2019—2020学年度淄博市周村初三中考二模初中数学
2020年周村第二次模拟考试初中数学
2020年周村第二次模拟考试初中数学第一卷(选择题 共42分)一.选择题:此题共12小题,在每题给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上,第1-6小题每题3分,第7-12小题每题4分,错选、不选、多项选择均不得分.1.以下运算正确的选项是〔A 〕x 2+x 2=x 4 〔B 〕(a -1)2=a 2-1 〔C 〕a 2·a 3=a 5 〔D 〕3x +2y =5xy2.方程x 2+3x +1=0的根的情形是〔A 〕有两个相等实数根 〔B 〕有两个不等实数根〔C 〕有一个实数根 〔D 〕无实数根3.如图1,在边长为a 的正方形中剪去一个边长为b 的小正形〔a >b 〕,把剩下部分拼成一个梯形〔如图2〕,利用这两幅图形面积,能够验证的公式是〔A 〕a 2+b 2=(a +b )(a -b )〔B 〕(a -b )2=a 2-2ab +b2 〔C 〕(a +b )2=a 2+2ab +b 2 〔D 〕a 2-b 2=(a +b )(a -b)4.如图是二次函数y =ax 2+bx +c 的图象,那么点P (a -b ,ac )在〔A 〕第一象限 〔B 〕第二象限〔C 〕第三象限 〔D 〕第四象限5.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,那么△ADE 的面积是〔A 〕1 〔B 〕2〔C 〕3 〔D 〕不能确定6.如图,在以下三角形中,假设AB =AC ,那么能被一条直线分成两个小等腰三角形的是 a ba b ab b a7.在地面上某一点周围有a 个正三角形、b 个正十二边形〔a 、b 均不为0〕,恰能铺满地面,那么a +b 的值为〔A 〕2 〔B 〕3 〔C 〕4 〔D 〕58.如图,⊙O 为△ABC 的外接圆,且∠A =30°,AB =8cm ,BC =5cm ,那么⊙O 的圆心O 到AB 的距离为〔A 〕5 〔B 〕4 〔C 〕3 〔D 〕69.如图,为了测量小河的宽度,小明先在河岸边任意取一点A ,再在河岸另一边取两点B 、C ,测得∠ABC =45°,∠ACB =30°,量得BC 为20米,依照以上数据,请帮小明算出河的宽度为〔结果保留根号〕〔A 〕10 〔B 〕20 〔C 〕320〔D 〕)13(10 10.假设一家旅社一共有30个房间,分不编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员专门容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原先的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原先的房间号码除以7所得的余数. 那么刻的数是36的钥匙所对应的原先房间应该是〔A 〕16 〔B 〕35 〔C 〕24 〔D 〕1311.如图,△ABC 和△A 1B 1C 1 差不多上正三角形,BC 和B 1C 1的中点差不多上D ,那么直线AA 1和直线CC 1的位置关系是〔A 〕垂直 〔B 〕平行 〔C 〕相交但不垂直 〔D 〕无法确定12.如图,ABCD 是正方形,点E 、F 在直线AC 上,CE =2, ∠E +∠F =45°,设AC =x ,AF =y ,那么y 关于x 的函数关系式为〔A 〕2x y = 〔B 〕42x y = 〔C 〕y =3x 〔D 〕y =2-x第二卷〔非选择题 共78分〕二.填空题:此题共5小题,共20分.只要求填写最后结果,每题填对得4分.13.京珠高速公路粤北段地势十分复杂,因此当年在建这段路时,要开专门多隧道,如图是一个要开挖的隧道,为保证按时完成工程,必须先要明白所挖隧道的长度,因此测量人员在山外取一点O ,并取AO ,BO 的中点C ,D ,测得CD =237m ,那么隧道AB 的长是m .14.在平面直角坐标系中给定以下五个点A 〔-2,0〕、B 〔1,0〕、C 〔4,0〕、D 〔-2,29〕、E 〔0,-6〕,从这五个点中选取三点,使通过三点的抛物线满足以y 轴的平行线为对称轴。
(3份试卷汇总)2019-2020学年淄博市名校中考数学考试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元2.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小3.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.4.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.195.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.6.在下面的四个几何体中,左视图与主视图不相同的几何体是() A.B.C.D.7.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >28.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个9.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A .10B .9C .8D .710.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等二、填空题(本题包括8个小题)11.如图,D 、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.12.计算:364-的值是______________.13.分解因式:4m2﹣16n2=_____.14.一个正多边形的每个内角等于150,则它的边数是____.15.不等式组20262xx->⎧⎨->⎩①②的解是________.16.如图,已知⊙P的半径为2,圆心P在抛物线y=12x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.17.已知方程组2425x yx y+=⎧⎨+=⎩,则x+y的值为_______.18.如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数(0)ky kx=≠的图象恰好经过点A′,B,则的值为_________.三、解答题(本题包括8个小题)19.(6分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA 与⊙O 相交于点F .若EF 的长为2,则图中阴影部分的面积为_____.20.(6分)尺规作图:校园有两条路OA 、OB ,在交叉路口附近有两块宣传牌C 、D ,学校准备在这里安装一盏路灯,要求灯柱的位置P 离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P .(不写画图过程,保留作图痕迹)21.(6分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11A B (点A ,B 的对应点分别为11A B 、).画出线段11A B ;将线段11A B 绕点1B 逆时针旋转90°得到线段21A B .画出线段21A B ;以112A A B A 、、、为顶点的四边形112AA B A 的面积是 个平方单位.22.(8分)已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=mx图象的两个交点.求一次函数和反比例函数的解析式;求△AOB 的面积;观察图象,直接写出不等式kx+b ﹣mx>0的解集.23.(8分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长24.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB 的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.25.(10分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)26.(12分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本题主要考查列代数式,总价=单价乘数量.2.C【解析】如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BCM=12S△ABC,开始时,S△MPQ=S△ACM=12S△ABC;由于P ,Q 两点同时出发,并同时到达终点,从而点P 到达AC 的中点时,点Q 也到达BC 的中点,此时,S △MPQ =14S △ABC ; 结束时,S △MPQ =S △BCM =12S △ABC . △MPQ 的面积大小变化情况是:先减小后增大.故选C . 3.B 【解析】 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 ∵a <0,∴抛物线的开口方向向下, 故第三个选项错误; ∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上, 故第一个选项错误; ∵a <0、b >0,对称轴为x=2ba>0, ∴对称轴在y 轴右侧, 故第四个选项错误. 故选B . 4.A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49, 故选A . 【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验. 5.B 【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误; B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关. 6.B 【解析】 【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解. 【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意; 故选B . 【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图. 7.D 【解析】 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论. 【详解】解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1. 故选:D . 【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键. 8.D 【解析】解:①正方体的主视图与左视图都是正方形; ②球的主视图与左视图都是圆; ③圆锥主视图与左视图都是三角形; ④圆柱的主视图和左视图都是长方形; 故选D . 9.D 【解析】分析:先根据多边形的内角和公式(n ﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O ,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形. 故选D .点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形. 10.C 【解析】 【分析】图中,线段GH 和EF 将大平行四边形ABCD 分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可. 【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大. 故选择C. 【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键. 二、填空题(本题包括8个小题) 11.1:4 【解析】 【分析】由S △BDE :S △CDE =1:3,得到 BE 1CE 3=,于是得到 41BE BC =. 【详解】 解::1:3BDECDESS,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4. 【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.12.-1【解析】-1.故答案为:-1.13.4(m+2n )(m ﹣2n ).【解析】【分析】原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(224m n - )()()422m n m n =+-.故答案为()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.14.十二【解析】【分析】首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.【详解】∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为十二.【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.15.x >4【解析】【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x >2;由②得 :x >4;∴此不等式组的解集为x >4;故答案为x >4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.,1,1)【解析】【分析】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P 的纵坐标是1或-1.将P 的纵坐标代入函数解析式,求P 点坐标即可【详解】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P 的纵坐标是1或-1.当y=1时,12x 1-1=1,解得 当y=-1时,12 x 1-1=-1,方程无解故P )或()【点睛】此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.17.1【解析】【分析】方程组两方程相加即可求出x+y 的值.【详解】2425x y x y =①=②+⎧⎨+⎩, ①+②得:1(x+y )=9,则x+y=1.故答案为:1.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18 【解析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E=32m , ∴A′(12m ,3m ), ∵反比例函数y=k x (k≠0)的图象恰好经过点A′,B , ∴12m•3m=m , ∴m=43, ∴k=43.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.三、解答题(本题包括8个小题)19.S 阴影=2﹣2. 【解析】【分析】由切线的性质和平行四边形的性质得到BA ⊥AC ,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE ,根据弧长公式求出弧长,得到半径,即可求出结果.如图,连接AC ,∵CD 与⊙A 相切,∴CD ⊥AC ,在平行四边形ABCD 中,∵AB=DC,AB ∥CD ∥BC ,∴BA ⊥AC ,∵AB=AC,∴∠ACB=∠B=45°,∵AD ∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE ,∴EF EC =∴EF 的长度为45=1802R ππ 解得R=2, S 阴=S △ACD-S 扇形=2214522-=2-23602ππ⨯⨯【点睛】此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.20.见解析.【解析】【分析】分别作线段CD 的垂直平分线和∠AOB 的角平分线,它们的交点即为点P .【详解】如图,点P 为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.21.(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=224225+=,所以四边形AA1 B1 A2的面积为:()225=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.22.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x ﹣1中,令y=0,则x=﹣1,即直线y=﹣x ﹣1与x 轴交于点C (﹣1,0),∴S △AOB =S △AOC +S △BOC =×1×1+×1×4=6; (3)由图可得,不等式的解集为:x <﹣4或0<x <1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.23.解:(1)①DE ∥AC .②12S S =.(1)12S S =仍然成立,证明见解析;(3)3或2.【解析】【详解】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC 是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM .∴CF=EM .∵∠C=90°,∠B =30°∴AB=1AC .又∵AD=AC∴BD=AC .∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,ACN DCMCMD NAC CD∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF1⊥BD,∵∠ABC=20°,F1D∥BE,∴∠F1F1D=∠ABC=20°,∵BF1=DF1,∠F1BD=12∠ABC=30°,∠F1DB=90°,∴∠F1DF1=∠ABC=20°,∴△DF1F1是等边三角形,∴DF1=DF1,过点D作DG⊥BC于G,∵BD=CD,∠ABC=20°,点D是角平分线上一点,∴∠DBC=∠DCB=12×20°=30°,BG=12BC=92,∴3∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF1=320°-150°-20°=150°,∴∠CDF 1=∠CDF 1,∵在△CDF 1和△CDF 1中, 1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩===,∴△CDF 1≌△CDF 1(SAS ),∴点F 1也是所求的点,∵∠ABC=20°,点D 是角平分线上一点,DE ∥AB , ∴∠DBC=∠BDE=∠ABD=12×20°=30°, 又∵BD=33,∴BE=12×33÷cos30°=3, ∴BF 1=3,BF 1=BF 1+F 1F 1=3+3=2,故BF 的长为3或2.24.(1)3;(2)∠DEF 的大小不变,tan ∠DEF=34;(3)7541或7517. 【解析】【详解】(1)当t=3时,点E 为AB 的中点,∵A (8,0),C (0,6),∴OA=8,OC=6,∵点D 为OB 的中点,∴DE ∥OA ,DE=12OA=4, ∵四边形OABC 是矩形,∴OA ⊥AB ,∴DE ⊥AB ,∴∠OAB=∠DEA=90°,又∵DF ⊥DE ,∴∠EDF=90°,∴四边形DFAE 是矩形,∴DF=AE=3;(2)∠DEF 的大小不变;理由如下:作DM ⊥OA 于M ,DN ⊥AB 于N ,如图2所示:∵四边形OABC 是矩形, ∴OA ⊥AB ,∴四边形DMAN 是矩形,∴∠MDN=90°,DM ∥AB ,DN ∥OA ,∴BD BN DO NA =,BD AM DO OM= , ∵点D 为OB 的中点,∴M 、N 分别是OA 、AB 的中点,∴DM=12AB=3,DN=12OA=4, ∵∠EDF=90°,∴∠FDM=∠EDN ,又∵∠DMF=∠DNE=90°,∴△DMF ∽△DNE ,∴34DF DM DE DN ==, ∵∠EDF=90°,∴tan ∠DEF=34DF DE =; (3)作DM ⊥OA 于M ,DN ⊥AB 于N , 若AD 将△DEF 的面积分成1:2的两部分, 设AD 交EF 于点G ,则点G 为EF 的三等分点; ①当点E 到达中点之前时,如图3所示,NE=3﹣t ,由△DMF ∽△DNE 得:MF=34(3﹣t ), ∴AF=4+MF=﹣34t+254, ∵点G 为EF 的三等分点,∴G (37112t +,23t ), 设直线AD 的解析式为y=kx+b ,把A (8,0),D (4,3)代入得:8043k b k b +=⎧⎨+=⎩ , 解得:346k b ⎧=-⎪⎨⎪=⎩ ,∴直线AD 的解析式为y=﹣34x+6, 把G (37112t +,23t )代入得:t=7541; ②当点E 越过中点之后,如图4所示,NE=t ﹣3,由△DMF ∽△DNE 得:MF=34(t ﹣3), ∴AF=4﹣MF=﹣34t+254, ∵点G 为EF 的三等分点,∴G (3236t ,13t ), 代入直线AD 的解析式y=﹣34x+6得:t=7517;综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为7541或7517. 考点:四边形综合题.25.(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元. 【解析】 【分析】(1)设甲型号的产品有x 万只,则乙型号的产品有(20﹣x )万只,根据销售收入为300万元可列方程18x+12(20﹣x )=300,解方程即可;(2)设安排甲型号产品生产y 万只,则乙型号产品生产(20﹣y )万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y 的范围,再根据利润=售价﹣成本列出W 与y 的一次函数,根据y 的范围确定出W 的最大值即可. 