DP8422V中文资料
HT82V842中文资料
HT82V842CCD CDS/PGA/10b-20M-ADCBlock DiagramRev.1.001July 15,2004Features·Operating voltage:2.7V~3.6V ·Low power consumption:70mW (Typ.)·Power down mode:less than 30m W·Accepts a direct signal input to ADC or PGA at 1.0V PP (Typ.)·CCD signal input level:1.1V P-P (Max.)·10-bit ADC (up to 20MHz)-DNL:±0.6LSB (Typ.)·Black level neutralizer,target setting:16~127LSB ·Built-in serial interface·Independent ADC input conversion clock and dataoutput clock·Independent CDS and PGA gain control -CDS:-1.94/0/6/12dB -PGA:0~24dB·Wide gain range:-1.94~36dB·High speed sample and hold circuit:pulse width 11ns(Min.)·48-pin LQFP packageGeneral DescriptionThe HT82V842is a CMOS single-chip signal process-ing device for CCD area sensors.It consists of a clamp circuit,Correlated Double Sampler (CDS),Programma-ble Gain Amplifier (PGA),reference voltage generator,black level detection circuit,20MHz 10-bit A/D converter (ADC),timing generator for internally required pulses,serial interface for internal function control and PGA gain control.Pin AssignmentPin DescriptionPin No.Pin Name I/O Description 1,3,17~18,21NC¾No connection2,6~7,19,34,43VDD¾Positive power supply for analog circuit4VRN O Negative reference voltage for internal ADC Connect to V SS via0.1m F5VRP O Positive reference voltage for internal ADC Connect to V SS via0.1m F8~9,20,33,42VSS¾Negative power supply for analog circuit10VCOM O Common reference voltage for internal ADC 11CCDIN I CDS circuit data input12REFIN I CDS circuit reference input13CLPCAP O Clamp level output Connect to V SS via0.1m F14ADIN I ADIN signal input15OBCAP O Black level integration voltageConnect to V SS via0.1m F~1m F(by applications)16MONOUT O Monitor output of CDS or PGA22ADCK I ADC sampling clock input23SHR I Reference sampling pulse input24SHD I Data sampling pulse input25ADCLP I Pulse input for ADIN clamp and black calibration control26BLK I Blanking pulse input27CCDCLP I Clamp control input28OBP I Black level period pulse input29SCK I Serial clock input30SDATA I Serial data input31CS I Serial port chip selection(Active at low)32STBY I Power down control(Active low)35RESET I Reset signal(Active low)36OUTCK I Clock source for ADC output37~41,44~48DO0~DO9O Digital output from ADCRev.1.002July15,2004Absolute Maximum RatingsSupply Voltage.........................GND-0.3V to GND+6V Storage Temperature...........................-55°C to150°C Input Voltage.............................V SS-0.3V to V DD+0.3V Operating Temperature..........................-20°C to70°CNote:These are stress ratings only.Stresses exceeding the range specified under²Absolute Maximum Ratings²may cause substantial damage to the device.Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliabil-ity.D.C.Characteristics Ta=25°CSymbol ParameterTest ConditionsMin.Typ.Max.Unit V DD ConditionsV IH High Level Input Voltage3V¾0.7V DD¾V DD V V IL Low Level Input Voltage3V¾0¾0.3V DD V I IH High Level Input Current3V V IL=0V¾¾200m A I IL Low Level Input Current3V V IH=3.0V¾¾1m A I MD Operation Current at Monitor Disable3V f S=20MHz¾23¾mA I MA Supply Current at Monitor Active3V f S=20MHz¾26¾mA I SS Power Down Current3V¾¾¾10m AV CCDINAnalog Input Range 3VCCDIN input,f IN=1MHz¾ 1.1¾V P-PV ADIN3V ADIN input,f IN=1MHz¾ 1.0¾V P-P V CLPCAP Clamp Voltage3V¾ 1.5 1.7 1.9V t BLKCAL Black Calibration Time3V¾¾¾200Pixel V BLKCAL Maximum Calibration Offset Voltage3V¾¾±200¾mV G(0)CDS Gain(Set0dB)3V Absolute gain-2-10dBG(1)CDS Gain(Set6.02dB)3VRelative gain 5.52 6.02 6.52dBG(2)CDS Gain(Set12.04dB)3V11.5412.0412.04dB G(3)CDS Gain(Set-1.94dB)3V-2.44-1.94-1.44dB Gmin PGA Gain(Minimum Gain)3V Absolute gain-1.2-0.20.8dBGmax PGA Gain(Maximum Gain)3VRelative gain 22.90623.90624.906dBGstep PGA Gain(Gain Step)3V00.0470.094dB ER PA Total(CDS+PGA)Gain Monotony3V¾¾¾±4LSB RES Resolution3V¾¾¾10Bits DNL Differential Nonlinearity3V f S=20MHz¾±0.6±1.0LSB SN S/N3V¾¾58¾dB SND S/(N+D)3V¾¾56¾dBV COM ADC Common Voltage3V¾ 1.25 1.4 1.55VV RP V RP Voltage(Positive)3V¾ 1.55 1.65 1.75VV RN V RN Voltage(Negative)3V¾ 1.05 1.15 1.25V Rev.1.003July15,2004Symbol ParameterTest ConditionsMin.Typ.Max.Unit V DD ConditionsC CAL ADC Output Black Level Calibration Code3V¾16¾127LSB1¾127LSB ST CAL Calibration Code Resolution3V¾¾1¾LSB Note:Black calibration period is specified when C CAL is from16to127LSB.Although black level codes of1to15 could be set,t BLKCAL is not guaranteed for these codes.A.C.Characteristics VSS=0V,Ta=25°CSymbol ParameterTest ConditionsMin.Typ.Max.Unit V DD Conditionsf S Conversion Frequency 3.0V¾0.5¾20MHzt CYC Clock Cycle Time 3.0V¾50¾¾nst R Clock Rising Time 3.0V¾¾¾2nst F Clock Falling Time 3.0V¾¾¾2nst L Clock Low Period 3.0V¾23¾¾nst H Clock High Period 3.0V¾23¾¾nst WR SHR Pulse Width 3.0V¾11¾¾nst WD SHD Pulse Width 3.0V¾11¾¾nst DR SHR Sampling Aperture 3.0V¾¾¾4nst DD SHD Sampling Aperture 3.0V¾¾¾4nst PSUP Data Pulse Setup 3.0V¾2¾¾nst HOLD Data Pulse Hold 3.0V¾5¾¾nst SP Sampling Pulse Non-overlay 3.0V¾1¾¾nst SUPE Enable Pulse Setup 3.0V¾10¾¾nst HOLDE Enable Pulse Hold 3.0V¾10¾¾nst SUPOC OUTCK Setup 3.0V¾0¾¾nst HOLDOC OUTCK Hold 