电流都能产生磁场,而且通电螺线管外部的磁场与条形磁铁的磁场十分相似,它们的磁场有什么联系?答案它们的磁场都是由电荷的运动产生的.[要点总结]1.安培分子电流假说法国学者安培提出:在原子、分子等物质微粒的内部存在着一种环形电流——分子电流.每个物质微粒由于分子电流的存在都成为微小的磁体,它的两侧相当于两个磁极.(如图6所示).图62.当铁棒中分子电流的取向大致相同时,铁棒对外显磁性(如图7甲所示);当铁棒中分子电流的取向变得杂乱无章时,铁棒对外不显磁性(如图乙所示).图73.安培分子电流假说说明一切磁现象都是由电荷的运动产生的.例3(多选)关于安培分子电流假说的说法正确的是( )A.安培观察到物质内部有分子电流存在就提出了假说B.为了解释磁铁产生磁场的原因,安培提出了假说C.事实上物质内部并不存在类似的分子电流D.根据后来科学家研究,原子内电子绕核旋转形成环形电流与安培分子电流假说相符答案BD三、磁感应强度矢量的叠加磁感应强度是矢量,当空间存在几个磁体(或电流)时,每一点的磁场等于各个磁体(或电流)在该点产生磁场的矢量和.磁感应强度叠加时遵循平行四边形定则.例4(2017·全国卷Ⅲ)如图8,在磁感应强度大小为B0的匀强磁场中,两长直导线P和Q 垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l的a点处的磁感应强度为零,如果让P中的电流反向、其他条件不变,则a点处磁感应强度的大小为( )图8A.0B.33B0 C.2 33B0 D.2B0答案 C解析如图甲所示,P、Q中的电流在a点产生的磁感应强度大小相等,设为B1,由几何关系可知,B1=33B0.如果让P中的电流反向、其他条件不变,如图乙所示,由几何关系可知,a点处磁感应强度的大小B =B 20+B 21=2 33B 0 ,故选项C 正确,A 、B 、D 错误.学科素养 这道高考题用安培定则判断电流周围的磁场方向,而后根据矢量的合成法则计算磁感应强度的大小,考查了从物理学视角对客观事物的本质属性、内在规律及相互关系的认识方式,体现了“科学思维”的学科素养.针对训练2 (多选)(2018·全国卷Ⅱ)如图9,纸面内有两条互相垂直的长直绝缘导线L 1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称.整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外.已知a 、b两点的磁感应强度大小分别为13B 0和12B 0,方向也垂直于纸面向外.则( )图9A.流经L 1的电流在b 点产生的磁感应强度大小为712B 0 B.流经L 1的电流在a 点产生的磁感应强度大小为112B 0 C.流经L 2的电流在b 点产生的磁感应强度大小为112B 0 D.流经L 2的电流在a 点产生的磁感应强度大小为712B 0 答案 AC解析 原磁场、电流的磁场方向如图所示,由题意知在b 点:12B 0=B 0-B 1+B 2在a 点:13B 0=B 0-B 1-B 2 由上述两式解得B 1=712B 0,B 2=112B 0,A 、C 项正确.1.(直线电流周围的磁场 奥斯特实验)物理实验都需要有一定的控制条件.奥斯特做电流磁效应实验时,应排除地磁场对实验的影响.关于奥斯特的实验,下列说法中正确的是( )A.该实验必须在地球赤道上进行B.通电直导线应该竖直放置C.通电直导线应该水平东西方向放置D.通电直导线应该水平南北方向放置答案 D解析 小磁针静止时指向南北,说明地磁场的方向为南北方向,当通电直导线水平南北方向放置时,能产生东西方向的磁场,把小磁针放置在该处时,可有明显的偏转,故选D.2.(通电螺线管的磁场)如图10所示,a 、b 、c 三枚小磁针分别在通电螺线管的正上方、管内和右侧,当这些小磁针静止时,小磁针N 极的指向是( )图10A.a 、b 、c 均向左B.a 、b 、c 均向右C.a 向左,b 向右,c 向右D.a 向右,b 向左,c 向右答案 C解析 小磁针静止时N 极的指向与该点磁感线方向相同,如果a 、b 、c 三处磁感线方向确定,那么三枚小磁针静止时N 极的指向也就确定.通电螺线管的磁感线如图所示,可知a 磁针的N 极在左边,b 磁针的N 极在右边,c 磁针的N 极在右边.3.(安培定则的应用)下列各图中,用带箭头的细实线表示通电直导线周围磁感线的分布情况,其中正确的是( )答案 D4.(磁感应强度矢量的叠加)(2018·武汉外国语学校期末)如图11所示,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流,a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等.关于以上几点处的磁感应强度,下列说法正确的是( )图11A.O点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处的磁感应强度的方向不同答案 C解析根据安培定则判断:两直线电流在O点处产生的磁场方向均垂直于MN向下,O点处的磁感应强度不为零,故A选项错误;a、b两点处的磁感应强度大小相等,方向相同,故B选项错误;根据对称性,c、d两点处的磁感应强度大小相等,方向相同,故C选项正确;a、c 两点处的磁感应强度方向相同,故D选项错误.考点一对安培定则的理解与应用1.如图1所示,小磁针正上方的直导线与小磁针平行,当导线中有电流时,小磁针会发生偏转.首先观察到这个实验现象的物理学家和观察到的现象是( )图1A.物理学家伽利略,小磁针的N极垂直转向纸内B.天文学家开普勒,小磁针的S极垂直转向纸内C.物理学家牛顿,但小磁针静止不动D.物理学家奥斯特,小磁针的N极垂直转向纸内答案 D解析发现电流的磁效应的科学家是奥斯特,根据右手螺旋定则和小磁针N极所指的方向为该点磁场方向可知D正确.2.如图2所示,左侧水平台面上固定着条形磁铁,右侧固定着螺线管.闭合开关S后,下列判断正确的是( )图2A.螺线管内的磁场方向向右,磁铁受到的斥力向左B.螺线管内的磁场方向向右,磁铁受到的斥力向右C.螺线管内的磁场方向向左,磁铁受到的斥力向左D.螺线管内的磁场方向向左,磁铁受到的斥力向右答案 C解析由安培定则可知,螺线管的N极在左端,螺线管内的磁场方向向左,磁铁受到的斥力向左,选项C正确.3.如图3所示的通电螺线管内放置一小磁针(静止不动),下列判断正确的是( )图3A.电源A端为正极、B端为负极,线圈右端为S极,左端为N极B.电源A端为负极、B端为正极,线圈右端为S极,左端为N极C.电源A端为负极、B端为正极,线圈右端为N极,左端为S极D.电源A端为正极、B端为负极,线圈右端为N极,左端为S极答案 B解析由小磁针N极的指向确定通电螺线管内磁感线的方向为从右向左,再根据安培定则,确定在电源外部电流方向由B向A,电源B端为正极,线圈左端为N极,故B正确.4.如图4所示,一通电螺线管通有图示电流,1、2、4小磁针放在螺线管周围,3小磁针放在螺线管内部,四个小磁针静止在如图所示位置,则四个小磁针的N、S极标注正确的是( )图4A.1B.2C.3D.4答案 B解析 小磁针静止时的N 极指向为该处的磁感线方向,根据安培定则可知通电螺线管的右端为N 极,左端为S 极,内部磁感线方向是从左到右,故只有2小磁针的N 、S 极标注正确. 考点二 对磁现象的本质的认识5.关于分子电流,下面说法中正确的是( )A.分子电流假说最初是由法国学者法拉第提出的B.分子电流假说揭示了磁铁的磁场与电流的磁场具有共同的本质,即磁场都是由电荷的运动形成的C.分子电流是专指分子内部存在的环形电流D.分子电流假说无法解释加热“去磁”现象答案 B解析 分子电流假说最初是由安培提出来的,A 错误;分子电流并不是专指分子内部存在的环形电流,分子电流假说揭示了磁铁的磁场与电流的磁场具有共同的本质,即磁场都是由电荷的运动形成的,C 错误,B 正确;加热“去磁”现象可以根据分子电流假说解释,磁体受到高温时会失去磁性,是因为激烈的热运动使分子电流的取向又变得杂乱无章,D 错误.6.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的.在下列四个图中,能正确表示安培假设中环形电流方向的是( )答案 B考点三 磁感应强度矢量的叠加7.(多选)如图5,两根平行长直导线相距2l ,通有大小相等、方向相同的恒定电流;a 、b 、c 是导线所在平面内的三点,左侧导线与它们的距离分别为l 2、l 和3l .关于这三点处的磁感应强度,下列判断正确的是( )图5A.a 处的磁感应强度大小比c 处的大B.b 、c 两处的磁感应强度大小相等C.a 、c 两处的磁感应强度方向相同D.b 处的磁感应强度为零答案 AD解析 由于a 点与左侧导线的距离比c 点与右侧导线的距离小,故a 处的磁感应强度大小比c 处的大,A 正确.根据安培定则知,a 、c 两处磁感应强度方向相反,C 错误.b 点位于两导线中间,两通电导线在b 处产生的磁感应强度大小相等,方向相反,故b 处磁感应强度为零,c 处磁感应强度不为零,B 错误,D 正确.8.(2018·河南八市联考高二上学期测评)如图6所示,三根相互平行的固定长直导线L 1、L 2和L 3,垂直纸面置于正三角形三个顶点处,O 为正三角形的中心,当电流沿图示方向时,中心O 处的磁感应强度为B 0,若把L 3移走,则O 处的磁场磁感应强度为( )图6A.B 02B.B 03C.B 0D.3B 0 答案 A解析 三根相互平行的固定长直导线电流大小相等,它们在中心O 处产生的磁感应强度大小均相同,依题意可知L 1、L 2在O 处产生的合磁感应强度方向水平向右,与L 3在O 处产生的磁感应强度相同,若把L 3移走,中心O 处的磁场磁感应强度为B 02,A 正确. 9.(多选)三根在同一平面(纸面)内的长直绝缘导线组成一等边三角形,在导线中通过的电流均为I ,方向如图7所示.a 、b 和c 三点分别位于三角形的三个顶角的平分线上,且到相应顶点的距离相等.将a 、b 和c 处的磁感应强度大小分别记为B 1、B 2和B 3,下列说法正确的是( )图7A.B1=B2<B3B.B1=B2=B3C.a和b处磁场方向垂直于纸面向外,c处磁场方向垂直于纸面向里D.a处磁场方向垂直于纸面向外,b和c处磁场方向垂直于纸面向里答案AC解析a、b、c三处的磁感应强度是三根导线所产生的磁感应强度的叠加.根据安培定则可判断出左、右两根导线在a处的磁场方向相反,因为距离相等,所以磁感应强度大小相等,所以左、右两根导线在a处产生的磁感应强度的矢量和为零,a处的磁感应强度等于下面导线在该处产生的磁感应强度,所以a处的磁感应强度方向垂直于纸面向外.同理可知b处的磁感应强度等于右面的导线在该处产生的磁感应强度,所以b处的磁感应强度方向也垂直于纸面向外,三根导线在c处产生的磁场方向均是垂直于纸面向里,所以合磁感应强度方向垂直纸面向里,所以B1=B2<B3,A、C选项正确,B、D选项错误.。
2019人教版高中物理新教材目录