【详解】(1)设甲型号的产品有x 万只,则乙型号的产品有(20﹣x )万只, 根据题意得:18x+12(20﹣x )=300, 解得:x=10, 则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y 万只,则乙型号产品生产(20﹣y )万只, 根据题意得:13y+8.8(20﹣y )≤239, 解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y )=1.8y+64, 当y=15时,W 最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元. 考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用. 26.(1)13;(2)23.【解析】 【分析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【详解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=13,(2)列表得:由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=62=93.【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B. C. D.2.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点3.4-的相反数是()A.4 B.4-C.14-D.144.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π5.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.236.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为()A .2114327x y x y +=⎧⎨+=⎩B .2114322x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--8.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .9.一、单选题 在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B . C . D .10.下列计算正确的是( ) A .(a 2)3=a 6 B .a 2+a 2=a 4 C .(3a )•(2a )2=6aD .3a ﹣a =3二、填空题(本题包括8个小题)11.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC=2∠CAD ,则∠BAE=__________度.12.如图,直线4y x =+与双曲线ky x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.13.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.14.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.15.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____16.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲°.17.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为cm.18.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD 沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()三、解答题(本题包括8个小题)19.(6分)先化简:(1111x x--+)÷221xx,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.20.(6分)如图,已知▱ABCD.作∠B的平分线交AD于E点。
2019年山东省淄博市周村区八里中学中考数学二模试卷(含精品解析)
2019年山东省淄博市周村区八里中学中考数学二模试卷一.选择题(共12小题,每小题4分,满分48分)1.如图,数轴上点()表示的数是﹣2的相反数.A.点A B.点B C.点C D.点D2.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.13.下列运算中正确的是()A.﹣=B.2+3=6C.÷=D.(+1)(﹣1)=34.下列运算正确的是()A.5x+4x=9x2 B.(2x+1)(1﹣2x)=4 x2﹣1C.(﹣3x3)2=6x6D.a8÷a2=a65.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差6.已知方程组中x+y>3,则k的取值范围为()A.k<1B.k>1C.k>3D.k<37.已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为()A.2B.﹣2C.±2D.±8.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米9.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°10.若圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.60πcm2C.48πcm2D.80πcm211.如图,菱形OABC的边OC在x轴上,顶点B在第一象限,点D在边BC上,AB=2,∠B=60°.把△ABD沿直线OD折叠后得到△A'B'D,且顶点B'在第四象限,若△A'B'D是等边三角形,则顶点B'的坐标是()A.(3,﹣3)B.(2,﹣3)C.(3,3)D.(3,﹣2)12.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则BE 的值为()A.B.2C.3D.4二.填空题(共5小题,每小题4分,满分20分)13.不等式组有2个整数解,则实数a的取值范围是.14.如图,点A,B,C是⊙O上的三点,若∠A=35°,则∠BOC的度数是.15.如图,在平面直角坐标系中,抛物线y=x2﹣3x+1的对称轴交x轴于点A,点B是位于x轴上方的对称轴上一点,BC∥x轴交对称轴右侧的抛物线于点C.若四边形OACB是平行四边形,则点C的坐标为.16.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为.17.如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是.三.解答题(共7小题,满分52分)18.(5分)解方程:﹣=1.19.(5分)(1)计算:()﹣1+|1﹣|﹣2sin60°+(π﹣2016)0﹣.(2)先化简,再求值:(﹣x+1)÷,其中x=﹣2.20.(8分)某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有1800名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?21.(8分)如图,在△ABD中,∠ABD=∠ADB,分别以点B,D为圆心,AB长为半径在BD的右侧作弧,两弧交于点C,分别连接BC,DC,AC,记AC与BD的交点为O.(1)补全图形,求∠AOB的度数并说明理由;(2)若AB=5,cos∠ABD=,求BD的长.22.(8分)已知关于x的方程关于x的方程x2﹣(k+2)x+2k=0.(1)试说明:无论k取什么实数值,方程总有实数根.(2)若等腰△ABC的一边长a为1,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长?23.(9分)将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1(1)当点A1落在AC上时①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.24.(9分)如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x﹣4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=也经过A点.连接BC.(1)求k的值;(2)判断△ABC的形状,并求出它的面积.(3)若点P为x正半轴上一动点,在点A的右侧的双曲线上是否存在一点M,使得△PAM是以点A为直角顶点的等腰直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.2019年山东省淄博市周村区八里中学中考数学二模试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】由﹣2的相反数是2且点D表示数2可得.【解答】解:∵﹣2的相反数是2,而数轴上点D表示的数是2,∴数轴上点D表示的数是﹣2的相反数,故选:D.【点评】本题主要考查数轴,解题的关键是掌握数轴上的点所表示的数及相反数的定义.2.【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:﹣2﹣m﹣5=0,解得:m=﹣7,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.【分析】根据二次根式的运算法则逐一判断即可得.【解答】解:A.与不是同类二次根式,不能合并,此选项错误;B.2与3不是同类二次根式,不能合并,此选项错误;C.÷=,此选项正确;D.(+1)(﹣1)=2﹣1=1,此选项错误;故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.4.【分析】根据合并同类项法则,平方差公式,幂的乘方与积的乘方以及同底数幂的除法法则解答.【解答】解:A、原式=9x,故本选项错误.B、原式=1﹣4x2,故本选项错误.C、原式=9x6,故本选项错误.D、原式解答正确,故本选项正确.故选:D.【点评】考查了平方差公式,合并同类项,同底数幂的除法等,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.【分析】首先解出二元一次方程组中x,y关于k的式子,然后代入x+y>3,即可解得k的取值范围.【解答】解:①+②得:x+y=2k+1,∵x+y>3∴2k+1>3解得k>1.故选:B.【点评】此题考查二元一次方程组的解法和不等式的解法,注意审题,掌握解题的思路与顺序.7.【分析】先根据根与系数的关系得到=1,解得m=2或m=﹣2,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,∴=1,解得m=2或m=﹣2,当m=2时,方程变形为4x2+7x+4=0,△=49﹣4×4×4<0,方程没有实数解,所以m的值为﹣2.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.8.【分析】根据图象信息即可解决问题.【解答】解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.【点评】本题考查了函数图象,观察函数图象,逐一分析四条说法的正误是解题的关键.9.【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°﹣60°﹣60°=60°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=120°.故选:B.【点评】本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.10.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:B.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.11.【分析】延长AB交y轴与点E,则AE⊥y轴,先求得点B的坐标,然后再由△A'B'D是等边三角形可得到△ABD为等边三角形,故此点D与点C重合,然后可得到点B′与点B关于x轴对称.【解答】解:如图所示:延长AB交y轴与点E,则AE⊥y轴.∵四边形ABCO为菱形,且∠B=60°,∴∠AOC=60°.∴∠EOA=30°.∴AE=OA=,OE=AE=3.∴B(3,3).∵△ABD与△A′B′D关于D对称,∴△ABD≌△A′B′D.∵△A'B'D是等边三角形,∴△ABD为等边三角形,又∵四边形ABCO为菱形,且∠B=60°,∴点D与点C重合.∴点B与点B′关于x轴对称.∴B′(3,﹣3).故选:A.【点评】本题主要考查的是翻折的性质、菱形的性质、等边三角形的判定,判断出△ABD为等边三角形是解题的关键.12.【分析】由作法得AE垂直平分CD,则∠AED=90°,CE=DE,于是可判断∠DAE=30°,∠D=60°,从而得到∠ABC=60°;作EH⊥BC于H,则可计算出CH=CE=1,EH=CH=,利用勾股定理可计算出BE=2.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质和解直角三角形.二.填空题(共5小题,满分20分,每小题4分)13.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有2个整数解,∴其整数解为3和4,则4≤<5,解得:8≤a<13,故答案为:8≤a<13.【点评】本题考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定a的范围是解决本题的关键.14.【分析】直接利用圆周角定理计算.【解答】解:∠BOC=2∠A=2×35°=70°.故答案为:70°【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.【分析】根据题目中的函数解析式可以求得抛物线的对称轴,从而可以求得点A的坐标和点B的横坐标,以及OA的长,然后根据平行四边形的性质可以求得点C的横坐标,然后代入抛物线解析式即可求得点C的坐标,本题得以解决.【解答】解:∵抛物线y=x2﹣3x+1=(x﹣)2﹣,∴该抛物线的对称轴为直线x=,∵抛物线y=x2﹣3x+1的对称轴交x轴于点A,点B是位于x轴上方的对称轴上一点,BC∥x轴交对称轴右侧的抛物线于点C,四边形OACB是平行四边形,∴点A的坐标为(,0),点B的横坐标为,OA=,OA=BC,∴BC=,∴点C的横坐标为:+=3,∵点C在抛物线上,∴点C的纵坐标为:y=32﹣3×3+1=1,即点C的坐标为(3,1),故答案为:(3,1).【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征、平行四边形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.16.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线平行”.【点评】本题考查命题的改写.任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.17.【分析】若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号;若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号;据此可得.【解答】解:若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号,若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号,故答案为:3号或5号.【点评】本题主要考查由三视图判断几何体,根据题意正确掌握三视图的观察角度是解题关键.三.解答题(共7小题,满分52分)18.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1;(2)原式=(﹣)÷=•=•=,当x=﹣2时,原式===2﹣1.【点评】本题主要考查分式的化简求值,解题的关键是掌握实数与分式的混合运算顺序和运算法则.20.【分析】(1)根据D组人数及其所占百分比即可得出总人数;(2)总人数乘以C组的百分比求得C组人数,总人数减去其余各组人数求得B人数人数即可补全条形图;(3)总人数乘以样本中E组人数所占比例可得.【解答】解:(1)学生会调查的学生人数为10÷20%=50(人),故答案为:50;(2)∵1.5≤x<2的人数为50×40%=20人,∴1≤x<1.5的人数为50﹣(3+20+10+4)=13人,补全图形如下:(3)1800×=144(人),答:估计该校在这次活动中做家务的时间不少于2.5小时的学生有144人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)补全图形,如图所示,可得出∠AOB=90°,理由如下:由题意得到四边形为菱形,利用菱形的性质判断即可;(2)在直角三角形AOB中,利用锐角三角函数定义求出BO的长,由BD=2BO即可求出BD的长.【解答】解:(1)补全的图形,如图所示,可得出∠AOB=90°,理由如下:证明:由题意可知BC=AB,DC=AB,∵在△ABD中,∠ABD=∠ADB,∴AB=AD,∴BC=DC=AD=AB,∴四边形ABCD为菱形,∴AC⊥BD,∴∠AOB=90°;(2)∵四边形ABCD为菱形,∴OB=OD.在Rt△ABO中,∠AOB=90°,AB=5,cos∠ABD=,∴OB=AB•cos∠ABD=3,∴BD=2OB=6.【点评】此题考查了解直角三角形,菱形的性质与判定,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.22.【分析】(1)把一元二次方程根的判别式转化成完全平方式的形式,得出△≥0可知方程总有实数根;(2)根据等腰三角形的性质分情况讨论求出b,c的长,并根据三角形三边关系检验,综合后求出△ABC 的周长.【解答】(1)证明:∵△=b2﹣4ac=(k+2)2﹣8k=(k﹣2)2≥0,∴无论k取任意实数值,方程总有实数根;(2)解:分两种情况:①若b=c,∵方程x2﹣(k+2)x+2k=0有两个相等的实数根,∴△=b2﹣4ac=(k﹣2)2=0,解得k=2,∴此时方程为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长为5;②若b≠c,则b=a=1或c=a=1,即方程有一根为1,∵把x=1代入方程x2﹣(k+2)x+2k=0,得1﹣(k+2)+2k=0,解得k=1,∴此时方程为x2﹣3x+2=0,解得x1=1,x2=2,∴方程另一根为2,∵1、1、2不能构成三角形,∴所求△ABC的周长为5.综上所述,△ABC的周长为5.【点评】本题主要考查方程根的判别式及等腰三角形的性质,掌握方程根的判别式与方程根的情况的关系是解题的关键,注意分类讨论.23.【分析】(1)①首先证明△A1B是等边三角形,可得∠AA1B=∠A1BD1=60°,即可解决问题.②首先证明△OCD1≌△OBA(AAS),推出OC=OB,再证明△DCO≌△ABO(SAS)即可解决问题.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.利用勾股定理求出AE,A1E即可解决问题.【解答】(1)证明:①如图1中,∵∠BAC=60°,BA=BA1,∴△ABA1是等边三角形,∴∠AA1B=60°,∵∠A1BD1=60°,∴∠AA1B=∠A1BD1,∴AC∥BD1,∵AC=BD1,∴四边形ABD1C是平行四边形.②如图2中,连接BD1.∵∠BCD1=∠BAD1=90°,BD1=D1B,BC=A1D1,∴△BCD1≌D1A1D,∴CD1=BA1,∵BA=BA1,∴AB=CD1,∵AC=BD1∴四边形ABD1C是平行四边形,∴CD1∥AB,CD1=AB,∠OCD1=∠ABO,∵∠COD1=∠AOB,∴△OCD1≌△OBA(AAS),∴OC=OB,∵CD=BA,∠DCO=∠ABO,∴△DCO≌△ABO(SAS),∴DO=OA.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.在Rt△A1BC中,∵∠CA1B=90°,BC=5.AB=3,∴CA1==4,∵•A1C•A1B=•BC•A1F,∴A1F=,∵∠A1FB=∠A1EB=∠EBF=90°,∴四边形A1EBF是矩形,∴EB=A1F=,A1E=BF=,∴AE=3﹣=,在Rt△AA1E中,AA1==.【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判断和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.24.【分析】(1)过点A分别作AM⊥y轴于M点,AN⊥x轴于N点,根据直角三角形的性质可设点A的坐标为(a,a),因为点A在直线y=3x﹣4上,即把A点坐标代入解析式即可算出a的值,进而得到A 点坐标,然后再利用待定系数法求出反比例函数解析式;(2)利用勾股定理逆定理即可判断出三角形ABC是直角三角形,利用三角形的面积公式即可得出结论.(3)由SAS易证△AOP≌△ABQ,得出∠OAP=∠BAQ,那么△APQ是所求的等腰直角三角形.根据全等三角形的性质及函数图象与点的坐标的关系得出结果.【解答】解:(1)如图1,过点A分别作AQ⊥y轴于Q点,AN⊥x轴于N点,∵△AOB是等腰直角三角形,∴AQ=AN.设点A的坐标为(a,a),∵点A在直线y=3x﹣4上,∴a=3a﹣4,解得a=2,则点A的坐标为(2,2),∵双曲线y=也经过A点,∴k=4;(2)由(1)知,A(2,2),∴B(4,0),∵直线y=3x﹣4与y轴的交点为C,∴C(0,﹣4),∴AB2+BC2=(4﹣2)2+22+42+(﹣4)2=40,AC2=22+(2+4)2=40,∴AB2+BC2=AC2,∴△ABC是直角三角形;S=AB×BC=××=8,△ABC(3)如图2,假设双曲线上存在一点M,使得△PAM是等腰直角三角形.∴∠PAM=90°=∠OAB,AP=AM连接AM,BM,由(1)知,k=4,∴反比例函数解析式为y=,∴∠OAP=∠BAM,在△AOP和△ABM中,,∴△AOP≌△ABM(ASA),∴∠AOP=∠ABM,∴∠OBM=∠OBA+∠ABM=90°,∴点M的横坐标为4,∴M(4,1)即:在双曲线上存在一点M(4,1),使得△PAM是以点A为直角顶点的等腰三角形【点评】此题是反比例函数综合题,主要考查了反比例函数解析式的确定、等腰直角三角形的性质、勾股定理、全等三角形的判定等知识及综合应用知识、解决问题的能力.。