3.0V¾10¾¾nst DLD3-state Disable Delay 3.0V Active®High-Z¾20¾nst DLE3-state Disable Delay 3.0V High-Z®Active¾20¾nst DL ADC Output Data Delay 3.0V¾¾6¾ns Rev.1.004July15,2004Functional DescriptionCDS(Correlated Double Sampling)CircuitConnect the CCDIN pin to the CCD sensor thru a capac-itor.Connect also the REFIN pin to V SS thru a capacitor. The CDS circuit holds the pre-charge voltage of the CCD at SHR pulse and do sampling of the CCD pixel data at SHD pulse.Correlated noise is removed by sub-tracting the pre-charge voltage from the pixel data level. CDS could choose a gain setting from0,6.02,12or -1.94dB(Mode3,register D4and D5bits).A CDS gain is controlled by PGA gain.It is recommended to in-crease the CDS gain then increase the PGA gain to re-duce the noise level.Clamp Circuits·DC clampThe DC level of the CCDIN/REFIN input is fixed by an internal DC clamp circuit.The DC level of the C-coupled CCD signal at the CDS input is set to CLPCAP by the internal DC clamp circuit.The clamp switches are usually turned on at the black level cali-bration period.The CLPCAP pin connects to V SS thru a0.1m F capacitor.·ADIN signal clampClamp operation can also be used for the ADIN path. The clamp voltage is different from the CCDIN/REFIN signal and it could be turned off by register setting.At ²ADIN signal to ADC²mode,the ADCLP signal con-trols the²clamp circuit².Black level calibration circuit is also controlled by ADCLP at²ADIN signal to PGA²mode.·Clamp control¨Clamp current(Mode2register D7).Charge current can select normal or fast clamp.¨Clamp target(Mode2register D5and D4),input signals(REFIN and CCDIN)to be clamped are selectable.The clamp function can be turned off. Black Level Cancel CircuitThe purpose of a black level cancel circuit is to control the DC level of the PGA input.The ADC output code at an optical black period may correspond to the black level code set up by the register.A black level code of(1 to)16to127LSB is available(the default is64LSB).While the OBP pin is active a black level cancel loop is established.In the loop,a comparison is made between the ADC output code and the black level code,the result controls the voltage of the OBCAP capacitor.Hence,the OBCAP voltage settles gradually and the signal level of the optical black period corresponds to the established value.The following conditions will reset the OBCAP capaci-tor:·Set the black level reset register to²1²(Mode1regis-ter D1=1).·Set the RESET pin to low·Power down by STBY pin or register controlThe DC clamping(CCDCLP)is allowed while the OBP pin is low.The black level cancellation is available at ²ADIN signal to PGA²mode.The black level cancella-tion is available at the ADCLP period in this mode.The clamping function and black level canceling function are done simultaneously.Rev.1.005July15,2004Rev.1.006July 15,2004Black Level Calibration TimingHigh-speed Black Level CancellationThe HT82V842has a high speed black level cancella-tion function,which by means of a register setting en-hances the settling speed within a fixed period from access to the serial interface.It increases the gain of the setting DAC within a fixed period and in turn increases the charge/discharge current to the OBCAP capacitor.The Mode 3register D3to D0data controls the black level boost function.The default setting is always lowgain (D3~D0=5¢b0).By setting the register D2~D0,the gain becomes high by 1to 7times that of the OBP pulse period after any access to the serial interface.After that period,the gain returns to low.When setting D3to 1¢b1,the gain is always high.The CS signal becomes the startingpoint of the OBP pulse count.The following figure shows the black loop settling gain boost timing chart when the boost control is on (D3=²0²)and the boost period is set to 3.Black Loop Settling Gain Boost TimingSymbol Parameter ConditionMin.Typ.Max.Unit t SUCS CS Setup Time ¾10¾¾ns t HCSCS Hold Time¾10¾¾nsGain Control CircuitThe total gain for a CCD input signal covers from -1.94dB to 36dB.The CDS range is 0/6/12/-1.94dB.The PGA rough is 0/6/12/18dB and ADC fine is 0to 6dB,0.047dB/step.The CDS gain is controlled by a 2-bit register and the PGA gain is controlled by a 9-bit register.A/D Converter CircuitThe HT82V842includes one 20MHz 10bits AD con-verter.The ADC converts the following signals.·The signal from the CCDIN input through a CDS andPGA.·The signal from the ADIN input through an PGA at theADIN mode.·The signal from the ADIN input at the ADIN mode.A/D Conversion RangeThe analog input range of the ADC is determined by the internal reference voltage.The full scale of the ADC is 1.0V PP .Rev.1.007July 15,2004A/D InputDigital Output CodeMSB LSB D9D8D7D6D5D4D3D2D1D0Full Scale1111111111::::::::::::1000000000:0111111111:::::::::::Zero ScaleADC Data Output (Coding:Straight Binary)A/D Converter Output Code (Mode 1Register D5=1)The format of an ADC digital output is a straight binary.When in the input zero reference voltage,the output code will be all zero and when the input is a full scale voltage,the output code will be all one.Clock,Pipeline Delay,Digital Data Output Timing The ADCK input is used for an A/D conversion.The ADC input signal is sampled at the falling edge of the ADCK input and 10bits parallel data is output at the ris-ing edge of the ADCK input after a 5.5clock of pipeline delay.High-Z Control of ADC Digital OutputADC digital outputs become High-Z under the following conditions:·Set the ADC output bit to one.