2019人教版高中物理新教材目录必修一第一章运动的描述1.质点参考系2.时间位移3.位置变化快慢的描述-速度4.速度变化快慢的描述-加速度第二章匀变速直线运动的研究1.探究小车速度随时间变化的规律2.匀变速直线运动速度与时间的关系3.匀变速直线运动位移与时间的关系4.自由落体运动第三章相互作用1.重力与弹力2.摩擦力3.作用力和反作用力4.力的合成和分解5.共点力平衡第四章运动和力的关系1. 牛顿第一定律2.实验探究加速度与力和质量的关系3.牛顿第二定律4.力学单位制5.牛顿运动定律的应用6.超重和失重必修2第五章抛体运动1.曲线运动2.运动的合成与分解3.实验:探究平抛运动的特点4.抛体运动的规律第六章圆周运动1.圆周运动2.向心力3.向心加速度4.生活中的圆周运动第七章万有引力与宇宙航行1.行星的运动2.万有引力定律3.万有引力理论的成就4.宇宙航行5.相对论时空观和牛顿力学的局限性第八章机械能守恒定律1.功与功率2.重力势能3.动能和动能定理4.机械能守恒定律5.实验:验证机械能守恒定律必修三第九章静电场及其应用1.电荷2.库仑定律3.电场电场强度4.静电的防止与利用第十章静电场中的能量1.电势能和电势2.电势差3.电势差与电场强度的关系4.电容器的电容5.带电粒子在电场中的运动第十一章电路及其应用1.电源和电流2.导体的电阻3.导体电阻率的测量4.串联电路和并联电路5.实验:练习使用多用电表第十二章电能能量守恒定律1.电路中的能量转化2.闭合电路的欧姆定律3.实验:电池电动势和内阻的测量4.能源与可持续发展第十三章电磁感应与电磁波初步1.磁场磁感线2.磁感应强度磁通量3.电磁感应现象及应用4.电磁波的发现及应用5.能量量子化选修一第一章动量守恒定律1.动量2.动量定理3.动量守恒定律4.实验:验证动量守恒定律5.弹性碰撞和非弹性碰撞6.反冲现象火箭第二章机械振动1.简谐运动2.简谐运动的描述3.简谐运动的回复力和能量4.单摆5.实验:用单摆测重力加速度6.受迫振动共振第三章机械波1.波的形成2.波的描述3.波的反射折射和衍射4.波的干涉5.多谱勒效应第四章光1.光的折射2.全反射3.光的干涉4.用双缝干涉测光的波长5.光的衍射6.光的偏振和激光选修二第一章安培力与洛伦兹力1.磁场对通电导线的作用力2.磁场对运动电荷的作用力3.带电粒子在匀强磁场中的运动4.质谱仪与回旋加速器第二章电磁感应1.楞次定律2.法拉第电磁感应定律3.涡流电磁阻尼和电磁驱动4.互感和自感第三章交变电流1.交变电流2.交变电流的描述3.变压器4.电能的输送第四章电磁振荡与电磁波1.电磁振荡2.电磁场与电磁波3.无线电波的发射和接收4.电磁波谱第五章传感器1.认识传感器2.常见传感器的工作原理及应用3.利用传感器制作简单的自动控制装置选修3第一章分子动理论1.分子动理论的基本内容2.实验:油膜法测油酸分子的大小3.分子运动速率分布规律4.分子动能和分子势能第二章气体固体和液体1.温度和温标2.气体的等温变化3.气体的等压变化和等容变化4.固体5.液体第三章热力学定律1.功热和内能的改变2.热力学第一定律3.能量守恒定律4.热力学第二定律第四章原子结构和波粒二象性1.普朗克黑体辐射理论2.光电效应3.原子的核式结构模型4.氢原子光谱和玻尔的原子结构模型5.粒子的波动性和量子力学的建立第五章原子核 1.原子核的组成2.放射性元素的衰变3.核力与结合能4.核裂变与核聚变5.基本粒子。
2019_2020版高中物理第5章磁场与回旋加速器微型专题5洛伦兹力作用下的实例分析课件沪科版选修3_1
施加与洛伦兹力方向相反的静电力.当静电力与洛伦兹力达到平衡时,导体板
上下两侧面之间就会形成稳定的电势差.电流I是自由电子的定向移动形成的,
电子的平均定向移动速率为v,电荷量为e.回答下列问题: (1)达到稳定状态时,导体板上侧面A的电势 低于 (选填“高于”“低于”或
“等于”)下侧面A′的电势.
(2)电子所受洛伦兹力的大小为 evB . 解析 f=evB.
(1)v的大小等于E与B的比值,即v=
E B
.速度选择器只对选择的粒子速度有
要求,而对粒子的质量、电荷量大小及带电正、负无要求.
(2)当v>
E B
时,粒子向f方向偏转,F电做负功,粒子的动能减小,电势能
增大.
(3)当v<
E B
时,粒子向F电方向偏转,F电做正功,粒子的动能增大,电势能
减小.
例1 在两平行金属板间,有如图2所示的正交的匀强电场和匀强磁场.α粒子以
√A.用电器中的电流方向为从A到B
图9
B.用电器中的电流方向为从B到A
√C.若只增强磁场,发电机的电动势增大 √D.若只增大喷入粒子的速度,发电机的电动势增大
1234
3.(电磁流量计)(多选)为监测某化工厂的污水排放量,技术人员在该厂的排污管
末端安装了如图10所示的流量计.该装置由绝缘材料制成,长、宽、高分别为a、
NEIRONGSUOYIN
重点探究 达标检测
启迪思维 探究重点 当堂检测 巩固反馈
重点探究
一、速度选择器
1.装置及要求 如图1,两极板间存在匀强电场和匀强磁场,二者方向互相垂直,带电粒子 从左侧射入,不计粒子重力.
图1
2.带电粒子能够沿直线匀速通过速度选择器的条件是qE=qvB,即v=
高中物理 第五章 磁场与回旋加速器 第4课时 探究洛伦兹力同步课时检测 沪科版选修31
高中物理第五章磁场与回旋加速器第4课时探究洛伦兹力同步课时检测沪科版选修31[概念规律组]1.在以下几幅图中,对洛伦兹力的方向判断不正确的是( )2.带电荷量为+q的粒子在匀强磁场中运动,下列说法中正确的是( ) A.只要速度大小相同,所受洛伦兹力就相同B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变C.洛伦兹力方向一定与电荷运动方向垂直,磁场方向也一定与电荷运动方向垂直D.粒子在只受到洛伦兹力作用时运动的动能不变3.如图1所示是阴极射线管示意图.接通电源后,电子射线由阴极沿x轴方向射出.在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,下列措施中可采用的是( )图1A.加一磁场,磁场方向沿z轴负方向B.加一磁场,磁场方向沿y轴正方向C.加一电场,电场方向沿z轴负方向D.加一电场,电场方向沿y轴正方向4.运动电荷进入磁场后(无其他力作用)可能做( ) A.匀速圆周运动B.匀速直线运动C.匀加速直线运动D.平抛运动5.有三束粒子,分别是质子(p)、氚核(31H)和α粒子(42He)束,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面向里),在下面所示的四个图中,能正确表示出这三束粒子运动轨迹的是( )6.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和Rα,周期分别为T p和Tα.则下列选项正确的是( )A.R p∶Rα=1∶2,T p∶Tα=1∶2B.R p∶Rα=1∶1,T p∶Tα=1∶1C.R p∶Rα=1∶1,T p∶Tα=1∶2D.R p∶Rα=1∶2,T p∶Tα=1∶1[方法技巧组]7.(2012·北京·16)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( )A.与粒子电荷量成正比B.与粒子速率成正比C.与粒子质量成正比D.与磁感应强度成正比8.如图2所示是在匀强磁场中观察到的粒子的轨迹,a和b是轨迹上的两点,匀强磁场B 垂直于纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是( )图2A.粒子先经过a点,再经过b点B.粒子先经过b点,再经过a点C.粒子带负电D.粒子带正电9.质子(11H)和α粒子(42He)在同一匀强磁场中做半径相同的圆周运动.由此可知质子的动能E k1和α粒子的动能E k2之比E k1∶E k2等于( )A.4∶1 B.1∶1 C.1∶2 D.2∶110.如图3所示,在长直导线AB旁,用绝缘细线在O点悬挂一带正电的小球,当导线中通入恒定电流时,下列说法正确的是( )图3A .小球受到洛伦兹力的作用,其方向指向纸里B .小球受到洛伦兹力的作用,其方向指向纸外C .小球受到洛伦兹力的作用,其方向垂直AB 向右D .小球不受洛伦兹力的作用11.带电油滴以水平速度v 0垂直进入磁场,恰做匀速直线运动,如图4所示,若油滴质量为m ,磁感应强度为B ,则下述说法正确的是( )图4A .油滴必带正电荷,电荷量为mg v 0B B .油滴必带正电荷,比荷q m =qv 0BC .油滴必带负电荷,电荷量为mgv 0BD .油滴带什么电荷都可以,只要满足q =mg v 0B12.一个带正电的微粒(重力不计)穿过如图5所示的匀强磁场和匀强电场区域时,恰能沿直线运动,则欲使电荷向下偏转时应采用的办法是( )图5A .增大电荷质量B .增大电荷电荷量C .减小入射速度D .增大磁感应强度图613.如图6所示,在x 轴上方有磁感应强度大小为B ,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为B /2,方向垂直纸面向外的匀强磁场.一质量为m 、电荷量为-q 的带电粒子(不计重力),从x 轴上O 点以速度v 0垂直x 轴向上射出.求:(1)射出之后经多长时间粒子第二次到达x 轴?(2)粒子第二次到达x轴时离O点的距离.[创新应用组]14.一细棒处于磁感应强度为B的匀强磁场中,棒与磁场垂直,磁感线方向垂直纸面向里,如图7所示,棒上套一个可在其上滑动的带负电的小环c,小环质量为m,电荷量为q,环与棒间无摩擦.让小环从静止滑下,下滑中某时刻环对棒的作用力恰好为零,则此时环的速度为多大?图7答案1.C 2.BD 3.B 4.AB 5.C 6.A 7.D 8.AC 9.B 10.D 11.A 12.C 13.(1)3πmqB(2)6mv 0qB14.mg cos θqB。
高中物理第5章磁场与回旋加速器5.6洛伦兹力与现代科技教案沪科版选修3_120170908336
5.6 洛伦兹力与现代科技1.回旋加速器的原理使带电粒子(例如电子、质子、α粒子等)获得高能量的设备就是加速器。
回旋加速器:它由两个正对的D 形扁盒组成,两D 形扁盒之间有一个狭缝,置于真空中,两狭缝间加高频交流电压。
垂直于D 形盒平面加匀强磁场。
D 形金属扁盒屏蔽了外电场,确保盒内带电粒子在匀强磁场中做匀速圆周运动。
预习交流1同一种带电粒子以不同的速度垂直磁场边界、垂直磁感线射入匀强磁场中,其运动轨迹如图所示,则可知:(1)带电粒子进入磁场的速度值有几个? (2)这些速度的大小关系为________。
(3)三束粒子从O 点出发分别到达1、2、3点所用时间关系为__________。
答案:(1)同一种带电粒子进入同一磁场,速度不同使轨道半径不同,故带电粒子进入磁场的速度值有三个。
(2)r 1<r 2<r 3,由r =mv Bq,得v 1<v 2<v 3。
(3)周期T 1=T 2=T 3,轨迹均为半圆,所用时间为半个周期,故时间关系为t 1=t 2=t 3。
2.质谱仪是一种分析各化学元素的同位素和测量带电粒子质量的精密仪器。
预习交流2如图所示,空间有磁感应强度为B 、方向垂直纸面向里的匀强磁场,一束电子流以速度v 从水平方向射入,为了使电子流经过磁场时不偏转(不计重力),则在磁场区域内必须同时存在一个匀强电场,这个电场的场强的大小和方向应是 。
A .B /v ,竖直向上 B .B /v ,方向水平向左C .Bv ,竖直向下D .Bv ,竖直向上答案:C一、回旋加速器在现代物理学中,人们为探索原子核内部的构造,需要用能量很高的带电粒子去轰击原子核。
美国物理学家劳伦斯于1932年发明了回旋加速器,巧妙地利用较低的高频电源对粒子多次加速使之获得巨大能量。
那么回旋回速器的工作原理是什么呢?答案:利用电场对带电粒子的加速作用和磁场对运动电荷的偏转作用来获得高能粒子,这些过程在回旋加速器的核心部件——两个D 形盒和其间的窄缝内完成,如图所示。
5.5探究洛仑兹力
3.有关洛仑兹力和安培力的描述,正确的是( BD ) A.运动电荷在磁场中一定受到洛伦兹力的作用 B.安培力是大量运动电荷所受洛仑兹力的宏观表现 C.带电粒子在匀强磁场中运动受到洛仑兹力做功 D.洛伦兹力方向与磁场方向一定垂直。
f洛 F安 BIL BnqvSL qvB nLS nLS nLS
f =qvB
截面A
截面B
L
导线中的电流 I=nqsv 所受到的安培力 F=IBL=nqsvLB 运动电荷的总数 N=nsL
单个运动电荷所受到的作用力
f=F/N=F/nsL 即 f =qvB
• 这个公式的适用条件是什么?