2019年山东省淄博市周村区八里中学中考数学二模试卷含答案解析
2019年山东省淄博市周村区八里中学中考数学二模试卷一.选择题(共12小题,每小题4分,满分48分)1.如图,数轴上点()表示的数是﹣2的相反数.A.点A B.点B C.点C D.点D2.若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.13.下列运算中正确的是()A.﹣=B.2+3=6C.÷=D.(+1)(﹣1)=34.下列运算正确的是()A.5x+4x=9x2 B.(2x+1)(1﹣2x)=4 x2﹣1C.(﹣3x3)2=6x6D.a8÷a2=a65.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差6.已知方程组中x+y>3,则k的取值范围为()A.k<1B.k>1C.k>3D.k<37.已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为()A.2B.﹣2C.±2D.±8.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米9.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°10.若圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.60πcm2C.48πcm2D.80πcm211.如图,菱形OABC的边OC在x轴上,顶点B在第一象限,点D在边BC上,AB=2,∠B=60°.把△ABD沿直线OD折叠后得到△A'B'D,且顶点B'在第四象限,若△A'B'D是等边三角形,则顶点B'的坐标是()A.(3,﹣3)B.(2,﹣3)C.(3,3)D.(3,﹣2)12.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则BE的值为()A.B.2C.3D.4二.填空题(共5小题,每小题4分,满分20分)13.不等式组有2个整数解,则实数a的取值范围是.14.如图,点A,B,C是⊙O上的三点,若∠A=35°,则∠BOC的度数是.15.如图,在平面直角坐标系中,抛物线y=x2﹣3x+1的对称轴交x轴于点A,点B是位于x轴上方的对称轴上一点,BC∥x轴交对称轴右侧的抛物线于点C.若四边形OACB是平行四边形,则点C的坐标为.16.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为.17.如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是.三.解答题(共7小题,满分52分)18.(5分)解方程:﹣=1.19.(5分)(1)计算:()﹣1+|1﹣|﹣2sin60°+(π﹣2016)0﹣.(2)先化简,再求值:(﹣x+1)÷,其中x=﹣2.20.(8分)某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有1800名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?21.(8分)如图,在△ABD中,∠ABD=∠ADB,分别以点B,D为圆心,AB长为半径在BD的右侧作弧,两弧交于点C,分别连接BC,DC,AC,记AC与BD的交点为O.(1)补全图形,求∠AOB的度数并说明理由;(2)若AB=5,cos∠ABD=,求BD的长.22.(8分)已知关于x的方程关于x的方程x2﹣(k+2)x+2k=0.(1)试说明:无论k取什么实数值,方程总有实数根.(2)若等腰△ABC的一边长a为1,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长?23.(9分)将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1(1)当点A1落在AC上时①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.24.(9分)如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x﹣4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=也经过A点.连接BC.(1)求k的值;(2)判断△ABC的形状,并求出它的面积.(3)若点P为x正半轴上一动点,在点A的右侧的双曲线上是否存在一点M,使得△PAM是以点A为直角顶点的等腰直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.2019年山东省淄博市周村区八里中学中考数学二模试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】由﹣2的相反数是2且点D表示数2可得.【解答】解:∵﹣2的相反数是2,而数轴上点D表示的数是2,∴数轴上点D表示的数是﹣2的相反数,故选:D.【点评】本题主要考查数轴,解题的关键是掌握数轴上的点所表示的数及相反数的定义.2.【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:﹣2﹣m﹣5=0,解得:m=﹣7,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.【分析】根据二次根式的运算法则逐一判断即可得.【解答】解:A.与不是同类二次根式,不能合并,此选项错误;B.2与3不是同类二次根式,不能合并,此选项错误;C.÷=,此选项正确;D.(+1)(﹣1)=2﹣1=1,此选项错误;故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.4.【分析】根据合并同类项法则,平方差公式,幂的乘方与积的乘方以及同底数幂的除法法则解答.【解答】解:A、原式=9x,故本选项错误.B、原式=1﹣4x2,故本选项错误.C、原式=9x6,故本选项错误.D、原式解答正确,故本选项正确.故选:D.【点评】考查了平方差公式,合并同类项,同底数幂的除法等,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5.【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【解答】解:由于方差反映数据的波动情况,应知道数据的方差.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.【分析】首先解出二元一次方程组中x,y关于k的式子,然后代入x+y>3,即可解得k的取值范围.【解答】解:①+②得:x+y=2k+1,∵x+y>3∴2k+1>3解得k>1.故选:B.【点评】此题考查二元一次方程组的解法和不等式的解法,注意审题,掌握解题的思路与顺序.7.【分析】先根据根与系数的关系得到=1,解得m=2或m=﹣2,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,∴=1,解得m=2或m=﹣2,当m=2时,方程变形为4x2+7x+4=0,△=49﹣4×4×4<0,方程没有实数解,所以m的值为﹣2.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.8.【分析】根据图象信息即可解决问题.【解答】解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.【点评】本题考查了函数图象,观察函数图象,逐一分析四条说法的正误是解题的关键.9.【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°﹣60°﹣60°=60°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=120°.故选:B.【点评】本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.10.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:B.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.11.【分析】延长AB交y轴与点E,则AE⊥y轴,先求得点B的坐标,然后再由△A'B'D是等边三角形可得到△ABD为等边三角形,故此点D与点C重合,然后可得到点B′与点B关于x轴对称.【解答】解:如图所示:延长AB交y轴与点E,则AE⊥y轴.∵四边形ABCO为菱形,且∠B=60°,∴∠AOC=60°.∴∠EOA=30°.∴AE=OA=,OE=AE=3.∴B(3,3).∵△ABD与△A′B′D关于D对称,∴△ABD≌△A′B′D.∵△A'B'D是等边三角形,∴△ABD为等边三角形,又∵四边形ABCO为菱形,且∠B=60°,∴点D与点C重合.∴点B与点B′关于x轴对称.∴B′(3,﹣3).故选:A.【点评】本题主要考查的是翻折的性质、菱形的性质、等边三角形的判定,判断出△ABD为等边三角形是解题的关键.12.【分析】由作法得AE垂直平分CD,则∠AED=90°,CE=DE,于是可判断∠DAE=30°,∠D=60°,从而得到∠ABC=60°;作EH⊥BC于H,则可计算出CH=CE=1,EH=CH=,利用勾股定理可计算出BE=2.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质和解直角三角形.二.填空题(共5小题,满分20分,每小题4分)13.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有2个整数解,∴其整数解为3和4,则4≤<5,解得:8≤a<13,故答案为:8≤a<13.【点评】本题考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定a的范围是解决本题的关键.14.【分析】直接利用圆周角定理计算.【解答】解:∠BOC=2∠A=2×35°=70°.故答案为:70°【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.【分析】根据题目中的函数解析式可以求得抛物线的对称轴,从而可以求得点A的坐标和点B的横坐标,以及OA的长,然后根据平行四边形的性质可以求得点C的横坐标,然后代入抛物线解析式即可求得点C 的坐标,本题得以解决.【解答】解:∵抛物线y=x2﹣3x+1=(x﹣)2﹣,∴该抛物线的对称轴为直线x=,∵抛物线y=x2﹣3x+1的对称轴交x轴于点A,点B是位于x轴上方的对称轴上一点,BC∥x轴交对称轴右侧的抛物线于点C,四边形OACB是平行四边形,∴点A的坐标为(,0),点B的横坐标为,OA=,OA=BC,∴BC=,∴点C的横坐标为:+=3,∵点C在抛物线上,∴点C的纵坐标为:y=32﹣3×3+1=1,即点C的坐标为(3,1),故答案为:(3,1).【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征、平行四边形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.16.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线平行”.【点评】本题考查命题的改写.任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.17.【分析】若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号;若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号;据此可得.【解答】解:若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号,若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号,故答案为:3号或5号.【点评】本题主要考查由三视图判断几何体,根据题意正确掌握三视图的观察角度是解题关键.三.解答题(共7小题,满分52分)18.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1;(2)原式=(﹣)÷=•=•=,当x=﹣2时,原式===2﹣1.【点评】本题主要考查分式的化简求值,解题的关键是掌握实数与分式的混合运算顺序和运算法则.20.【分析】(1)根据D组人数及其所占百分比即可得出总人数;(2)总人数乘以C组的百分比求得C组人数,总人数减去其余各组人数求得B人数人数即可补全条形图;(3)总人数乘以样本中E组人数所占比例可得.【解答】解:(1)学生会调查的学生人数为10÷20%=50(人),故答案为:50;(2)∵1.5≤x<2的人数为50×40%=20人,∴1≤x<1.5的人数为50﹣(3+20+10+4)=13人,补全图形如下:(3)1800×=144(人),答:估计该校在这次活动中做家务的时间不少于2.5小时的学生有144人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)补全图形,如图所示,可得出∠AOB=90°,理由如下:由题意得到四边形为菱形,利用菱形的性质判断即可;(2)在直角三角形AOB中,利用锐角三角函数定义求出BO的长,由BD=2BO即可求出BD的长.【解答】解:(1)补全的图形,如图所示,可得出∠AOB=90°,理由如下:证明:由题意可知BC=AB,DC=AB,∵在△ABD中,∠ABD=∠ADB,∴AB=AD,∴BC=DC=AD=AB,∴四边形ABCD为菱形,∴AC⊥BD,∴∠AOB=90°;(2)∵四边形ABCD为菱形,∴OB=OD.在Rt△ABO中,∠AOB=90°,AB=5,cos∠ABD=,∴OB=AB•cos∠ABD=3,∴BD=2OB=6.【点评】此题考查了解直角三角形,菱形的性质与判定,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.22.【分析】(1)把一元二次方程根的判别式转化成完全平方式的形式,得出△≥0可知方程总有实数根;(2)根据等腰三角形的性质分情况讨论求出b,c的长,并根据三角形三边关系检验,综合后求出△ABC 的周长.【解答】(1)证明:∵△=b2﹣4ac=(k+2)2﹣8k=(k﹣2)2≥0,∴无论k取任意实数值,方程总有实数根;(2)解:分两种情况:①若b=c,∵方程x2﹣(k+2)x+2k=0有两个相等的实数根,∴△=b2﹣4ac=(k﹣2)2=0,解得k=2,∴此时方程为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长为5;②若b≠c,则b=a=1或c=a=1,即方程有一根为1,∵把x=1代入方程x2﹣(k+2)x+2k=0,得1﹣(k+2)+2k=0,解得k=1,∴此时方程为x2﹣3x+2=0,解得x1=1,x2=2,∴方程另一根为2,∵1、1、2不能构成三角形,∴所求△ABC的周长为5.综上所述,△ABC的周长为5.【点评】本题主要考查方程根的判别式及等腰三角形的性质,掌握方程根的判别式与方程根的情况的关系是解题的关键,注意分类讨论.23.【分析】(1)①首先证明△A1B是等边三角形,可得∠AA1B=∠A1BD1=60°,即可解决问题.②首先证明△OCD1≌△OBA(AAS),推出OC=OB,再证明△DCO≌△ABO(SAS)即可解决问题.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.利用勾股定理求出AE,A1E即可解决问题.【解答】(1)证明:①如图1中,∵∠BAC=60°,BA=BA1,∴△ABA1是等边三角形,∴∠AA1B=60°,∵∠A1BD1=60°,∴∠AA1B=∠A1BD1,∴AC∥BD1,∵AC=BD1,∴四边形ABD1C是平行四边形.②如图2中,连接BD1.∵∠BCD1=∠BAD1=90°,BD1=D1B,BC=A1D1,∴△BCD1≌D1A1D,∴CD1=BA1,∵BA=BA1,∴AB=CD1,∵AC=BD1∴四边形ABD1C是平行四边形,∴CD1∥AB,CD1=AB,∠OCD1=∠ABO,∵∠COD1=∠AOB,∴△OCD1≌△OBA(AAS),∴OC=OB,∵CD=BA,∠DCO=∠ABO,∴△DCO≌△ABO(SAS),∴DO=OA.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.在Rt△A1BC中,∵∠CA1B=90°,BC=5.AB=3,∴CA1==4,∵•A1C•A1B=•BC•A1F,∴A1F=,∵∠A1FB=∠A1EB=∠EBF=90°,∴四边形A1EBF是矩形,∴EB=A1F=,A1E=BF=,∴AE=3﹣=,在Rt△AA1E中,AA1==.【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判断和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.24.【分析】(1)过点A分别作AM⊥y轴于M点,AN⊥x轴于N点,根据直角三角形的性质可设点A的坐标为(a,a),因为点A在直线y=3x﹣4上,即把A点坐标代入解析式即可算出a的值,进而得到A点坐标,然后再利用待定系数法求出反比例函数解析式;(2)利用勾股定理逆定理即可判断出三角形ABC是直角三角形,利用三角形的面积公式即可得出结论.(3)由SAS易证△AOP≌△ABQ,得出∠OAP=∠BAQ,那么△APQ是所求的等腰直角三角形.根据全等三角形的性质及函数图象与点的坐标的关系得出结果.【解答】解:(1)如图1,过点A分别作AQ⊥y轴于Q点,AN⊥x轴于N点,∵△AOB是等腰直角三角形,∴AQ=AN.设点A的坐标为(a,a),∵点A在直线y=3x﹣4上,∴a=3a﹣4,解得a=2,则点A的坐标为(2,2),∵双曲线y=也经过A点,∴k=4;(2)由(1)知,A(2,2),∴B(4,0),∵直线y=3x﹣4与y轴的交点为C,∴C(0,﹣4),∴AB2+BC2=(4﹣2)2+22+42+(﹣4)2=40,AC2=22+(2+4)2=40,∴AB2+BC2=AC2,∴△ABC是直角三角形;S=AB×BC=××=8,△ABC(3)如图2,假设双曲线上存在一点M,使得△PAM是等腰直角三角形.∴∠PAM=90°=∠OAB,AP=AM连接AM,BM,由(1)知,k=4,∴反比例函数解析式为y=,∴∠OAP=∠BAM,在△AOP和△ABM中,,∴△AOP≌△ABM(ASA),∴∠AOP=∠ABM,∴∠OBM=∠OBA+∠ABM=90°,∴点M的横坐标为4,∴M(4,1)即:在双曲线上存在一点M(4,1),使得△PAM是以点A为直角顶点的等腰三角形【点评】此题是反比例函数综合题,主要考查了反比例函数解析式的确定、等腰直角三角形的性质、勾股定理、全等三角形的判定等知识及综合应用知识、解决问题的能力.。
