2011卢湾区期高三期末试卷有答案(数学)-卢湾区2010学年第一学期高三年级期末考试key
上海高三数学_上海市卢湾区2010届高三上学期期末考试数学试卷
上海市卢湾区2010届高三上学期期末考试数学试卷2010.1(本卷完成时间为120分钟,满分为150分)一.填空题(本大题满分56分)本大题共有14小题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分. 1.函数()sin(f x x =π+1)的最小正周期T =_______. 2.函数2()lg 1f x x =-的定义域为 . 3.若12i ia ++为实数(i 为虚数单位),则实数a =_________.4.计算:2(1)(13)lim(2)(1)n n n n n n →∞+-=-++________.5.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为 160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 .6.在二项式12nx x ⎛⎫- ⎪⎝⎭的展开式中,若第5项是常数项,则n =_______.7.在△A B C 中,E 为A C 上一点,B C a = ,B A b =,12A E E C = , 若用向量a 、b 表示BE ,则BE =_________.8.右图中,程序框图的功能是交换两个变量的值并输出,图中①处 应填入 .9.若实数a 、b 、c 、d 满足矩阵等式11240202a b cd ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则 行列式a b cd的值为_________.10.若关于x 、y 的二元一次方程组1,2m x y m x m y m+=+⎧⎨+=⎩无解,则m =_____.11.已知数列{}n a 共有6项,若其中三项是1,两项是2,一项是3,则满足上述条件的数列共有 个.12.若集合0,1,2A π⎧⎫=⎨⎬⎩⎭,{|cos ,}B y y x x A ==∈,则A B = _______.13.若等比数列{}n a 的前n 项和为n S ,公比为q ,集合2lim ,1,n n n S M x x q S →∞⎧⎪==≠-⎨⎪⎩q ⎫∈⎬⎭R ,则用列举法表示M = .14.方程2cos 0x x -=的解可视为函数cos y x =的图像与函数2y x =的图像交点的横坐标.方程210sin102x x x π-+=实数解的个数为 .二.选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分. 15.若复数13i 22ω=+(i 为虚数单位),则1ω-等于( ).A . 2ωB . 2ω-C .ω-D .1ω-①输入,x y 结束 输出,x y 开始T x ←y T ←第8题16.设函数()f x x =的反函数为1()fx -,对于[0,1]内的所有x 的值,下列关系式中一定成立的是( ).A .1()()f x fx -= B .1()()f x f x -≠ C .1()()f x fx -≤ D .1()()f x fx -≥17.对于函数1(1)()2nf n +-=(*n ∈N ),我们可以发现()f n 有许多性质,如:(2)1f k =(*k ∈N )等,下列关于()f n 的性质中一定成立的是( ). A .(1)()1f n f n +-= B .()()f n k f n +=(*k ∈N ); C .()(1)()f n f n f n αα=++(0α≠) D .(1)(1)()f n f n ααα+=-+(0α≠); 18.若a ,b 是实数,则||||||a b b a ->-成立的充要条件是( ).A .1b a< B .1a b< C .a b < D .a b >三.解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应的编号规定区域内写出必要的步骤. 19.(本题满分14分)在△A B C 中,角,,A B C 的对边分别为,,a b c ,3B π=,4cos 5A =,3b =.求sin C 的值及△A B C 的面积S . 20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知定义在区间[0,2]上的两个函数()f x 和()g x ,其中2()24f x x ax =-+(1a ≥),2()1xg x x =+.(1)求函数()y f x =的最小值()m a ;(2)若对任意1x 、2[0,2]x ∈,21()()f x g x >恒成立,求a 的取值范围. 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.袋中有大小相同的红球和白球若干个,其中红、白球个数的比为4:3.假设从袋中任取2个球,取到的都是红球的概率为413.(1)试问:袋中的红、白球各有多少个? (2)(理)现从袋中逐次取球,每次从袋中任取1个球,若取到白球,则停止取球,若取到红球,则继续下一次取球.试求:取球不超过3次便停止的概率.(文)从袋中任取3个球,若取到一个红球,则记2分,若取到一个白球,则记1分.试求:所取出球的总分不超过5分的概率. 22.(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.将奇函数的图像关于原点(即(0,0))对称这一性质进行拓广,有下面的结论:① 函数()y f x =满足()()2f a x f a x b ++-=的充要条件是()y f x =的图像关于点(,)a b 成中心对称.② 函数()y f x =满足()()()F x f x a f a =+-为奇函数的充要条件是()y f x =的图像关于点(,())a f a 成中心对称(注:若a 不属于x 的定义域时,则()f a 不存在).利用上述结论完成下列各题:(1)写出函数()tan f x x =的图像的对称中心的坐标,并加以证明.(2)已知m (1m ≠-)为实数,试问函数()1x m f x x +=-的图像是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.(3)若函数()2()|||3|43f x x x t x ⎛⎫=-++-- ⎪⎝⎭的图像关于点22,33f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭成中心对称,求t 的值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.在等差数列{}n a 中,公差为d ,前n 项和为n S .在等比数列{}n b 中,公比为q ,前n 项和为n S '(*n ∈N ).(1)在等差数列{}n a 中,已知1030S =,20100S =,求30S .(2)在等差数列{}n a 中,根据要求完成下列表格,并对①、②式加以证明(其中m 、1m 、2m 、*n ∈N ).用m S 表示2m S 222m m S S m d =+用1m S 、2m S 表示12mm S +12m m S += ① 用m S 表示nm Snm S = ②(3)在下列各题中,任选一题进行解答,不必证明,解答正确得到相应的分数(若选做二题或更多题,则只批阅其中分值最高的一题,其余各题的解答,不管正确与否,一律视为无效,不予批阅):(ⅰ) (解答本题,最多得4分)类比(2)中①式,在等比数列{}n b 中,写出相应的结论.(ⅱ) (解答本题,最多得5分)类比(2)中②式,在等比数列{}n b 中,写出相应的结论.(ⅲ) (解答本题,最多得6分)在等差数列{}n a 中,将(2)中的①推广到一般情况.(ⅳ) (解答本题,最多得6分)在等比数列{}n b 中,将(2)中的①推广到一般情况.卢湾区2009学年第一学期高三年级期末考试 数学参考答案及评分标准 2010.1一.填空题(本大题满分56分)本大题共有14小题,每个空格填对得4分. 1.2 2.(1,1)- 3.124.0 5.150 6.87.1233a b +8.x y ← 9.8 10.1- 11.60 12.{0,1}13.10,,12⎧⎫⎨⎬⎩⎭14.12二.选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,选对得4分,否则一律得零分.15.A 16.D 17.C 18.A三.解答题(本大题满分78分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.(本题满分14分) 因为,,A B C 为△A B C 的内角,且3B π=,4cos 5A =,所以23C A π=-,3sin 5A =,得2433s in s in 310C A π+⎛⎫=-=⎪⎝⎭. …6分 在△A B C 中,由正弦定理,得sin 6sin 5b A a B==, …10分故△A B C 的面积1164333693sin 32251050S ab C ++==⨯⨯⨯=. …14分20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.(1)由222()24()4f x x ax x a a =-+=-+-,得2412,()84 2.a a m a aa ⎧-<=⎨-⎩≤≥ …6分(2)1()(1)21g x x x =++-+,当[0,2]x ∈时,1[1,3]x +∈,又()g x 在区间[0,2]上单调递增(证明略),故4()0,3g x ⎡⎤∈⎢⎥⎣⎦. …9分由题设,得2m in 1m ax()()f x g x >,故212,443a a <⎧⎪⎨->⎪⎩≤或2,484,3a a ⎧⎪⎨->⎪⎩≥ …12分 解得2613a <≤为所求的范围. …14分21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)设袋中有红球4k 个,白球3k 个,由题设2427413k kC C =,解得2k =, …4分因此,袋中有红球8个,白球6个. …6分 (2)(理)记A 为“取球不超过3次便停止”;i B (1,2,3i =)为“第i 次取到红球”, 则i B 为“第i 次取到白球”.由题设112123A B B B B B B =++,且1B 、12B B 、123B B B 为互不相容事件,1B 、1B 、2B 、2B 、3B 为互相独立事件, …10分故11212368687611()()()()()()()14141314131213P A P B P B P B P B P B P B =++=+⨯+⨯⨯=.…14分(文)从袋中14个球中取出3个球,其可能出现的取法有314C 种,即所有的基本事 件有314C 个. …8分若把“取出球的总分不超过5分”的事件记作E ,则E 所包含的基本事件有3211266868C C C C C ++个, …12分因此,E 出现的概率321126686831411()13C C C C C P E C ++==. …14分22.(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.(1)函数()tan f x x =的图像的对称中心的坐标为,02k π⎛⎫ ⎪⎝⎭(*k ∈N ). …2分 当2k n =(*n ∈N )时,tan tan tan tan 022k k x x x x ππ⎛⎫⎛⎫++-=-= ⎪ ⎪⎝⎭⎝⎭; 当21k n =+(*n ∈N )时,tan tan cot cot 022k k x x x x ππ⎛⎫⎛⎫++-=-+= ⎪ ⎪⎝⎭⎝⎭,得证. …6分 (2)由1()111x m m f x x x ++==+--,得()f x 的图像的对称中心的坐标为(1,1).…9分1111(1)(1)21111x m x m x mx mf x f x x x xx++-+++-++++-=+=+=+----,由结论①得,对实数m (1m ≠-),函数()1x m f x x +=-的图像关于点(1,1)成中心对称. …12分(3)由结论② 2227()3333F x f x f x x t x ⎛⎫⎛⎫⎛⎫=+-=+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为奇函数,…14分 其中()g x x =为奇函数,故27()33h x x t x =+++-为偶函数(证明略),于是,由()()h x h x =-可得27273333x t x x t x ⎛⎫+++-=-+++ ⎪⎝⎭, …16分 因此,2733t +=,解得53t =为所求. …18分23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.(1)由1030S =,20100S =,得1104530a d +=,120190100a d +=, 解得165a =,25d =, …2分故30210S =. …4分 (2)①121212m m m m S S S m m d +=++. …6分可知1221m m m a a m d +=+,121111212m m m m m m m S S a a a ++++=++++1211211()()()m m S a m d a m d a m d =+++++++ 1212m m S S m m d =++. …8分②2(1)2nm m n n S nS m d -=+(或写成22nm m n S nS C m d =+,2n ≥). …10分 可知1(1)2m m m S m a d -=+, 1(1)(1)(1)222nm m nm nm nm m nm nm S nm a d nS d d ---=+=-+(11)()22m m nm nm nS d nm m nS d nm m =+--+=+-2(1)2m n n nS m d -=+. …12分(3)(ⅰ)11212m mm m m S S q S +'''=+. …16分 (ⅱ)1,1,1, 1.nmm mnm mq S q S qnS q ⎧-'≠⎪'=-⎨⎪'=⎩ …17分(ⅲ) 12121213123[()(nn m mm m m m n S S S S m m m m m m m m +++=+++++++++21)]n n n m m m m d -+++ ,(2n ≥).(或写成111()niii nm i j m i i j nSSm m d ==<=+∑∑∑≤≤,(2n ≥)). …18分 (ⅳ)12111212123n nnm m m m m m mm m m m mmS S S q S q S q -+++++++'''''=++++ ,(2n ≥). …18分。
上海市2011届高三数学上学期期末考试试题 理 沪教版
上海市延安中学2010年度第一学期期终考试高三年级数学试卷(理科)一、 填空题(本大题满分56分)本大题共有14题,要求直接填写结果,每个空格填对得4分,否则一律得零分.1.若点(,)A x y 是240︒角终边上异于原点的一点, 则yx的值为 . 2.已知向量()()()2,1,,1,1,2-=-=-=c m b a ,若()a b +∥c ,则_________=m . 3.计算:222)1(2lim++-∞→n CC n n nn = .4. 62x ⎛- ⎝的展开式中,3x 的系数等于____________. 5.已知等比数列{}n a 各项均为正数,1235a a a =,78915a a a =,则456a a a = . 6.已知集合{}6|||3,|12A x x B x x ⎧⎫=≤=≥⎨⎬+⎩⎭,则A B = . 7.函数()lgsin 3f x x π⎛⎫=-⎪⎝⎭的单调递增区间是 . 8.已知函数()y g x =的图像与函数1ln(1)(2)2x y x +-=>的图像关于直线y x =对称,则函数()g x 的解析式为()g x = .9.已知圆C 过点()1,0,且圆心在x 轴的正半轴上,直线l :1y x =-被圆C所截得的弦长为则过圆心且与直线l 垂直的直线的方程为 .10.将标号为123456、、、、、的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为12、的卡片放入同一信封,则不同的放法共有 种. 11.已知空间中两点()()1,2,3,2,2,6A B -,若存在点P 满足3AB PB =,则点P 的坐标为 .12.某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过...的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.那么ξ的数学期望为_____小时. 13.如图,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD 是平面α内边长为R 的正三角形,线段AC 、AD 分别与球面交于点M 、N ,那么M 、N 两点间的球面距离是 . (用R 表示)14.已知()f x 是定义在实数集R 上的不恒为零的函数,且对于任意,a b ∈R ,满足()22f =,()()()f ab af b bf a =+,记()()22,22n n n n nf f a b n==,其中*N n ∈.考察下列结论:①()()01f f =;②()f x 是R 上的偶函数;③数列{}n a 为等比数列;④数列{}n b 为等差数列.其中正确结论的序号有 .二、选择题(本大题满分20分)本大题共有4 题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得5 分,不选、选错或者选出的代号超过一个,一律得零分.15.已知函数2sin y x =的定义域为[],a b ,值域为[]2,1-,则b a -的值不可能是 ( )(A )65π(B )π(C )67π(D )π216. 曲线2y ax =与直线y kx b =+相交于两点,它们的横坐标为12x x 、,而3x 是直线与x 轴交点的横坐标,那么( )(A )312x x x =+ (B )31211x x x =+ (C )132312x x x x x x =+ (D )122331x x x x x x =+17. 记实数1x ,2x ,…,n x 中的最大数为{}12max ,,n x x x …,,最小数为{}12min ,,n x x x …, 已知ABC 的三边长为,,()a b c a b c ≤≤,定义它的倾斜度为max ,,min ,,a b c a b c b c a b c a ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭则“1=”是“ABC 为等边三角形”的( )(A )必要而不充分条件 (B )充分而不必要条件(C )充要条件 (D )既不充分也不必要条件18. 过正方体1111ABCD A BC D -的顶点A 作直线l ,使直线l 与1AB AD AA 、、所成的角都相等,这样的直线l 可以作( )(A )1条 (B )2条 (C )3条 (D )4条 三、解答题(共74分)19.(本题满分12分其中第1小题5分,第2小题7分) 如图,面ABCD ⊥面PAD ,△APD 是等腰直角三角形,90APD ∠=︒,四边形ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,22AD BC AB ==,的中点是AD O(1)求证://CD PBO 平面;(2)求直线PB 与直线CD 所成角的大小.20.(本题满分14分,其中第1小题7分,第2小题7分)设ABC ∆的三个内角A B C 、、所对的边分别为a b c 、、,且满足()()()20a c BC BA c CA CB +⋅+⋅=. (1)求角B 的大小;(2)若b =AB CB ⋅的最小值. 21.(本题满分14分,其中第1小题6分,第2小题8分)已知圆M (M 为圆心)的方程为22(2)1x y +-=,直线l 的方程为20x y -=,点P 在直线l 上,过P 点作圆M 的切线PA PB 、,切点为A B 、. (1)若60APB ∠=,试求点P 的坐标;(2)求证:经过A P M 、、三点的圆必过定点,并求出所有定点的坐标. 22.(本题满分16分. 其中第1小题4分,第2小题5分,第3小题7分) 已知数列{}n a 的前n 项和为n S ,且对任意正整数n ,满足2n n a S +=. (1)求数列{}n a 的通项公式;(2)用反证法证明:数列{}n a 中不存在任意三项按原来顺序成等差数列; (3)若从数列{}n a 中依次抽取一个无限多项的等比数列,使它的所有项的和S 满足416113S <<,这样的等比数列有多少个?23.(本题满分18分,其中第1小题4分,第2小题6分,第3小题8分) 已知函数4()()f x x a a x=-+∈R . (1)若0a =,求不等式()0f x ≥的解集;(2)当方程()2f x =恰有两个实数根时,求a 的值;(3)若对于一切(0,)x ∈+∞,不等式()1f x ≥恒成立,求a 的取值范围.OPDCBA上海市延安中学2010年度第一学期期终考试参考答案高三年级数学试卷(理科) 一、填空题:(每题4分,共56分) 1.. 1- 3.324. 240 5.6. (]2,3-7. 52,236k k k Z ππππ⎛⎤++∈ ⎥⎝⎦可全开 8.()21112x g x e x -⎛⎫=+> ⎪⎝⎭ 9.30x y +-= 10. 18 11.()1,2,5- 12.7213.17arccos25R ⋅ 14.① ③ ④ 二、选择题:(每题5分,共20分)三、解答题(共78分) 19.