3.洛伦兹力公式:
f =qvB
适用条件:带电粒子垂直进入磁场的情况。
如果粒子平行于磁场进入,则不受洛伦兹力
如果粒子V=0,或者不带电, 则不受洛伦兹力
2.讨论:当带电粒子的速度方向与磁 场方向成θ角时,带电粒子受到的 洛伦兹力是多大
f =qvBsinθ
v
θ
q
V//B f洛=0
三、洛伦兹力的大小
v
B
注意:四指指
向正电荷运动
方,与负电荷
运动方向相反。
洛伦兹力方向
I
与电荷运动方 向垂直;和磁
场方向垂直。
当带电粒子的速度与磁当场带方电向粒平子行的时速,度与磁场 会不会受到洛伦兹力?方向平行时,不受洛伦兹
力。
通过这两幅三维图,你能总结一下F、B、V 三者之间的方向关系?
二、洛伦兹力方向
洛伦兹力方向与 电荷运动方向和 磁场方向一定垂 直; 即洛伦兹力 方向垂直于V与B 所确定的平面。 但B与V不一定垂 直。
高中选修物理探究洛伦兹力
洛伦兹力演示器
第五章 磁场与回旋加速器
亥姆霍兹线圈
加速电压选 择挡
电子 枪 磁场强弱选择挡
实验: 观察1:不加磁场时电子束轨迹励磁电流,磁场方向如何,电子偏转方向将如何?
若加顺时针的励磁电流,磁场方向如何,电子偏转方向将如何? 观察3 改变加速电压和励磁电流时,电子束轨迹半径有何变化?
3.方向关系:F安与f方向相同 4.F安与f本质都是磁场对运动电荷的作用力
第五章 磁场与回旋加速器
例2.电子的速率v=3×106m/s,垂直射入B=0.10T的匀强磁 场中,它受到的洛伦兹力是多大?
解析:因为v垂直B,所以所受洛伦兹力大小
f=qvB =1.60×10-19×3×106×0.10N =4.8×10-14N
带电粒子受洛伦兹力之比为( )
A.2∶1
B.1∶1
C.1∶2
D.1∶4
解析:带电粒子的速度方向与磁感线方向垂直时,洛伦兹
力F=qvB.与电荷量成正比,与质量无关,C项正确.
答案:C
3、一带电粒子在磁感强度为B的匀强磁场 中做匀速圆周运动,又进入另一磁感强 度为2B的匀强磁场中仍做匀速圆周运动 ,则( ) A.粒子的速率加倍,周期减半 B.粒子的速率不变,轨道半径减半 C.粒子的速率减半,轨道半径变为原来 的1/4 D.粒子速率不变,周期减半
√B.粒子的速率不变,轨道半径减半
C.粒子的速率减半,轨道半径变为原来的四分之一
√D.粒子的速率不变,周期减半
1234
解析 答案
(4)每个电荷所受的洛伦兹力。
N nSL
f F B(nqvS)L qvB N nSL
1.洛伦兹力:f=qvB (v⊥ B)
2.若带电粒子不垂直射入磁场
2019_2020高中物理第5章磁场与回旋加速器5.5探究洛伦兹力素材沪科版选修3_1
探究洛伦兹力教学建议本节内容既是安培力的延续,也是后面学习带电粒子在磁场中运动的基础,还是力学分析中重要的一部分。
学好本节,对以后力学综合问题中涉及洛伦兹力的分析,对利用功能关系解力学问题有很大的帮助。
洛伦兹力的方向和大小是本节教材的重点,实验结合理论探究洛伦兹力方向,再由安培力的表达式推导出洛伦兹力的表达式的过程是培养学生逻辑思维能力的好机会,一定要让全体学生都参与这一过程。
“洛伦兹力的方向与带电粒子的运动方向有什么关系?洛伦兹力对带电粒子的速度有什么影响?洛伦兹力对带电粒子做的功是多少?”可以提出这样三个问题供学生思考与讨论,课堂教学中可以组织学生开展小组讨论,然后通过交流发言得出正确结论。
(1)洛伦兹力的方向演示实验不仅能够让学生确信洛伦兹力的存在,而且可以通过实验发现洛伦兹力的方向与磁场方向和电荷的运动方向都有关系,探究出它们之间的关系能成为“安培力是洛伦兹力的宏观表现”的一个佐证。
同时,这个演示实验让肉眼看不到的电子显现出径迹,让学生可以亲眼观察磁场使电子径迹发生弯曲的现象,可以大大激发起学生的好奇心和求知欲,甚至有的学生由此能树立从事科学研究的人生志向。
因此做好这个演示实验十分重要。
应充分发挥演示实验的作用,结合对安培力方向的复习,使研究洛伦兹力方向的过程成为一个科学猜想,逻辑思维,实验证实,归纳讨论的过程。
与安培力的方向一样,培养学生的空间想象能力仍然是学好本节的关键。
应帮助学生建立三维空间模型,充分发挥立体图和各种剖面图的作用。
同时由于我们的习题和例题大多数是洛伦兹力方向、电荷的运动方向、磁感应强度方向两两垂直,应该防止学生在解决实际问题时误以为洛伦兹力方向、电荷的运动方向、磁感应强度方向一定是两两垂直的。
可结合实例强调——洛伦兹力的方向一定与电荷的运动方向和磁感应强度的方向都垂直,但电荷的运动方向与磁感应强度方向可以成任意角度。
当电荷的运动方向与磁感应强度方向垂直时,洛伦兹力最大,当电荷的运动方向与磁感应强度方向平行时,洛伦兹力最小,等于零。
高中物理第5章磁场与回旋加速器5.5探究洛伦兹力教案选修
5.5 探究洛伦兹力1.洛伦兹力磁场对运动电荷的作用力叫做洛伦兹力。
(1)洛伦兹力的方向:用左手定则判断,伸开左手,拇指跟其余四个手指垂直,且处于同一平面内,让磁感线垂直穿过手心,四指指向正电荷运动的方向,那么拇指所指的方向就是正电荷所受洛伦兹力的方向。
(2)洛伦兹力的大小安培力可以看成是大量的运动电荷所受洛伦兹力的宏观表现,而洛伦兹力则是安培力的微观解释。
洛伦兹力的大小公式为f=qvB,其中q表示运动电荷的电荷量,v表示电荷的运动速度,B表示磁感应强度。
此公式适用于速度方向跟磁场方向垂直的情况。
预习交流1如图所示,如果在电子射线管上方平行于管轴放置一根载流导线,电流方向如图所示,电子射线将朝什么方向偏转?电流反向后情况如何?想一想:为什么禁止将磁铁靠近正在播放节目的电视机?答案:由安培定则可得导线产生的磁场在导线上方垂直纸面向外,在导线下方垂直纸面向里,再由左手定则可得电子射线向下偏,电流反向后同理可得电子射线向上偏,因为电视显像管应用了电子束磁偏转的道理,所以将磁铁靠近正在播放节目的电视机时磁铁的磁场会影响电子的运动使图像变形。
2.研究带电粒子在磁场中的运动利用阴极射线管实验观察带电粒子在磁场的运动轨迹,让电子束垂直磁场方向进入匀强磁场的空间,将发现阴极射线在匀强磁场中的运动轨迹是圆周,即带电粒子垂直磁场方向进入,在匀强磁场中做匀速圆周运动,向心力由洛伦兹力提供,与速度方向垂直,故洛伦兹力对运动电荷不做功。
3.带电粒子的轨道半径和周期(1)轨道半径:由方程qvB=2vmr得,r=mvqB。
在匀强磁场中做圆周运动的带电粒子,它运动的轨道半径跟其运动的速率成正比。
(2)运动周期:由T=2rqBπ和r=mvqB得,T=2mqBπ。
带电粒子在匀强磁场中做匀速圆周运动的周期与它运动的轨道半径、运动的速率无关。
预习交流2带电粒子在匀强磁场中为什么会做匀速圆周运动?答案:带电粒子在磁场中受到洛伦兹力的作用,该力与运动速度方向垂直,充当向心力,由于向心力不做功,也就是洛伦兹力对运动电荷不做功,因此它不改变速度的大小,只改变速度的方向,所以运动电荷做匀速圆周运动。
2019-2020年高中物理 第5章 磁场与回旋加速器 洛伦兹力与现代科技学案 沪科版选修3-1
2019-2020年高中物理第5章磁场与回旋加速器洛伦兹力与现代科技学案沪科版选修3-1[学习目标定位] 1.了解回旋加速器的构造及工作原理,并会应用其原理解决相关问题.2.了解质谱仪的构造及工作原理.3.会分析带电粒子在匀强磁场中的圆周运动问题.一、回旋加速器1.使带电粒子获得较高的能量的基本原理是让带电粒子在电场中受力被加速.图12.回旋加速器的核心部件是两个D形金属扁盒,它们之间有一间隙(如图1).两个D形盒分别与高频电源的两极相连,使间隙中产生交变电场,加速带电粒子.磁场方向垂直于D形盒的底面.当带电粒子垂直于磁场方向进入D形盒中,粒子受到洛伦兹力的作用而做匀速圆周运动,经过半个周期回到D形盒的边缘.间隙中的电场使它获得一次加速.二、质谱仪1.质谱仪是科学研究中用来分析同位素和测量带电粒子质量的精密仪器.2.质谱仪的原理示意图如图2所示.图2从离子源S产生的离子经电场加速后,由小孔S1进入一个速度选择器,再经小孔S2进入匀强磁场B′,受洛伦兹力作用做匀速圆周运动,最后打到显示屏D上.那些原子序数相同而相对原子质量不同的同位素离子,将在显示屏上按质量大小排列成若干条细条状谱线,每一条谱线对应于一定的质量,故称“质谱仪”.一、回旋加速器 [问题设计]1.回旋加速器主要由哪几部分组成?回旋加速器中磁场和电场分别起什么作用? 答案 两个D 形盒 磁场的作用是使带电粒子回旋,电场的作用是使带电粒子加速. 2.对交流电源的周期有什么要求?带电粒子获得的最大动能由哪些因素决定? 答案 交流电源的周期应等于带电粒子在磁场中运动的周期. 当带电粒子速度最大时,其运动半径也最大,即rm =mvm Bq ,再由动能定理得:Ekm =q2B2r2m2m,所以要提高带电粒子获得的最大动能,应尽可能增大磁感应强度B 和D 形盒的半径rm.[要点提炼]1.洛伦兹力永远不做功,磁场的作用是让带电粒子“转圈圈”,电场的作用是加速带电粒子.2.两D 形盒窄缝所加的是与带电粒子做匀速圆周运动周期相同的交流电,且粒子每次过窄缝时均为加速电压.3.带电粒子获得的最大动能Ekm =q2B2r22m,决定于D 形盒的半径r 和磁感应强度B.[延伸思考]为什么带电粒子加速后的最大动能与加速电压无关呢?答案 加速电压高时,粒子在加速器中旋转的圈数较少,而加速电压低时,粒子在加速器中旋转的圈数较多,最终粒子离开加速器时的速度与加速电压无关. 二、质谱仪 [问题设计]1.如图3所示,是速度选择器的原理图.带正电的粒子以速度v 从左端进入两极板间,不计粒子的重力.要使粒子匀速通过该区域,粒子的速度应满足什么条件? 图3答案 粒子受电场力和洛伦兹力作用,电场力的方向向下,洛伦兹力的方向向上.当qE =qvB ,即v =EB时粒子做匀速直线运动. 2.阅读教材,总结质谱仪的构造和各部分的作用,并简述质谱仪的工作原理.答案 质谱仪主要由以下几部分组成:离子源、加速电场U1、速度选择器(U2,B1)、偏转磁场B2及照相底片.工作原理:在加速电场中被加速:qU1=12mv2在速度选择器中匀速通过:q U2d =qvB1在偏转磁场中做圆周运动:r =mv qB2由此可求得离子的质量:m=qB22r2 2U1通过前两式也可求得离子的比荷:qm=U222B21d2U1.