(3份试卷汇总)2019-2020学年山东省淄博市中考数学考试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边3.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③4.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE 的度数为()A.31°B.28°C.62°D.56°5.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)6.如图,一次函数1y ax b 和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x > 7.如图,等边△ABC 的边长为1cm ,D 、E 分别AB 、AC 是上的点,将△ADE 沿直线DE 折叠,点A 落在点A′处,且点A′在△ABC 外部,则阴影部分的周长为( )cmA .1B .2C .3D .48.已知二次函数y =ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a ﹣b+c >1;③abc >0;④4a ﹣2b+c <0;⑤c ﹣a >1,其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤9.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C 3D .310.若10,则实数a 在数轴上对应的点的大致位置是( )A.点E B.点F C.点G D.点H二、填空题(本题包括8个小题)11.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.12.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.13.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.14.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.15.如果某数的一个平方根是﹣5,那么这个数是_____.16.函数y1x-x的取值范围是________.17.若a2+3=2b,则a3﹣2ab+3a=_____.18.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.三、解答题(本题包括8个小题)19.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?20.(6分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.21.(6分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?22.(8分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.23.(8分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k 的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.24.(10分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.25.(10分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.26.(12分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用2.C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.3.A【解析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.4.D【解析】【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE 的度数.【详解】解:∵四边形ABCD 为矩形,∴AD ∥BC ,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD ∥BC ,∴∠CBD=∠FDB=28°,∵矩形ABCD 沿对角线BD 折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D .【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.C【解析】【分析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A 、B 、D 三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C 选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.6.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.7.C【解析】【分析】由题意得到DA′=DA ,EA′=EA ,经分析判断得到阴影部分的周长等于△ABC 的周长即可解决问题.【详解】如图,由题意得:DA′=DA,EA′=EA ,∴阴影部分的周长=DA′+EA′+DB +CE +BG +GF +CF=(DA +BD)+(BG +GF +CF)+(AE +CE)=AB +BC +AC=1+1+1=3(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.8.C【解析】【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0,则①当x=1时,y=a+b+c <0,正确;②当x=-1时,y=a-b+c >1,正确;③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2b a=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确.故所有正确结论的序号是①②③⑤.故选C9.D【解析】【详解】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.10.C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】解:∵∴3<4,∵,∴3<a <4,故选:C .【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键.二、填空题(本题包括8个小题)11.2【解析】【详解】解:这组数据的平均数为2, 有16(2+2+0-2+x+2)=2, 可求得x=2.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,其平均数即中位数是(2+2)÷2=2.故答案是:2.12.π﹣1.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=2.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.13.250π【解析】【分析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.【详解】该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr 2h=π×52×10=250π(立方单位).答:立体图形的体积为250π立方单位.故答案为250π.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.14.2【解析】【详解】试题分析:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得, 2πr=0208161π⨯,解得r=2cm . 考点:圆锥侧面展开扇形与底面圆之间的关系.15.25【解析】【分析】利用平方根定义即可求出这个数.【详解】设这个数是x (x≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.16.x≤1【解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1 -x≥0,解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键. 17.1【解析】【分析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.18.m>1.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣1>0,解得:m>1.故答案为m>1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣1>0是解题的关键.三、解答题(本题包括8个小题)19.(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.详解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=1050×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有12+650×2000=720(人).点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.20.(1)14;(2)16.【解析】【分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.【详解】(1)正数为2,所以该球上标记的数字为正数的概率为14;(2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率=212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A 或B的结果数目m,求出概率.21.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.23.(1)32(2)1(3)①②③【解析】(1)由抛物线与x轴只有一个交点,可知△=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=32,k≠0,∴k=32;(2)∵AB=2,抛物线对称轴为x=2,∴A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k=1,(3)①∵当x=0时,y=3,∴二次函数图象与y轴的交点为(0,3),①正确;②∵抛物线的对称轴为x=2,∴抛物线的对称轴不变,②正确;③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.24.(1)50;(2)108°;(3)12.【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=61 122=.点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.25.(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】【详解】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.26.树高为5.5 米【解析】【分析】根据两角相等的两个三角形相似,可得△DEF∽△DCB ,利用相似三角形的对边成比例,可得DE EF DC CB=,代入数据计算即得BC的长,由AB=AC+BC ,即可求出树高.【详解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴DE EFDC CB=,∵DE=0.4m,EF=0.2m,CD=8m,∴0.40.28CB=,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .1122.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是63.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C .3D .34.若直线y=kx+b 图象如图所示,则直线y=−bx+k 的图象大致是( )A .B .C .D .5.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x 个零件,依题意下面所列方程正确的是( )A .2402008x x =-B .2402008x x=+C.2402008x x=+D.2402008x x=-6.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°7.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.258.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3)B.(-3,3)C.(2,3)D.(-4,6)9.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.10.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1二、填空题(本题包括8个小题)11.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.12.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y=﹣4x图象上的两个点,则y 1与y 2的大小关系为__________.13.分解因式a 3﹣6a 2+9a=_________________.14.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . 15.如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =_____.16.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a (不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b ,则点(a,b )在直线11+22y x =图象上的概率为__. 17.计算:cos 245°-tan30°sin60°=______. 18.分解因式:229ax ay -= ____________. 三、解答题(本题包括8个小题)19.(6分)实践:如图△ABC 是直角三角形,∠ACB =90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC 的平分线,交BC 于点O.以O 为圆心,OC 为半径作圆.综合运用:在你所作的图中,AB 与⊙O 的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.20.(6分)如果a 2+2a-1=0,求代数式24()2a a a a -⋅-的值.21.(6分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.22.(8分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?23.(8分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.24.(10分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.25.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.26.(12分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21.126故答案为C . 【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键. 2.D 【解析】 【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案. 【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A 选项不符合题意, 从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B 选项不符合题意, 掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C 选项不符合题意, 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D 选项符合题意, 故选D. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键. 3.D 【解析】 【详解】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D. 【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大. 4.A 【解析】 【分析】。
2019年山东省淄博市周村区中心中学中考数学二模考试试卷(含详细答案)
2019年山东省淄博市周村区中心中学中考数学二模试卷一.选择题(每题4分,满分48分)1.如图,数轴上有A,B,C,D四点,其中表示互为相反数的点是()A.点A和B B.点B和C C.点C和D D.点A和D 2.使函数有意义的自变量x的取值范围为()A.x≠0 B.x≥﹣1 C.x≥﹣1且x≠0 D.x>﹣1且x≠0 3.已知=,则的值为()A.B.C.D.4.(4分)如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°5.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算6.将如图绕AB边旋转一周,所得几何体的俯视图为()A.B.C.D.7.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等8.如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,满足条件的点C有()A.6个B.7个C.8个D.9个9.如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为()A.1cm2B.1.5cm2C.2cm2D.3cm210.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.11.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y =﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.B.C.D.12.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁二.填空题(满分20分,每小题4分)13.分解因式:3x3﹣27x=.14.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为1,则平行四边形ABCD的面积为.15.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为;16.如图,在Rt△ABC中,C为直角顶点,∠ABC=20°,O为斜边的中点,将OA绕着点O逆时针旋转θ°(0<θ<180)至OP,当△BCP恰为轴对称图形时,θ的值为.17.如图,正方形ABCD中,M为BC上一点,ME⊥AM,垂足为M,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为.三.解答题18.(5分)计算:|﹣1+|﹣﹣(5﹣π)0+4cos45°.19.(5分)解不等式组20.(8分)一个不透明的袋中装有黄球、黑球和红球共40个,它们除颜色外都相同,其中红球有22个,且经过大量试验发现摸出一个球为黄球的频率接近0.125.(1)求袋中有多少个黑球;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率达到,问取出了多少个黑球?21.(8分)使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y =0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)(1)当m=0时,求该函数的零点.(2)证明:无论m取何值,该函数总有两个零点.22.(8分)如图:在△ABC中,AB=AC,AD是底边BC上的中线,且AE=EC.请说明AB=2DE的理由?23.(9分)如图,已知AB是⊙O的直径,C是⊙O上的点,连接AC、CB,过O作EO∥CB并延长EO到F,使EO=FO,连接AF并延长,AF与CB的延长线交于D.求证:AE2=FG•FD.24.(9分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.参考答案一.选择题1.解:如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是点B和点C,故选:B.2.解:由题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:C.3.解:∵=,∴==.故选:C.4.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.5.解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选:A.6.解:将该图形绕AB旋转一周后是由上面一个圆锥体、下面一个圆柱体的组合而成的几何体,从上往下看其俯视图是外面一个实线的大圆(包括圆心),里面一个虚线的小圆,故选:B.7.解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.8.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选:D.9.解:连接MN,作AF⊥BC于F.∵AB=AC,∴BF=CF=BC=×8=4,在Rt△ABF中,AF==,∵M、N分别是AB,AC的中点,∴MN是中位线,即平分三角形的高且MN=8÷2=4,∴NM=BC=DE,∴△MNO≌△EDO,O也是ME,ND的中点,∴阴影三角形的高是AF÷2=1.5÷2=0.75,∴S阴影=4×0.75÷2=1.5.故选B.10.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.11.解:∵如图1,连接AP、AQ,∵PQ为切线,∴AQ⊥PQ,在Rt△APQ中,PQ==,当AP最小时,PQ最小,如图2,直线y=﹣x+3与y轴交于B,与x轴交于点C,则B(0,3),C(4,0),∴BC==5,当AP⊥BC于P时,AP最小,∵AP•BC=BO•AC,∴AP==3,∴PQ的最小值为=2.故选:C.12.解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,∵甲、乙都没有输球,∴甲一定与乙平,∵丙得分3分,1胜0平,乙得分5分,1胜2平,∴与乙打平的球队是甲与丁.故选:B.二.填空题13.解:3x3﹣27x=3x(x2﹣9)=3x(x+3)(x﹣3).14.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴S△DEF:S△BCF=()2,又∵E是AD中点,∴DE=AD=BC,∴DE:BC=DF:BF=1:2,∴S△DEF:S△BCF=1:4,∴S△BCF=4,又∵DF:BF=1:2,∴S△DCF=2,=2(S△DCF+S△BCF)=12.∴S▱A BCD故答案为:12.15.解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.16.解:∵△BCP恰为轴对称图形,∴△BCP是等腰三角形,如图1,连接AP,∵O为斜边中点,OP=OA,∴BO=OP=OA,∴∠APB=90°,当BC=BP时,∴∠BCP=∠BPC,∴∠BCP+∠ACP=∠BPC+∠APC=90°,∴∠ACP=∠APC,∴AC=AP,∴AB垂直平分PC,∴∠ABP=∠ABC=20°,∴θ=2×20°=40°,当BC=PC时,如图2,连接CO并延长交PB于H,∵BC=CP,BO=PO,∴CH垂直平分PB,∴∠CHB=90°,∵OB=OC,∴∠BCH=∠ABC=20°,∴∠CBH=70°,∴∠OBH=50°,∴θ=2×50°=100°;当PB=PC时,如图3,连接PO并延长交BC于G,连接OC,∵∠ACB=90°,O为斜边中点,∴OB=OC,∴PG垂直平分BC,∴∠BGO=90°,∵∠ABC=20°,∴θ=∠BOG=70°,综上所述:当△BCP恰为轴对称图形时,θ的值为40°或100°或70°,故答案为:40°或100°或70°.17.解:∵正方形ABCD,∴∠B=90°,∵AB=12,BM=5,∴AM=13,∵ME⊥AM,∴∠AME=90°=∠B,∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴=,即=,∴AE=,∴DE=AE﹣AD=﹣12=,故答案为:.三.解答题18.解:原式=﹣1﹣×2﹣1+4×=2﹣2.19.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.20.解:(1)黄球有40×0.125=5个,黑球有40﹣22﹣5=13个.答:袋中有13个黑球;(2)设取出x个黑球,根据题意得=,解得x=3.答:取出3个黑球.21.(1)解:当m=0时,令y=0,则x2﹣6=0,解得x=±,所以,m=0时,该函数的零点为±;(2)证明:令y=0,则x2﹣2mx﹣2(m+3)=0,△=b2﹣4ac=(﹣2m)2﹣4×1×2(m+3),=4m2+8m+24,=4(m+1)2+20,∵无论m为何值时,4(m+1)2≥0,∴△=4(m+1)2+20>0,∴关于x的方程总有不相等的两个实数根,即,无论m取何值,该函数总有两个零点.22.证法一:∵AB=AC,AD是底边BC上的中线,∴AD⊥BC,又∵AE=EC,∴AC=2DE,∴AB=2DE;证法二:∵AD是底边BC上的中线,且AE=EC,∴DE是△ABC的中位线,∴AB=2DE.23.证明:连结BF、BG.∵在△AEO和△BFO中,,∴△AEO≌△BFO(AAS),∴AE=BF.又∵∠ACB=90°,EF∥BC,∴∠OFB=∠AEO=∠ACB=90°,∴∠FBD=90°,又∵BG⊥FD,∴△FGB∽△FBD,∴=,即=,∴AE2=FG•FD.24.解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).。