(Mode 1register D2=1)·Set the STBY pin to low·Set the power control bit to one (Mode 1registerD0=1)Miscellaneous Function(ADC Direct Input,ADIN Mode)The direct input path to the ADC or the PGA is achieved by means of a register setting.The selectable paths are as follows:·Function disable (default,Mode 1register D5=0,D4=0)·ADIN input to the PGA (Mode 1register D5=0,D4=1)·ADIN input to the PGA (Mode 1register D5=1,D4=Don ¢t care)The BLK,SHD and SHR inputs are ignored at the ADIN mode.Power Down ModeThe power down mode can be set either by register set-ting or by the STBY pin.Monitor OutputWhen setting Mode 2(D1and D0),the signal from MONOUT is selectable.The alternatives are OFF,CDS output,PGA output or REFIN/CCDIN output.The MONOUT pin gain is fixed to 0dB regardless of the gain control register setting when the CDS output is selected.The MONOUT level becomes V COM at zero reference level.The signals are output in reverse for the CCD in-put.Polarity InversionThe following input polarities can be inverted by register setting:·ADCK (A/D converter sampling clock,Mode 1registerD6)·SHR and SHD (CDS sampling clock,Mode 2registerD3and D2)·BLK,OBP,CCDCLP and ADCLP (Mode 2register D3and D2)Data Output ClockThe ADCK input or the OUTCK input is selectable as an ADC data output clock.Serial Interface CircuitThe internal registers of the HT82V842are controlled by a 3-wire serial interface.The data is a 16-bit length se-rial data that consists of a 2-bit operation code,4bits ad-dress and 10bits data.Each bit is fetched at the rising edge of the CS input.Keep CS to high when not access HT82V842.It is prohibited to write to a non-defined ad-dress.When a data length is below 16bits,the data is not executed.RegistersThe HT82V842has 10bits ´7registers that control the operations.All registers are write only,the serial regis-ters are written by the serial interface.R/WAddressRegister Name Function Description A3A2A1A0W0000Mode1DOUT timing control/OUTCK polarity/ADCK polarity/ADIN connec-tion/ADC output/Black level reset/Power downW0001Mode2Clamp current/ADIN clamp/Clamp target/S/H,enable logic/Monitor selectionW0010Mode3/CDS gain CDS gain control/Black loop gain boost/Boost periodW0011PGA gain PGA gainW0100Black level ADC code at black level(1LSB step)Register MapRegister Bit AssignmentD9D8D7D6D5D4D3D2D1D0 Mode1Default X000000000 FunctionsDOUT timing controlÖOUTCK polarityÖADCK polarityÖADIN connection------ReservedÖADC outputÖBlack level resetÖPower downÖMode2Default X X00000000 FunctionsClamp currentÖADIN clampÖClamp target------S/H,enable logic------Monitor selection------Mode3Default X X X X000000 FunctionsCDS gain control------Black loop gain boostÖBoost period---------------------------PGA GainDefault X000000000 FunctionsPGA gain----------------------------------------------------------------------------------------------------Black LevelDefault X X X1000000 FunctionsBlack level------------------------------------------------------------------------Rev.1.008July15,2004Register OperationsControlOperationsD9D8D7D6D5D4D3D2D1D0Mode1DOUT timing control 0DOUT synchronizes to ADCK 1DOUT synchronizes to OUTCKOUTCK polarity 0DOUT changes at OUTCK rising edge 1DOUT changes at OUTCK falling edgeADCK polarity 0Normal operation as timing chart 1ADCK clock inversionADIN connection 00ADIN function OFF 01ADIN signal to PGA 1x ADIN signal to ADCReserved 0Reserved 1ReservedADC output 0Normal operation,ADC data output 1ADC output high-Z,or logic of STBYBlack level reset 0Normal operation1Black level reset,or logic of RESETPower down 0Normal operation1Power down,or logic of STBYMode2Clamp current 0Normal clamp±50m A 1Fast clamp±100m AADIN clamp 0Clamp operation active for ADIN 1No clamp for ADINClamp target 00Normal mode,clamp both REFIN and CCDIN 01Clamp REFIN only10Clamp CCDIN only11Clamp offS/H,enable logic 00Normal operation as timing chart 01S/H control polarity inversion10Enable control polarity inversion 11Both of S/H and enable inversionMonitor selection 00Monitor off01CDS signal to monitor10PGA output monitor11Output REFIN and CCDINMode3CDS gain control 00CDS gain=odB01CDS gain=6.02dB 10CDS gain=12.04dB 11CDS gain=-1.94dBBlack loop gain boost 0Boost control on 1Always high gainRev.1.009July15,2004ControlOperations D9D8D7D6D5D4D3D2D1D0Boost period0000Always low gain0001High gain for1OBP pulse0010High gain for2OBP pulse0011High gain for3OBP pulse0100High gain for4OBP pulse0101High gain for5OBP pulse0110High gain for6OBP pulse0111High gain for7OBP pulseControlDecimal HEX PGA Gain(dB) D9D8D7D6D5D4D3D2D1D0PGA gain 0000000000000 0000000001110.046 0000000010220.093 0000000011330.142 0000000100440.187¯¯¯¯0001111110623E 2.915 0001111111633F 2.962 00100000006440 3.011 