[要点提炼]1.速度选择器中存在正交的电场和磁场,当粒子的速度满足v=EB时,粒子能通过速度选择器,粒子的速度大于或小于EB,均不能通过速度选择器.2.速度选择器适用于正、负电荷.3.速度选择器中的E、B1的方向具有确定的关系,仅改变其中一个方向,就不能对速度做出选择.三、带电粒子在匀强磁场中做匀速圆周运动问题的分析[要点提炼]1.圆心的确定方法:两线定一点(1)圆心一定在垂直于速度的直线上.如图4甲所示,已知入射点P(或出射点M)的速度方向,可通过入射点和出射点作速度的垂线,两条直线的交点就是圆心.图4(2)圆心一定在弦的中垂线上.如图乙所示,作P、M连线的中垂线,与其中一个速度的垂线的交点为圆心.2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要做好辅助线,由圆的半径和其他几何边构成直角三角形.3.粒子在磁场中运动时间的确定(1)粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间t=α360°T(或t=α2πT).(2)当v一定时,粒子在磁场中运动的时间t=lv,l为带电粒子通过的弧长.一、对回旋加速器原理的理解例1回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒内的狭缝中形成匀强电场,使粒子每次穿过狭缝时都得到加速,两盒放在磁感应强度为B的匀强磁场中,磁场方向垂直于盒底面,粒子源置于盒的圆心附近,若粒子源射出的粒子电荷量为q、质量为m,粒子最大回旋半径为Rmax.求:(1)粒子在盒内做何种运动;(2)所加交变电流频率及粒子角速度;(3)粒子离开加速器时的最大速度及最大动能.解析 (1)带电粒子在盒内做匀速圆周运动,每次加速之后半径变大.(2)粒子在电场中运动时间极短,因此高频交变电流频率要等于粒子回旋频率,因为T =2πmqB ,回旋频率f =1T =qB 2πm ,角速度ω=2πf =qBm .(3)由牛顿第二定律知mv2m axRmax =qBvmax则vmax =qBRmaxm最大动能Ekmax =12mv2m ax =q2B2R2m ax2m答案 (1)匀速圆周运动 (2)qB 2πm qBm(3)qBRmax m q2B2R2m ax 2m方法点拨 回旋加速器中粒子每旋转一周被加速两次,粒子射出时的最大速度(动能)由磁感应强度和D 形盒的半径决定,与加速电压无关.二、对质谱仪原理的理解例2 如图5是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场的磁感应强度和匀强电场的场强分别为B 和E.平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A1A2.平板S 下方有磁感应强度为B0的匀强磁场.下列表述正确的是( )图5A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直纸面向外C .能通过狭缝P 的带电粒子的速率等于EBD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小解析 根据Bqv =Eq ,得v =E B ,C 正确;在磁场中,B0qv =m v2r ,得q m =vB0r ,半径r 越小,比荷越大,D 错误;同位素的电荷数一样,质量数不同,在速度选择器中电场力向右,洛伦兹力必须向左,根据左手定则,可判断磁场方向垂直纸面向外,A 、B 正确. 答案 ABC三、带电粒子在匀强磁场中的匀速圆周运动问题例3 如图6所示,一束电荷量为e 的电子以垂直于磁感应强度B 并垂直于磁场边界的速度v 射入宽度为d 的匀强磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°,求电子的质量和穿越磁场的时间.图6解析 过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 做OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知, 电子运动的半径为r =d sin 60°=233d ① 由牛顿第二定律知qvB =m v2r②联立①②式解得m =23dBe3v电子在无界磁场中运动的周期为 T =2πeB ·23dBe 3v =43πd 3v电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd9v 答案2 3 dBe 3v 2 3 πd9v1.(对回旋加速器原理的理解)在回旋加速器中( )A .电场用来加速带电粒子,磁场则使带电粒子回旋B .电场和磁场同时用来加速带电粒子C .磁场相同的条件下,回旋加速器的半径越大,则带电粒子获得的动能越大D .同一带电粒子获得的最大动能只与交流电压的大小有关,而与交流电压的频率无关 答案 AC解析 电场的作用是使粒子加速,磁场的作用是使粒子回旋,故A 选项正确,B 选项错误;粒子获得的动能Ek =qBr 22m,对同一粒子,回旋加速器的半径越大,粒子获得的动能越大,与交流电压的大小无关,故C 选项正确,D 选项错误.2.(对质谱仪原理的理解)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图7所示,离子源S 产生的各种不同正离子束(速度可看为零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P 上,设离子在P 上的位置到入口处S1的距离为x ,可以判断( )图7A .若离子束是同位素,则x 越大,离子质量越大B .若离子束是同位素,则x 越大,离子质量越小C .只要x 相同,则离子质量一定相同D .只要x 相同,则离子的比荷一定相同 答案 AD解析 由动能定理qU =12mv2.离子进入磁场后将在洛伦兹力的作用下发生偏转,由圆周运动的知识,有:x =2r =2mv qB ,故x =2B2mUq,分析四个选项,A 、D 正确,B 、C 错误. 3.(带电粒子在匀强磁场中做匀速圆周运动问题)如图8所示,平面直角坐标系的第Ⅰ象限内有一匀强磁场垂直于纸面向里,磁感应强度为B.一质量为m 、电荷量为q 的粒子以速度v 从O 点沿着与y 轴夹角为30°的方向进入磁场,运动到A 点(图中未画出)时速度方向与x 轴的正方向相同,不计粒子的重力,则( ) 图8A .该粒子带正电B .A 点与x 轴的距离为mv2qBC .粒子由O 到A 经历时间t =πm3qBD .运动过程中粒子的速度不变 答案 BC解析 根据粒子的运动方向,由左手定则判断可知粒子带负电,A 项错;运动过程中粒子做匀速圆周运动,速度大小不变,方向变化,D 项错;粒子做圆周运动的半径r =mv qB ,周期T =2πmqB ,从O点到A 点速度的偏向角为60°,即运动了16T ,所以由几何知识求得点A 与x 轴的距离为mv2qB ,粒子由O 到A 经历时间t =πm3qB,B 、C 两项正确.题组一 回旋加速器原理的理解1.回旋加速器是利用较低电压的高频电源,使粒子经多次加速获得巨大速度的一种仪器,工作原理如图1所示.下列说法正确的是( ) 图1A .粒子在磁场中做匀速圆周运动B .粒子由A0运动到A1比粒子由A2运动到A3所用时间少C .粒子的轨道半径与它被电场加速的次数成正比D .粒子的运动周期和运动速率成正比答案 A解析 由于粒子在磁场中只受洛伦兹力,且洛伦兹力与运动方向垂直,所以粒子在磁场中做匀速圆周运动,A 正确;由T =2πm qB 可知粒子在磁场中运动的周期与半径无关,故粒子由A0运动到A1与粒子由A2运动到A3所用时间相等,B 错误; 由nqU =12mv2和R =mv qB 可得,R =1B2nmUq,n 为加速次数,所以粒子的轨道半径与它被电场加速的次数的平方根成正比,C 错误;由T =2πmqB可知粒子在磁场中运动的周期与速率无关,D 错误;故选A.2.如图2所示,回旋加速器是用来加速带电粒子使它获得较大动能的装置,其核心部分是两个D 型金属盒,置于匀强磁场中,两盒分别与高频电源相连.下列说法正确的有( ) 图2A .粒子被加速后的最大速度随磁感应强度和D 型盒的半径的增大而增大B .粒子被加速后的最大动能随高频电源的加速电压的增大而增大C .高频电源频率由粒子的质量、电荷量和磁感应强度决定D .粒子从磁场中获得能量 答案 AC解析 当粒子从D 形盒中出来时速度最大,由qvmB =m v2m R 其中R 为D 型盒的半径,得vm =qBRm ,可见最大速度随磁感应强度和D 型盒的半径的增大而增大,A 正确;粒子被加速后的最大动能Ekm =12mv2m =12m(qm )2B2R2与高频电源的加速电压无关,B 错误;高频电源频率与粒子在磁场中匀速圆周运动的频率相同,则f =qB 2πm ,可见频率由粒子的质量、电荷量和磁感应强度决定,C 正确;洛伦兹力不做功,所以粒子从电场中获得能量,D 错误;故选A 、C.3.用回旋加速器分别加速α粒子和质子时,若磁场相同,则加在两个D 形盒间的交变电压的频率应不同,其频率之比为( )A .1∶1B .1∶3C .2∶1D .1∶2 答案 D解析 解决本题的关键是知道回旋加速器中,加速电场的变化周期与粒子在磁场中运动的周期相等.带电粒子在磁场中的运动,洛伦兹力提供向心力,由牛顿第二定律得qvB =m v2r ,又v =2πrT ,所以在磁场中运动的周期T =2πmqB ,因此α粒子和质子在磁场中运动的周期之比为T 质Tα=m 质q 质·qαmα=12,因为在回旋加速器中,加速电场的变化周期与粒子在磁场中运动的周期相等,故加在两个D 形盒间的交变电压的频率之比为fαf 质=T 质Tα=12,所以选D.题组二 对质谱仪原理的理解4.速度相同的一束粒子(不计重力)由左端射入质谱仪后的运动轨迹如图3所示,则下列相关说法中正确的是( )图3A .该束带电粒子带正电B .速度选择器的P1极板带负电C .能通过狭缝S0的带电粒子的速率等于EB1D .