山东省淄博市2019-2020学年中考数学模拟试题(2)含解析
山东省淄博市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A .∠ABC =∠ADC ,∠BAD =∠BCDB .AB =BCC .AB =CD ,AD =BCD .∠DAB+∠BCD =180°2.点M (1,2)关于y 轴对称点的坐标为( ) A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)3.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示sinα的值,错误的是( )A .CDBCB .ACABC .ADACD .CDAC4.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .25B .5 C .2D .125.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h6.如图,在等腰直角△ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF为折痕,则sin∠BED的值是()A.53B.35C.222D.237.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h的值为( )A.3﹣6或1+6B.3﹣6或3+6C.3+6或1﹣6D.1﹣6或1+68.满足不等式组21010xx-≤⎧⎨+>⎩的整数解是()A.﹣2 B.﹣1 C.0 D.19.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c 10.下列各式属于最简二次根式的有()A.8B.21x+C.3y D.1 211.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣312.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:转盘总次数10 20 30 501015182433450 “和为7”出现频数2 7 10 16 30 46 59 8111150 “和为7”出现频率0.20.350.330.320.30.30.330.340.330.33 如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A.0.33 B.0.34 C.0.20 D.0.35二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.14.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.15.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).16.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.17.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________.18.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD 的相似比为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.20.(6分)已知:a是﹣2的相反数,b是﹣2的倒数,则(1)a=_____,b=_____;(2)求代数式a2b+ab的值.21.(6分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.22.(8分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=12α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.23.(8分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?24.(10分)计算:3﹣2)0+(13)﹣1+4cos30°﹣|412|25.(10分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.26.(12分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东37°方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(结果保留整数)参考数据:sin37≈0.60,cos37°=0.80,tan37°≈0.7527.(12分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD为菱形.所以根据菱形的性质进行判断.【详解】解:Q 四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,//AB CD ∴,//AD BC ,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC ,CD 边上的高为AE ,AF .则 AE AF =(两纸条相同,纸条宽度相同); Q 平行四边形ABCD 中,ABC ACD S S ∆∆=,即⨯=⨯BC AE CD AF ,BC CD ∴=,即AB BC =.故B 正确;∴平行四边形ABCD 为菱形(邻边相等的平行四边形是菱形).ABC ADC ∠=∠∴,BAD BCD ∠=∠(菱形的对角相等),故A 正确; AB CD =,AD BC =(平行四边形的对边相等),故C 正确; 如果四边形ABCD 是矩形时,该等式成立.故D 不一定正确. 故选:D . 【点睛】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”. 2.A 【解析】 【分析】关于y 轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数. 【详解】点M (1,2)关于y 轴对称点的坐标为(-1,2) 【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键. 3.D 【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案. 【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°, ∴∠ACD=∠B=α,A 、在Rt △BCD 中,si nα=CDBC ,故A 正确,不符合题意; B 、在Rt △ABC 中,sinα=ACAB ,故B 正确,不符合题意;C 、在Rt △ACD 中,sinα=ADAC,故C 正确,不符合题意;D、在Rt△ACD中,cosα=CDAC,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.D【解析】【分析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=2142 ADBD==故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.5.C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.6.B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.7.C【解析】【详解】∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最大值-5,可得:-(1-h)2+1=-5,解得:6或6(舍);②若1≤x≤3<h,当x=3时,y取得最大值-5,可得:-(3-h)2+1=-5,解得:6或6(舍).综上,h的值为6或6,点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键. 8.C 【解析】 【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可. 【详解】21010x x -≤⎧⎨+⎩①>② ∵解不等式①得:x≤0.5, 解不等式②得:x >-1, ∴不等式组的解集为-1<x≤0.5, ∴不等式组的整数解为0, 故选C . 【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键. 9.C 【解析】 【分析】首先根据数轴可以得到a 、b 、c 的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可. 【详解】解:通过数轴得到a <0,c <0,b >0,|a|<|b|<|c|, ∴a+b >0,c ﹣b <0∴|a+b|﹣|c ﹣b|=a+b ﹣b+c=a+c , 故答案为a+c . 故选A . 10.B 【解析】 【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可. 【详解】A=A 选项错误;C选项:3y y y=,故不是最简二次根式,故本选项错误;D选项:11222=,故不是最简二次根式,故D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.11.D【解析】解:∵-1<-1<0<2,∴最小的是-1.故选D.12.A【解析】【分析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.213【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC==.故答案是:【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.14.1.【解析】【分析】由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF =54°,即可得出∠DCF的度数.【详解】解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=12×(90°﹣18°)=1°,∴∠AEF=∠AEB=90°﹣1°=54°,∴∠CEF=180°﹣2×54°=72°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=12×(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=1°.故答案为1.【点睛】本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.15.3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型16.2.【解析】【分析】把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.【详解】解:∵m是方程2x2﹣3x﹣2=0的一个根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案为:2.【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.17.32或94【解析】【详解】①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=32,∴AP=32;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴AD ABAP BC=,∴AP=AD BCABg=334⨯=94.故答案为32或94.18.3:1.【解析】∵△AOB与△COD关于点O成位似图形,∴△AOB∽△COD,则△AOB与△COD的相似比为OB:OD=3:1,故答案为3:1 (或34).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为73.(3)当a=5时,D、O、C、B四点共圆.【解析】【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=32a+,AO=a,OD=3a,代入求得顶点C(32a+,-232a-⎛⎫⎪⎝⎭),从而得PB=3-32a+=32a-,PC=232a-⎛⎫⎪⎝⎭;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得233322a aa a=--⎛⎫⎪⎝⎭,解得:a= 3(舍去);②△AOD∽△CPB,根据相似三角形性质得233322a aaa=--⎛⎫⎪⎝⎭,解得:a1=3(舍),a2=73;(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(32,32a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.【详解】(1)∵y=(x-a)(x-3)(0<a<3)与x轴交于点A、B(点A在点B的左侧),∴A(a,0),B(3,0),当x=0时,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=32a+,AO=a,OD=3a,当x=32a+时,y=-232a-⎛⎫⎪⎝⎭,∴C(32a+,-232a-⎛⎫⎪⎝⎭),∴PB=3-32a+=32a-,PC=232a-⎛⎫⎪⎝⎭,①当△AOD∽△BPC时,∴AO ODBP PC=,即233322a aa a=--⎛⎫⎪⎝⎭,解得:a= 3(舍去);②△AOD∽△CPB,∴AO ODCP PB=,即233322a aaa=--⎛⎫⎪⎝⎭,解得:a1=3(舍),a2=73.综上所述:a的值为73;(3)能;连接BD,取BD中点M,∵D、B、O三点共圆,且BD为直径,圆心为M(32,32a),若点C 也在此圆上, ∴MC=MB ,∴222223333333222222a a a a ⎡⎤+-⎛⎫⎛⎫⎛⎫⎛⎫-++=-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ ,化简得:a 4-14a 2+45=0, ∴(a 2-5)(a 2-9)=0, ∴a 2=5或a 2=9,∴a 1=5,a 2=-5,a 3=3(舍),a 4=-3(舍), ∵0<a<3, ∴a=5,∴当a=5时,D 、O 、C 、B 四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键. 20.2 ﹣12【解析】试题分析:()1利用相反数和倒数的定义即可得出.()2先因式分解,再代入求出即可.试题解析:()1a Q 是2-的相反数,b 是2-的倒数,12,.2a b ∴==()2当12,2a b ==时,21(1)2(21)32a b ab ab a ⎛⎫+=+=⨯-⨯+=- ⎪⎝⎭. 点睛:只有符号不同的两个数互为相反数. 乘积为1的两个数互为倒数. 21.(1),;(2)点的坐标为;(3)点的坐标为和【解析】 【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值. 【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.22.(1)①30°②见解析(2)BD2+CE2=DE2(321【解析】【分析】(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,AF AEDAF DAE AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴55 BM,FM322==∵BD=4,∴DM=BD﹣BM=32,根据勾股定理得,22DF FM DM21=+=∴DE=DF21,故答案为21.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.23.(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】【分析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m 的最大值为2.答:购进1本文学书后最多还能购进2本科普书. 【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 24.4 【解析】 【分析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案. 【详解】2)0+(13)﹣1+4cos30°﹣|4|=1+3+4×2﹣(4﹣【点睛】此题主要考查了实数运算,正确化简各数是解题关键. 25.(1)32;(2)1. 【解析】 【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH =KD =x ,得出AK =12﹣x ,EF =32(12﹣x ),再根据S =32x (12﹣x )=﹣32(x ﹣6)2+1,可得当x =6时,S 有最大值为1.【详解】解:(1)∵△AEF ∽△ABC , ∴EF AKBC AD=, ∵边BC 长为18,高AD 长为12, ∴EF BC AK AD ==32; (2)∵EH =KD =x ,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.26.景点A与B之间的距离大约为280米【解析】【分析】由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的长,可以先求出AC 和BC的长.【详解】解:如图,作PC⊥AB于C,则∠ACP=∠BCP=90°,由题意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP•cosA=200×0.80=160,PC=AP•sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景点A与B之间的距离大约为280米.【点睛】本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.27.(1)60°;(2)证明略;(3)8 3【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180πg=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.。
山东省淄博市2019-2020学年中考第二次模拟数学试题含解析