00100000016541 3.056¯¯¯¯00111111111277F 5.972 010000000012880 6.021 010000000112981 6.058¯¯¯¯0110000000192C09.031¯¯¯¯0111111111255FF11.994 100000000025610012.041 100000000125710112.087¯¯¯¯101000000032014015.05¯¯¯¯101111111138317F18.14 110000000038418018.061 110000000138518118.108¯¯¯¯11100000004481C021.071¯¯¯¯11111111105101FE23.987 11111111115111FF24.032Rev.1.0010July15,2004Timing DiagramsRev.1.0011July 15,2004Operation,ADC CodeBlack CodeD9D8D7D6D5D4D3D2D1D0DecimalHEXBlack level0000000Forbidden Forbidden 000111¯¯¯000111115F 0010000161000100011711001001018120100111913¯¯¯01000003220¯¯¯100006440¯¯¯11111001247C 11111011257D 11111101267E 11111111277FAD Conversion Timing (at ADIN (ADC)Input Mode 1Register D5=1)These figures are shown when the Mode 1D8bit is set to ²1²,and an external clock is input to the OUTCK pin.When setting D8bit to ²0²,the ADCK is used as OUTCK.Note:At default condition in ADIN mode,data are sampled at the falling edge of the ADCK clock,and are output at the rising edge of the OUTCK clock.Set the ADCK polarity register to ²1²when the data are sampled and are output at the falling edge of the ADCK clock.The diagram on the upper portion of this page shows the default timing and the lower left figure shows the in-verted timing.Delay from data sampling to data outputADCK normal:At Mode 1register D6=0;5.5clk delay ADCK inversion:At Mode 1register D6=1;6.0clk delayIn ADIN input mode,the above mentioned register setting is available.At ADIN (PGA)input Mode 1register D5=0and D4=1,digital data output is delayed by 2clks.ADCK Clock WaveformRev.1.0012July 15,2004ADC Direct Input ChartADCK Inversion Chart OUTCK Timing ChartControl Interface Timing V SS =0V,Ta=25°C)Symbol ParameterTest Conditions Min.Typ.Max.Unit VDD ConditionsS CYC SCK Clock Frequency 3.0V ¾¾¾10MHz S LO SCK Clock Low Level Width 3.0V ¾40¾¾ns S HI SCK Clock High Level Width 3.0V ¾40¾¾ns S SU Data Setup Time Period 3.0V ¾20¾¾ns S H Data hold Time Period 3.0V¾20¾¾ns S R SCK,CS Rising Time Period 3.0V 30%®70%¾¾6ns S F SCK,CS Falling Time Period 3.0V 70%®30%¾¾6ns SNUMNumber of Serial Data3.0V¾¾16¾pcsData Output SequenceRev.1.0013July 15,2004Serial I/F Timing ChartPixel Data Readout Sequence (1):Start of ConversionPixel Data Readout Sequence(2):End of ConversionClock Timing Variations by Register SettingClock timing variations when it is inverted by register settings.·No inversionMode1register D6=0,Mode2register D2=0;DefaultPulse Control(Default:No Inversion)Rev.1.0014July15,2004·ADCK inversionMode1register D6=1,Mode2register D2=0Pulse Control(ADCK Inversion)·SHR&SHD inversionMode1register D6=0,Mode2register D2=1Pulse Control(SHR&SHD Inversion)·ADCK,SHR&SHD inversionMode1register D6=1,Mode2register D2=1Pulse Control(ADCK,SHR&SHD Inversion)Rev.1.0015July15,2004Application CircuitsNote:²*²Pin18can also connect to ground with a4.7k W resistor.²**²The capacitor connects to OBCAP pin maybe need adjust by user¢s applications from0.1m F~1m F typically. Rev.1.0016July15,2004Package Information48-pin LQFP(7´7)Outline DimensionsSymbolDimensions in mmMin.Nom.Max.A8.90¾9.10B 6.90¾7.10C8.90¾9.10D 6.90¾7.10E¾0.50¾F¾0.20¾G 1.35¾ 1.45H¾¾ 1.60I¾0.10¾J0.45¾0.75K0.10¾0.20a0°¾7°Rev.1.0017July15,2004Holtek Semiconductor Inc.(Headquarters)No.3,Creation Rd.II,Science Park,Hsinchu,TaiwanTel:886-3-563-1999Fax:886-3-563-1189Holtek Semiconductor Inc.(Taipei Sales Office)4F-2,No.3-2,YuanQu St.,Nankang Software Park,Taipei115,TaiwanTel:886-2-2655-7070Fax:886-2-2655-7373Fax:886-2-2655-7383(International sales hotline)Holtek Semiconductor Inc.(Shanghai Sales Office)7th Floor,Building2,No.889,Yi Shan Rd.,Shanghai,China200233Tel:021-6485-5560Fax:021-6485-0313Holtek Semiconductor Inc.(Shenzhen Sales Office)43F,SEG Plaza,Shen Nan Zhong Road,Shenzhen,China518031Tel:0755-8346-5589Fax:0755-8346-5590ISDN:0755-8346-5591Holtek Semiconductor Inc.(Beijing Sales Office)Suite1721,Jinyu Tower,A129West Xuan Wu Men Street,Xicheng District,Beijing,China100031Tel:010-6641-0030,6641-7751,6641-7752Fax:010-6641-0125Holmate Semiconductor,Inc.(North America Sales Office)46712Fremont Blvd.,Fremont,CA94538Tel:510-252-9880Fax:510-252-9885CopyrightÓ2004by HOLTEK SEMICONDUCTOR INC.The information appearing in this Data Sheet is believed to be accurate at the time of publication.However,Holtek as-sumes no responsibility arising from the use of the specifications described.The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification,nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise.Holtek¢s products are not authorized for use as critical components in life support devices or systems.Holtek reserves the right to alter its products without prior notification.For the most up-to-date information, please visit our web site at .Rev.1.0018July15,2004。
ELM842B中文资料(ELM Technology)中文数据手册「EasyDatasheet - 矽搜」
ELM842B CMOS运算放大器
■电气特性(VDD = 1.5V)
参数 输入偏移电压 输入偏置电流 共模输入电压范围 最大输出电压摆幅 最大输出源电流 开环增益 共模抑制比 电源电压抑制比 目前消费 单位增益带宽 压摆率
符号
条件
Vio
Vout=Vdd/2
Hale Waihona Puke IibVcmrVouts Vid=100mV, RL=200kΩ
1 nA
0.04
2.90 V
2.80
V
45 100
μA
80
dB
85
dB
80
dB
145 280 μA
1
MHz
0.45 1.00
V/μs
■标识
SOT-25
No.