(本题满分12分其中第1小题5分,第2小题7分)(1)因为2AD BC =,且O 是AD 中点,所以OD BC =,又//AD BC ,所以//OD BC , 所以四边形BCDO 为平行四边形,所以//CD BO , …………………………………………3分 又CD 不在平面PBO且BO平面PBO ,故//CD 平面PBO , …………………………………………5分(2)//CD BO ,直线PB 与CD 所成角即为PB 与BO 所成角. …………6分 设2AD a =,则由题意知,AB AO a ==,又AB AO ⊥,故BO =APD ∆为等腰直角三角形,且90APD ∠=︒,O 为AD 中点,∴POAD ⊥且12PO AD a == (8)分又平面PAD ⊥平面ABCD , PO ∴⊥面ABCD∴PO BO ⊥ …………………………………………10分在Rt BPO ∆中,arctan2PBO ∠=PB 与BO 所成角为arctan 2………………12分 注:arctanarcsin arccos233==以上答案均可. 20. (本题满分14分其中第1小题7分,第2小题7分)(1)因为()()(2)0a c BC BA c CA CB +⋅+⋅=,所以(2)cos cos 0a c ac B cab C ++=, 即(2)cos cos 0a c B b C ++=,则(2sin sin )cos sin cos 0A C B B C ++= …………4分 所以2sin cos sin()0A B C B ++=,即1cos 2B =-,所以23B π=…………………7分 (2)因为22222cos3b a c ac π=+-,所以22123a c ac ac =++≥,即4ac ≤ ………11分 所以AB CB ⋅=21cos 232ac ac π=-≥-,即AB CB ⋅的最小值为2- ………14分 21.(本题满分14分,其中第1小题6分,第2小题8分)(1)设(2,)P m m ,由题可知12sin 30MP ==︒,即22(2)(2)4m m +-=,……………3分解得:40,5m m == 故所求点P 的坐标为(0,0)P 或84(,)55P . ……………6分(2)设(2,)P m m ,MP 的中点(,1)2mQ m +,因为PA 是圆M 的切线所以经过,,A P M 三点的圆是以Q 为圆心,以MQ 为半径的圆, 故其方程为:2222()(1)(1)22m mx m y m -+--=+- ……………………………9分 化简得:222(2)0x y y m x y +--+-=,此式是关于m 的恒等式,故2220,20,x y y x y ⎧+-=⎨+-=⎩解得02x y =⎧⎨=⎩或11x y =⎧⎨=⎩ 即()0,2和()1,1. ……………14分22.(本题满分16分. 其中第1小题4分,第2小题5分,第3小题7分) (1)当1n =时,11122a S a +==,则11a =. (1)分又2n n a S +=,112n n a S ++∴+=,两式相减得112n n a a +=, {}n a ∴是首项为1,公比为12的等比数列,112n n a -∴=- ……………………………………………………4分 (2)反证法:假设存在三项按原来顺序成等差数列,记为111,,()p q r a a a p q r +++<< 则1112222q p r =+, 2221r q r p --∴=+(*) ……………………………………………………7分p q r << *,r q r p N ∴--∈∴(*)式左边是偶数,右边是奇数,等式不成立∴假设不成立,原命题得证. ……………………………………………………9分(3)设抽取的等比数列首项为12m ,公比为12n,且满足N,0,1m n m n ∈≥≥、, 则12112m n S =-416113S <<,14216112m n ∴>-,整理得:61224m m n --< ① 1n ≥ 122m nm --∴≤ 1612224m m m n --∴≤-< 4m ∴≤ …………………………………11分113S < 11213m ∴< 4m ∴≥4m ∴= …………………………………………………13分将4m =代入①式整理得6423n< 4n ∴≤ ……………15分经验证得1,2n =不满足题意,3,4n =满足题意.综上可得满足题意的等比数列有两个. ……………………………………16分 23.(本题满分18分,其中第1小题4分,第2小题6分,第3小题8分) (1)由0a =得4()f x x x=+当0x >时,4()0f x x x =+≥恒成立;∴0x > ………………………………2分当0x <时,4()0f x x x=-+≥,得2x ≥或2x ≤-,又0x <,∴2x ≤-所以不等式()0f x ≥的解集为(,2](0,)-∞-⋃+∞………………………………………4分(2)由()2f x =得42x a x-=- 令124,2y x a y x=-=-由函数图像知两函数图像在y 轴右边只有一个交点时满足题意 ……………………6分42x a x-=-即2(2)40x a x -++=由0∆=得2,6a =- ………………………………10分(3)41(0)x a x x-+≥> 当0a ≤时,41(0)x a x x -+≥>,41(0)x a x x+-≥>,3a ≤所以0a ≤ ………………………………12分 当0a >时4 ()4 0x a x a xf x x a x a x ⎧+-≥⎪⎪=⎨⎪-++<<⎪⎩………………………………13分① 当x a ≥时,4 1x a x +-≥,即41(0)a x x x ≤+-≥>,令4()1g x x x=+- 02a <≤时,(2)3a g ≤=,所以02a <≤ 2a >时,4()1a g a a a≤=+-,所以4a ≤,24a <≤ 所以04a <≤ ……………………………………………………15分 ②当0x a <<时,4 1x a x -++≥,即41(0)a x x x≥-+> 所以41a a a≥-+,4a ≤ …………………………………………17分 综上,a 的取值范围是(,4]-∞ ……………………………………18分。
上海市卢湾区2010年高三年级模拟考试
上海市卢湾区2010年高三年级模拟考试化学试卷相对原子质量: N—14 O—16 Na—23 Mg—24 Al—27S—32 Cl—35.5 K—39 Fe—56(答案全部做在第Ⅱ卷上)第Ⅰ卷(共66分)一、选择题(本题共10分)。
每小题2分,每小题只有一个正确选项。
1.2010上海世博会园区建设采用了许多先进的技术,下列做法不能体现节能减排理念的是()。
A.采用绿颜色涂料B.使用电动汽车C.利用太阳能作为能源D.采用自然采光通风的技术2.以下表示锂离子结构的轨道表示式是()。
A.Li+2 D.3.在通常条件下,下列各组物质的性质排列正确的是()。
A.熔点: KCl>SiO2> SO2B.结合质子能力:CH3COO->OH->Cl-C.沸点:正戊烷>异戊烷>新戊烷D.稳定性:H2S>H2O>PH34.光导纤维被认为是20世纪最伟大的发明之一, 2009年诺贝尔物理学奖授予被誉为“光纤之父”的华人科学家高锟。
组成光导纤维主要成分SiO2是()。
A.分子晶体B.原子晶体C.离子晶体D.金属晶体5.有机物的种类繁多,下列有机物命名正确的是()。
A.CH3CH(OH)CH3丙醇B.CH2=CHCH2CH3 1-丁烯C.CH3CCl2CH3 2-二氯丙烷D.CH3CH(CH2CH3)CH3 2-乙基丙烷二、选择题(共36分)。
每小题3分,只有一个正确选项。
6.下列变化不能说明发生了化学变化的是()。
A.变化时有电子的得失或共用电子对的形成B.变化过程中有旧化学键的断裂和新化学键形成C.变化时释放出能量D.变化前后原子的种类和数目没有改变,分子种类增加了 7.设N A 为阿伏加德罗常数,下列说法正确的是( )。
A.标准状况下,22.4L 氯气与足量氢氧化钠溶液反应转移电子数为N AB.7.8 g Na 2O 2含有阴离子数目为0.2N AC.1L0.5mol/L 的(NH 4)2SO 4溶液中含有N A 个NH 4+D.58.5g 氯化钠中约含有6.02×1023个氯化钠分子8.某溶液中可能含有Br -、NH 4+、Cu 2+、SO 32—,向该溶液中加入少量氯水,溶液仍呈无色,则下列关于该溶液组成的判断正确的是( )。
上海市卢湾区2011届高三第一学期期末质量抽查语文试卷
上海市卢湾区2011届高三第一学期期末质量抽查语文试卷上海市卢湾区2011届高三第一学期期末质量抽查语文试卷(满分:150分考试时间:100分钟)一、阅读80分(一)阅读下文,完成第1-6题。
(16分)人类之所以有今天这样的文明,文学在其中的力量和功德是不言而喻的。
难道文学要中断这样的责任了吗?让生活向下还是向上,向善还是向恶,难道文学就完全没有必要对这样最起码的问题进行拷问吗?如果川端康成与大江健三两人生活的年代颠倒一下,大江在川端时代写大江式的作品,川端在大江的时代写川端式的作品,这两个日本人还会获得诺贝尔文学奖吗?回答几乎是肯定的:不会。
因为川端时代的文学的标准还不只是深刻一维。
而大江时代,却将川端文学的命根子——美——彻底抛弃了。
这个时代,是一个横着心要将美搞成矫情字眼、一提及就自觉浅薄的时代。
这个时代是讲思想神话的时代,悠悠万事,唯有思想——思想宝贝。
文学企图使人相信,在这个世界上,唯一值得人们尊重的就是思想:思想是高于一切的;谁在思想的峰巅,谁就是英雄,谁就应当名利双收。
正是在这样的语境中,我们患上了恋思癖的毛病。
对思想的变态追求,已使我们脱离了常识。
当我们穷凶极恶地在追求思想深度的时候,我们忘记一个常识:获得石油必须钻井,因为石油蕴藏在具有一定深度的地下,但如果以为钻得越深就越有石油那就错了,因为再无止境地钻下去,就是泥浆和岩浆了。
思想崇拜,会导致思想迷信,而思想迷信则一定会导致思想的变态,其结果就是我们放弃常识,进入云山雾罩的思想幻觉。
其实,一旦背离真实,一个看上去再深刻的思想,也是无意义的。
(),这世界上有力量的并不只有思想。
我还是愿意重复我的老话:美的力量丝毫也不亚于思想的力量,有时甚至比思想的力量更加强大。
一种牺牲民族甚至人类体面的文学境界,是值得我们赞美和崇尚的境界吗?斯洛文尼亚的齐泽克在谈到前南斯拉夫时代萨拉热窝被围困的情状时说,那些闻风而来的西方记者争先恐后寻找的只是:残缺不全的儿童尸体、被强奸的妇女、饥饿不堪的战俘。
上海市卢湾区2011届高三数学上学期期末考试 理
卢湾区2010—2011学年第一学期高三年级期末考试数学试卷(本卷完成时间为120分钟,满分为150分)一.填空题(本大题满分56分)本大题共有14小题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分.1.已知全集{1,2,3,4,5,6}U =,集合{1,3,5}A =,{1,2}B =,则()U A B = ð . 2.函数1lg(1)y x=-的定义域是 . 3.方程sin cos x x =在[0,2π)上的解集是 .4.当πcos12=a 时,行列式211121a a +-的值是 .5.222135lim(212121n n n n →∞++++++ (2)2121n n -++)的值为 . 6.已知函数()y f x =是奇函数,当0x <时,()f x =2x ax +()a ∈R ,且(2)6f =,则a = .7.一个算法的程序框图如图所示,则该算法运行后输 出的结果为 .8.若方程1n 2100x x +-=的解为0x ,则大于0x 的最小 整数是 .9.已知函数()(2)2af x x x x =+>-的图像过点(3,7)A ,则此函数的最小值是 .10.在一次招聘口试中,每位考生都要在5道备选试题 中随机地抽出3道题回答,答对其中2道题即为及格. 若一位考生只会回答5道题中的3道题,则这位考生 能够及格的概率为 .11.(理)某投篮游戏规定:每轮至多投三次,直到首次命中为止.第一次就投中,得8分;第一次不中且第二次投中,得6分;前两次均不中且第三次投中,得4分;三次均不中,得0分.若某同学每次投中的概率为0.5,则他每轮游戏的得分X 的数学期望为 .12.一个调查机构就某地居民的月收入调查 了10000人,将所得数据分成如下六组:[1000,1500), [1500,2000), [2000,2500), [2500,3000), [3000,3500), [3500,4000),相应的频率分布直方图如图所示.若按月 收入将这10000人也分成上述六组,并通(第7题图)(第12题图))过分层抽样抽出100人作进一步调查,则[3000,3500)这一组中应抽出 人.13.若454233241)1()1()1()1(x a x a x a x a x a =+-+-+-+-,则234a a a ++的值为 .14.设O 是直线AB 外一点,OA a = ,OB b =,点123,,,A A A …1,n A -是线段AB 的n(n ≥2)等分点,则1231n OA OA OA OA -++++=.(用,,a b n 表示)二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.函数tan(31)y x =+的最小正周期是 ( )A .π3 B .2π3 C .3π2D .π16.在三棱锥P —ABC 中,所有棱长均相等,若M 为棱ABPA 与CM) ABC D 17.将5,6,7,8四个数填入12349⎛⎫ ⎪⎪ ⎪⎝⎭中的空白处以构成三行三列方阵,若要求每一行从左到右、每一列从上到下依次增大,则满足要求的填法种数为 ( ) A .24 B .18 C .12 D .618.已知()f x 是单调减函数,若将方程()f x x =与1()()f x f x -=的解分别称为函数()f x 的不动点与稳定点.则“x 是()f x 的不动点”是“x 是()f x 的稳定点”的 ( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应的编号规定区域内写出必要的步骤.19.(本题满分12分)本题共2个小题,第1小题6分,第2小题6分.已知z 是复数,2iz+为实数(i 为虚数单位),且4i z z -=. (1)求复数z ;(2)若|i|5z m -<,求实数m 的取值范围.C PM(第16题图)20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.已知A ,B ,C 为△ABC 的三个内角,向量(cos ,sin )p B B =- ,(cos ,sin )q C C =,且(2)q p q -⊥ .(1)求A ∠的大小;(2)若4BC AC AB =+=,求△ABC 的面积.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图所示,ABCD 是一块边长为7米的正方形铁皮,其中ATN 是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC 与CD 上的长方形铁皮PQCR ,其中P 是 TN 上一点.设TAP θ∠=,长方形PQCR 的面积为S 平方米.(1)求S 关于θ的函数解析式;(2)设sin cos t θθ+=,求S 关于t 的表达式以及S 的最大值.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数()22x x f x a -=+(常数)a ∈R . (1)若1a =-,且()4f x =,求x 的值;(2)若4a ≤,求证函数()f x 在[1,)+∞上是增函数;(3)若存在[0,1]x ∈,使得2(2)[()]f x f x >成立,求实数a 的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.已知负数1a 和正数1b ,且对任意的正整数n ,当2n na b +≥0时, 有[1n a +, 1n b +]= TNRQθPD CBA[n a ,2n n a b +];当2n n a b +<0时, 有[1n a +, 1n b +]= [2n na b +,n b ]. (1)求证数列{n n b a -}是等比数列;(2)若111,2a b =-=,求证222n n a b =-()n ∈N*;(3)是否存在11,a b ,使得数列{}n a 为常数数列?请说明理由.卢湾区2010学年第一学期高三年级期末考试 数学参考答案及评分标准 2011.1一.填空题(本大题满分56分)本大题共有14小题,每个空格填对得4分.1.{} 2 2.(0, 1) 3.5, 44ππ⎧⎫⎨⎬⎩⎭4 5.12 6.57.1320 8.5 9.6 10.0.7 11.(理)6(文)2 12.15 13.14 14.1()2n a b -+二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.A 16.C 17.D 18.B三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.(本题满分12分)本题共2个小题,第1小题满分6分,第2小题满分6分. (1)由2i z +是实数,可设2iz+= a ,R a ∈, 故(2i)2i z a a a =+=+, ………………3分 所以2i z z a -=,又4i z z -=,可得24a =,即2a =,所以42i z =+. ………………6分 (2)由|i |5z m -<,可得|4(2)i |5m +-<,又R m ∈5 ………………9分 即216(2)25m +-<,解得15m -<<, 所以实数m 的取值范围是(1,5) -. ………………12分 20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.(1)由(2)q p q -⊥ ,可得(2)q p - ·q=0, ………………2分即2||2q p - ·0q = ,又(cos ,sin )p B B =- ,(cos ,sin )q C C =所以22cos sin 2(cos cos sin sin )0C C B C B C +--=, 即1cos()2B C +=,又0B C π<+<, ………………6分 ∴3B C π+=,故2π()3A B C π=-+=. ………………8分(2)在△ABC 中,由2222cos BC AB AC AB AC A =+-⋅,可得22()2(1cos )BC AB AC AB AC A =+-⋅+, ………………10分厦门网站建设 厦门网站建设 吘莒嶪即22142(1)2AB AC =-⋅⋅-,故4AB AC ⋅=, ………………12分∴11sin 422S AB AC A =⋅=⨯= ………………14分 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)延长RP 交AB 于E ,延长QP 交AD 于F ,由ABCD 是正方形,PRCQ 是矩形,可知,PE AB PF AD ⊥⊥, 由TAP θ∠=,可得6cos EP θ=,6sin FP θ=,∴76sin PR θ=-,76cos PQ θ=-, ………………4分 ∴(76sin )(76cos )S PR PQ θθ=⋅=--4942(sin cos )36sin cos θθθθ=-++故S 关于θ的函数解析式为4942(sin cos )36sin cos =-++S θθθθπ(0)2θ≤≤.……6分(2)由sin cos t θθ+=,可得22(sin cos )t θθ=+ 12sin cos θθ=+,即21sin cos 2t θθ-=, ∴22494218(1)184231S t t t t =-+-=-+. ……………9分又由π02θ≤≤,可得3π444ππθ≤+≤,故πsin cos )[14t θθθ=++∈,∴S 关于t 的表达式为2184231S t t =-+(∈t ). ……………11分又由271318()62S t =-+,t ∈可知当t =时,S 取最大值,故S的最大值为67-. ………………14分 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)由1,()4a f x =-=,可得224x x --=,设2x t =,则有14t t --=,即2410t t --=,解得2t = ………………2分当2t =时,有22x =+2log (2x =.当2t =时,有22x =故所求x的值为2log (2. ………………4分 (2)设12,[1,),x x ∈+∞且12x x >,TNFE RQθPD CBA则112212()()(22)(22)x x x x f x f x a a ---=+-+21121222(22)2x x x x x x a +-=-+12121222(2)2x x x x x x a ++-=- ………………7分由12x x >,可得1222x x >,即12220x x ->由12,[1,),x x ∈+∞12x x >,可得122x x +>,故12240x x +>>, 又4a ≤,故122x x a +>,即1220x x a +-> 所以12()()0f x f x ->,即12()()f x f x >,故函数()f x 在[1,)+∞上是增函数. ………………10分 (3)由2(2)[()]f x f x >2222222222x x x x a a --⇔+>++222()20x a a a -⇔-+< ………………12分设22x t -=,由[0,1]x ∈,可得1[,1]4t ∈,由存在[0,1]x ∈使得2(2)[()]f x f x >,可得存在1[,1]4t ∈,使得2()20a a t a -+<, ………………14分 令2()()20g t a a t a =-+<,故有211()()2044g a a a =-+<或2(1)()20g a a a =-+<,可得70a -<<.即所求a 的取值范围是(7,0)-. ………………16分 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.(1)当a n +b n 2≥0时,b n +1-a n+1= a n +b n 2 -a n = b n -a n2;当a n +b n 2<0, b n +1-a n +1 = b n - a n +b n 2 = b n -a n 2.所以,总有b n +1-a n +1 = 12(b n -a n ),又110,0b a ><,可得110b a ->,所以数列{b n -a n }是等比数列. ………………4分 (2)①由111,2a b =-=,可得111022a b +=>,故有11221[,][,]2a ba b a +=, ∴112122a b b +==,211a a ==-,从而222a b =-, 故当n =1时,222n n a b =-成立. ………………6分 ②假设当n k =时,222n n a b =-成立,即222k k a b =-, 由22230k k k b a b -=>,可得20k b >,2222220222k k k k k a b b b b +-+==-<, 故有2221212[,][,]2k k k k k a b a b b +++=, ∴22221212,22k k k k k k a b ba b b +++==-=, ………………9分222121220224kkk k k b b a b b ++-++==>,故有2121222221[,][,]2k k k k k a b a b a ++++++=∴212122224k k k k a b b b ++++==, 222212k k k ba a ++==-,故2(1)2(1)2k k ab ++=-∴当1n k =+时,222n n a b =-成立.综合①②可得对一切正整数n ,都有222n n a b =-. ………………12分 (3)假设存在11,a b ,使得数列{}n a 为常数数列,由(1)可得b n -a n =11()b a -(12)n -1,又1n a a =,故b n =111()a b a +-(12)n -1, ………………14分 由1n n a a +=恒成立,可知a n +b n2≥0,即111()a b a +-(12)n ≥0恒成立,即2n ≤111a b a -对任意的正整数n 恒成立, ………………16分 又111a b a -是正数,故n ≤1121log a ba -对任意的正整数n 恒成立,因为1121log a b a -是常数,故n ≤1121log a ba -不可能对任意正整数n 恒成立.故不存在11,a b ,使得数列{}n a 为常数数列. ………………18分。