山东省淄博市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <.图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( )A .0a >B .240b ac -≥C .102x x x <<D .()()01020a x x x x --< 2.如图,AB 是⊙O 的切线,半径OA=2,OB 交⊙O 于C ,∠B=30°,则劣弧»AC 的长是( )A .12πB .13π C .23π D .43π 3.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .24.下列计算正确的是( )A .a 6÷a 2=a 3B .(﹣2)﹣1=2C .(﹣3x 2)•2x 3=﹣6x 6D .(π﹣3)0=15.估计8-1的值在( )A .0到1之间B .1到2之间C .2到3之间D .3至4之间 6.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )A .B .C .D .7.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )A .B .C .D .8.不等式组73357x x x -+<+⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A .B .C .D .9.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )A .﹣2.5B .﹣0.6C .+0.7D .+510.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90° 11.2-的相反数是A .2-B .2C .12D .12- 12.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果2()a x b x +=+v v v v ,那么=_____(用向量a r ,b r 表示向量x r ).14.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).15.函数中,自变量x的取值范围是_____.16.据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_____.17.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.18.化简:9=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.20.(6分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.21.(6分)对x,y定义一种新运算T,规定T(x,y)=22ax byx y++(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=22319314a b a b⨯+⨯+=+,T(m,﹣2)=242am bm+-.填空:T(4,﹣1)=(用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T (3m ﹣10,m )=T (m ,3m ﹣10),求m 的值.22.(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A .减少杨树新增面积,控制杨树每年的栽种量B .调整树种结构,逐渐更换现有杨树C .选育无絮杨品种,并推广种植D .对雌性杨树注射生物干扰素,避免产生飞絮E .其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有 人;(2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.23.(8分)如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,点 C 的对应点 C′恰好落在CB 的延长线上,边AB 交边 C′D′于点E .(1)求证:BC =BC′;(2)若 AB =2,BC =1,求AE 的长.24.(10分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =.25.(10分)已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD.26.(12分)如图,已知△ABC,请用尺规作图,使得圆心到△ABC各边距离相等(保留作图痕迹,不写作法).27.(12分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.2.C【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 3.A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.4.D【解析】解:A.a6÷a2=a4,故A错误;B.(﹣2)﹣1=﹣12,故B错误;C.(﹣3x2)•2x3=﹣6x5,故C错;D.(π﹣3)0=1,故D正确.故选D .5.B【解析】试题分析:∵23,∴1<2,在1到2之间,故选B .考点:估算无理数的大小.6.A【解析】【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上,∴x=ax 2+bx+c ,∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点,∴方程ax 2+(b-1)x+c=0有两个正实数根.∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点, 又∵-2b a>0,a >0 ∴-12b a -=-2b a +12a >0 ∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件,故选A .7.D【解析】【分析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.8.C【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.B【解析】【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.10.A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC ,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.11.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .12.C【解析】【分析】①根据图象的开口方向,可得a 的范围,根据图象与y 轴的交点,可得c 的范围,根据有理数的乘法,可得答案;②根据自变量为-1时函数值,可得答案;③根据观察函数图象的纵坐标,可得答案;④根据对称轴,整理可得答案.【详解】图象开口向下,得a <0,图象与y 轴的交点在x 轴的上方,得c >0,ac <,故①错误;②由图象,得x=-1时,y <0,即a-b+c <0,故②正确;③由图象,得图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误;④由对称轴,得x=-2b a=1,解得b=-2a ,2a+b=0故④正确;故选D .【点睛】考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2b a -v v【解析】 ∵2(a r +x r )=b r +x r ,∴2a r +2x r =b r +x r ,∴x r =b r -2a r ,故答案为2b a -v v.点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.14.(a+b )2=a 2+2ab+b 2【解析】【分析】完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:,a b Q 从整体来看,大正方形的边长是+ ()2,a b ∴+大正方形的面积为2Q 从部分来看,该图形面积为两个小正方形的面积加上个矩形的面积和,222a ab b 该图形面积为,∴++ ,Q 同一图形()2222.a b a ab b ∴+=++()2222.a b a ab b +=++故答案是。
山东省淄博市2019-2020学年中考数学考前模拟卷(2)含解析
山东省淄博市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .42.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a b r r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+r rD .12a b --r r3.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( )A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)24.如图,有一张三角形纸片ABC ,已知∠B =∠C =x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A .B .C .D .5.下列计算正确的是( ) A .x 2x 3=x 6 B .(m+3)2=m 2+9 C .a 10÷a 5=a 5D .(xy 2)3=xy 66.义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为x 甲=89分,x 乙=89分,S 甲2=195,S 乙2=1.那么成绩较为整齐的是( ) A .甲班B .乙班C .两班一样D .无法确定7.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-=8.如图所示的几何体,上下部分均为圆柱体,其左视图是( )A .B .C .D .9.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5B .中位数是5C .平均数是6D .方差是3.610.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y <0;③3a+c=0;④若(x 1,y 1)(x 2、y 2)在函数图象上,当0<x 1<x 2时,y 1<y 2,其中正确的是( )A .①②④B .①③C .①②③D .①③④11.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .12.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到COD ∆,若15AOB ∠=︒,则AOD ∠的度数是 _______.14.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.15.方程组35231x y x y +=⎧⎨-=⎩的解是________.16.某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.17.如图,抛物线2y x 2x 3=-++交x 轴于A ,B 两点,交y 轴于点C ,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG 周长的最小值为__________.18.若a﹣3有平方根,则实数a的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)20.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?21.(6分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.22.(8分)(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.23.(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.24.(10分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6 m 96.9B班80.8 n 153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).25.(10分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.26.(12分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.27.(12分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.2.A【解析】【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r , BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型. 3.A 【解析】 【分析】根据“上加下减”的原则进行解答即可. 【详解】解:由“上加下减”的原则可知,把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是:y =﹣2x 2+1. 故选A . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键. 4.C 【解析】 【分析】根据全等三角形的判定定理进行判断. 【详解】解:A 、由全等三角形的判定定理SAS 证得图中两个小三角形全等, 故本选项不符合题意;B 、由全等三角形的判定定理SAS 证得图中两个小三角形全等, 故本选项不符合题意;C 、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.5.C【解析】【分析】根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案. 【详解】x2•x3=x5,故选项A不合题意;(m+3)2=m2+6m+9,故选项B不合题意;a 10÷a 5=a 5,故选项C 符合题意; (xy 2)3=x 3y 6,故选项D 不合题意. 故选:C . 【点睛】本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算. 6.B 【解析】 【分析】根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论. 【详解】 ∵S 甲2>S 乙2,∴成绩较为稳定的是乙班。
山东省淄博市2019-2020学年中考第二次大联考数学试卷含解析
山东省淄博市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.4=2 B.43﹣27=1 C.182÷=9 D.233⨯=22.广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为()A.3.65×103B.3.65×104C.3.65×105D.3.65×1063.已知反比例函数1yx=下列结论正确的是()A.图像经过点(-1,1)B.图像在第一、三象限C.y 随着x 的增大而减小D.当x > 1时,y < 14.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()A.B.C.D.5.化简:(a+343aa--)(1﹣12a-)的结果等于()A.a﹣2 B.a+2 C.23aa--D.32aa--6.计算-5x2-3x2的结果是( )A.2x2B.3x2C.-8x2D.8x27.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2,B.最小值2 C.最大值2D.最小值28.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②1014043n n++=;③1014043n n--=;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④9.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,2,BP=3,AP的最大值是()A .2+3B .4C .5D .3210.下列运算正确的是( )A .5a+2b=5(a+b )B .a+a 2=a 3C .2a 3•3a 2=6a 5D .(a 3)2=a 511.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .12.若代数式3x x -的值为零,则实数x 的值为( ) A .x =0 B .x≠0 C .x =3 D .x≠3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是____. 142x -x 的取值范围是_____.15.已知一次函数y =ax+b ,且2a+b =1,则该一次函数图象必经过点_____.16.已知关于x 的方程x 2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.17.计算52a a ÷的结果等于_____________.18.化简:a b a b b a+--22= __________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC 不动,将△DEF 沿线段AB 向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y 与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?20.(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB 于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由21.(6分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?22.(8分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.23.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.(10分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 …甲复印店收费(元) 0.5 2 …乙复印店收费(元) 0.6 2.4 …(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.25.(10分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=83m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.26.(12分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.27.(12分)某食品厂生产一种半成品食材,产量p(百千克)与销售价格x(元/千克)满足函数关系式1=+,从市场反馈的信息发现,该半成品食材的市场需求量q(百千克)与销售价格x(元/千克)满p x82足一次函数关系,如下表:已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克()1求q与x的函数关系式;()2当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;()3当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能.若该半成品食材的成本是2元/千克.废弃①求厂家获得的利润y(百元)与销售价格x的函数关系式;②当厂家获得的利润y(百元)随销售价格x的上涨而增加时,直接写出x的取值范围.(利润=售价-成本)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项正确;B、原式B选项错误;C、原式=3,所以C选项错误;D、原式,所以D选项错误.故选A.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将365000这个数用科学记数法表示为3.65×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【解析】分析:直接利用反比例函数的性质进而分析得出答案.详解:A.反比例函数y=1x,图象经过点(﹣1,﹣1),故此选项错误;B.反比例函数y=1x,图象在第一、三象限,故此选项正确;C.反比例函数y=1x,每个象限内,y随着x的增大而减小,故此选项错误;D.反比例函数y=1x,当x>1时,0<y<1,故此选项错误.故选B.点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.4.C【解析】【分析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,也不是中心对称图形,故此选项错误;C 、是轴对称图形,也是中心对称图形,故此选项正确;D 、是轴对称图形,不是中心对称图形,故此选项错误.故选:C .【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.5.B【解析】【分析】【详解】解:原式=(3)342132a a a a a a -+---⋅--=24332a a a a --⋅--=(2)(2)332a a a a a +--⋅--=2a +. 故选B .考点:分式的混合运算.6.C【解析】【分析】利用合并同类项法则直接合并得出即可.【详解】解:222538.x x x --=-故选C.【点睛】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键.7.D【解析】设抛物线与x 轴的两交点间的横坐标分别为:x 1,x 2,由韦达定理得:x 1+x 2=m-3,x 1•x 2=-m ,则两交点间的距离d=|x 1-x 2== ,∴m=1时,d min =22.故选D.8.D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确; 所以正确的是③④.故选D .考点:由实际问题抽象出一元一次方程.9.C【解析】【分析】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,证明ACQ V ≌,BCP V 根据全等三角形的性质,得到3,AQ BP == 2,CQ CP ==根据等腰直角三角形的性质求出PQ 的长度,进而根据AP AQ PQ ≤+,即可解决问题.【详解】过点C 作CQ CP ⊥,且CQ=CP,连接AQ,PQ,90,ACQ BCQ BCP BCQ ∠+∠=∠+∠=o,ACQ BCP ∠=∠在ACQ V 和BCP V 中,AC BC ACQ BCP CQ CP =⎧⎪∠=∠⎨⎪=⎩ACQ V ≌,BCP V3,AQ BP∴==CQ CP==2,PQ==325,AP AQ P≤++=AP的最大值是5.故选:C.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.10.C【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.11.D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C 不符合题意;D 、以点B 为圆心BA 的长为半径画弧,交BC 于点E ,再以E 点为圆心,AB 的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A 点作直线,该直线不一定是BE 的垂线;从而就不能保证两个小三角形相似;D 符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键. 12.A【解析】【分析】根据分子为零,且分母不为零解答即可.【详解】 解:∵代数式3x x -的值为零, ∴x =0,此时分母x-3≠0,符合题意.故选A .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1a b- 【解析】原式=()()()()1·b a b a b a b a b a b a b a b a b b a b +-+÷==+-++-- , 故答案为1a b -. 14.x <1【解析】【分析】有意义时,必有1﹣x >2,可解得x 的范围. 【详解】 根据题意得:1﹣x >2,解得:x <1.故答案为x<1.【点睛】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.15.(2,1)【解析】∵一次函数y=ax+b,∴当x=2,y=2a+b,又2a+b=1,∴当x=2,y=1,即该图象一定经过点(2,1).故答案为(2,1).16.﹣1【解析】【分析】根据根与系数的关系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去绝对值符号,即可得出答案.【详解】解:∵关于x的方程x2−2x+n=1没有实数根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2−n |-│1-n│=n-2-n+1=-1.故答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可. 17.a3【解析】试题解析:x5÷x2=x3.考点:同底数幂的除法.18.a+b【解析】【分析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