Mark
a
C
b
0 to 9
c
0 to 9
内容
ELM842B
批号 批号
芯片中文手册,看全文,戳
ELM842B CMOS运算放大器
ELM842B CMOS运算放大器
■典型特征
源电流 - Vdd
200 180 160 140 120 100
电流8(0 A)
60 40 20
0 123456
Vdd (V) 源电流 - 热门
200
150
100
电流(A)
50
Vdd=3V Vdd=1.5V
-20 -10 0
200 180 160 140 120 100
■Note
1)负载电阻 ELM842B是专为低功耗应用;因此,输出源电流仅为90μA(典型值在VDD = 1.5V).其结果是, ELM842B不能试图驾驶小负载电阻时,以防护持输出电压摆幅.考虑到这一点,负载和反馈电阻为 ELM842B应仔细选择.
mcp4822-中文
应用
• • • • • 设定点或失调微调 传感器校准 精度等级可选择的电压基准 便携式仪表 (电池供电) 光通信器件的校准
相关产品 (1)
P/N MCP4801 MCP4811 MCP4821 MCP4802 MCP4812 MCP4822 MCP4901 MCP4911 MCP4921 MCP4902 MCP4912 MCP4922 注 DAC 分辨率 8 10 12 8 10 12 8 10 12 8 10 12 通道数 1 1 1 2 2 2 1 1 1 2 2 2 外部 内部 (2.048V) 电压基准 (VREF)
ISHDN_SW VPOR
— —
5 1.85
— —
µA V
n INL DNL n INL DNL n INL DNL VOS VOS/°C gE G/°C VREF VREF/°C
8 — — 10 — — 12 — — — — — — — — — — —
— ±0.25 ±0.2 — ±1 ±0.2 — ±4 ±0.25 ±0.02 -5 -0.10 -3 2.048 125 0.25 45 0.09 290 1.2 1.0 400
ISHDN_SW VPOR
— —
3.3 2.0
6 —
µA V
n INL DNL n INL DNL n INL DNL VOS VOS/°C gE G/°C
8 -1 -0.5 10 -3.5 -0.5 12 -12 -0.75 -1 — — -2 —
— ±0.125 ±0.1 — ±0.5 ±0.1 — ±2 ±0.2 ±0.02 0.16 -0.44 -0.10 -3
<10 45 <10 <10
— — — —
PAM2842中文规格书
Rdown
Vdd_5V Comp
ENA
ENA
ENA
ENA
C2
R1
Vdr RT Sense+
C4
R TN
C2
R1
Vdr RT Sense+
C4
Rsense
AGND Sense-
RT
RT
AGND Sense-
Boost with low side current sense
Boost with high side current sense
方法1: 使用Rsese设定LED电流: 设定LED电流最基本的方法是连接在Rsense+和Rsense-引脚之间的电阻,计算公式如下: ILED =0.1/ Rsense 由于会流过比较大的电流,必须要考虑这个电阻的功耗状况。 Rsense 这个电阻在电路中有两种接法:高端采样和低端采样。在降压结构中只能使用高端采 样,在其它结构中可以使用高端和低端采样,这样可以方便PCB布局走线。 方法2: 使用Comp引脚接受PWM调光信号: 在下面这个电路中,Rsense用来设定常开状态时的LED电流,LED的平均电流与PWM信号低 电平的时间成正比,此时Comp引脚上是高电平。这儿使用2N7002(Q1)来隔离并反相调光信号。 (见 图-1).
Rsense Cin PAM2842 C1
HVin PGND SW
D1 L1 Rup
OV
Co
Rdown C3
R TN
ENA
ENA
Vdd_5V Comp
C2
Vdr RT
R1
Sense+ AGND Sense-
C4
RT
Buc k with high side current sense
AP2952 V2.5中文
2A, 18V 同步整流降压转换器概述AP2952是一款单片同步整流降压稳压器,它集成了导通阻抗130mΩ的MOSFET,可以在很宽的输入电压范围(4.75V-18V)内提供2A的负载能力。
电流模式控制使其具有很好的瞬态响应和单周期内的限流功能。
可调的软启动时间能避免开启瞬间的冲击电流,在停机模式下,输入电流小于1uA。
AP2952封装为SOP8, 同时提供了紧凑的系统方案,可以最大限度的减少外围元件。
应用z分立式电源系统z网络系统z FPGA, DSP, ASIC电源z绿色电子产品z笔记本电脑特性z2A输出电流z输入电压范围4.75V到18Vz内部集成130mΩ的功率MOSFETz输出可调范围为0.925V到15Vz效率可达95%z可调软启动时间z外围使用低ESR瓷片电容可保证其稳定工作z固定的450kHz工作频率z每个周期内都有限流功能z具有欠压保护功能z散热能力较强的SOP8封装封装SOP8典型应用电路图图1 典型应用电路图典型效率曲线1200图2 典型效率曲线引脚说明引脚序号 引脚名称引脚描述1BS 上管栅极驱动升压输入。
BS 为上管N 沟道MOSFET 开关提供驱动。
从SW 到BS 端连接一个0.01uF 或更大的电容。
2IN电源输入。
为IC 以及降压转换器开关提供输入电源。
在4.75V 至18V 的电压范围驱动IN 。
通过一个适当的大电容旁路IN 到地,以消除输入IC 的噪声。
3SW 功率开关输出。
SW 为开关节点提供电源输出。
从SW 端到输出负载连接输出LC 滤波器。
请注意,从SW 到BS 需要接一个电容。
4 GND 电源地。
5FB反馈输入端。
FB 侦测输出电压来调节这个电压。
通过来自输出电压的一个电阻分压器驱动FB 。
反馈阈值电压是0.925V 。
6COMP 补偿节点。
COMP 用来补偿调节控制回路。
从COMP 脚到GND 连接一个RC 网络来补偿调节控制回路。
在某些情况下,从COMP 到GND 之间必须接一个额外的电容。
CS8422-CNZ资料
SDOUT1 OSCLK1 OLRCK1 TDM_IN
RX0/RXP0 RX1/RXN0 RX2/RXP1 RX3/RXN1
VA AGND Clock Generator DGND V_REG Format Detect
C or U Data Buffer (First 5 Bytes)
3:1 MUX
Audio Ports
Time Division Multiplexing (TDM) Mode Integrated Oscillator for use with External
Crystal
Four General-purpose Output Pins (GPO) +3.3 V Analog Supply (VA) +1.8 V to 5.0 V Digital Interface (VL) Space-saving 32-pin QFN Package
AD1/ CDIN
AD0/ CS
Copyright © Cirrus Logic, Inc. 2008 (All Rights Reserved)
SEP '08 DS692PP1
元器件交易网
CS8422
System Features