粒子打在胶片上的位置越靠近狭缝S0,粒子的比荷越大 答案 AD解析 由带电粒子由左端射入质谱仪后的运动轨迹和左手定则可知该束带电粒子带正电,A 选项正确;在速度选择器中,带正电的粒子受向下的磁场力,则必受向上的电场力,所以上极板带正电,B 选项错误;由于在速度选择器中粒子做匀速直线运动,所以qvB1=qE ,v =EB1,C 选项错误;带电粒子由左端射入质谱仪后做匀速圆周运动,由qvB2=m v2R ,解得q m =v RB2=ERB1B2,粒子打在胶片上的位置越靠近狭缝S0,R 越小,而E 、B1、B2不变,所以粒子的比荷qm 越大,D 选项正确.5.如图4所示为质谱仪测定带电粒子质量的装置示意图.速度选择器(也称滤速器)中场强E 的方向竖直向下,磁感应强度B1的方向垂直纸面向里,分离器中磁感应强度B2的方向垂直纸面向外.在S 处有甲、乙、丙、丁四个一价正离子垂直于E 和B1入射到速度选择器中,若m 甲=m 乙<m 丙=m 丁,v 甲<v 乙=v 丙<v 丁,在不计重力的情况下,则打在P1、P2、P3、P4四点的离子分别是( )图4A .乙甲丙丁B .甲丁乙丙C .丙丁乙甲D .丁甲丙乙 答案 B解析 四种粒子,只有两个粒子通过速度选择器,只有速度满足v =EB ,才能通过速度选择器,所以通过速度选择器进入磁场的粒子是乙和丙,乙的质量小于丙的质量,根据公式Bqv =m v2r 可得乙的半径小于丙的半径,则乙打在P3位置,丙打在P4位置,甲的速度小于乙的速度,即小于EB ,洛伦兹力小于电场力,粒子向下偏转,打在P1位置,丁的速度大于v =EB ,洛伦兹力大于电场力,粒子向上偏转,打在P2位置,故B 正确,6.如图5所示为质谱仪的原理图.利用这种质谱仪可以对氢元素进行测量.氢元素的各种同位素,从容器A 下方的小孔S1进入加速电压为U 的加速电场,可以认为从容器出来的粒子初速度为零.粒子被加速后从小孔S2进入磁感应强度为B 的匀强磁场,最后打在照相底片D 上,形成a 、b 、c 三条质谱线.关于氢的三种同位素进入磁场时速率的排列顺序和三条谱线的排列顺序,下列说法中正确的是( )图5A .进磁场时速率从大到小的排列顺序是氕、氘、氚B .进磁场时速率从大到小的排列顺序是氚、氘、氕C .a 、b 、c 三条谱线的排列顺序是氕、氘、氚D .a 、b 、c 三条谱线的排列顺序是氘、氚、氕 答案 A解析 根据qU =12mv2得,v =2qUm.比荷最大的是氕,最小的是氚,所以进入磁场速率从大到小的顺序是氕、氘、氚.故A 正确,B 错误.进入偏转磁场有Bqv =m v2R ,R =mv qB =1B2mUq,氕比荷最大,则轨道半径最小,c 对应的是氕,氚比荷最小,则轨道半径最大,a 对应的是氚.故C 、D错误; 故选A.题组三 带电粒子在匀强磁场中的匀速圆周运动7.如图6所示,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B.现有一质量为m 、电荷量为q 的带电粒子,从x 轴上到原点的距离为x0的P 点,以平行于y 轴的初速度射入此磁场,在磁场作用下沿垂直于y 轴的方向射出此磁场.不计重力的影响.由这些条件可知( ) 图6A .不能确定粒子通过y 轴时的位置B .不能确定粒子速度的大小C .不能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对答案 D解析 带电粒子以平行于y 轴的初速度射入此磁场,在磁场作用下沿垂直于y 轴的方向射出此磁场,故带电粒子一定在磁场中运动了14周期,从y 轴上距O 为x0处射出,回旋角为90°,由r =mv Bq可得v =Bqr m =Bqx0m ,可求出粒子在磁场中运动时的速度大小,另有T =2πx0v =2πm Bq,可知粒子在磁场中运动所经历的时间,故选D.8.空间存在方向垂直于纸面向里的匀强磁场,如图7所示的正方形虚线为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( )图7 A .入射速度不同的粒子在磁场中的运动时间一定不同B .入射速度相同的粒子在磁场中的运动轨迹一定相同C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大答案 BD解析 由于粒子比荷相同,由r =mv qB可知速度相同的粒子运动半径相同,运动轨迹也必相同,B 正确.对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T =2πm qB知所有粒子在磁场运动周期都相同,A 、C 皆错误.再由t =θ2πT =θm qB可知D 正确.故选B 、D. 9.有一带电荷量为+q ,质量为m 的带电粒子,沿如图8所示的方向,从A 点沿着与边界夹角30°、并且垂直磁场的方向,进入到磁感应强度为B 的匀强磁场中,已知磁场的上部没有边界,若离子的速度为v ,则该粒子离开磁场时,距离A 点的距离( )图8A.mv qBB.2mv qBC.3mv qBD.3mv 2qB 答案 A解析 带电粒子将在磁场中做匀速圆周运动,粒子从O 点离开磁场,如图所示:由对称性,OA 所对应的圆心角为60°.由Bqv =mv2R 得R =mv Bq ,OA 间的距离x =R =mv Bq,所以选项A 正确.10.如图9所示,三个速度大小不同的同种带电粒子沿同一方向从图示长方形区域的匀强磁场上边缘射入,当它们从下边缘飞出时对入射方向的偏角分别为90°、60°、30°,则它们在磁场中的运动时间之比为( )图9A .1∶1∶1B .1∶2∶3C .3∶2∶1 D.3∶2∶1答案 C解析 如图所示,设带电粒子在磁场中做圆周运动的圆心为O ,由几何关系知,圆弧MN 所对应的粒子运动的时间t =MN v =Rαv =mv qB ·αv =mαqB ,因此,同种粒子以不同速率射入磁场,经历时间与它们的偏角α成正比,即t1∶t2∶t3=90°∶60°∶30°=3∶2∶1.11.长为l 的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为l ,极板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从两极板间边界中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v<Bql 4mB .使粒子的速度v>5Bql 4mC .使粒子的速度v>Bql mD .使粒子的速度Bql 4m <v<5Bql 4m答案 AB解析 如图所示,带电粒子刚好打在极板右边缘时,有r21=(r1-l 2)2+l2又r1=mv1Bq , 所以v1=5Bql 4m 粒子刚好打在极板左边缘时,有r2=l 4=mv2Bq ,v2=Bql 4m综合上述分析可知,选项A 、B 正确.12.如图10所示,MN 是磁感应强度为B 的匀强磁场的边界.一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v0,最远能落在边界上的A 点.下列说法正确的有( )图10A .若粒子落在A 点的左侧,其速度一定小于v0B .若粒子落在A 点的右侧,其速度一定大于v0C .若粒子落在A 点左、右两侧d 的范围内,其速度不可能小于v0-qBd 2mD .若粒子落在A 点左、右两侧d 的范围内,其速度不可能大于v0+qBd 2m答案 BC解析 带电粒子在磁场中做匀速圆周运动,qv0B =mv20r ,所以r =mv0qB,当带电粒子从不同方向由O 点以速度v0进入匀强磁场时,其轨迹是半径为r 的圆,轨迹与边界的交点位置最远是离O 点2r 的距离,即OA =2r ,落在A 点的粒子从O 点垂直入射,其他粒子则均落在A 点左侧,若落在A 点右侧则必须有更大的速度,选项B 正确.若粒子速度虽然比v0大,但进入磁场时与磁场边界夹角过大或过小,粒子仍有可能落在A 点左侧,选项A 错误.若粒子落在A 点左右两侧d 的范围内,设其半径为r′,则r′≥2r -d 2,代入r =mv0qB ,r′=mv qB ,解得v≥v0-qBd 2m,选项C 正确,D 错误. 13.如图11所示,一个质量为m 、电荷量为-q 、不计重力的带电粒子从x 轴上的P(a,0)点以速度v ,沿与x 轴正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限,求:图11(1)匀强磁场的磁感应强度B ;(2)穿过第一象限的时间.答案 (1)3mv 2qa (2)43πa 9v解析 (1)作出带电粒子做圆周运动的圆心和轨迹,由图中几何关系知:Rcos 30°=a ,得:R =23a 3Bqv =m v2R 得:B =mv qR =3mv 2qa. (2)运动时间:t =120°360°×2πm qB =43πa 9v. 14.如图12,在某装置中有一匀强磁场,磁感应强度为B ,方向垂直于xOy 所在纸面向外.某时刻在x =l0、y =0处,一质子沿y 轴负方向进入磁场;同一时刻,在x =-l0、y =0处,一个α粒子进入磁场,速度方向与磁场垂直.不考虑质子与α粒子的相互作用,设质子的质量为m ,电荷量为e.则:图12(1)如果质子经过坐标原点O ,它的速度为多大?(2)如果α粒子与质子经最短时间在坐标原点相遇,α粒子的速度应为何值?方向如何?答案 (1)eBl0/2m(2)2eBl0/4m ,方向与x 轴正方向的夹角为π4解析 (1)质子的运动轨迹如图所示,其圆心在x =l0/2处,其半径r1=l0/2.又r1=mv/eB ,可得v =eBl0/2m.(2)质子从x =l0处到达坐标原点O 处的时间为tH =TH/2,又TH =2πm/eB ,可得tH =πm/eB.α粒子的周期为Tα=4πm/eB ,可得tα=Tα/4两粒子的运动轨迹如图所示由几何关系得rα=22l0,又2evαB =mαv2αrα,解得 vα=2eBl0/4m ,方向与x 轴正方向的夹角为π4.。
高中物理 第5章 磁场与回旋加速器 探究电流周围的磁场学案 沪科版选修