2010年上海市卢湾区高考模拟考试(数学理含答案)
上海市卢湾区2010年高考模拟考试数学试卷(理科)2010.4说明:本试卷满分150分,考试时间120分钟.本套试卷另附答题纸,每道题的解答必须写在答题纸的相应位置............,本卷上任何解答都不作评分依据............... 一、填空题(本大题满分56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中.每个空格填对得4分,填错或不填在正确的位置一律得零分. 1.设集合,,若,则实数的取值范围是 . 2.函数()的值域为 . 3.若,则的值等于 . 4.若函数,则方程的解 . 5.函数的最小正周期 .6.若体积为8的正方体的各个顶点均在一球面上,则该球的体积为 (结果保留). 7.若平面内不共线的四点满足,则_______.8.在极坐标系中,圆的圆心与点的距离为 .9.有一种彩票,每注售价2元,中奖的概率为.如果每注奖的奖金为元,那么购买一注彩票的期望收益为 元.10.如图,由编号1,2,…,,…(且)的圆柱自下而上组成.其中每一个圆柱的高与其底面圆的直径相等,且对于任意两个相邻圆柱,上面圆柱的高是下面圆柱的高的一半.若编号1的圆柱的高为,则所有圆柱的体积V 为 (结果保留). 11.某公司为改善职工的出行条件,随机抽取名职工,调查他们的居住地与公司的距离(单位:千米).若样本数据分组为,,,,,,由数据绘制的分布频率直方图如图所示,则样本中职工居住地与公司的距离不超过千米的人数为 人.12.已知二次函数的图像为开口向下的抛物线,且对任意都有.若向量,,则满足不等式的的取值范围为 .13.在平面直角坐标系中,横坐标和纵坐标均为整数的点称为整点,对任意自然数,联结原点与点,若用表示线段上除端点外的整点个数,则______. 14.若不等式对于一切正数、恒成立,则实数的最小值为 .二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中. 每题选对得4分,不选、选错或选出的频率/第11题第10题代号超过一个,或者没有填写在题号对应的空格内,一律得零分. 15.式子等于( ).A .B .C .D .16.关于、的二元一次方程组1,323,mx y mx my m +=-⎧⎨-=+⎩的系数行列式是该方程组有解的( ).A .充分非必要条件B .必要非充分条件C .充分且必要条件D .既非充分也非必要条件17.若函数()为奇函数,且存在反函数(与不同),,则下列关于函数的奇偶性的说法中正确的是( ).A .是奇函数非偶函数B .是偶函数非奇函数C .既是奇函数又是偶函数D .既非奇函数又非偶函数 18.已知曲线:22||||1x x y y a b-=,下列叙述中错误的是( ). A .垂直于轴的直线与曲线只有一个交点 B .直线()与曲线最多有三个交点 C .曲线关于直线对称D .若,为曲线上任意两点,则有三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸规定的方框内写出必要的步骤. 19.(本题满分14分)已知关于的实系数一元二次方程有两个虚根,,且(为虚数单位),,求实数的值.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在长方体中,,过、、三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为.(1)求棱的长;1C(2)求点到平面的距离.21.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.如图,反比例函数()的图像过点和,点为该函数图像上一动点,过分别作轴、轴的垂线,垂足为、.记四边形(为坐标原点)与三角形的公共部分面积为S.(1)求S关于的表达式;(2)求S的最大值及此时的值.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆:(),其焦距为,若(),则称椭圆为“黄金椭圆”.(1)求证:在黄金椭圆:()中,、、c成等比数列.(2)黄金椭圆:()的右焦点为,为椭圆上的任意一点.是否存在过点、的直线l,使l与轴的交点满足?若存在,求直线l的斜率k;若不存在,请说明理由.(3)在黄金椭圆中有真命题:已知黄金椭圆:()的左、右焦点分别是、,以、、、为顶点的菱形的内切圆过焦点、.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.设数列是一个首项为、公差为的无穷等差数列.(1)若,,成等比数列,求其公比.(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项,试问当且仅当为何值时,该数列为的无穷等比子数列,请说明理由.卢湾区2010年高考模拟考试数学试卷(理科)参考答案及评分标准一、填空题(本大题满分56分)1. 2. 3. 4. 5. 6. 7.2 8. 9. 10.128π711. 12. 13. 14.2 二、选择题(本大题满分16分) 15.B 16.D 17.A 18.C 三、解答题(本大题满分78分) 19.(本题满分14分) 解:由题设,得,,(6分) 方程的两虚根为,, 于是,(10分) 由,得或.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解:(1)设,由题设, 得,即,解得. 故的长为3.(6分)(2)以点为坐标原点,分别以,,所在的直线为轴,轴,轴建立空间直角坐标系. 由已知及(1),可知,,,, 设平面的法向量为,有,,其中,,则有110,0,n A B n C B ⎧⋅=⎪⎨⋅=⎪⎩即解得,,取,得平面的一个法向量,且.(12分)在平面上取点,可得向量,于是点到平面的距离1||62211||n DC d n ⋅==.(14分) 21.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 解:(1)由题设,得(),(2分) 当时,,当时,,当时,, 故(8分)(2)易知当时,为单调递增函数,,(10分)当时,为单调递减函数,,(12分)当时,在区间上单调递增,在区间上单调递减,(证明略),得,故S的最大值为3,此时.(16分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)证明:由及,得,故、、c成等比数列.(4分)(2)解:由题设,显然直线l垂直于轴时不合题意,设直线l的方程为,得,又,及,得点的坐标为3(,)22c kc,(6分)因为点在椭圆上,所以,又,得,,故存在满足题意的直线l,其斜率.(10分)(3)黄金双曲线的定义:已知双曲线:,其焦距为,若(或写成),则称双曲线为“黄金双曲线”.(12分)在黄金双曲线中有真命题:已知黄金双曲线:的左、右焦点分别是、,以、、、为顶点的菱形的内切圆过顶点、.(14分)证明:直线的方程为,原点到该直线的距离为,将代入,得,又将代入,化简得,故直线与圆相切,同理可证直线、、均与圆相切,即以、为直径的圆为菱形的内切圆,命题得证.(16分)23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.解:(1)由题设,得,即,得,又,于是,故其公比.(4分)(2)设等比数列为,其公比,,(6分)由题设.假设数列为的无穷等比子数列,则对任意自然数,都存在,使,即,得,(8分)当时,,与假设矛盾,故该数列不为的无穷等比子数列.(10分)(3)①设的无穷等比子数列为,其公比(),得,由题设,在等差数列中,,,因为数列为的无穷等比子数列,所以对任意自然数,都存在,使,即,得1231(1)1(1)(1)11rr rtn m t t t mt----=-+=+++-+ -,由于上式对任意大于等于3的正整数都成立,且,均为正整数,可知必为正整数,又,故是大于1的正整数.(14分)②再证明:若是大于1的正整数,则数列存在无穷等比子数列.即证明无穷等比数列中的每一项均为数列中的项.在等比数列中,,在等差数列中,,,若为数列中的第k项,则由,得,整理得1231(1)1(1)(1)11rr rtk m t t t mt----=-+=+++-+ -,由,均为正整数,得k也为正整数,故无穷等比数列中的每一项均为数列中的项,得证.综上,当且仅当是大于1的正整数时,数列存在无穷等比子数列.(18分)温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。
卢湾区2011学年第一学期期末考试(定)新
本文为本人珍藏,有较高的使用、参考、借鉴价值!!卢湾2011学年第一学期期末考试九年级数学试卷(时间100分钟,满分150分) 2012.1(本试卷所有答案请书写在答题卷规定位置上)一、选择题(本大题共6题,每题4分,满分24分)1.若3cos 2A =,则A ∠的大小是…………………………………( ) (A )30︒; (B )45︒; (C ) 60︒ ; (D )90︒. 2.若ABC ∆∽DEF ∆,顶点A 、B 、C 分别与D 、E 、F 对应,且:1:4AB DE =,则这两个三角形的面积比为…………………………( ) (A )1:2; (B )1:4; (C )1:8; (D )1:16.3.若在同一直角坐标系中,作2y x =,22y x =+,221y x =-+的图像,则它们……………………………………………………………………( ) (A )都关于y 轴对称; (B )开口方向相同;(C )都经过原点; (D )互相可以通过平移得到.4.对于函数()21123y x =-+,下列结论正确的是………………( ) (A )在直线1x =-的左侧部分函数的图像是上升的; (B )在直线1x =-的右侧部分函数的图像是上升的;(C )在直线1x =的左侧部分函数的图像是上升的; (D )在直线1x =的右侧部分函数的图像是上升的.5.已知矩形的对角线AC 、BD 相交于点O ,若B C a =,DC b =,则( )(A )()12BO a b =+uu u rr r; (B )()12BO a b =-uu u r r r ;(C )()12BO b a =-+u u u r r r; (D )()12BO b a =-uu u r r r .6.如果点D 、E 分别在ABC ∆的边AB 和AC 上,那么不能判定DE ∥BC 的比例式是………………………………………………………………( ) (A )EC AE DB AD ::=; (B )AC CE AB BD ::=; (C )AB AD BC DE ::=; (D )AE AD AC AB ::=. 二、填空题(本大题共12题,每题4分,满分48分)7.计算:312342a b b ⎛⎫-+= ⎪⎝⎭ .8.计算:sin 45cos 45tan 45︒︒+︒= .9.如果先将抛物线()2234y x =-+向左平移3个单位,再向下平移1个单位,那么所得到的抛物线的表达式为__________.10.如果在某建筑物的A 处测得目标B 的俯角为37︒,那么从目标B 可以测得这个建筑物的A 处的仰角为 ︒.11.抛物线24y x x =+的最低点坐标是 .12. 若在比例尺为1:1000000的地图上,测得两地的距离为5cm ,则这两地的实际距离是 km . 13.传送带和地面所成斜坡的坡度为1:0.75,它把物体从地面送到离地面高8米的地方,物体在传送带上所经过的路程为 米. 14.如图,已知1tan 2α=,如果()4,F y 是射线OA 上的点,那么F 点的坐标是 .15.如图,在平行四边形ABCD 中,点E 在BC 边上,且:2:3CE BC =,AC 与DE 相交于点F ,若9AFD S ∆=,则EFC S ∆= .16.如图,已知AD DEAB BC=,请添加一个条件,使 ADE ∆∽ABC ∆,这个条件可以是 .(写出一个条件即可)17.如图,90ACB ADC ∠=∠=︒,5AB =,4AC =,()AD CD >,若ABC ∆∽ACD ∆,则AD = . 18.如图,在ABC ∆中,MN ∥AC ,直线MN 将ABC ∆分割成面积相等的两部分.将BMN ∆沿直线MN 翻折,点B 恰好落在点E 处,联结AE ,若AE ∥CN ,则:AE NC = .(第17题图)ABCD(第15题图)ABCED F(第16题图) DB CAE(第14题图)OxyαAF ·(第18题图)AB CMNE三、简答题(本大题共4题,每题10分,满分40分)19.如图,已知梯形ABCD 中,AB ∥DC ,AOB ∆的面积等于9,AOD ∆的面积等于6,7AB =,求CD 的长.20.已知二次函数c bx ax y ++=2的图像经过点()1,5A ,()1,9B -,()0,8C ,求这个二次函数的解析式,并写出点A 关于这个二次函数图像的对称轴对称的点D 的坐标.21.如图,已知在ABC ∆中,点D 是BC 边上一点,DA AB ⊥,12AC =, 7BD =,9CD =.(1)求证:ACD ∆∽BCA ∆;(2)求tan CAD ∠的值.22.如图,已知点F 在AB 上,且:1:2AF BF =,点D是BC 延长线上一点,:2:1BC CD =,联结FD 与AC 交于点N ,求:FN ND 的值.四、解答题(本大题共2题,每题12分,满分24分)23.一艘轮船自南向北航行,在A 处测得北偏东21.3︒方向有一座小岛C ,继续向北航行60海里到达B 处,测得小岛C 此时在轮船的北偏东63.5°方向上.之后,轮船继续向北航行约多少海里,距离小岛C 最近?(参考数据:925sin21.3︒≈,25tan 21.3︒≈, 9sin63.510︒≈,tan 63.52︒≈)A B CD(第21题图)(第19题图)ABCD OAB CDFN(第22题图) (第23题图)ABC北东24.已知在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于()1,0A -,()3,0B 两点,对称轴l 与x 轴相交于点C ,顶点为点D ,且ADC ∠的正切值为12. (1)求顶点D 的坐标; (2)求抛物线的表达式;(3)F 点是抛物线上的一点,且位于第一象限,联结AF ,若FAC ADC ∠=∠,求F 点的坐标.五、(本题满分14分)25.在矩形ABCD 中,4AB =,3BC =,E 是AB 边上一点,EF CE ⊥交AD 于点F ,过点E 作AEH BEC ∠=∠,交射线FD 于点H ,交射线CD 于点N .(1)如图a ,当点H 与点F 重合时,求BE 的长;(2)如图b ,当点H 在线段FD 上时,设BE x =,DN y =,求y 与x 之间的函数关系式,并写出它的定义域;(3)联结AC ,当FHE ∆与AEC ∆相似时,求线段DN 的长.(备用图)A BCD EF xyO(第24题图)(第25题图b)A BC D E F N H (第25题图a) A B C DE NF (H )卢湾区2011学年第一学期期末考试九年级数学试卷参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.A ; 2. D ; 3.A ; 4.D ; 5. B ; 6.C . 二、填空题(本大题共12题,每题4分,满分48分)7.322a b +; 8.32; 9.223y x =+; 10.37;11.()2,4--; 12.50; 13.10; 14.()4,2; 15.4; 16.D B ∠=∠等; 17.165;18.2:1.三、简答题(本大题共4题,每题10分,满分40分) 19. 解:∵AB ∥DC ,∴CD DOAB BO=,………………………………(3分) ∵AOB ∆的面积等于9,AOD ∆的面积等于6,∴23AOD AOB S DO S BO ∆∆==,(3分) ∴23CD DO AB BO ==,………………………………………………………(2分)∵7AB =,∴273CD =,∴143CD =.…………………………………(2分)20. 解:由题意可得,5,9,8.a b c a b c c ++=⎧⎪-+=⎨⎪=⎩ 解,得1,2,8.a b c =-⎧⎪=-⎨⎪=⎩……………(6分)所以228y x x =--+,……………………………………………………(1分) 点A 关于这个二次函数图像的对称轴对称的点D 的坐标是()3,5-.…(3分) 21.(1)证明:∵7BD =,9CD =,∴16BC =,…………………(1分)∵12AC =,∴34CD AC =,34AC BC =,∴C D A CA CB C=,…………………(3分) ∵C C ∠=∠,∴A C D ∆∽BCA ∆.………………………………………(2分) (2)∵ACD ∆∽BCA ∆,∴CAD B ∠=∠,34AD CD AB AC ==,………(2分)∵DA AB ⊥,∴3tan 4AD B AB ==,∴3tan 4CAD ∠=.………………(2分)22.解:过点F 作FE ∥BD ,交AC 于点E .…………………………(1分) ∴FE AF BC AB=,……………………………………………………………(2分) ∵:1:2AF BF =,∴13AF AB =,…………………………………………(1分)∴13FE BC =,∴13FE BC =,………………………………………………(2分) 又∵:2:1BC CD =,∴12CD BC =,……………………………………(2分)∵FE ∥BD ,∴123132BCFN FE ND CD BC ===.………………………………(2分) 四、解答题(本大题共2题,每题12分,满分24分)23.解:过点C 作AB 的垂线,垂足为点D .…………………………(1分) 设BD x =,在Rt BCD ∆中,tan tan63.5CDCBD BD∠=︒=,…………(1分) ∴tan 63.5CD x =⋅︒.……………………………………………………(2分) 在Rt ACD ∆中, tan tan 21.3CDA AD=︒=,……………………………(1分) ∵60AD AB BD x =+=+,……………………………………………(1分) ∴()60tan21.3CD x =+⋅︒.……………………………………………(2分) ∴()tan63.560tan21.3x x ⋅︒=+⋅︒,∵25tan 21.3︒≈,tan 63.52︒≈,(2分)解,得 15x ≈.…………………………………………………………(1分)答:轮船继续向东航行约15海里,距离小岛C 最近. ………………(1分) 24. 解:(1)∵抛物线与x 轴相交于()1,0A -,()3,0B 两点,∴对称轴l :直线1x =,2AC =;……………………………………(2分) ∵90ACD ∠=︒,1tan 2ADC ∠=, ∴4CD =,∵0a >,∴()1,4D -.……………………………………(2分)(2)设()214y a x =--,………………………………………………(2分) 将1,0x y =-=代入上式,得,1a =,…………………………………(1分) 所以,这条抛物线的表达为223y x x =--. …………………………(1分) (3)过点F 作FH x ⊥轴,垂足为点H .……………………………(1分) 设()2,23F x x x --,∵FAC ADC ∠=∠,∴tan tan FAC ADC ∠=∠,∵1tan 2ADC ∠=,∴1tan 2FH FAC AH ∠==,…………………………(1分)∵223FH x x =--,1AH x =+,∴223112x x x --=+,………………(1分)解,得172x =,21x =-(舍),∴79,24F ⎛⎫⎪⎝⎭.…………………………(1分) 五、(本题满分14分)25.(1)∵EF EC ⊥,∴90AEF BEC ∠+∠=︒,……………………(1分) ∵AEF BEC ∠=∠,∴45BEC ∠=︒……………………………………(1分) ∵90B ∠=︒,∴BE BC =,∵3BC =,∴3BE =.…………………(1分) (2)过点E 作EG CN ⊥,垂足为点G .………………………………(1分) ∴BE CG =,∵AB ∥CN ,∴AEH N ∠=∠,BEC ECN ∠=∠, ∵AEH BEC ∠=∠,∴N ECN ∠=∠,∴EN EC =,………………(1分) ∴22CN CG BE ==,……………………………………………………(1分) ∵BE x =,DN y =,4CD AB ==,∴()2423y x x =-≤≤.……(2分) (3)∵90BAD ∠=︒,∴90AFE AEF ∠+∠=︒, ∵EF EC ⊥ ,∴90AEF CEB ∠+∠=︒,∴AFE CEB ∠=∠,∴HFE AEC ∠=∠.………………………………(2分) 当FHE ∆与AEC ∆相似时, ⅰ)若FHE EAC ∠=∠,∵BAD B ∠=∠,AEH BEC ∠=∠,∴F H E E C B ∠=∠,∴EAC ECB ∠=∠, ∴tan tan EAC ECB ∠=∠,∴BC BE AB BC =,∴94BE =,∴12DN =…(2分)ⅱ)若FHE ECA ∠=∠,如所示,记EG 与AC 交于点O .∵EN EC =,EG CN ⊥, ∴12∠=∠,∵AH ∥EG ,∴1FHE ∠=∠,∴2FHE ∠=∠, ∴2ECA ∠=∠,∴EO CO =, 设3EO CO k ==,则4,5AE k AO k ==, ∴85AO CO k +==,∴58k =, ∴52AE =,32BE =,∴1DN =………(2分) 综上所述,线段DN 的长为12或1.(以上各题如有其他方法,请参照评分标准酌情给分)F O 21HGNED CBA 图1。