2020年5月淄博市周村区初三第二次检测考试初中数学
2020年5月淄博市周村区初三第二次检测考试初中数学数学试卷第一卷〔选择题共36分〕一、选择题:此题共12小题,在每题所给出的四个选项中,只有一个是正确的。
1.嫦娥一号运行1小时的行程约28 600 000m,用科学记数法可表示为A.0.286×108 m B.2.86×107 mC.28.6×106 m D.2.86×105 m2.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是A.B.C.D.3.观看图中两组数据的折线图,你认为以下讲法中正确的选项是A.离散程度较大的是甲组数据B.离散程度较大的是乙组数据C.甲、乙两组数据离散程度一样大D.仅凭本图不能做出判定4、如图是一个切去了一个角的正方体纸盒,切面与棱的交点A、B、C均是棱的中点,现将纸盒剪开展成平面,那么展开图不可能是A.B.C.D.5.今年一月的某一天,我市最高温度为7℃,最低温度是-4℃,这天的最高温度比最低温度高 A .3℃ B .11℃C .7℃D .-11℃6.以下运算,正确的选项是 A .39±=B .532=+C .632=⨯D .2828= 7.假如直径为13cm 的圆与一条直线有两个公共点,那么圆心到该直线的距离d 满足 A .13d cm =B .cm d 5.6=C .cm d cm 5.60<≤D .cm d 5.6>8.王英同学从A 地动身,沿北偏西60°方向走100米到B 地,再从B 地向正南方向走50米到C 地,现在王英同学离A 地A .100米B .50米C .250米D .350米9.〝石头——剪子——布〞是一种广为流传的游戏。
游戏时,甲、乙双方每次同时出〝石头〞〝剪子〞〝布〞三种手势中的一种,规定〝石头〞胜〝剪子〞、〝剪子〞 胜〝布〞、〝布〞 胜〝石头〞,同种手势不分胜负。
现在小明和小红做那个游戏,随机出手一次,那么小明不负的概率是A .41B .31 C .21D .3210.关于一元二次方程)0(02≠=++a c bx ax ,以下讲法: ①c a b +=时,方程02=++c bx ax 一定有实数根;②假设a 、c 异号,那么方程02=++c bx ax 一定有实数根;③052>-ac b 时,方程02=++c bx ax 一定有两个不相等的实数根;④假设方程02=++c bx ax 有两个不相等的实数根,那么方程02=++a bx cx 也一定有两个不相等实数根。
山东省淄博市2019-2020学年中考数学二月模拟试卷含解析
山东省淄博市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形纸片ABCD 中,已知AB =3,BC =1,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿直线AE 折叠,得到多边形AFGE ,点B 、C 的对应点分别为点F 、G .在点E 从点C 移动到点D 的过程中,则点F 运动的路径长为( )A .πB .3πC .33πD .233π 2.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.A .6055B .6056C .6057D .60583.如图,正六边形ABCDEF 内接于O e ,M 为EF 的中点,连接DM ,若O e 的半径为2,则MD 的长度为( )A 7B 5C .2D .14.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元 C .225元 D .259.2元5.计算(2017﹣π)0﹣(﹣13)﹣13的结果是( ) A .5 B .﹣2C .2D .﹣16.已知抛物线y=(x﹣1a)(x﹣11a)(a为正整数)与x轴交于M a、N a两点,以M a N a表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是()A.20162017B.20172018C.20182019D.201920207.若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.188.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.9.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1)B.(1,2)C.(1,3)D.(3,1)10.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB 绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.3π2B.πC.2πD.3π11.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°12.下列计算中,正确的是()A .a•3a=4a 2B .2a+3a=5a 2C .(ab )3=a 3b 3D .7a 3÷14a 2=2a二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算(5ab 3)2的结果等于_____.14.化简:4= .15.已知矩形ABCD,AD >AB,以矩形ABCD 的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD 的其他边上,则可以画出的不同的等腰三角形的个数为_______________.16.已知关于x 的不等式组0521x a x f -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 17.已知抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,则m 的取值范围是__.18.如图所示,三角形ABC 的面积为1cm 1.AP 垂直∠B 的平分线BP 于P .则与三角形PBC 的面积相等的长方形是( )A .B .C .D .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 边于点D ,连接AD ,过D 作AC 的垂线,交AC 边于点E ,交AB 边的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若∠F=30°,BF=3,求弧AD 的长.20.(6分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF .,GH .(1)填空:∠AHC ∠ACG ;(填“>”或“<”或“=”)(2)线段AC ,AG ,AH 什么关系?请说明理由;(3)设AE =m ,①△AGH 的面积S 有变化吗?如果变化.请求出S 与m 的函数关系式;如果不变化,请求出定值. ②请直接写出使△CGH 是等腰三角形的m 值.21.(6分)如图,在四边形ABCD 中,AD ∥BC ,∠B=90°,BC=6,AD=3,AB=3,点E ,F 同时从B 点出发,沿射线BC 向右匀速移动,已知点F 的移动速度是点E 移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG ,设E 点移动距离为x (0<x <6).(1)∠DCB= 度,当点G 在四边形ABCD 的边上时,x= ;(2)在点E ,F 的移动过程中,点G 始终在BD 或BD 的延长线上运动,求点G 在线段BD 的中点时x 的值;(3)当2<x <6时,求△EFG 与四边形ABCD 重叠部分面积y 与x 之间的函数关系式,当x 取何值时,y 有最大值?并求出y 的最大值.22.(8分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为t 分钟),将调查统计的结果分为四个等级:Ⅰ级(020)t ≤≤、Ⅱ级(2040)t ≤≤、Ⅲ级(4060)t ≤≤、Ⅳ级(60)y >.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)请补全上面的条形图.(2)所抽查学生“诵读经典”时间的中位数落在__________级.(3)如果该校共有1200名学生,请你估计该校平均每天“诵读经典”的时间不低于40分钟的学生约有多少人?23.(8分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.24.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.25.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.26.(12分)如图,AB 是⊙O 的直径,CD 切⊙O 于点D ,且BD ∥OC ,连接AC .(1)求证:AC 是⊙O 的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)27.(12分)先化简,再求值:()()()2111x x x x +-+-,其中2x =-.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】点F 的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.【详解】如图,点F 的运动路径的长为弧FF'的长,在Rt△ABC中,∵tan∠BAC=333BCAB==,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的长120323π⨯=.故选D.【点睛】本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.2.D【解析】【分析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律连接OM 、OD 、OF ,由正六边形的性质和已知条件得出OM ⊥OD ,OM ⊥EF ,∠MFO=60°,由三角函数求出OM ,再由勾股定理求出MD 即可.【详解】连接OM 、OD 、OF ,∵正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,∴OM ⊥OD ,OM ⊥EF ,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin ∠MFO=2×3=3, ∴MD=()2222327OM OD +=+=,故选A .【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键.4.A【解析】【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 5.A【解析】试题分析:原式=1-(-333=1+3+1=5,故选A .代入y=0求出x的值,进而可得出M a N a=1a-1a+1,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.【详解】解:当y=0时,有(x-1a)(x-1a+1)=0,解得:x1=1a+1,x2=1a,∴M a N a=1a-1a+1,∴M1N1+M2N2+…+M2018N2018=1-12+12-13+…+12018-12019=1-12019=20182019.故选C.【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出M a N a的值是解题的关键.7.B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.8.C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.9.D【解析】【分析】过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO =∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。
山东省淄博市2019-2020学年中考数学二模试卷含解析
山东省淄博市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算-3-1的结果是( )A .2B .-2C .4D .-42.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥3.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( )A .4B .3C .2D .14.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过95.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .326.-5的相反数是( )A .5B .15C 5D .15- 7.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152B .154C .3D .838.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是( ) A .①② B .①③ C .①④D .①③④ 9.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3 B .a <﹣3 C .a >3 D .a≥310.若a=10,则实数a 在数轴上对应的点的大致位置是( )A .点EB .点FC .点GD .点H11.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .221x =B .1(1)212x x -=C .21212x = D .(1)21x x -= 12.如图,点D 在△ABC 边延长线上,点O 是边AC 上一个动点,过O 作直线EF ∥BC ,交∠BCA 的平分线于点F ,交∠BCA 的外角平分线于E,当点O 在线段AC 上移动(不与点A ,C 重合)时,下列结论不一定成立的是( )A .2∠ACE=∠BAC+∠BB .EF=2OC C .∠FCE=90°D .四边形AFCE是矩形 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知a+ =3,则的值是_____.14.已知图中Rt △ABC ,∠B=90°,AB=BC,斜边AC 上的一点D ,满足AD=AB ,将线段AC 绕点A 逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//BC 时,旋转角度α 的值为_________,15.分解因式6xy2-9x2y-y3 = _____________.16.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.17.如图,已知圆锥的母线SA 的长为4,底面半径OA 的长为2,则圆锥的侧面积等于.18.已知:a(a+2)=1,则a2+41a=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).20.(6分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.21.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A 1、A 2,图案为“蝴蝶”的卡片记为B )22.(8分)如图,AB 为⊙O 的直径,点C 在⊙O 上,AD ⊥CD 于点D ,且AC 平分∠DAB ,求证: (1)直线DC 是⊙O 的切线;(2)AC 2=2AD•AO .23.(8分)如图,圆O 是ABC V 的外接圆,AE 平分BAC ∠交圆O 于点E ,交BC 于点D ,过点E 作直线//l BC .(1)判断直线l 与圆O 的关系,并说明理由;(2)若ABC ∠的平分线BF 交AD 于点F ,求证:BE EF =;(3)在(2)的条件下,若5DE =,3DF =,求AF 的长.24.(10分)如图,直线y =﹣x+2与反比例函数k y x= (k≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .求a ,b 的值及反比例函数的解析式;若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.25.(10分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.26.(12分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.27.(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=nx(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=32.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.2.D【解析】【分析】根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.【详解】由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故选D.【点睛】本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.3.A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.4.D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.5.A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.6.A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.7.A【解析】∵∠AED=∠B,∠A=∠A ∴△ADE∽△ACB∴AE DE AB BC=,∵DE=6,AB=10,AE=8,∴8610BC=,解得BC=15 2.故选A.8.C【解析】【分析】根据倒数的定义,分别进行判断即可得出答案.【详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确;∴互为倒数的是:①④,故选C.【点睛】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.10.C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∴3<4,∵,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键.11.B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)21 2x x-=,故选B.考点:由实际问题抽象出一元二次方程.12.D【解析】【分析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A选项正确;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=12×180°=90°,故C选项正确;∵O不一定是AC的中点,∴四边形AECF不一定是平行四边形,∴四边形AFCE不一定是矩形,故D选项错误,故选D.