高中物理第5章磁场与回旋加速器探究电流周围的磁场学案沪科版选修1、了解直线电流、环形电流、通电线圈的磁感线分布,并会运用安培定则判定电流的磁场方向、2、知道磁现象的电本质,了解安培分子电流假说、1820年,丹麦物理学家奥斯特发现通电导线也能使小磁针偏转,揭示了电与磁的联系、一、电流的磁场电流的磁场可以用安培定则(右手螺旋定则)来判定1、直线电流的磁场:用右手握住导线,让大拇指指向电流的方向,则弯曲的四指所指的方向就是磁感线的环绕方向、2、环形电流的磁场:环形电流磁场的磁感线是一些围绕环形导线的闭合曲线、在环形导线的中心轴线上,磁感线和环形导线的平面垂直、3、通电螺线管的磁场:通电螺线管外部磁感线和条形磁铁外部的磁感线相似,也是从北极出来,进入南极、螺线管内中间部分的磁感线跟螺线管的轴线平行,方向由南极指向北极,并和外部磁感线连接,形成闭合曲线、长直通电螺线管内中间部分的磁场近似为匀强磁场、二、探究磁现象的本质1821年,安培提出了安培分子电流假说,他认为,在原子、分子等物质微粒的内部存在着一种环形电流分子电流,分子电流使每个物质微粒都成为微小的磁体,分子电流的两侧相当于两个磁极、安培的分子电流假设揭示了磁性的起源,即磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的、一、电流的磁场[问题设计]1820年,丹麦物理学家奥斯特发现了电流周围存在磁场,电流周围的磁场具有什么特征?仔细观察实验,说明电流的磁场的特点、(1)让一直导线垂直穿过一块水平硬纸板,将小磁针放置在水平硬纸板各处,接通电源、观察小磁针在各处的指向,分析直线电流的磁感线的特点、(2)用相同的方法研究环形电流磁场的磁感线的分布,也可用细铁屑模拟磁感线的分布,分析其磁感线的特点、(3)用细铁屑模拟通电螺线管的磁感线分布,分析其磁感线的特点、答案见要点提炼、[要点提炼]电流周围的磁感线方向可根据安培定则判断、1、直线电流的磁场:以导线上任意点为圆心的同心圆,越向外越疏、(如图1所示)图12、环形电流的磁场:内部比外部强,磁感线越向外越疏、(如图2所示)图23、通电螺线管的磁场:内部为匀强磁场,且内部比外部强、内部磁感线方向由S极指向N极,外部由N极指向S极、(如图3所示)图3二、探究磁现象的本质[问题设计]磁铁和电流都能产生磁场,而且通电螺线管外部的磁场与条形磁铁的磁场分相似,它们的磁场有什么联系?答案它们的磁场都是由电荷的运动产生的、[要点提炼]1、安培分子电流假说安培认为,物质微粒内的分子电流使它们相当于一个个的小磁体(如图4)、图42、当铁棒中分子电流的取向大致相同时,铁棒对外显磁性(如图5甲);当铁棒中分子电流的取向变得杂乱无章时,铁棒对外不显磁性(如图乙)、图53、安培分子电流假说说明一切磁现象都是由电荷的运动产生的、一、对安培定则的理解与应用例1 如图6所示,a是直线电流的磁场,b是环形电流的磁场,c是通电螺线管电流的磁场,试在各图中补画出电流方向或磁感线方向、图6解析根据安培定则,可以确定a中电流方向垂直纸面向里,b中电流方向为逆时针方向,c中螺线管内部磁感线方向向左、答案见解析针对训练如图所示,当开关S闭合后,小磁针处在通电电流的磁场中的位置正确的是() 答案D解析依据安培定则,判断出电流的磁场方向;再根据小磁针静止时N极的指向为磁场的方向,判知D正确、二、磁感应强度矢量的叠加例2 如图7所示,两个完全相同的通电圆环A、B圆心O重合、圆面相互垂直的放置,通电电流相同,电流方向如图所示,设每个圆环在其圆心O处独立产生的磁感应强度都为B0,则O处的磁感应强度大小为()图7A、0B、2B0C、B0D、无法确定解析A通电圆环在O点处产生的磁场由安培定则可知垂直纸面向里,大小为B0,同理由安培定则知B圆环在O 点处产生的磁场方向竖直向下,大小也为B0、所以O点合磁场的磁感应强度大小为B0,选项C正确、答案 C三、对磁现象的本质的认识例3 关于磁现象的电本质,下列说法正确的是()A、除永久磁铁外,一切磁场都是由运动电荷或电流产生的B、根据安培的分子电流假说,在外磁场作用下,物体内部分子电流取向变得大致相同时,物体就被磁化了,两端形成磁极C、一切磁现象都起源于电流或运动电荷,一切磁作用都是电流或运动电荷之间通过磁场而发生的相互作用D、磁就是电,电就是磁;有磁必有电,有电必有磁解析永久磁铁的磁场也是由运动的电荷产生的、故A错误、没有磁性的物体内部分子电流的取向是杂乱无章的,分子电流产生的磁场相互抵消,但当受到外界磁场的作用力时分子电流的取向变得大致相同时分子电流产生的磁场相互加强,物体就被磁化了,两端形成磁极、故B正确、由安培分子电流假说知C正确、磁和电是两种不同的物质,故磁是磁,电是电、有变化的电场或运动的电荷就能产生磁场,但静止的电荷不能产生磁场,恒定的电场不能产生磁场,同样恒定磁场也不能产生电场,故D错误、答案BC1、(安培定则的理解与应用)如图8所示为电流产生磁场的分布图,正确的分布图是()图8A、①③B、②③C、①④D、②④答案C解析由安培定则可以判断出直线电流产生的磁场方向,①正确,②错误、③和④为环形电流,注意让弯曲的四指指向电流的方向,可判断出③错误,④正确、故正确选项为C、2、(安培定则的理解与应用)如图9所示,a、b、c三枚小磁针分别在通电螺线管的正上方、管内和右侧,当这些小磁针静止时,小磁针N极的指向是()图9A、a、b、c均向左B、a、b、c均向右C、a向左,b向右,c向右D、a向右,b向左,c向右答案C解析小磁针静止时N极的指向与该点磁感线方向相同,如果a、b、c三处磁感线方向确定,那么三枚磁针静止时N极的指向也就确定、所以,只要画出通电螺线管的磁感线如图所示,即可知a磁针的N极在左边,b磁针的N极在右边,c磁针的N极在右边、3、(磁感应强度矢量的叠加)如图10所示,a、b两根垂直纸面的直导体通有大小相等的电流,两导线旁有一点P,P点到a、b距离相等,要使P点的磁场方向向右,则a、b中电流的方向为()图10A、都垂直于纸面向纸里B、都垂直于纸面向纸外C、a中电流垂直于纸面向外,b中电流垂直于纸面向里D、a中电流垂直于纸面向里,b中电流垂直于纸面向外答案C解析根据矢量合成可知,a在P点的磁场方向沿aP连线的垂线向上,b在P点的磁场方向沿bP连线的垂线向下,再由安培定则判断得:a中电流垂直于纸面向外,b中电流垂直于纸面向里,C正确、4、(对磁现象的本质的认识)用安培提出的分子电流假说可以解释的现象是()A、永久磁铁的磁场B、直线电流的磁场C、环形电流的磁场D、软铁棒被磁化的现象答案AD解析安培分子电流假说是安培为解释磁体的磁现象而提出来的,所以选项A、D是正确的;而通电导线周围的磁场是由其内部自由电荷定向移动产生的宏观电流而产生的、分子电流和宏观电流虽然都是运动电荷引起的,但产生的原因是不同的,故正确答案为A、D、题组一对安培定则的理解与应用1、如图1所示,小磁针正上方的直导线与小磁针平行,当导线中有电流时,小磁针会发生偏转、首先观察到这个实验现象的物理学家和观察到的现象是()图1A、物理学家伽利略,小磁针的N极垂直转向纸内B、天文学家开普勒,小磁针的S极垂直转向纸内C、物理学家牛顿,但小磁针静止不动D、物理学家奥斯特,小磁针的N极垂直转向纸内答案D解析发现电流的磁效应的科学家是奥斯特,根据右手螺旋定则和小磁针N极所指的方向为该点磁场方向可知D对;故选D、2、下列各图中,已标出电流及电流磁场的方向,其中正确的是()答案D解析电流与电流磁场的分布,利用的是右手螺旋定则判断,大拇指指向直导线电流方向,四指指向磁感线方向,因此A、B错;对于螺线管和环形电流中,四指弯曲方向为电流方向,大拇指指向内部磁场方向,故选D、3、如图2所示的螺线管内放置一小磁针,下列判断正确的是()图2A、电源A端为正、B端为负,线圈右端为S极,左端为N极B、电源A端为负、B端为正,线圈右端为S极,左端为N极C、电源A端为负、B端为正,线圈右端为N极,左端为S极D、电源A端为正、B端为负,线圈右端为N极,左端为S极答案B解析由小磁针N极的指向确定通电螺线管内磁感线的方向为从右向左,再根据安培定则,确定在电源外部电流方向由B 指向A,电源B端为正,线圈左端为N极,故B正确、题组二对磁现象的本质的认识4、关于安培分子电流假说的说法正确的是()A、安培观察到物质内部有分子电流存在就提出了假说B、为了解释磁铁产生磁场的原因,安培提出了假说C、事实上物质内部并不存在类似的分子电流D、根据后来科学家研究,原子内电子绕核旋转形成环形电流与安培分子电流假说相符答案BD5、磁铁在高温下或者受到敲击时会失去磁性,根据安培的分子电流假说,其原因是()A、分子电流消失B、分子电流的取向变得大致相同C、分子电流的取向变得杂乱D、分子电流的强度减弱答案C解析由于高温或猛烈的敲击,会使原来取向一致的分子电流变得杂乱,从而失去磁性,故C 选项正确、题组三磁感应强度矢量的叠加6、取两个完全相同的长导线,用其中一根绕成如图3甲所示的螺线管,当该螺线管中通以电流强度为I的电流时,测得螺线管内中部的磁感应强度大小为B,若将另一根长导线对折后绕成如图乙所示的螺旋管,并通以电流强度也为I的电流时,则在螺线管内中部的磁感应强度大小为()图3A、0B、0、5BC、BD、2B答案A解析用双线绕成的螺丝管,双线中的电流刚好相反,其在周围空间产生的磁场相互抵消,所以螺线管内中部磁感应强度为零、7、分别置于a、b两处的长直导线垂直纸面放置,通有大小相等的恒定电流,方向如图4所示,a、b、c、d在一条直线上,且ac=cb=bd、已知c点的磁感应强度大小为B1,d点的磁感应强度大小为B2、若将b处导线的电流切断,则()图4A、c点的磁感应强度大小变为B1,d点的磁感应强度大小变为B1-B2B、c点的磁感应强度大小变为B1,d点的磁感应强度大小变为B2-B1C、c点的磁感应强度大小变为B1-B2,d点的磁感应强度大小变为B1-B2D、c点的磁感应强度大小变为B1-B2,d点的磁感应强度大小变为B2-B1答案A解析设a导线在c点的磁感应强度大小为B,在d点的磁感应强度大小为B′、根据右手螺旋定则有:B1=2BB2=B-B′联立两式解得B=B1,B′=B1-B2、故A正确,B、C、D错误、8、如图5所示,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流、a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等、关于以上几点处的磁场,下列说法正确的是()图5A、O点处的磁感应强度为零B、a、b两点处的磁感应强度大小相等,方向相反C、c、d两点处的磁感应强度大小相等,方向相同D、a、c两点处磁感应强度的方向不同答案C解析根据安培定则判断磁场方向,再结合矢量的合成知识求解、根据安培定则判断:两直线电流在O点产生的磁场方向均垂直于MN向下,O 点的磁感应强度不为零,故A选项错误;a、b两点的磁感应强度大小相等,方向相同,故B选项错误;根据对称性,c、d两点处的磁感应强度大小相等,方向相同,故C选项正确;a、c两点的磁感应强度方向相同,故D选项错误、第 1 页共 1 页。