S/PDIF Compatible Receiver 28 kHz to 216 kHz Sample Rate Range 2:1 Differential AES3 or 4:1 S/PDIF Input Mux De-emphasis Filtering for 32 kHz, 44.1 kHz, and 48 kHz Recovered Master Clock Output: 64 x Fs, 96 x Fs, 128 x Fs, 192 x Fs, 256 x Fs, 384 x Fs, 512 x Fs, 768 x Fs, 1024 x Fs 49.152 MHz Maximum Recovered Master Clock Frequency Ultra-low-jitter Clock Recovery High Input Jitter Tolerance No External PLL Filter Components Required Selectable and Automatic Clock Switching AES3 Direct Output and AES3 TX Passthrough On-chip Channel Status Data Buffering Automatic Detection of Compressed Audio Streams Decodes CD Q Sub-Code
302S49W822KV4U中文资料(Johanson Dielectrics)中文数据手册「EasyDatasheet - 矽搜」
W .255 ±.015 (6.48 ±.38)
T
0.160最大. (4.06)
E/B .025 ±.015 (0.64±.38)
Rated
电压
250 VDC 500 VDC 630 VDC 1000 VDC 2000 VDC 3000 VDC 4000 VDC 5000 VDC 6000 VDC 500 VDC 630 VDC 1000 VDC 2000 VDC 3000 VDC 4000 VDC 5000 VDC 6000 VDC 500 VDC 630 VDC 1000 VDC 2000 VDC 3000 VDC 4000 VDC 5000 VDC 6000 VDC 500 VDC 630 VDC 1000 VDC 2000 VDC 3000 VDC 4000 VDC 5000 VDC 6000 VDC
R18
SIZE
R15=0805 R18=1206 R29=1808 S41=1210 S43=1812 S47=2220 S48=2225 S49=1825
W
介电
N = NPO W = X7R
102
电容
第一个两位数字
显著;第三位
代表人数
零. 102 = 1000 pF 104 = 0.10 µF
K
公差
X7R电 介 质
起码
极大
0.010 µF
0.470微法
1000 pF
0.330微法
1000 pF
0.180 µF
1000 pF
0.100 µF
100 pF
0.010 µF
100 pF
6800 pF
100 pF
2200 pF
100 pF
uc3842中文资料
UC3842中文资料简介UC3842是一款广泛应用于开关电源控制器的集成电路。
它采用PWM(脉冲宽度调制)技术,通过控制开关管的导通和关断时间来控制输出电压。
UC3842具有高效率、稳定性好、可靠性高的特点,被广泛应用于各种类型的开关电源设计中。
功能特点•提供电压反馈回路控制功能,确保输出电压稳定;•集成了过载保护功能,可保护电路免受过大电流的损害;•支持上电软启动功能,以减少开关电源启动时的电流冲击;•支持电流限制功能,可确保输出电流不超过额定值;•支持频率调节功能,可根据需要调整开关频率;•支持自动关断功能,以降低功耗和热损耗。
电气参数UC3842的电气参数如下:•输入电压范围:3V至30V;•输出电压范围:0.1V至29.5V;•最大输出电流:1A;•工作温度范围:-40°C至125°C;•输出电压精度:±1%;•频率范围:50kHz至500kHz。
引脚功能UC3842的引脚功能如下:•VIN:输入电压;•GND:地;•FB:电压反馈;•COMP:比较器输入;•CS:电流限制;•RT/CT:外部频率调节;•VREF:参考电压;•OUT:开关输出。
应用领域由于UC3842具有高性能和多功能特点,使其在许多领域中得到广泛应用,包括:1.电源供应器:UC3842可用于设计各种类型的开关电源供应器,包括电视机、电脑、手机等的电源适配器;2.LED驱动器:UC3842可用于设计LED驱动器,使LED的亮度和稳定性得到有效控制;3.电动机控制器:UC3842可用于设计电动机控制器,使电动机的运行更加平稳;4.太阳能控制器:UC3842可用于设计太阳能控制器,提高太阳能的利用效率。
设计注意事项在设计中,需要注意以下几点:1.输入电压范围应在规定的3V至30V之间,超过此范围可能导致芯片损坏;2.输出电压和电流应在规定范围内,以确保正常工作;3.对于不同应用场景,频率和功率等参数需要根据具体情况进行调整;4.在使用过程中,应注意散热问题,避免芯片过热。
SH69P862CV2.1中文资料
程序计数器只能寻址4K程序ROM空间 (参考ROM说明)。
1.2. ALU和CY
ALU 执行算术运算和逻辑操作。ALU具有下述功能: 二进制加法/减法 (ADC, ADCM, ADD, ADDM, SBC, SBCM, SUB, SUBM, ADI, ADIM, SBI, SBIM) 加法/减法的十进制调整 (DAA,DAS) 逻辑操作 (AND, ANDM, ANDIM, EOR, EORM, EORIM, OR, ORM, ORIM) 条件跳转 (BA0, BA1, BA2, BA3, BAZ, BNZ, BC, BNC) 逻辑移位元 (SHR)
PIN2F.0
PIN4F
PIN6F.0 VREF0 PACR.0 PBCR.0
读/写
说明
读/写 中断允许标志寄存器
读/写 中断请求标志寄存器
读/写 读/写
第2-0位: 定时器0模式寄存器 第3位: T0信号沿选择寄存器
第2-0位: 定时器1模式寄存器 第3位: 定时器1功能启动寄存器
读/写 定时器0载入/计数器低位寄存器
注意:
堆栈嵌套包括子程序调用和中断请求子程序调用, 其最大值为 8层。如果程序调用和中断请求的数量超过8层, 堆栈底部将溢 出, 程序将无法正常执行。
2. RAM 内建RAM由通用数据存储器和系统寄存器组成。由于RAM的静态特性, 数据存储器能在CPU进入STOP或者HALT方式后保持其 中的资料不变。
PWMS TCK2
$21
PD.3
PD.2
$22
PD.7
VIPer22A应用中文资料
AN2097应用说明VIPower:采用VIPer22A的10W空调开关电源1. 摘要新的空调机采用两个主低压输出给内部电子设备供电。
这两个主输出的低压分别是+12V和+5V。
低输出电压是由一个内部开关电源产生。
这个开关电源需要以下多个重要特性:效率高,重量轻,尺寸小,待机功耗低等。
设计人员利用VIPerX2系列产品可以开发出一个含有所有这些重要功能的电源,因此,该系列产品是开发空调应用的最理想的解决方案,特别是下文介绍的电路板是为改进图1所示的特性而专门开发的,本文在表1列举的技术规格方面讨论了空调开关电源应用。