【期末复习】上海市卢湾区届高三上学期期末考试(数学)
上海市卢湾区20**届高三上学期期末考试数学试卷20**.1(本卷完成时间为120分钟,满分为150分)一.填空题(本大题满分56分)本大题共有14小题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分. 1.函数()sin(f x x =π+1)的最小正周期_______. 2.函数()f x =3.若12iia ++为实数(为虚数单位),则实数_________. 4.计算:2(1)(13)lim(2)(1)n n n n n n →∞+-=-++________. 5.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为 160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是.6.在二项式12nx x ⎛⎫- ⎪⎝⎭的展开式中,若第项是常数项,则_______.7.在△ABC 中,为上一点,BC a =,BA b =,12AE EC =,若用向量、表示,则BE =_________.8.右图中,程序框图的功能是交换两个变量的值并输出,图中①处 应填入.9.若实数、、、满足矩阵等式11240202a b c d ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则行列式a bc d的值为_________.10.若关于、的二元一次方程组1,2mx y m x my m +=+⎧⎨+=⎩无解,则m =_____.11.已知数列{}n a 共有项,若其中三项是,两项是,一项是,则满足上述条 件的数列共有个.12.若集合0,1,2A π⎧⎫=⎨⎬⎩⎭,{|cos ,}B y y x x A ==∈,则AB =_______.13.若等比数列{}n a 的前项和为,公比为,集合2lim,1,nn nS M x x q S →∞⎧⎪==≠-⎨⎪⎩q ⎫∈⎬⎭R ,则用列举法表示M =.14.方程2cos 0x x -=的解可视为函数cos y x =的图像与函数2y x =的图像交点的横坐标.方程210sin 102xx x π-+=实数解的个数为.二.选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.15.若复数12ω=(为虚数单位),则1ω-等于(). A .B .C .D.第816.设函数()f x 1()f x -,对于[0,1]内的所有的值,下列关系式中一定成立的是().A .1()()f x f x -=B .1()()f x f x -≠C .1()()f x f x -≤D .1()()f x f x -≥17.对于函数1(1)()2nf n +-=(*n ∈N ),我们可以发现()f n 有许多性质,如:(2)1f k =(*k ∈N )等,下列关于()f n 的性质中一定成立的是( ).A .(1)()1f n f n +-=B .()()f n k f n +=(*k ∈N );C .()(1)()f n f n f n αα=++(0α≠)D .(1)(1)()f n f n ααα+=-+(0α≠); 18.若,是实数,则||||||a b b a ->-成立的充要条件是().A .1b a <B .1ab< C .a b < D .a b >三.解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应的编号规定区域内写出必要的步骤. 19.(本题满分14分)在△ABC 中,角,,A B C 的对边分别为,,a b c ,3B π=,4cos 5A =,b 求sin C 的值及△ABC 的面积.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知定义在区间[0,2]上的两个函数()f x 和()g x ,其中2()24f x x a x =-+(1a ≥),2()1x g x x =+.(1)求函数()y f x =的最小值()m a ;(2)若对任意、2[0,2]x ∈,21()()f x g x >恒成立,求的取值范围.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.袋中有大小相同的红球和白球若干个,其中红、白球个数的比为4:3.假设从袋中任取个球,取到的都是红球的概率为413.(1)试问:袋中的红、白球各有多少个?(2)(理)现从袋中逐次取球,每次从袋中任取个球,若取到白球,则停止取球,若取到红球,则继续下一次取球.试求:取球不超过次便停止的概率.(文)从袋中任取个球,若取到一个红球,则记分,若取到一个白球,则记分.试求:所取出球的总分不超过分的概率.22.(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.将奇函数的图像关于原点(即(0,0))对称这一性质进行拓广,有下面的结论:① 函数()y f x =满足()()2f a x f a x b ++-=的充要条件是()y f x =的图像关于点(,)a b 成中心对称.② 函数()y f x =满足()()()F x f x a f a =+-为奇函数的充要条件是()y f x =的图像关于点(,())a f a 成中心对称(注:若不属于的定义域时,则()f a 不存在).利用上述结论完成下列各题:(1)写出函数()tan f x x =的图像的对称中心的坐标,并加以证明.(2)已知(1m ≠-)为实数,试问函数()1x mf x x +=-的图像是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.(3)若函数()2()|||3|43f x x x t x ⎛⎫=-++-- ⎪⎝⎭的图像关于点22,33f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭成中心对称,求的值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.在等差数列{}n a 中,公差为,前项和为.在等比数列{}n b 中,公比为,前项和为(*n ∈N ).(1)在等差数列{}n a 中,已知1030S =,20100S =,求.(2)在等差数列{}n a 中,根据要求完成下列表格,并对①、②式加以证明(其中、、、*n ∈N(3选做二题或更多题,则只批阅其中分值最高的一题,其余各题的解答,不管正确与否,一律视为无效,不予批阅):(ⅰ)(解答本题,最多得4分)类比(2)中①式,在等比数列{}n b 中,写出相应的结论.(ⅱ)(解答本题,最多得5分)类比(2)中②式,在等比数列{}n b 中,写出相应的结论.(ⅲ)(解答本题,最多得6分)在等差数列{}n a 中,将(2)中的①推广到一般情况.(ⅳ)(解答本题,最多得6分)在等比数列{}n b 中,将(2)中的①推广到一般情况.卢湾区20**学年第一学期高三年级期末考试数学参考答案及评分标准20**.1一.填空题(本大题满分56分)本大题共有14小题,每个空格填对得4分. 1.2.(1,1)-3.124.5.150 6. 7.1233a b +8.x y ←9.10.11.12.{0,1}13.10,,12⎧⎫⎨⎬⎩⎭14.二.选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,选对得4分,否则一律得零分.15.A16.D17.C18.A三.解答题(本大题满分78分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.(本题满分14分)因为,,A B C 为△ABC 的内角,且3B π=,4cos 5A =,所以23C A π=-,3sin 5A =,得2sin sin 3C A π⎛⎫=- ⎪⎝⎭6分在△ABC 中,由正弦定理,得sin 6sinb A a B ==,…10分故△ABC 的面积116sin 225S ab C ==⨯=.…14分20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.(1)由222()24()4f x x ax x a a =-+=-+-,得2412,()84 2.a a m a a a ⎧-<=⎨-⎩≤≥…6分(2)1()(1)21g x x x =++-+,当[0,2]x ∈时,1[1,3]x +∈,又()g x 在区间[0,2]上单调递增(证明略),故4()0,3g x ⎡⎤∈⎢⎥⎣⎦.…9分由题设,得2min 1max ()()f x g x >,故212,443a a <⎧⎪⎨->⎪⎩≤或2,484,3a a ⎧⎪⎨->⎪⎩≥…12分 解得1a ≤为所求的范围.…14分 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.(1)设袋中有红球个,白球个,由题设2427413k k C C =,解得2k =,…4分因此,袋中有红球个,白球个.…6分(2)(理)记为“取球不超过3次便停止”;(1,2,3i =)为“第次取到红球”, 则为“第次取到白球”.由题设112123A B B B B B B =++,且、12B B 、123B B B 为互不相容事件,、、、、为互相独立事件,…10分故11212368687611()()()()()()()14141314131213P A P B P B P B P B P B P B =++=+⨯+⨯⨯=. …14分(文)从袋中个球中取出个球,其可能出现的取法有种,即所有的基本事 件有个.…8分若把“取出球的总分不超过分”的事件记作,则所包含的基本事件有3211266868C C C C C ++个,…12分因此,出现的概率321126686831411()13C C C C C P E C ++==.…14分 22.(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.(1)函数()tan f x x =的图像的对称中心的坐标为,02k π⎛⎫⎪⎝⎭(*k ∈N ).…2分 当2k n =(*n ∈N )时,tan tan tan tan 022k k x x x x ππ⎛⎫⎛⎫++-=-= ⎪ ⎪⎝⎭⎝⎭; 当21k n =+(*n ∈N )时,tan tan cot cot 022k k x x x x ππ⎛⎫⎛⎫++-=-+= ⎪ ⎪⎝⎭⎝⎭,得证.…6分 (2)由1()111x m m f x x x ++==+--,得()f x 的图像的对称中心的坐标为(1,1).…9分 1111(1)(1)21111x m x m x m x mf x f x x x x x++-+++-++++-=+=+=+----,由结论①得,对实数(1m ≠-),函数()1x mf x x +=-的图像关于点(1,1)成中心对称.…12分(3)由结论②2227()3333F x f x f x x t x ⎛⎫⎛⎫⎛⎫=+-=+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为奇函数,…14分其中()g x x =为奇函数,故27()33h x x t x =+++-为偶函数(证明略), 于是,由()()h x h x =-可得27273333x t x x t x ⎛⎫+++-=-+++ ⎪⎝⎭, …16分 因此,2733t +=,解得53t =为所求.…18分23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.(1)由1030S =,20100S =,得1104530a d +=,120190100a d +=,解得165a =,25d =, …2分 故30210S =.…4分(2)①121212m m m m S S S m m d +=++.…6分可知1221m m m a a m d +=+,121111212m m m m m m m S S a a a ++++=++++1211211()()()m m S a m d a m d a m d =+++++++1212m m S S m m d =++.…8分②2(1)2nm m n n S nS m d -=+(或写成22nm m nS nS C m d =+,2n ≥).…10分 可知1(1)2m m m S ma d -=+,1(1)(1)(1)222nm m nm nm nm m nm nm S nma d nS d d ---=+=-+(11)()22m m nm nm nS d nm m nS d nm m =+--+=+-2(1)2m n n nS m d -=+.…12分(3)(ⅰ)11212m mm m m S S q S +'''=+.…16分 (ⅱ)1,1,1, 1.nmm m nm mq S q S q nS q ⎧-'≠⎪'=-⎨⎪'=⎩…17分(ⅲ)12121213123[()(nn m m m m m m n S S S S m m m m m m m m +++=+++++++++21)]n n n m m m m d -+++,(2n ≥).(或写成111()ni ii nm i j m i i j nS S m m d ==<=+∑∑∑≤≤,(2n ≥)).…18分(ⅳ)12111212123n nn m m m m m m mm m m m m mS S S q S q S q -+++++++'''''=++++,(2n ≥).…18分。
上海市卢湾区2010届高三上学期期末英语试题
卢湾区2009学年第一学期高三年级期末考试英语试卷第I卷I. Listening comprehensionSection ADirections:In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1. A. In a restaurant. B. In a hospital.C. At a theatre.D. At a railway station.2. A. Husband and wife. B. Brother and sister.C. Teacher and student.D. Clerk and customer.3. A. Sam turned it in. B. He turns in the lock.C. It was in the lock.D. He got it from Sam.4. A. Coffee. B. A chocolate milk shake.C. Tea.D. A vegetable salad.5. A. She thinks they ca n’t go to the theatre without the car.B. She suggests going to the theatre by subway.C. She believes the man’s brother will let them use the car first.D. She thinks the theatre is far away from here.6. A. He hates going to the piano course.B. He would like to make decisions himself.C. He is too old to learn the piano.D. He is already good at playing the piano.7. A. She is already a teacher.B. She doe sn’t know what she will do after graduation.C. She has no desire to teach.D. She likes teaching very much.8. A. Read a book. B. Write a composition.C. Talk about a problem.D. Listen to the radio.9. A. Someone has told him where it is.B. He doesn’t know, either.C. He knows where it is but can’t tell the woman.D. He has asked someone for help.10. A. She lost her car.B. She drove here.C. Something was wrong with her car.D. She broke the traffic rules.Section BDirections: In Section B, you will hear two short passages, and you will be asked three questions on each of the passages. The passages will be read twice, but the questions will be spoken only once. When you hear a question, read the four possible answers on your paper and decide which one would be the best answer to the question you have heard.Questions 11 through 13 are based on the following passage.11. A. There are too many people everywhere.B. There are always too many cars in Tokyo.C. The places where he wants to be are always very crowded.D. The streets in Tokyo are narrow.12. A. At 11:00 pm. B. At 11:30 pm.C. At 12:00 pm.D. At 12:30 pm.13. A. About 3,500. B. About 35,000.C. About 350,000.D. About 3,500,000.Questions 14 through 16 are based on the following passage.14. A. In Anhui province. B. In Shanxi province.C. In Shandong province.D. In Hubei province.15. A. When he was building a house.B. When he was digging a tomb in the fields.C. When he was digging a channel to place a pipes for tap water.D. When he