2019高中物理第五章磁场与回旋加速器5.5探究洛伦兹力练习(含解析)沪科选修3_1
探究洛伦兹力一、选择题(一)1.试判断下列图中带电粒子所受洛伦兹力的方向向上的是()解析:A图中带电粒子受力方向向上;B图中带电粒子受力方向向外;C图中带电粒子受力方向向左;D 图中带电粒子受力方向向里。
答案:A2.从太阳和其他星体发射出的高能粒子流,称为宇宙射线,在射向地球时,由于地磁场的存在,改变了带电粒子的运动方向,地磁场对地球起到了保护作用。
如图为地磁场对宇宙射线作用的示意图。
现有来自宇宙的一束质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时将()A.竖直向下沿直线射向地面B.相对于预定地点稍向东偏转C.相对于预定地点稍向西偏转D.相对于预定地点稍向北偏转解析:建立空间概念,在赤道上空地磁场方向水平向北,由左手定则可以判断磁场对质子的洛伦兹力方向向东,故质子向东偏转,故选项B正确。
答案:B3.电荷量为+q的粒子在匀强磁场中运动,下列说法中正确的是()A.只要速度大小相同,所受洛伦兹力就相同B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D.粒子在只受到洛伦兹力作用下运动时,动能、速度均不变解析:因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时f=qvB,当粒子速度与磁场平行时f=0。
又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以选项A错误。
因为+q改为-q且速度反向,由左手定则可知洛伦兹力方向不变,再由f=qvB知大小不变,所以选项B正确。
因为电荷进入磁场时的速度方向可以与磁场方向成任意夹角,所以选项C错误。
因为洛伦兹力总与速度方向垂直,因此洛伦兹力不做功,粒子动能不变,但洛伦兹力可改变粒子的运动方向,使粒子速度的方向不断改变,所以选项D错误。
答案:B4.两个带电粒子以同一速度、同一位置进入匀强磁场,在磁场中它们的运动轨迹如图所示。
2019-2020学年高中物理 第5章 磁场与回旋加速器 5.5 探究洛伦兹力学案 沪科版选修3-1
5.5 探究洛伦兹力[知识梳理]一、洛伦兹力及其大小、方向 1.洛伦兹力磁场对运动电荷的作用力. 2.左手定则伸直左手,让大拇指与四指垂直且在同一平面内,四指指向正电荷运动方向,让磁感线穿入手心,大拇指所指的方向就是洛伦兹力的方向,如图551所示.对于负电荷,四指指向负电荷运动的相反方向.图5513.洛伦兹力的大小(1)推导过程:长为L 的导体垂直磁场放置,通入电流为I ,受到的安培力F =BIL ,而I =nqSv ,导体中的电荷总数为N =nLS ,所以每个电荷受到的磁场力(即洛伦兹力)为f =FN=qvB .(2)公式:f =qvB .(3)成立条件:速度方向与磁场方向垂直. 二、带电粒子在磁场中的运动1.带电粒子垂直进入磁场,只受洛伦兹力作用,带电粒子做匀速圆周运动,洛伦兹力提供向心力.2.轨道半径:由于洛伦兹力提供向心力,即qvB =m v 2r ,由此推得r =mvBq.3.运动周期:由T =2πr v 和r =mv Bq ,联立求得T =2πmBq.[基础自测]1.思考判断(正确的打“√”,错误的打“×”.) (1)只要将电荷放入磁场中,电荷就一定受洛伦兹力.(×) (2)洛伦兹力的方向只与磁场方向和电荷运动方向有关.(×) (3)判断电荷所受洛伦兹力的方向时,应同时考虑电荷的电性.(√) (4)当带电粒子的速度方向与磁场方向相同时,粒子做匀加速运动.(×) (5)带电粒子速度越大,在匀强磁场中做匀速圆周运动的半径越大.(√) (6)速度越大,带电粒子在匀强磁场中做匀速圆周运动的周期越大.(×) 【提示】(1)× 运动电荷的速度方向与磁场方向不平行时才会受洛伦兹力. (2)× 洛伦兹力方向还跟电荷的正、负有关.(4)× 方向相同,粒子不受洛伦兹力,故做匀速直线运动. (6)× 周期公式为T =2πm qB,周期大小与速度无关.2.图中带电粒子所受洛伦兹力的方向向上的是( )【导学号:69682272】A [A 图中带电粒子受力方向向上,B 图中带电粒子受力方向向外,C 图中带电粒子受力方向向左,D 图中带电粒子受力方向向外.故A 正确.]3.电子在匀强磁场中做匀速圆周运动,下列说法正确的是( ) A .速率越大,周期越大 B .速率越小,周期越大 C .速度方向与磁场方向平行 D .速度方向与磁场方向垂直D [由粒子在磁场中做匀速圆周运动的周期公式T =2πmqB可知,周期的大小与速率无关,A 、B 错误,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,速度方向与磁场方向垂直,C 错误,D 正确.]4.(多选)如图552所示,在两个不同的匀强磁场中,磁感强度关系为B 1=2B 2,当不计重力的带电粒子从B 1磁场区域运动到B 2磁场区域时(在运动过程中粒子的速度始终与磁场垂直),则粒子的( )【导学号:69682273】图552A .速率将加倍B .轨道半径将加倍C .周期将加倍D .做圆周运动的角速度将加倍BC [粒子在磁场中只受到洛伦兹力,洛伦兹力不会对粒子做功,故速率不变,A 错;由半径公式r =mvBq,B 1=2B 2,则当粒子从B 1磁场区域运动到B 2磁场区域时,轨道半径将加倍,B 对;由周期公式T =2πm Bq ,磁感应强度减半,周期将加倍,C 对;角速度ω=2πT,故做圆周运动的角速度减半,D 错.][合 作 探 究·攻 重 难](1)洛伦兹力的方向总是与电荷运动方向和磁场方向垂直,即洛伦兹力的方向总是垂直于电荷运动方向和磁场方向所决定的平面,F 、B 、v 三者的方向关系是:F ⊥B 、F ⊥v ,但B 与v 不一定垂直.(2)洛伦兹力的方向随电荷运动方向的变化而变化.但无论怎么变化,洛伦兹力都与运动方向垂直,故洛伦兹力永不做功,它只改变电荷运动方向,不改变电荷速度大小.2.洛伦兹力和安培力的关系(1)安培力是洛伦兹力的宏观表现,洛伦兹力是安培力的微观解释.(2)大小关系:F 安=Nf (N 是导体中定向运动的电荷数).(3)方向关系:洛伦兹力与安培力的方向一致,均可用左手定则进行判断. (4)洛伦兹力永远不做功,但安培力可以做功. 3.洛伦兹力与电场力的比较法正确的是( )图553A .金属块上下表面电势相等B .金属块上表面电势高于下表面电势C .金属块上表面电势低于下表面电势D .无法比较两表面的电势高低思路点拨:①金属导体中导电的是自由电子. ②负电荷受洛伦兹力的方向和正电荷相反.C [由左手定则知自由电子所受洛伦兹力方向向上,即自由电子向上偏,所以上表面电势比下表面电势低.C 正确.]判断洛伦兹力方向应注意的三点(1)洛伦兹力必垂直于v 、B 方向决定的平面.(2)v 与B 不一定垂直,当不垂直时,磁感线不再垂直穿过手心. (3)当运动电荷带负电时,四指应指向其运动的反方向.[针对训练]1.(多选)如图是表示磁场磁感应强度B、负电荷运动速度v和磁场对负电荷洛伦兹力F的相互关系图,这四个图中画得正确的是(B、v、F两两垂直)( )ABC[根据左手定则,使磁感线垂直穿入手心,四指指向v的反方向,从大拇指所指方向可以判断,A、B、C图中所标洛伦兹力方向均正确,D图中所标洛伦兹力方向错误.]2.带电粒子(重力不计)穿过饱和蒸汽时,在它走过的路径上饱和蒸汽便凝成小液滴,从而显示了粒子的径迹,这是云室的原理.如图554所示是云室的拍摄照片,云室中加了垂直于照片向外的匀强磁场,图中oa、ob、oc、od是从o点发出的四种粒子的径迹,下列说法中正确的是( )图554A.四种粒子都带正电B.四种粒子都带负电C.打到a、b点的粒子带正电D.打到c、d点的粒子带正电D[由左手定则知打到a、b点的粒子带负电,打到c、d点的粒子带正电,D正确.]1(1)知道磁场中两点速度方向,则带电粒子在两点所受洛伦兹力作用线的交点即为圆心.如图555(a)所示.(2)知道磁场中一点速度方向和另一点位置,则该点所受洛伦兹力作用线与这两点连线的中垂线的交点即为圆心,如图555(b)所示.(a) (b)图5552.求半径画圆弧后,再画过入射点、出射点的半径并作出辅助三角形,最后由几何知识求出半径. 3.求运动时间图556(1)利用t =θ2πT 求.即:先求周期T ,再求圆心角θ.(2)圆心角的确定①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角,即α=φ,如图556所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.如图557所示,一束电子(电量为e )以速度v 0垂直射入磁感应强度为B ,宽为d的匀强磁场中,电子穿出磁场的速度方向与电子原来的入射方向的夹角为30°,(电子重力忽略不计)求:图557(1)电子的质量是多少? (2)穿过磁场的时间是多少?思路点拨:①确定了电子的圆心、半径就可以计算电子质量. ②确定了电子在磁场中运动的偏转角度就可以计算时间.【解析】 (1)电子垂直射入匀强磁场中,只受洛伦兹力作用做匀速圆周运动,圆心为初速度v 0与离开磁场时速度垂线的交点,如图所示.