表1:电气规格图1:电路板布局1. VIPERX2A 描述VIPerX2A 是一个单封装的产品,在同一颗芯片上整合了一个专用电流式PWM控制器和一个高压功率场效应MOS晶体管。
这种方法可以减少组件数量,降低系统成本,简化电路板设计。
因此,这个产品家族广泛用于离线开关式电源。
此外,该系列产品还采用微型的SMD封装 (SO-8)。
VIPer 系列的待机功耗(小于1W)符合蓝天使和能源之星等节能标准。
1.1. 一般特性VIPerx2A 产品采用ST的VIPower M0-3 高压专利技术,M0-3 高压技术利用一个P型掩埋层的方法,允许在同一颗芯片上集成低压系统(PWM)和电流垂直流动的功率级,如图2所示。
VIPerX2A 产品有以下一般特性:-自动热关断-高压启动电流源输入交流电压范围85-265Vac输出112V输出25V/400mA(连接输出1的线性稳压器)纹波电流<50mA连续电流输出电流(12V和5V)600mA峰值电流,小于5分钟待机功耗<1W-防止输出短路导致击穿故障的打嗝(HICCUP)模式-保证低负载条件下低功耗的突发模式而且,VIPower M0-3技术还可用于开发最小击穿电压为730V 的功率场效应MOS 晶体管。
表2说明了该产品在不同的封装和工作条件下的功率处理能力。
维沙伊·西尔康斯IX7842DP数据手册说明书
Vishay SiliconixSi7842DPDocument Number: Dual N-Channel 30-V (D-S) MOSFET with Schottky DiodeFEATURES•Halogen-free According to IEC 61249-2-21Available•LITTLE FOOT ® Plus Schottky•New Low Thermal Resistance PowerPAK ®Package with Low 1.07 mm Profile•100 % R g Tested APPLICATIONS•Bus and Logic DC-DCPRODUCT SUMMARYV DS (V)R DS(on) (Ω)I D (A)300.022 at V GS = 10 V 100.030 at V GS = 4.5 V8.5SCHOTTKY PRODUCT SUMMARYV DS (V)V SD (V)Diode Forward VoltageI F (A)300.50 V at 1.0 A3.0Notes:a.Surface Mounted on 1" x 1" FR4 board.b.See Solder Profile (/ppg?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.c.Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components. ABSOLUTE MAXIMUM RATINGS T A = 25 °C, unless otherwise notedParameterSymbol 10 sSteady StateUnit Drain-Source Voltage V DS 30VGate-Source VoltageV GS± 20Continuous Drain Current (T J = 150 °C)a T A = 25 °C I D 10 6.3AT A = 70 °C6.05.0Pulsed Drain CurrentI DM 30Continuous Source Current (Diode Conduction)aI S 2.9 1.1Maximum Power Dissipation aT A = 25 °CP D 3.5 1.4W T A = 70 °C2.20.9Operating Junction and Storage T emperature Range T J , T stg- 55 to 150°CSoldering Recommendations (Peak Temperature)b,c260THERMAL RESISTANCE RATINGSParameterSymbol MOSFET SchottkyUnit Typical Maximum Typical Maximum Maximum Junction-to-Ambient a t ≤ 10 s R thJA 26352635°C/WSteady State 60856085Maximum Junction-to-Case (Drain)Steady StateR thJC3.9 5.53.9 5.5 Document Number: 71617Vishay SiliconixSi7842DPNotes:a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.b. Guaranteed by design, not subject to production testing.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.SPECIFICATIONS T J = 25 °C, unless otherwise notedParameter S ymbol Test Condition Min. Typ.bMax.UnitStaticGate Threshold Voltage V GS(th) V DS = V GS , I D = 250 µA 0.82.4V Gate-Body LeakageI GSSV DS = 0 V, V GS = ± 20 V ± 100nAZero Gate Voltage Drain CurrentI DSSV DS = 30 V , V GS = 0 VCh-11µA Ch-2100V DS = 30 V , V GS = 0 V , T J = 85 °CCh-115Ch-22000On-State Drain Current aI D(on) V DS = 5 V , V GS = 10 V 20A Drain-Source On-State Resistance a R DS(on) V GS = 10 V , I D = 7.5 A 0.0180.022ΩV GS = 4.5 V , I D = 6.5 A 0.0240.030Forward T ransconductance a g fs V DS = 15 V, I D = 7.5 A 22S Diode Forward Voltage a V SDI S = 1 A, V GS = 0 VCh-10.8 1.2V Ch-20.470.5Dynamic bTotal Gate Charge Q g V DS = 15 V , V GS = 10 V , I D = 7.5 A1320nCGate-Source Charge Q gs 2Gate-Drain Charge Q gd 2.7Gate Resistance R g 0.51.2 3.2ΩTurn-On Delay Time t d(on) V DD = 15 V , R L = 15 Ω I D ≅ 1 A, V GEN = 10 V , R g = 6 Ω816ns Rise Timet r 1020Turn-Off Delay Time t d(off) 2140Fall