was cleaning his yard.16. A. Three. B. Four. C. Five. D. Six.Section CDirections:In Section C, you will hear two longer conversations. The conversations will be read twice. After you hear each conversation, you are required to fill in the numbered blanks with the information you hear. Write your answers on your answer sheet.Blanks 17 through 20 are based on the following conversation.Blanks 21 through 24 are based on the following conversation.Complete the form. Write NO MORE THAN THREE WORDS for each answer.II. Grammar and vocabularySection ADirections: Beneath each of the following sentences there are four choices marked A, B, C and D. Choose the one answer that best completes the sentence.25.Though she tried hard to pull the fish _____ her, she was pulled deeper intothe water.A. byB. withC. afterD. towards26.The boy’s parents often quarrel about their son, and _____ of them iswilling to give in.A. anyB. othersC. neitherD. none27.It’s high time you had your hair cut, since it’s getting _____.A. too much longB. much too longC. long too muchD. too long much28.She won’t leave the computer game _____ her husband is waiting for hissupper.A. as thoughB. even thoughC. whetherD. whenever29.Early to bed and early to rise _____ a man healthy, wealthy and wise.A. makesB. makeC. has madeD. will make30._____ unemployment and crime is high, it can be assumed that the latter isdue to the former.A. BeforeB. WhereC. UnlessD. Until31.I felt very happy _____ into the Bird’s Nest to watch the performances thatJackie Chan hosted.A. to admitB. to be admittedC. admitD. admitting32.John promised his wife he _____ not smoke, and he has never smoked eversince.A. mightB. shouldC. mustD. would33.People often provide their children with toys, footballs or basketballs,_____ that all children like these things.A. thinkingB. thinkC. to thinkD. thought34.--- Is that the small town you often refer to?--- Right, just the one _____, you know, I used to work for years.A. thatB. whichC. whereD. what35.You should understand the traffic rule by now, since you’ve had it _____often enough.A. explainingB. to explainC. explainD. explained36.It is said that no attention _____ other possibilities at the meeting the daybefore yesterday.A. was paid toB. paid toC. had been paid toD. had paid to37.High technology has been used in teaching. As a result, not only _____, butstudents became more interested in the lessons.A. saved was teachers’ energyB. was teachers’ energy savedC. teachers’ energy was savedD. was saved teachers’ energy38.Those businesspersons are getting well-prepared for the coming season, forthey can’t risk _____ the good opportunity.A. to loseB. losingC. to be lostD. being lost39._____ those boys called the grey-headed gentleman really made the oldman frustrated.A. WhichB. WhetherC. HowD. What40.The reason _____ she gave for not coming to the party puzzled all of thepeople present.A. whatB. whyC. asD. whichSection BDirections: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.summer, many friends asked me how I survived the interview.I once asked myself the same questions. Many of my peers also __41__ forthe job, including some very competitive and intelligent students from famous universities.But why did the interviewer pick me instead of them?Finally, __42 __ pushed me to ask the interviewers after we became colleagues. The answer was that I appeared confident but humble, responsible and communicative. They evaluated people not just on their academic certificates, but on the base of their __43__ and abilities. I happened to be the right person.To be frank, I once felt __44__ of being a student from an unknown college, and I think this may apply to some of you. I thought my future was ruined. It was only at the time of my successful interview that I finally understood the famous saying --- “You decide where you go.”A wide range of skills is important these days. I used to work for Master Kong. My job was to cook instant noodles for customers. I had regarded it as a piece of cake, but I failed constantly. I had to cook the noodles for the right amount of time to make them taste good. Moreover, the noodles could only remain in a plastic cup of five minutes, or the taste would be __45__.This experience taught me never to look __46__ on anything, and always remain humble.I also worked as a volunteer for a beach volleyball event. My job was to help foreign visitors experience the beach. I thought it would be very easy because my oral English was __47__ good. But when I went to talk with a group of foreign guests, I suddenly realized that I did not know a single beach volleyball term. I was embarrassed.After this, I read brochures in both Chinese and English every day to learn the terms for facilities and related words. This allowed me to deliver accurate __48__ to foreigners, and I was happy to work responsibly.After these experience, I’m more confident and I strongly believe that my fate is in my __49__. It has certainly helped me make a giant step closer to my dream of graduating with prospects for the future. I hope my advice will benefit you as well.III. Reading ComprehensionSection ADirections:For each blank in the following passages there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.On a cold November afternoon, my mother and I were walking home from a pizza shop. We were dressed __50__ and equipped with a rented video we hadbeen __51__ to watch. I was feeling a little __52__ as I was carrying our shopping, and decided to throw away something. So I started to walk towards a garbage can when I noticed a poor man walking out of the restaurant in front of us. He __53__ over to another nearby garbage can and started looking through it.I suddenly felt very guilty because I was about to throw away a new drink just because it was __54__. I walked up to him and handed the drink and some snacks over to him. The man looked up __55__ and took what I gave him.A huge smile __56__ across his face and this caused me to feel indescribably satisfied. I felt I couldn’t be happier __57__ myself, but then he said, “Wow, this is my son’s lucky day!”With that, he thanked me happily and started off on his bike, I __58__ heard him whistling a song as he rode away.I got a warm __59__ inside. I now understand what is meant by the saying “giving is getting”.Although it only __60__ a little action and a few words, I gained and learned more in those two minutes than I did in the rest of the month. Everyone in the world needs help, everyone can __61__ help and everyone will be helped by __62__ kindness.The image of that man’s happiness caused by my small gift appears in my mind every __63__ I have the chance to do something nice.This is the __64__ of charity.50. A. poorly B. coldly C. warmly D. expensively51. A. dying B. exciting C. worrying D. happy52. A. worried B. interested C. bored D. tired53. A. headed B. passed C. crossed D. took54. A. cheap B. heavy C. tasteless D. full55. A. in silence B. in surprise C. in interest D. in a hurry56. A. appeared B. spread C. went D. ran57. A. with B. to C. at D. for58. A. still B. once C. even D. ever59. A. sense B. mind C. thinking D. feeling60. A. held B. took C. called D. asked61. A. offer B. send C. show D. have62. A. showing B. expressing C. lending D. setting63. A. moment B. day C. minute D. time64. A. power B. meaning C. strength D. aimSection BDirections: Read the following four passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.AIf you asked me, over a year ago, to choose between the neon lights and street lights of Chengdu, I would have chosen the colourful ones without hesitation. But my experiences during the time of the severe earthquake have given me a different perspective.In fear of the after shocks people would be constantly moving about and they stayed out of doors during the nights. When night fell and rain set in, we could feel cold, tired and helpless. But I remember one night, which changed my whole attitude to the lights of Chengdu. All of a sudden, there was a beam of yellow, then another, and another. Before we knew it, there were lights on everywhere. The sea of light had the effect of making us feel overwhelmingly secure.I realized that the lights, which we had taken for granted before, were protecting the whole city.Then there were the people who came to our rescue, who made every effort to protect and save lives. I saw local taxi drivers on the road all night long transporting injured people to the hospitals. I saw volunteers from other parts of China hurrying with living essentials to the worst-hit areas…At that moment, Chengdu became a place where the word ‘love’ was being spelt in capital letters by caring people from every corner of the planet.Reconstruction is still in progress, but I’ve already come to understand that the quality of life in Chengdu comes not from the number of its modern buildings… but from the hope, the faith, the optimism, and the determination of the people…65.What does the underlined word mean?A. determinationB. evaluationC. destinationD. viewpoint66.What did the writer think of the street lights before the earthquake?A.The writer thought the street lights were very important to the people.B.The writer believed people couldn’t do without street lights.C.The writer considered the street lights as something natural.D.The writer had no idea about the street lights.67.What’s the best title for this passage?A. EarthquakeB. Lights in