【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.7【解析】【详解】根据完全平方公式可得:原式=.14.15或255°【解析】如下图,设直线DC′与AB相交于点E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=22AC,∴AE=22AD,又∵AD=AB,AC′=AC,∴22212AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即当DC′∥BC时,旋转角α=15°;同理,当DC′′∥BC时,旋转角α=180°-45°-60°=255°;综上所述,当旋转角α=15°或255°时,DC′//BC.故答案为:15°或255°.15.-y(3x-y)2【解析】【分析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.16.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】解:1.111121=2.1×11-2.故答案为:2.1×11-2.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.【解析】 【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可. 【详解】侧面积=4×4π÷2=8π. 故答案为8π. 【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系. 18.3 【解析】 【分析】先根据a (a+2)=1得出a 2=1-2a,再把a 2=1-2a 代入a 2+41a +进行计算. 【详解】a (a+2)=1得出a 2=1-2a,a 2+4a 1=+1-2a+4a 1+= 2251a a a --++=2(12)51a a a ---++=3(1)1a a ++=3. 【点睛】本题考查的是代数式求解,熟练掌握代入法是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(Ⅰ)点P 的坐标为(1).(Ⅱ)2111m t t 666=-+(0<t <11).(Ⅲ)点P 1,1).【解析】 【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=1,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P ≌△OBP , △QC′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案. (Ⅲ)首先过点P 作PE ⊥OA 于E ,易证得△PC′E ∽△C′QA ,由勾股定理可求得C′Q 的长,然后利用相似三角形的对应边成比例与2111m t t 666=-+,即可求得t 的值:(Ⅰ)根据题意,∠OBP=90°,OB=1.在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t .∵OP 2=OB 2+BP 2,即(2t )2=12+t 2,解得:t 1=23,t 2=-23(舍去). ∴点P 的坐标为(23,1).(Ⅱ)∵△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的, ∴△OB′P ≌△OBP ,△QC′P ≌△QCP . ∴∠OPB′=∠OPB ,∠QPC′=∠QPC .∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°. ∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ . 又∵∠OBP=∠C=90°,∴△OBP ∽△PCQ .∴OB BPPC CQ=. 由题意设BP=t ,AQ=m ,BC=11,AC=1,则PC=11-t ,CQ=1-m .∴6t 11t 6m =--.∴2111m t t 666=-+(0<t <11). (Ⅲ)点P 的坐标为(11133-,1)或(11+133,1).过点P 作PE ⊥OA 于E ,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠E PC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A .∴△PC′E ∽△C′QA .∴''=PE PC AC C Q. ∵PC′=PC=11-t ,PE=OB=1,AQ=m ,C′Q=CQ=1-m , ∴22AC C Q AQ 3612m ''=-=-. ∴.∵6116=--t t m ,即6116-=-tt m,∴63612=-t m ,即.将2111m t t 666=-+代入,并化简,得2322360-+=t t .解得:1211131113t t -+==.∴点P ,1)或(1131). 20. (1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析. 【解析】【分析】(1)根据“总利润=A 型电脑每台利润×A 电脑数量+B 型电脑每台利润×B 电脑数量”可得函数解析式;(2)根据“B 型电脑的进货量不超过A 型电脑的2倍且电脑数量为整数”求得x 的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a )x+500(100﹣x ),即y=(a ﹣100)x+50000,分三种情况讨论,①当0<a <100时,y 随x 的增大而减小,②a=100时,y=50000,③当100<m <200时,a ﹣100>0,y 随x 的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x )=﹣100x+50000;(2)∵100﹣x≤2x , ∴x≥1003, ∵y=﹣100x+50000中k=﹣100<0, ∴y 随x 的增大而减小, ∵x 为正数,∴x=34时,y 取得最大值,最大值为46600,答:该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元; (3)据题意得,y=(400+a )x+500(100﹣x ),即y=(a ﹣100)x+50000, 3313≤x≤60, ①当0<a <100时,y 随x 的增大而减小, ∴当x=34时,y 取最大值,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大. ②a=100时,a ﹣100=0,y=50000, 即商店购进A 型电脑数量满足3313≤x≤60的整数时,均获得最大利润; ③当100<a <200时,a ﹣100>0,y 随x 的增大而增大, ∴当x=60时,y 取得最大值.即商店购进60台A 型电脑和40台B 型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.21.4 9【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2 BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B (A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB 为⊙O 的直径, ∴AB=2AO ,∠ACB=90°, ∵AD ⊥DC ,∴∠ADC=∠ACB=90°, 又∵∠DAC=∠CAB , ∴△DAC ∽△CAB , ∴AC ADAB AC=,即AC 2=AB•AD , ∵AB=2AO , ∴AC 2=2AD•AO .点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质. 23.(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【解析】 【分析】()1连接.OE 由题意可证明BE CE =n n,于是得到BOE COE ∠=∠,由等腰三角形三线合一的性质可证明OE BC ⊥,于是可证明OE l ⊥,故此可证明直线l 与O e 相切;()2先由角平分线的定义可知ABF CBF ∠=∠,然后再证明CBE BAF ∠=∠,于是可得到EBF EFB ∠=∠,最后依据等角对等边证明BE EF =即可;()3先求得BE 的长,然后证明BED V ∽AEB V ,由相似三角形的性质可求得AE 的长,于是可得到AF的长. 【详解】()1直线l 与O e 相切.理由:如图1所示:连接OE .AE Q 平分BAC ∠,BAE CAE ∴∠=∠.BE CE nn∴=,OE BC ∴⊥.//l BC Q , OE l ∴⊥.∴直线l 与O e 相切.()2BF Q 平分ABC ∠,ABF CBF ∴∠=∠.又CBE CAE BAE Q ∠=∠=∠,CBE CBF BAE ABF ∴∠+∠=∠+∠.又EFB BAE ABF ∠=∠+∠Q ,EBF EFB ∴∠=∠. BE EF ∴=.()3由()2得8BE EF DE DF ==+=.DBE BAE ∠=∠Q ,DEB BEA ∠=∠, BED ∴V ∽AEB V .DE BE BE AE ∴=,即588AE =,解得;645AE =. 6424855AF AE EF ∴=-=-=.故答案为:(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得EBF EFB ∠=∠是解题的关键.24.(1)y =3x-;(2)P (0,2)或(-3,5);(3)M (1-,0)或(3+0). 【解析】 【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a ,b ,最后用待定系数法求出反比例函数解析式;(2)设出点P 坐标,用三角形的面积公式求出S △ACP =12×3×|n +1|,S △BDP =12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M 坐标,表示出MA 2=(m +1)2+9,MB 2=(m−3)2+1,AB 2=32,再三种情况建立方程求解即可得出结论. 【详解】(1)∵直线y =-x +2与反比例函数y =kx(k≠0)的图象交于A (a ,3),B (3,b )两点,∴-a +2=3,-3+2=b ,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x ;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1m=,∴M(−10)③当MB=AB时,(m−3)2+1=32,∴m=3m=,∴M(30)即:满足条件的M(−10)或(30).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键. 25.见解析 【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS 推出△BCD ≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可. 试题解析:∵△ABC 是等边三角形, ∴AC=BC,∠B=∠ACB=60°,∵线段CD 绕点C 顺时针旋转60°得到CE, ∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE, ∴∠BCD=∠ACE, 在△BCD 与△ACE 中,BC ACBCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE, ∴∠EAC=∠B=60°, ∴∠EAC=∠ACB, ∴AE ∥BC.26. (1)200;(2)72°,作图见解析;(3)310. 【解析】 【分析】(1)用一等奖的人数除以所占的百分比求出总人数;(2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数; (3)用获得一等奖和二等奖的人数除以总人数即可得出答案. 【详解】解:(1)这次知识竞赛共有学生2010%=200(名); (2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人), 补图如下:“二等奖”对应的扇形圆心角度数是:360°×40200=72°;(3)小华获得“一等奖或二等奖”的概率是:2040200+=310.【点睛】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.27.(1)y=﹣6x,y=﹣12x+2;(2)6;(3)当点E(﹣4,0130130)或(﹣134,0)时,△AOE是等腰三角形.【解析】【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=12×4×3=6;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【详解】(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=32ADOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=nx,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣6x,把B(m,﹣1)代入y=﹣6x,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:23 61k bk b-+=⎧⎨+=-⎩,解得:122kb⎧=-⎪⎨⎪=⎩,所以一次函数解析式为:y=﹣12x+2;(2)当y=0时,﹣12x+2=0,解得:x=4,则C(4,0),所以14362AOCS=⨯⨯=V;(3)当OE3=OE2=AO=,即E20),E30);当OA=AE1OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣32x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣134,即E4(﹣134,0),综上,当点E(﹣4,000)或(﹣134,0)时,△AOE是等腰三角形.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019—2020学年度淄博市周村初三中考二模初中数
学
数学试卷
本卷须知:
1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写〔涂〕准确。
2.本试题分第一卷和第二卷两部分。
第一卷〔1~4页〕为选择题,36分;第二卷〔5~12页〕为非选择题,84分;共120分。
考试时刻为120分钟。
3.第一卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号〔ABCD 〕涂黑。
如需改动,须先用橡皮擦洁净,再改涂其它答案。
第二卷须用蓝黑钢笔或圆珠笔直截了当答在试卷上。
考试时,不承诺使用运算器。
4.考试终止后,由监考教师把第一卷〔讲评用〕和第二卷及答题卡一并收回。
第一卷〔选择题 共36分〕
一、选择题:此题共12小题,在每题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上。
每题3分,错选、不选或选出的答案超过一个,均记0分。
1.以下运算正确的选项是
A .321x x -=
B .22122x x
--=- C .()6
32
a a a =⋅-
D .()
63
2
a a -=-
2
A
B C 1 D 3.今年3月5日,温家宝总理在«政府工作报告»中,讲述了六大民生新亮点,其中之一确
实是全部免除了西部地区和部分中部地区农村义务教育时期约52000000名学生的学杂费。
那个数据保留两个有效数字用科学记数法表示为 A .52×107
B .5.2×107
C .5.2×108
D .52×108
4.如图,是由一些相同的小正方体搭成的几何体的三视图,那么搭成那个几何体的小正方
体的个数是
A .4
B .5
C .6
D .7
5.在一个不透亮的袋中装有2个红球和3个白球,它们除了颜色外都相同,从中随机摸出
1个球,那么摸出红球的概率是 A .
1
2
B .
23
C .
1
5
D .
25
6.如图,O 内切于ABC △,切点分不为D E F ,,。
50B ∠=°,60C ∠=°,连接
OE OF DE DF ,,,,那么EDF ∠等于
A .40°
B .55°
C .65°
D .70°
7.以下关于x 的一元二次方程中,有两个不相等的实数根的方程是
A .2
40x +=
C .2
4410x x -+= C .230x x ++=
D .2
210x x +-=
8.p q p q a a a +=+,且26a =-,那么10a 等于
A .165-
B .33-
C .30-
D .21-
9.如图,假如从半径为9cm 的圆形纸片剪去
1
3
圆周的一个扇形,将留下的扇形围成一个圆锥〔接缝处不重叠〕,那么那个圆锥的高为
A .6cm
B .35cm
C .8cm
D .53cm
10.如图,矩形ABCD的边AB在x轴上,AB的中点与原点重合,AB=2,AD=1,过定点Q 〔0,2〕和动点P〔a,0〕的直线与矩形ABCD的边有公共点,那么a的取值范畴是.
A.-2≤a≤2 B.-1≤a≤2 C.-2<a<2 D.-1<a<1 11.函数2
y ax bx
=+与y ax b
=+的图像只可能是〔〕
12.如图,有一张矩形纸片ABCD,AB=3,AD=4,现将纸片折叠,使C点与A点重合,那么折痕EF的长为
A.15 B.12 C.15
4
D.5
第二卷〔非选择题共84分〕
二、填空题:此题共5小题,总分值20分.只要求填写最后结果,每题填对得4分.
13.如图,直线AD与直线BE相交于点C,
11
(1,0),(0,1),(,)
33
A B C,那么∠OBE+∠ODA等
于度.
14.一个骰子连续投2次,点数和为4
的概率是
.
15.一项调查统计情形如下图,本次抽样的样本容量是__________.图中c =_________.假
设被调查的对象占总体数的20%,请依照样本估量总体中A 类对应的数值为 .
16.n 是正整数,n P 〔n x ,n y 〕是反比例函数k
y x
=
图象上的一列点,其中11x =,22x =,…,n x n =;记112T x y =,223T x y =,…,9910T x y =;假设11T =,那么129T T T ⋅⋅⋅⋅⋅⋅的值是
______________.
17.如图,DE 是ABC ∆的中位线,M 是DE 的中点,CM 的延长线交AB 于N ,那么
ANME DMN S S 四边形:∆=_________________.
三、解答题:本大题共8小题,共64分.解答要写出必要的文字讲明、证明过程或演算步骤.
18.〔此题总分值6分〕
2311
2.2
x x x -<⎧⎪
⎨-+-⎪⎩, ① ≥ ②,并将其解集在数轴上表示出来. 19.〔此题总分值6分〕
小王、小李和小林三人预备打乒乓球,他们约定用〝抛硬币〞的方式来确定哪两个人先
上场,三人手中各持有一枚质地平均的硬币,同时将手中硬币抛落到水平地面为一个回合。
落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先上场;假设三枚硬币均为正面向上或反面向上,属于不能确定。
〔1〕请你完成以下图中表示〝抛硬币〞一个回合所有可能显现的结果的树状图;
〔2〕求一个回合能确定两人先上场的概率.
20.〔此题总分值8分〕
二次函数2
=++当1,2
y ax bx c
==时,都有3
x x
y=,
当3,4,5,6,7,8,9
=======时,y的值差不多上正整数,且01
x x x x x x x
<<,
a 求二次函数的解析式
21.〔此题总分值8分〕
某渔民预备承包一块正方形水域围网养鱼,通过调查得知:在该正方形水域四周的围网费用平均每千米0.25万元,上交承包费、购买鱼苗、饲料和鱼药等开支每平方千米需0.5万元。
政府为鼓舞渔民进展水产养殖,每位承包户补贴0.5万元.估量每平方千米养的鱼可售得4.5万元.假设该渔民期望养鱼当年获得净收益3.5万元,你应建议该渔民承包多大面积的水域?
22.〔此题总分值8分〕
河岸边有一根电线杆AB〔如以下图〕,河岸距电线杆AB水平距离是14米,即BD=14米,该河岸的坡面CD的坡度i为5.0:1,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,请你通过运算讲明在拆除电线杆AB时,为确保安全,是否将此人行道封上?〔提示:在地面上以点B为圆心,以AB长为半径的圆形区域为3≈〕
危险区域,7.1
23.〔此题总分值8分〕
1BO长为半如图〔1〕,∠ABC=90°,O为射线BC上一点,OB = 4,以点O为圆心,
2径作⊙O交BC于点D、E。
〔1〕当射线BA绕点B按顺时针方向旋转多少度时与⊙O相切?请讲明理由.
〔2〕假设射线BA绕点B按顺时针方向旋转与⊙O相交于M、N两点〔如图〔2〕〕,MN=22,求⌒MN的长.
24.〔此题总分值10分〕
如图1,是美国总统Garfield于1876年给出的一种验证勾股定理的方法。
Rt△ACB与Rt△DEB全等,点C、B、E共线,连接AD,能够证明△ABD是等腰三角形。
如图2,Rt△ACB与Rt△DEB全等,点C、B、E共线,连接AD,交BC于点F,请你找出图2中的所有等腰直角三角形〔不再添加线,不再添加字母〕,并给出证明。
25.〔此题总分值10分〕
:在Rt △ABO 中,∠OAB =90°,∠BOA =30°,AB =2,假设以O 为坐标原点,OA 所在直线为x 轴,建立如下图平面直角坐标系,点B 在第一象限内,将Rt △ABO 沿OB 折叠后,点A 落在第一象限内的点C 处. 〔1〕求点C 的坐标;
〔2〕假设抛物线()2
0y ax bx a =+≠通过C 、A 两点,求此抛物线的解析式;
〔3〕假设上述抛物线的对称轴与OB 交于点D ,点P 为线段DB 上一动点,过P 作y 轴的平行线,交抛物线于点M ,咨询:是否存在如此的点P ,使得四边形CDPM 为等腰梯形?假设存在,要求出现在点P 的坐标;假设不存在,请讲明理由.。