由几何知识得轨迹的半径为r =dsin 30°=2d由牛顿第二定律得:Bqv =m v 2r解得:m =2dBev 0.(2)由几何知识得,轨迹的圆心角为α=π6所以t =α2πT =αm qB =πd3v 0.【答案】 (1)2dBe v 0 (2)πd3v 0带电粒子在磁场中运动解题步骤三步走(1)画轨迹:即确定圆心,画出运动轨迹.(2)找联系:轨道半径与磁感应强度、运动速度的联系,偏转角度与圆心角、运动时间的联系,在磁场中的运动时间与周期的联系.(3)用规律:即牛顿运动定律和圆周运动的规律,特别是周期公式、半径公式.[针对训练]3. (多选)质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,带电粒子仅受洛伦兹力的作用,运行的半圆轨迹如图558中虚线所示,下列表述正确的是( )【导学号:69682274】图558A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 不做功D .M 的运行时间大于N 的运行时间AC [由左手定则可知,M 带负电,N 带正电,选项A 正确;由r =mvqB可知,M 的速率大于N 的速率,选项B 错误;洛伦兹力对M 、N 不做功,选项C 正确;由T =2πmqB可知M 的运行时间等于N 的运行时间,选项D 错误.]4.如图559所示,在x 轴上方的空间存在着垂直于纸面向里的匀强磁场,磁感应强度的大小为B .许多相同的离子,以相同的速率v ,由O 点沿纸面向各个方向(y >0)射入磁场区域.不计离子所受重力及离子间的相互影响.图中曲线表示离子运动的区域边界,其中边界与y 轴交点为M ,边界与x 轴交点为N ,且OM =ON =L .图559(1)求离子的比荷q m;(2)某个离子在磁场中运动的时间为t =5πL6v ,求其射出磁场的位置坐标和速度方向.【解析】 (1)离子沿y 轴正方向进入,则离子从N 点垂直射出, 所以轨道半径r =L2.离子在匀强磁场中做匀速圆周运动,有qvB =m v 2r ,所以q m =2v BL.(2)带电粒子做匀速圆周运动,周期T =2πm qB =πLv.设离子在磁场中运动轨迹对应圆心角为θ,θ=t T ×2π=5π3=300°.其轨迹如图虚线所示.出射位置x =-2r sin 2π-θ2=-L sin π6=-L2.速度方向与x 轴正方向成30°角.【答案】 (1)2v BL (2)⎝ ⎛⎭⎪⎫-L 2,0 速度方向与x 轴正方向成30°角[当 堂 达 标·固 双 基]1.汤姆生通过对阴极射线的研究发现了电子.如图5510所示,把电子射线管(阴极射线管)放在蹄形磁铁的两极之间,可以观察到电子束偏转的方向是( )图5510A .向上B .向下C .向左D .向右B [电子束由负极向正极运动,带负电,电子束运动范围内的磁场由N 极指向S 极,根据左手定则可知,洛伦兹力方向向下.]2.如图5511所示,一速度为v 0的电子恰能沿直线飞出离子速度选择器,选择器中磁感应强度为B ,电场强度为E ,若B 、E 、v 0同时增大为原来的两倍,则电子将( )【导学号:69682275】图5511A .仍沿直线飞出选择器B .往上偏C .往下偏D .往纸外偏C [电子开始沿直线运动,表示它受力平衡,即qv 0B =qE ,由此可知B 、E 、v 0均变为原来的两倍后,q 2v 0·2B >q ·2E ,电子的洛伦兹力大于电场力,它会偏离直线向下运动,C 对,A 、B 、D 错.]3. (多选)如图5512所示,质量为m ,电荷量为+q 的带电粒子,以不同的初速度两次从O 点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M 、N 两点射出磁场,测得OM ∶ON =3∶4,则下列说法中正确的是()图5512A .两次带电粒子在磁场中经历的时间之比为3∶4B .两次带电粒子在磁场中运动的路程长度之比为3∶4C .两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4D .两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3BC [设OM =2r 1,ON =2r 2,故r 1r 2=OM ON =34,路程长度之比s M s N =πr 1πr 2=34,B 正确;由r =mv qB 知v 1v 2=r 1r 2,故f M f N =qv 1B qv 2B =34,C 正确,D 错误;由于T =2πm Bq ,则t M t N =12T M12T N =1,A 错.] 4.如图5513所示,以ab 为分界面的两个匀强磁场,方向均垂直纸面向里,其磁感应强度B 1=2B 2.现有一质量为m 、电荷量为+q 的粒子从O 点沿图示方向以速度v 开始运动,求经过多长时间粒子重新回到O 点,并画出粒子的运动轨迹.【导学号:69682276】图5513【解析】 粒子重新回到O 点的运动轨迹如图所示,则其运动轨迹为在B 1中可组成一个整圆,在B 2中是个半圆.所以t =2πm qB 1+πm qB 2=2πmqB 2.【答案】 2πmqB 2运动轨迹如解析图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中物理第五章磁场与回旋加速器第4课时探究洛伦兹力同步课时检测沪科版选修3-1
[概念规律组]
1.在以下几幅图中,对洛伦兹力的方向判断不正确的是( )
2.带电荷量为+q的粒子在匀强磁场中运动,下列说法中正确的是( ) A.只要速度大小相同,所受洛伦兹力就相同
B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变C.洛伦兹力方向一定与电荷运动方向垂直,磁场方向也一定与电荷运动方向垂直
D.粒子在只受到洛伦兹力作用时运动的动能不变
3.如图1所示是阴极射线管示意图.接通电源后,电子射线由阴极沿x轴方向射出.在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,下列措施中可采用的是
( )
图1
A.加一磁场,磁场方向沿z轴负方向
B.加一磁场,磁场方向沿y轴正方向
C.加一电场,电场方向沿z轴负方向
D.加一电场,电场方向沿y轴正方向
4.运动电荷进入磁场后(无其他力作用)可能做( ) A.匀速圆周运动B.匀速直线运动
C.匀加速直线运动D.平抛运动
5.有三束粒子,分别是质子(p)、氚核(31H)和α粒子(42He)束,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面向里),在下面所示的四个图中,能正确表示出这三束粒子运动轨迹的是
( )
6.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和Rα,周期分别为T p和Tα.则下列选项正确的是
( )
A.R p∶Rα=1∶2,T p∶Tα=1∶2
B.R p∶Rα=1∶1,T p∶Tα=1∶1
C.R p∶Rα=1∶1,T p∶Tα=1∶2
D.R p∶Rα=1∶2,T p∶Tα=1∶1
[方法技巧组]
7.(2012·北京·16)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值
( )
A.与粒子电荷量成正比B.与粒子速率成正比
C.与粒子质量成正比D.与磁感应强度成正比
8.如图2所示是在匀强磁场中观察到的粒子的轨迹,a和b是轨迹上的两点,匀强磁场B 垂直于纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是
( )
图2
A.粒子先经过a点,再经过b点
B.粒子先经过b点,再经过a点
C.粒子带负电
D.粒子带正电
9.质子(11H)和α粒子(42He)在同一匀强磁场中做半径相同的圆周运动.由此可知质子的动能
E k1和α粒子的动能E k2之比E k1∶E k2等于( )
A.4∶1 B.1∶1 C.1∶2 D.2∶1
10.如图3所示,在长直导线AB旁,用绝缘细线在O点悬挂一带正电的小球,当导线中通入恒定电流时,下列说法正确的是( )
图3
A .小球受到洛伦兹力的作用,其方向指向纸里
B .小球受到洛伦兹力的作用,其方向指向纸外
C .小球受到洛伦兹力的作用,其方向垂直AB 向右
D .小球不受洛伦兹力的作用
11.带电油滴以水平速度v 0垂直进入磁场,恰做匀速直线运动,如图4所示,若油滴质量
为m ,磁感应强度为B ,则下述说法正确的是 ( )
图4
A .油滴必带正电荷,电荷量为
mg v 0B
B .油滴必带正电荷,比荷q m =q v 0B
C .油滴必带负电荷,电荷量为mg v 0B
D .油滴带什么电荷都可以,只要满足q =mg v 0B
12.一个带正电的微粒(重力不计)穿过如图5所示的匀强磁场和匀强电场区域时,恰能沿直线运动,则欲使电荷向下偏转时应采用的办法是
( )
图5
A .增大电荷质量
B .增大电荷电荷量
C .减小入射速度
D .增大磁感应强度
图6
13.如图6所示,在x 轴上方有磁感应强度大小为B ,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为B /2,方向垂直纸面向外的匀强磁场.一质量为m 、电荷量为-q 的带电粒子(不计重力),从x 轴上O 点以速度v 0垂直x 轴向上射出.求:
(1)射出之后经多长时间粒子第二次到达x 轴?
(2)粒子第二次到达x轴时离O点的距离.
[创新应用组]
14.一细棒处于磁感应强度为B的匀强磁场中,棒与磁场垂直,磁感线方向垂直纸面向里,如图7所示,棒上套一个可在其上滑动的带负电的小环c,小环质量为m,电荷量为q,环与棒间无摩擦.让小环从静止滑下,下滑中某时刻环对棒的作用力恰好为零,则此时环的速度为多大?
图7
答案
1.C 2.BD 3.B 4.AB 5.C 6.A 7.D 8.AC 9.B 10.D 11.A 12.C 13.(1)3πm qB
(2)6mv 0qB
14.mg cos θqB。