RainC. Hope, the LightsD. Love of PeopleBIn the UK, students’ residence halls are run as profit-making business, but this can occasionally be to students’ disadvantage.As many universities choose to contract out their hall’s management to private companies, room rents are rising and student rights are suffering.In 2006, 55 percent of student rooms were managed by private companies --- only 27 percent by universities and colleges, the National Union of Students (NUS) has reported.These private companies are improving the hall’s facilities in return for higher room rents. The most noticeable example of this trend is the growth in luxury halls. These are halls for students willing to pay more for larger rooms with better services.Chancellors Court, at Edinburgh University in Scotland, is one such luxury hall. Rooms are divided between standard and large, with larger rooms costing 173 pounds each week, 40 pounds more than smaller rooms. They come with a scenic view, color TV, fast Internet connection and a modern bathroom.Other luxury halls have private gyms for their residents. Private companies capitalize (用…以牟利) on their investment by renting out the students rooms to travelers over the summer vacation period.But the NUS is concerned that luxury halls are affecting room rents at standard un-privatized halls. Most students in the UK pay on average 126 pounds a week for a private room in catered (提供餐饮的) halls of residence, the International Students Advice and Welfare organization has reported. According to the NUS, rent in UK halls of residence has risen by almost a quarter from 2005 to 2007.Veronica King, NUS vice-president of welfare, wants the privatization of university accommodation to stop.“For the students for whom luxury is not affordable, there is a significant risk that accommodation costs, coupled with the burden of complete fees, may reduce the choice of where to go to university,” she said.Legal quarrels with privatized (私有化了的) halls may also account for some of the 10 percent per year rise in student complaints to the office of theIndependent Adjudicator for Higher Education (OIA). The OIA is an independent student complaints scheme that has authority over all higher education institutions in England and Wales.Rob Behrens, chief executive of the OIA, said he was unsurprised by the rise in complaints. “The bottom line is that students are today more self-confident in thinking about what their rights are and what are the things they can get form the commitments they make.”68.Why are room rents rising in British universities?A.Because the world is facing a financial crisis.B.Because most universities are getting bored about students’ complaints.C.Because many universities let private companies run students’ halls.D.Because not all universities can meet the demands of the students.69.Which of the following is not mentioned about a luxury hall?A.Students have to pay more for a luxury hall.B.Students can have a good view in a luxury hall.C.Students can enjoy their own gym in a luxury hall.D.Students can have an Internet connection free of charge.70.Why do some students want to pay more for a luxury hall?A.Because they just want to show that they are rich.B.Because they are better served in a luxury hall.C.Because there are too much complaints about small rooms.D.Because there are no other choices.71.What may happen to those who can’t afford the accommodation fee?A.They may borrow more money from the bank.B.They may go to OIA for help.C.They may not go to college.D.They may go abroad for further study.CToday’s career assumption is that you can get a lot of development, challenge and job satisfaction and not necessarily be in a management role.Managing others is always a tough task, but in the past that stress was balanced by hopes for career mobility and financial rewards. Along with a sizable pay raise, people chosen as managers would begin a nearly automaticclimb up the career ladder to successful executive private benefits: company cars, club memberships, plus the key to the executive washroom.But in today’s global and more competitive showground, a manager sits in an insecure (不稳定的)chair. More companies has begun to take less management as they come to view their organizations as collections of talents rather than hierarchies (等级). There are far fewer steps for managers to climb. Also, managerial jobs demand more hours and headaches than ever before but offer slim, if any financial paybacks and perks.Now managers must manage many people who are spread over different locations, even over different continents. They must manage across functions with, say, design, finance and marketing.In many companies, when the most praised people in business are those launching something new, management seems like an invisible, thankless role. Employers are looking for people who can do things, not for people who make other people do things.Moreover it may not pay to be a manager, at least not the way it once did. Ms. Chmielewski says, “The emotional rewards can be great, and there were times when I enjoyed management. But a 10-to-11-hour day and one weekend day a month is the norm (标准)”.With more people cautious of joining management, are companies being hurt or worrying about developing future leaders? Not many are. While employers have fired a lot of managers, they believe many more candidates linger on at many companies. “Another reason why companies aren’t short of managers,” argues Robert Kelley, a business professor, “is that so many workers today are self-managed, either individually or via teams, they don’t need a manager.”72.By writing the passage, the writer seems to _____.A. explain reasons for firing managersB. advise people not to become managersC. express dissatisfaction of some managersD. encourage managers to be more competitivepared with past, the managing job today is more _____.A. demandingB. rewardingC. questionableD. acceptable74.The author mentions what Ms Chmielewski says to reflect that _____.A.the managers’ low working efficiency makes them less paidB.the gain of being a manager is not as satisfactory as beforeC.she enjoys great emotional rewards of being a manager nowD.she misses the past enjoyment of being a manager75.What can we infer from the last paragraph?A.More and more people are eager to become managers.B.There will be more managers to be employed in the future.C.Employers think it easy for them to find managers in the future.D.Teamwork makes it possible for companies not to hire more managers.Section CDirections: Read the following text and choose the most suitable heading from the list A-F for each paragraph. There is one extra heading which you do not need.It is very important to keep your hair healthy. Here are five ways for you.76. _____ Good fats are also called necessary fatty acids which the body can’t produce naturally. Eating these types of fats will help promote healthy skin, nails, teeth and hair. They can be found in the form of oil, or in food such as seeds, nuts and olives.77. _____ Hair is nothing more than dead protein. But that doesn’t mean that it is not important. A lack of it can cause slow growth and thinning, where on the contrary, getting enough amounts can help promotes growth. Good choices to include in the diet would be eggs, lean meats, tofu, fish, yogurt and beans.78. _____ There are a handful of vitamins that have been known to be effective for healthy hair. Some of the main ones include vitamin B, biotin, calcium, vitamins A, C and E, and iron. Other than in extra form, these nutrients can also be found naturally in citrus (柑橘类) fruits, peppers, low-fat dairy products, dried fruits, green vegetables and whole grains. A large salad can be made with the inclusion of a lot of these food.79. _____ Getting enough exercise can help promote hair growth. Circulation to the scalp is a very important factor for healthy hair and growth. Aim to get at least 20 to 30 minutes of exercise every day. It can be walking, jogging, weight training, biking or moderate intensity activity that is enjoyable and easy to fit into your schedule.80. _____ Right after you brush your teeth, brush your hair as well. Brushing hair fifty to one hundred strokes right before bed can help remove pollutants and dirt while also stimulating circulation. Also, natural oils are released, which will add more sheen (光泽) and oxygen to your hair.Section DDirection: Read the passage carefully. Then answer the questions or complete the statements in the fewest words.(Note: Answer the questions or complete the statements in NO MORE THAN TEN WORDS.)Every day we meet people in a number of business and social situations. And the way we meet and greet them creates an impression. It’s important to do so in proper way, no matter whether you are introducing yourself to someone, or introducing two people to each other. To keep you aware of this, we have gathered tips on how to make a proper introduction.✧Always stand when making an introduction.When you are seated and someone comes up to greet you, make the effort to stand up. By doing this, you show respect for yourself and for the other person.✧Always maintain eye contact while making an introduction.Many people are not aware of the value of this simple action. When you make eye contact you are giving a confident image.✧Always introduce a person of lesser authority to one of greaterauthority.The most important thing to remember is to say the most important person’s name first. For example, when introducing you supervisor to a job candidate, you would give your supervisor’s name first. “Bob Jones, may I introduce Susan Lee, who has just graduated from ABC University?”✧In a situation where rank is unimportant, an introduction is based onsex and age.A man is presented to a woman and a younger woman to an older woman. What if you find yourself in a situation where you have forgotten the other person’s name? Start with a handshake and reintroduce yourself. By doing this, you will usually cause the other person to do the same.However, if the other person does not take your suggestion, it is OK simply toapologize and let the person know that you can’t remember her or his name. This is not the ideal situation, of course, but it doesn’t happen to all of us. The other person should be forgiving.81.When you are sitting and a person comes to you, hoping to talk to you, youshould ___________________________________.82.Why does a person need to maintain eye contact while making aconversation?_____________________________________________________________ 83.Who should you introduce first, your grandfather or your classmate?_____________________________________________________________ 84.If you forget a person’s name, you’d better_____________________________________________________________.第II卷I. TranslationDirections:Translate the following sentences into English, using the word or phrase given in the brackets.1.他们已经为那位可怜的母亲募集了近两千元。
最新高三数学题库 卢湾区2010学年第一学期高三年级期末考试key
卢湾区2010学年第一学期高三年级期末考试 数学参考答案及评分标准 2011.1一.填空题(本大题满分56分)本大题共有14小题,每个空格填对得4分.1.{} 2 2.(0, 1) 3.5, 44ππ⎧⎫⎨⎬⎩⎭4 5.12 6.57.1320 8.5 9.6 10.0.7 11.(理)6(文)2 12.1513.14 14.1()2n a b -+二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.A 16.C 17.D 18.B三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.(本题满分12分)本题共2个小题,第1小题满分6分,第2小题满分6分. (1)由2i z +是实数,可设2iz+= a ,R a ∈, 故(2i)2i z a a a =+=+, ………………3分 所以2i z z a -=,又4i z z -=,可得24a =,即2a =,所以42i z =+. ………………6分 (2)由|i |5z m -<,可得|4(2)i |5m +-<,又R m ∈5< ………………9分 即216(2)25m +-<,解得15m -<<, 所以实数m 的取值范围是(1,5) -. ………………12分 20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.(1)由(2)q p q -⊥,可得(2)q p -·q =0, ………………2分 即2||2q p -·0q =,又(cos ,sin )p B B =- ,(cos ,sin )q C C = 所以22cos sin 2(cos cos sin sin )0C C B C B C +--=,即1cos()2B C +=,又0B C π<+<, ………………6分∴3B C π+=,故2π()3A B C π=-+=. ………………8分(2)在△ABC 中,由2222cos BC AB AC AB AC A =+-⋅,可得22()2(1cos )BC AB AC AB AC A =+-⋅+, ………………10分即22142(1)2AB AC =-⋅⋅-,故4AB AC ⋅=, ………………12分∴11sin 422S AB AC A =⋅=⨯= ………………14分21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)延长RP 交AB 于E ,延长QP 交AD 于F ,由ABCD 是正方形,PRCQ 是矩形,可知,PE AB PF AD ⊥⊥, 由TAP θ∠=,可得6cos EP θ=,6sin FP θ=,∴76sin PR θ=-,76cos PQ θ=-, ………………4分 ∴(76sin )(76cos )S PR PQ θθ=⋅=--4942(sin cos )36sin cos θθθθ=-++故S 关于θ的函数解析式为4942(sin cos )36sin cos =-++S θθθθπ(0)2θ≤≤.……6分(2)由sin cos t θθ+=,可得22(sin cos )t θθ=+12sin cos θθ=+,即21sin cos 2t θθ-=, ∴22494218(1)184231S t t t t =-+-=-+. ……………9分又由π02θ≤≤,可得3π444ππθ≤+≤,故πsin cos )4t θθθ=+=+∈,∴S 关于t 的表达式为2184231S t t =-+(∈t ). ……………11分又由271318()62S t =-+,t ∈可知当t =时,S 取最大值,故S的最大值为67-. ………………14分 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)由1,()4a f x =-=,可得224x x --=,设2x t =,则有14t t --=,即2410t t --=,解得2t =± ………………2分当2t =22x =2log (2x =+.当2t =22x =故所求x的值为2log (2+. ………………4分 (2)设12,[1,),x x ∈+∞且12x x >,则112212()()(22)(22)x x x x f x f x a a ---=+-+21121222(22)2x x x x x x a +-=-+12121222(2)2x x x x x x a ++-=- ………………7分由12x x >,可得1222x x >,即12220x x ->由12,[1,),x x ∈+∞12x x >,可得122x x +>,故12240x x +>>, 又4a ≤,故122x x a +>,即1220x x a +->TNFE RQθPD CBA所以12()()0f x f x ->,即12()()f x f x >,故函数()f x 在[1,)+∞上是增函数. ………………10分 (3)由2(2)[()]f x f x >2222222222x x x x a a --⇔+>++222()20x a a a -⇔-+< ………………12分设22x t -=,由[0,1]x ∈,可得1[,1]4t ∈,由存在[0,1]x ∈使得2(2)[()]f x f x >,可得存在1[,1]4t ∈,使得2()20a a t a -+<, ………………14分 令2()()20g t a a t a =-+<,故有211()()2044g a a a =-+<或2(1)()20g a a a =-+<,可得70a -<<.即所求a 的取值范围是(7,0)-. ………………16分 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.(1)当a n +b n 2≥0时,b n +1-a n+1= a n +b n 2 -a n = b n -a n2;当a n +b n 2<0, b n +1-a n +1 = b n - a n +b n 2 = b n -a n 2.所以,总有b n +1-a n +1 = 12(b n -a n ),又110,0b a ><,可得110b a ->,所以数列{b n -a n }是等比数列. ………………4分(2)①由111,2a b =-=,可得111022a b +=>,故有11221[,][,]2a ba b a +=,∴112122a b b +==,211a a ==-,从而222a b =-, 故当n =1时,222n n a b =-成立. ………………6分 ②假设当n k =时,222n n a b =-成立,即222k k a b =-, 由22230k k k b a b -=>,可得20k b >,2222220222k k k k k a b b b b +-+==-<, 故有2221212[,][,]2k k k k k a b a b b +++=, ∴22221212,22k k k k k k a b ba b b +++==-=, ………………9分222121220224k kk k k bb a b b ++-++==>,故有2121222221[,][,]2k k k k k a ba b a ++++++= ∴212122224k k k k a b bb ++++==, 222212k k k b a a ++==-,故2(1)2(1)2k k a b ++=-∴当1n k =+时,222n n a b =-成立.综合①②可得对一切正整数n ,都有222n n a b =-. ………………12分(3)假设存在11,a b ,使得数列{}n a 为常数数列,由(1)可得b n -a n =11()b a -(12)n -1,又1n a a =,故b n =111()a b a +-(12)n -1, ………………14分由1n n a a +=恒成立,可知a n +b n 2≥0,即111()a b a +-(12)n≥0恒成立,即2n ≤111a b a -对任意的正整数n 恒成立, ………………16分 又111a b a -是正数,故n ≤1121log a ba -对任意的正整数n 恒成立,因为1121log a b a -是常数,故n ≤1121log a ba -不可能对任意正整数n 恒成立.故不存在11,a b ,使得数列{}n a 为常数数列. ………………18分。
卢湾区2011学年第一学期期末考试九年级数学答案
卢湾区2011学年第一学期期末考试九年级数学答案FE AF BC AB =,……………………………………………………………(2分)∵:1:2AF BF =,∴13AF AB =,…………………………………………(1分) ∴13FE BC =,∴13FE BC =,………………………………………………(2分)又∵:2:1BC CD =,∴12CD BC =,……………………………………(2分)∵FE∥BD ,∴123132BC FN FE ND CD BC ===.………………………………(2分)四、解答题(本大题共2题,每题12分,满分24分)23.解:过点C 作AB 的垂线,垂足为点D .…………………………(1分)设BD x =,在Rt BCD ∆中,tan tan63.5CD CBD BD∠=︒=,…………(1分)∴tan63.5CD x =⋅︒.……………………………………………………(2分)在Rt ACD ∆中, tan tan 21.3CD A AD =︒=,……………………………(1分) ∵60AD AB BD x =+=+,……………………………………………(1分)∴()60tan 21.3CD x =+⋅︒.……………………………………………(2分)∴()tan 63.560tan 21.3x x ⋅︒=+⋅︒,∵25tan 21.3︒≈,tan63.52︒≈,(2分)解,得 15x ≈.…………………………………………………………(1分)答:轮船继续向东航行约15海里,距离小岛C 最近. ………………(1分)24. 解:(1)∵抛物线与x 轴相交于()1,0A -,()3,0B 两点,∴对称轴l :直线1x =,2AC =;……………………………………(2分) ∵90ACD ∠=︒,1tan 2ADC ∠=, ∴4CD =,∵0a >,∴()1,4D -.……………………………………(2分) (2)设()214y a x =--,………………………………………………(2分) 将1,0x y =-=代入上式,得,1a =,…………………………………(1分)所以,这条抛物线的表达为223y x x =--. …………………………(1分)(3)过点F 作FH x ⊥轴,垂足为点H .……………………………(1分)设()2,23F x xx --,∵FAC ADC ∠=∠,∴tan tan FAC ADC ∠=∠, ∵1tan 2ADC ∠=,∴1tan 2FH FAC AH ∠==,…………………………(1分) ∵223FH x x =--,1AH x =+,∴223112x x x --=+,………………(1分) 解,得172x =,21x =-(舍),∴79,24F ⎛⎫ ⎪⎝⎭.…………………………(1分)五、(本题满分14分)25.(1)∵EF EC ⊥,∴90AEF BEC ∠+∠=︒,……………………(1分) ∵AEF BEC ∠=∠,∴45BEC ∠=︒……………………………………(1分) ∵90B ∠=︒,∴BE BC =,∵3BC =,∴3BE =.…………………(1分)(2)过点E 作EG CN ⊥,垂足为点G .………………………………(1分)∴BE CG =,∵AB ∥CN ,∴AEH N ∠=∠,BEC ECN ∠=∠, ∵AEH BEC ∠=∠,∴N ECN ∠=∠,∴EN EC =,………………(1分)∴22CN CG BE ==,……………………………………………………(1分)∵BE x =,DN y =,4CD AB ==,∴()2423y x x =-≤≤.……(2分)(3)∵90BAD ∠=︒,∴90AFE AEF ∠+∠=︒,∵EF EC ⊥ ,∴90AEF CEB ∠+∠=︒,∴AFE CEB ∠=∠,∴HFE AEC ∠=∠.………………………………(2分) 当FHE ∆与AEC ∆相似时,ⅰ)若FHE EAC ∠=∠,∵BAD B ∠=∠,AEH BEC ∠=∠,∴FHE ECB ∠=∠,∴EAC ECB ∠=∠,∴tan tan EAC ECB ∠=∠,∴BC BE AB BC =,∴94BE =,∴12DN =…(2分)ⅱ)若FHE ECA ∠=∠,如所示,记EG 与AC 交于点O .FO21G N E D CB A∵EN EC =,EG CN ⊥, ∴12∠=∠,∵AH ∥EG ,∴1FHE ∠=∠,∴2FHE ∠=∠,∴2ECA ∠=∠,∴EO CO =,设3EO CO k ==,则4,5AE k AO k ==,∴85AO CO k +==,∴58k =, ∴52AE =,32BE =,∴1DN =………(2分) 综上所述,线段DN 的长为12或1. (以上各题如有其他方法,请参照评分标准酌情给分。
上海市卢湾区2012届高三数学上学期期末考试试题文沪教版
上海市卢湾2011—2012学年第一学期高三年级期末考试数学试卷 (文科)2012.1(本卷完成时间为 120分钟,满分为150分)、填空题(本大题满分56分)本大题共有14小题,考生应在答题纸相应编号的空格内直 接写结果,每个空格填对得4分,否则一律得零分.1 •不等式x2 x ^:: 0的解集为 ___________ . 1 2.若 sin,则 cos2v = .3----------------, 13. 函数y ln x (x 0)的反函数为2 ------------------------------------------------、 k4 .若集合 A ={x|0 < x < 5,x ・ Z } , B ={x|x ,k ・A},则 A" B 二 __________ (用列举法2表示).5. 若函数f (x )=ax ,b 的零点为x=2,则函数g (x ) =bx 2-ax 的零点是x =0和x = ________6. 已知二元一次方程组/x+dym,,若记a 」a1i,壮卩1 , 2 = ®〕,则该方程组gx +dy S.丿 © 丿 6 丿存在唯一解的条件为 ____________ (用a 、b 、c 表示).7. 若(1 ax )5 =1 10x bx 2 (“ a 5x 5,则 b = ________ .2 *9•已知数列{a n },若a 1=14 , a^ =a n —— ( n ^ N ),则使a .q 书v0成立的3是.10. 甲、乙、丙三人同在某公司上班,若该公司规定,每位职工可以在每周七天中任选两天 休息(如选定星期一、星期三) ,以后不再改动,则他们选定的两个休息日相同的概率是 (结果用数值表示).x y -1 > 0,11.在平面直角坐标系中,若不等式组 X -dw 0, ( a 为常数)所表示的平面区ax - y 1 > 0域内的面积等于2,则a 的值为 __________12. 为了解某校高三学生的视力情况,随机 查了该校100名高三学生的视力情况,得到 分布直方图,如右图,由于不慎将部分数据 失,但知道前4&若常数t 满足|t|1,则 lim 1 七「川 *t nn 的值地抽 频率丢 的频组的频数成等比数列,后6组数成等差数列,那么最大频率为 _________ ,视力在4.6到5.0之间的学生数为 _________ . 13•已知函数f(x)=ab x c(b 0,b=1),x [0,;),若其值域为[-2,3),则该函数的一 个解析式可以为 f (x)二 _______________________________ .14. ________________ 若对于满足_1 < t < 3的一切实数t ,不等式x 2 _(t 2 • t — 3)x - t 2(t _3) . 0恒成立,则x 的取值范围为 . 二、选择题(本大题满分20分)本大题共有 4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15. 在复平面内,复数 z =(1 • i)i (i 为虚数单位)对应的点位于().A . 第一象限 .第二象限C .第三象限D . 第四象限16":=2k 「l :i (k 三 Z ) ”是 “ ta n: =tan F ;” 成立的()A . 充分非必要条件B .必要非充分条件C .充要条件 D.既非充分又非必要条件 17若函数f (x)同时满足下列三个条件: ①有反函数②是奇函数③其定义域与值域相同则函数f (x)可以是( ).JTx . xe + eA f(x) =sinx ( < x <B . f (x)=2 22■ 3上1 + xC .f(x) = -xD.f (x) - In1 - x18•已知函数 f (x) =|x 2 -1|,若 0 ::x :: y ,且 f (x) = f (y),则().A. y = . 4「X 2 ( 0 ::: x ::: 2 ) B . y = , 4 一 x 2 ( 0 :: x ::2 )C y = 2 ~'X? ( 0 ::: x ::: •. 2 )D .y = . 2 ~'X?( 0 ::: x ::: 1)三、解答题(本大题满分74分)本大题共有 5题,解答下列各题必须在答题纸相应的编号规定区域内写出必要的步骤. 19. (本题满分12分)在厶ABC 中,角A, B,C 的对边分别为a,b,c ,且a =2bcosC , b • c =3a . 求si nA 的值. 20. (本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.已知函数f(x)=|x 「a|, g(x)=x 2,2ax 1 ( a 为正常数),且函数f (x)与g(x)的图像 在y 轴上的截距相等.(1) 求a 的值;(2) 若h(x)二f (x) b. g(x) ( b 为常数),试讨论函数h(x)的奇偶性.已知a 、b 是两个不共线的非零向量.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.1 .(1)设OA=a , OB=tb (诈R ), 0C=」(a+b),当A、B、C三点共线时,求t的值.22. (本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3 小题满分7分.已知数列{b n },若存在正整数T ,对一切n • N *都有b n T 二5,则称数列{5}为周期数 列,T 是它的一个周期.例如:数列a , a , a , a ,... ① 可看作周期为1的数列; 数列a , b , a , b ,... ② 可看作周期为2的数列; 数列a , b , c , a , b , c ,...③可看作周期为3的数列 (1)对于数列②,它的一个通项公式可以是a n= a “为正奇数,试再写出该数列的一b n 为正偶数•个通项公式;(2) 求数列③的前n 项和S n ;1(3) 在数列③中,若 a=2,b ,c = -1,且它有一个形如 b n 二Asin( • n • ::)的通2 项公式,其中 A 、B 、•■、「均为实数, A.0, •• .0, |「| ,求该数列的一个通项公2式b n .23. (本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3 小题满分6分.X +1 —t已知函数f(x)鼻「(t 为常数).t —X(1) 当t =1时,在图中的直角坐标系内作出函数 y =f (x)的大致图像,并指出该函数所具备的基本性质 的两个(只需写两个).(2) 设 a n = f(n) ( n • N *),当 t 10 ,且 N * 判断数列{a n }的单调性并由此写出该数列中最大项和 小项(可用[t ]来表示不超过t 的最大整数)(3)利用函数y = f(x)构造一个数列{x n },方法如下:对于给定的定义域中的x 1,令X 2 =f (xj , x^f (x 2),…,x n =f (X n 」)(n > 2 , n N * ),…在上述构造过程中,若 x ( L N *)在定义域中,则构造数列的过程继续下去;若 x 不 在定义域中,则构造数列的过程停止.(2)如图,若2 =OD , b ^OE , a 与b 夹角为120,|aH|bH1,点 P 是以O 为圆心的圆弧DE 上一动点,设 OP 二 xOD yOE ( x, y 三 R ), 求x y 的最大值.若可用上述方法构造出一个常数列{x n},求t的取值范围.数学参考答案及评分标准319 .(本题满分12分) 由 a =2bcosC 及正弦定理,得 sin A = 2sin BcosC ,又 A =二 _(B C ), 可化为 sin (B ・C )=2s in BcosC ,展开整理得 si n (B-C )=0 , (4 分) 在三角形中得B -C =0,即B 二C ,可得b 二c , (6分)a 1于是由b ・c =:3a ,得2b =3a ,因此cosC, ( 8分)2b 3可得 sinC, (10分)34近故 sinA=sin (二-2C)=2sinCcosC. (12 分)920.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10 分. (1 )由题意,f (0) =g(0),即 |a|=1,又 a 0,故 a =1 .(4 分) (2) h(x)二 f(x) b 丽=|x-1| b|x 1|,其定义域为 R , (8分)2012.1、填空题(本大题满分 56分)本大题共有14小题,每个空格填对得 4分,否则一律得零分. 1.2x(x R ) 4{0,1,2}1"26.a 与b 不平行 .40.211 441 匚1-5 - 2二、选择题(本大题满分10.13 . 11.(理)0.94 (文) 312 .0.27 , 78 (满足 0 ::: b ::: 1 的 b 均可) 20分)本大题共有144题, 15 . B 16.C 18. D三、解答题(本大题满分74分) 4)U (9,;)选对得5分,否1h(-x)斗—x -1| b| -x 1|=|x 1| b|x 一1| .若h(x)为偶函数,即h(x)二h(-x),则有b =1,此时h(2) =4 , h(-2) =4 ,故h(2)=「h( -2),即h(x)不为奇函数;若h(x)为奇函数,即h(x)二—h(-x),则b 二―1,此时h(2) =2 , h(-2) =「2 ,故h(2) =h(-2),即h(x)不为偶函数;综上,当且仅当b =1时,函数h(x)为偶函数,且不为奇函数,(10分)当且仅当b = -1时,函数h(x)为奇函数,且不为偶函数,(12分)当b=_1时,函数h(x)既非奇函数又非偶函数.(14分)21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8 分. (1)由题意,可设AB^kBC , (2分)TTT 呻呻寸1 ■+AB =OB-OA =tb-a , BC =OC -OB a (— -t)b 代入上式,11k 峠 1 1 得 tb _a a k( t)b ,解得 k = -3 , t . (6 分)3 3 2(2)以O 为原点,OD 为x 轴建立直角坐标系,则 D(1,0) , E^-^3).2 2设 /POD = : ( 0 w : w _ ),则 P(cos j ;,sin :), 由 CP Z ^OD "",得 ©s:sin,迈2是 x y =cos .笃:h-b sin - =2sin( "), 6时,x y 的最大值为2 . (14分)3另解:设 N POD =ot ( 0 w a W 兰),由 OP OD =xOD OD + yOE OD , 3故当T T T —1—112n : OP OE =xOD OE yOE OE ,可得 cos: =x y , cos( )in :1-2x y ,是 x y =2[cos 很亠cos (二 一:)]=2sin( :_),36TT 时,x y 的最大值为2 . 322.(本题满分16分)本题共有3个小题,第1小题满分3分,第 小题满分7分.(1) a n 二?[1 ( -1)"勺]2[1 (〜1)11]或 a n 二 a | sin 云 | b | cos_2 |等.(3 分) n _1(2)当 n =3k 1 时,£ (a b c ) a ; (5 分)3n —2当 n =3k 2 时,S n(a b c ) a b ; (7 分) 3 当 n= 3k+3时,S n =n (a+b+c ) ( N ). (9 分)3故当2小题满分6分,第3(3) 由题意,.■:..■- 0,应有 3,得 ,(10分)1用心 爱心 专心 113A 5由(1)(2)可得Acos,再代入(1)的展开式,可得sin 「B ,与⑶ 联立得224B 二1, (13 分)2 Asin,于是tan 叩=—打,因为,所以 ,(14分)22 3用心 爱心 专心 12于是可求得 A n*3 . ( 15分) 故 0 = 3sin (竺 )1 ( n N *)33 2或写成b n 二3sin[匹323.(本题满分18分) 小题满分6分.最小项为a [t] 4二巴-1 . (12分)[t]+t —1—[t](3)(理)由题意,f (x )=x 口 =t 在R 中无实数解,t —x亦即当X =t 时,方程(1,t )x=t 2讥一1无实数解.(14分) 由于x =t 不是方程(1 t )x =t 2 t -1的解,(16分)因此对任意x • R ,使方程(1 - t )x =t 2 • t -1无实数解,则t - -1为所求.(18分) (文)根据题意,只需当 x=t 时,方程f (x )=x 有解,亦即方程X 2 • (1-t )x • 1-t =0有不等于t 的解,(14分)将x =t 代入方程左边,得左边为 1=0,故方程不可能有 x =t 的解.(16分)由= (1 —t ) —4(1 —t )》0,解得 t W - 3 或 t 》1 , 即实数t 的取值范围是(_::,-3]U[1, ;) . (18 分)- 1 *(3k+1)_ 上]+— ( Z , n w N ). (16 分) 3 2本题共有3个小题,第 (1 )当 t =1 时,f (x)丄——. 1 -xx -1图像如图(2分)基本性质:(每个 奇偶性:既非奇函数又非偶函数; 单调性:在(_::,1)和(1,;)上分别递增; 零点:x = 0 ; 最值:无最大、小值.(6分) (2) n 1 _t 1(2) a n1 •-t —nn —t当1 < n < [t] , n • N *时,数列单调递增,且此时 当n >[t]1 , n • N 时,数列单调递增,且此时口, (10 分)t-[t]2分)因此,数列中的最大项为 a n 均大于-1,a n 均小于-1, (8分)1小题满分6分,第2小题满分6分,第3。
卢湾区2010学年第一学期高三期末考试历史
卢湾区2010学年第一学期高三期末考试历史水”中泛起了“微澜”。
“微澜”主要表现为A.手工工场日益兴起 B.地域性的商人集团形成C.城市商品经济繁荣D.货币经济占据主要地位6.“历史上常常有这样的战争,它们虽然像一切战争一样不可避免地带有种种惨祸、暴行和痛苦,但它们仍然是进步的战争。
”(列宁)以下最具备这一特点的战争是A. 蒙古统一中国的战争B. 金进攻南宋的战争C. 金灭辽、北宋的战争D. 辽进攻北宋的战争7. “我朝阁臣,只备论思顾问之职,原非宰相。
中有一二权势稍重者,皆上窃君上之威灵。
”(《明神宗实录》)这说明①内阁权力大小取决于皇帝②内阁只是皇权的组成部分③内阁是中央集权加强的产物④内阁是君主专制强化的产物A.①②③B. ①③④C.①②④D.①②③④8. 17世纪中期英国政府公布《航海条例》,而中国政府却多次公布禁海令,造成这种不同政策的最主要原因在于A.所面临的周边国际环境 B.占统治地位的经济因素C.对海外市场的依赖程度D.占统治地位的社会制度9. 法国国家档案馆中收藏着法国最珍贵的文物,其中有一部文件,它的第一段这样写道:“组成国民议会之法国人代表认为,无视、遗忘或蔑视人权是公众不幸和政府腐败的唯一原因。
”这件文物应该是A.《论法的精神》B.《百科全书》C.《人权宣言》D.《拿破仑法典》10.“面对这种残酷的现实,正直的思想家不得不重新开始思索人类的命运,寻找能够克服资本主义弊病、解脱劳动大众苦难的新的道路,从而产生了各种勾画未来社会图景的思潮、理论和学说。
但是……这种种构想都成为不可能实现的空想,按照这些构想进行的社会实验也都归于失败。
”(《如何认识社会主义发展的历史进程》)文中“种种构想”指的是A.启蒙思想B. 空想社会主义C.共产主义D.科学社会主义11.“德国的工业化……开始时发展速度很慢。
但是,1871年后,德国工业以巨人般步伐前进……”(《全球通史》)。
造成德国工业化“开始时发展速度很慢”的根本原因是A.各邦经济发展不平衡 B.资源贫乏成发展瓶颈C.军国主义传统的强化 D.政治上处于分裂状态12.某位历史学家曾经指出:“拿破仑日后承认,造成他失败的因素,除了□国的广大空间外,就是○国的工业力量……。
卢湾区2011年高三年级高考模拟考试
卢湾区2011年高三年级高考模拟考试语文试卷考生注意:1.答卷前,考生务必在答题纸上将自己的姓名等填写清楚。
2.本考试设试卷和答题纸两部分,所有试题的答案必须全部写在答题纸上,写在试卷上一律不给分;答题时应注意试题题号和答题纸题号一一对应,不能错位。
3.本试卷共7页,试卷满分150分,考试时间150分钟。
一阅读80分(一)阅读下文,完成第1—6题。
(15分)盆景:旧体诗词的当代角色①近年来,旧体诗词的创作可谓如火如荼。
创作队伍之浩大亘古少见。
据有关文章说,中国现有诗词刊物近600种,诗词组织约2000多个。
仅中华诗词学会,其会员就多达1万余人。
在这种形势下,旧体诗词自然受到了评论界与学术界的关注。
于是出现了多种不同的声音,或认为旧体诗词当复兴,或指责其无法反映时代生活当淘汰,或要求旧体诗词与时偕行而改革之……②无论持何种意见,旧体诗词的繁荣则是一个事实。
有这个现实存在,就值得我们研究。
正如一些学者所说,旧体诗词确实已不能代表时代文化潮流,也无法反映这个时代风起云涌的变化现实。
古代的诗人以及他们的作品,已为古典诗词确立了审美标准,古雅的气质与含蓄的表现,已为大众所认可。
如果把股票、动漫、人肉搜索之类词语或WTO、MP3之类洋文纳入格律诗中,虽说也可以表达一定的意思,但却失去了旧体诗应有的滋味。
()随着生活内容的丰富,大量新词汇在传统的五、七言句式中已根本无法容纳。
但由此而得出旧体诗的繁荣只是陈渣泛起,最终必然会被淘汰的结论,未免为时过早。
③我们可把旧体诗词比作植物,现代社会的文化生态已不适应这种植物生长,就像热带植物无法在北方度过寒冬一样。
但是北方很多人家里却有几盆乃至几十盆或更多的热带植物。
冬天室外一片荒凉的时候,在室内的大厅中、卧室的窗台上、书房的角落里,到处都可以看到绿色的盆景。
它几乎成了北方人生活中的一部分。
城市居民家里的花盆总数有可能超过了城中树木的数量。
旧体诗词的繁荣正与此相同。
对现代人来说,旧体诗词就像是“精神盆景”,尽管不能代表或反映时代的变化,却可以美化人们的生活,丰富人生的情趣,并可以消除在现实名利追逐中带来的庸俗之气,使人变得高雅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卢湾区2010学年第一学期高三年级期末考试 数学参考答案及评分标准 2011.1
一.填空题(本大题满分56分)本大题共有14小题,每个空格填对得4分.
1.{} 2 2.(0, 1) 3.5, 44ππ⎧⎫
⎨⎬⎩⎭
4 5.12 6.5
7.1320 8.5 9.6 10.0.7 11.(理)6(文)2 12.15
13.14 14.
1
()2
n a b -+ 二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,选对得5分,否则一律得零分.
15.A 16.C 17.D 18.B
三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤. 19.(本题满分12分)本题共2个小题,第1小题满分6分,第2小题满分6分. (1)由
2i z +是实数,可设2i
z
+= a ,R a ∈, 故(2i)2i z a a a =+=+, ………………3分 所以2i z z a -=,又4i z z -=,可得24a =,
即2a =,所以42i z =+. ………………6分 (2)由|i |5z m -<,可得|4(2)i |5m +-<,
又R m ∈5 ………………9分 即216(2)25m +-<,解得15m -<<, 所以实数m 的取值范围是(1,5) -. ………………12分 20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分. (1)由(2)q p q -⊥,可得(2)q p -·q =0, ………………2分 即2||2q p -·0q =,又(cos ,sin )p B B =- ,(cos ,sin )q C C = 所以22cos sin 2(cos cos sin sin )0C C B C B C +--=, 即1
cos()2
B C +=
,又0B C π<+<, ………………6分 ∴3
B C π
+=,故2π()3A B C π=-+=. ………………8分
(2)在△ABC 中,由2222cos BC AB AC AB AC A =+-⋅,
可得22()2(1cos )BC AB AC AB AC A =+-⋅+, ………………10分
即22142(1)2
AB AC =-⋅⋅-,
故4AB AC ⋅=, ………………12分
∴11sin 422S AB AC A =
⋅=⨯= ………………14分
21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1)延长RP 交AB 于E ,延长QP 交AD 于F ,
由ABCD 是正方形,PRCQ 是矩形,可知,PE AB PF AD ⊥⊥, 由TAP θ∠=,可得6cos EP θ=,6sin FP θ=,
∴76sin PR θ=-,76cos PQ θ=-, ………………4分 ∴(76sin )(76cos )S PR PQ θθ=⋅=--
4942(sin cos )36sin cos θθθθ=-++
故S 关于θ的函数解析式为
4942(sin cos )36sin cos =-++S θθθθπ
(0)2
θ≤≤.……6分
(2)由sin cos t θθ+=,可得22(sin cos )t θθ=+ 12sin cos θθ=+,即2
1
sin cos 2
t θθ-=
, ∴22494218(1)184231S t t t t =-+-=-+. ……………9分
又由π02θ≤≤,可得3π444
ππθ≤+≤,
故π
sin cos )[14
t θθθ=++∈,
∴S 关于t 的表达式为2184231S t t =-+
(∈t ). ……………11分
又由27
13
18()62
S t =-+
,t ∈
可知当t =时,S 取最大值,
故S
的最大值为67-. ………………14分 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
(1)由1,()4a f x =-=,可得224x x --=,设2x t =,
则有14t t --=,即2410t t --=
,解得2t = ………………2分
当2t =
时,有22x =+
2log (2x =.
当2t =
时,有22x =
故所求x
的值为2log (2+. ………………4分 (2)设12,[1,),x x ∈+∞且12x x >,
则112212()()(22)(22)x x x x f x f x a a ---=+-+
2112
1222(22)2x x x x x x a +-=-+12121222(2)2x x x x x x a ++-=- ………………7分
由12x x >,可得1222x x >,即12220x x ->
由12,[1,),x x ∈+∞12x x >,可得122x x +>,故12240x x +>>, 又4a ≤,故122x x a +>,即1220x x a +->
T
N
F
E R
Q
θ
P
D C
B
A
所以12()()0f x f x ->,即12()()f x f x >,
故函数()f x 在[1,)+∞上是增函数. ………………10分 (3)由2(2)[()]f x f x >2222222222x x x x a a --⇔+>++
222()20x a a a -⇔-+< ………………12分
设22x t -=,由[0,1]x ∈,可得1
[,1]4
t ∈,
由存在[0,1]x ∈使得2(2)[()]f x f x >,
可得存在1[,1]4
t ∈,使得2()20a a t a -+<, ………………14分 令2()()20g t a a t a =-+<,
故有211()()2044
g a a a =-+<或2(1)()20g a a a =-+<,
可得70a -<<.即所求a 的取值范围是(7,0)-. ………………16分 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.
(1)当a n +b n 2≥0时,b n +1-a n+1= a n +b n 2 -a n = b n -a n
2;
当a n +b n 2<0, b n +1-a n +1 = b n - a n +b n 2 = b n -a n 2
.
所以,总有b n +1-a n +1 = 1
2
(b n -a n ),
又110,0b a ><,可得110b a ->,
所以数列{b n -a n }是等比数列. ………………4分 (2)①由111,2a b =-=,可得
111022a b +=>,故有11221[,][,]2
a b
a b a +=, ∴1121
22
a b b +=
=,211a a ==-,从而222a b =-, 故当n =1时,222n n a b =-成立. ………………6分 ②假设当n k =时,222n n a b =-成立,即222k k a b =-, 由22230k k k b a b -=>,可得20k b >,
2222220222k k k k k a b b b b +-+==-<, 故有2221212[,][,]2
k k k k k a b a b b +++=, ∴22221212,22k k k k k k a b b
a b b +++==-=, ………………9分
222121220224k k
k k k b
b a b b ++-++==>,故有2121222221[,][,]2
k k k k k a b
a b a ++++++= ∴212122224k k k k a b b b ++++==, 222212
k k k b
a a ++==-,故2(1)2(1)2k k a
b ++=-
∴当1n k =+时,222n n a b =-成立.
综合①②可得对一切正整数n ,都有222n n a b =-. ………………12分
(3)假设存在11,a b ,使得数列{}n a 为常数数列,
由(1)可得b n -a n =11()b a -(1
2
)n -1,又1n a a =,
故b n =111()a b a +-(1
2)n -1, ………………14分
由1n n a a +=恒成立,可知a n +b n 2
≥0,即111()a b a +-(12)n
≥0恒成立,
即2n ≤
11
1
a b a -对任意的正整数n 恒成立, ………………16分 又111
a b a -是正数,故n ≤1121log a b
a -对任意的正整数n 恒成立,
因为1121log a b a -是常数,故n ≤1121
log a b
a -不可能对任意正整数n 恒成立.
故不存在11,a b ,使得数列{}n a 为常数数列. ………………18分。