Timet f 1020Source-Drain Reverse Recovery Timet rrI F = 1.7 A, dI/dt = 100 A/µsCh-14080Ch-23270SCHOTTKY SPECIFICATIONS T J = 25 °C, unless otherwise notedParameter S ymbol Test Condition Min. Typ.Max.UnitForward Voltage DropV FI F = 1.0 A 0.470.50VI F = 1.0 A, T J = 125 °C0.360.42Maximum Reverse Leakage Current I rm V r = 30 V0.0040.100mA V r = 30 V , T J = 100 °C 0.710V r = – 30 V , T J = 125 °C3.020Junction CapacitanceC TV r = 10 V50pFDocument Number: Document Number: 71617Vishay SiliconixSi7842DPMOSFET TYPICAL CHARACTERISTICS 25°C, unless otherwise notedSource-Drain Diode Forward VoltageThreshold VoltageOn-Resistance vs. Gate-to-Source VoltageSingle Pulse PowerNormalized Thermal Transient Impedance, Junction-to-AmbientDocument Number: Vishay SiliconixSi7842DPMOSFET TYPICAL CHARACTERISTICS 25°C, unless otherwise notedSCHOTTKY TYPICAL CHARACTERISTICS 25°C, unless otherwise notedVishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see /ppg?71617.Reverse Current vs. Junction TemperaturePackage Information Vishay SiliconixPowerPAK® SO-8, (Single/Dual)Revison: 20-May-131Document Number: 71655Application Note 826Vishay SiliconixA P P L I C A T I O N N O T ERECOMMENDED MINIMUM PADS FOR PowerPAK ® SO-8 DualLegal Disclaimer Notice VishayDisclaimerALL PRODU CT, PRODU CT SPECIFICATIONS AND DATA ARE SU BJECT TO CHANGE WITHOU T NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.Material Category PolicyVishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.Revision: 02-Oct-121Document Number: 91000。
mb89f202中文资料
敞末让开端没。没有有使使用用的的I/O输末入端末进端入会输引出起状误态动后作并和把锁其定敞,开造;成如永其久在性输损入害状,态故,请就用按2照kΩ输或入以末上端的的电处阻理上方拉法或处下理拉该末等端I/。O
• N.C. 管脚的处置
(转下页)
6
系列 MB89202
(承上页) 管脚编号
SH-DIP32*1 SSOP34*3
24-27 26-29
21-23 32 10
23-25 34 10
管脚名称
P40/AN0 |
P43/AN3 P70-P72
VCC VSS
16
17
C
, — 16 22 :*1 DIP-32P-M06 :*2 FPT-34P-M03
(转下页)
2
系列 MB89202
(承上页)
产品型号 参数
MB89202
MB89F202
MB89V201
10 位 A/D 转换器 1A通0/D过位转精8换/度1功6×位能8定(个时转通器换道时/ 计间数:器1输2.出16或µ时s/1基2.定5 时MH器z计) 数器连续激活
Wild 寄存器
位8 × 2
:有 ×:无
MB89202 ×
MB89F202 ×
MB89V201 × ×
■ 产品间的差异
• 存储器容量
使用评价产品进行评价之前, 请先确认其与实际使用产品的差异。
• 屏蔽选项
产品不同,可以选择的项目和指定选项的方法也不同。选择之前,请查阅 “■ 屏蔽选项”一览表。
3
系列 MB89202
■ 管脚图
P33/EC
15
N.C.
16
C
FDR842P中文资料
2Leabharlann 10 0 20 40 Qg, GATE CHARGE (nC) 60 80
0 0 3 6 9 12 -VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Gate Charge Characteristics.
2001 Fairchild Semiconductor Corporation
FDR842P Rev D (W)
元器件交易网
FDR842P
Electrical Characteristics
Symbol
BVDSS ∆BVDSS ∆TJ IDSS IGSSF IGSSR VGS(th) ∆VGS(th) ∆TJ RDS(on)
FDR842P Rev D (W)
元器件交易网
FDR842P
Typical Characteristics
60 VGS= -4.5V -2.5V 1.8 -1.8V -ID, DRAIN CURRENT (A) 45 RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE -2.0V VGS = -1.8V 1.6 -2.0V 1.4 -2.5V 1.2 -3.0V -3.5V 1 -4.5V
TA = 25°C unless otherwise noted
Parameter
Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate–Body Leakage, Forward Gate–Body Leakage, Reverse
AP8022资料
Chipown
输出
直流输出电压 Vout(V)
输出纹波 Vpp(mv)
1.4 输入 A 90V /
1.2 0.84 0.5 0.1
A
A
A
A
空 1.5 1.2 0.84 0.5 0.1 空 载 A A A A A载
/ 12.00 12.00 12.00 12.01 / / 40 35 25 25
A.正面:
Chipown
B.背面:
4/F, Building F, IT industry Park No.21 Changjiang Road, Wuxi New Destrict Tel: +86(510)8521-7718 Ver 1.2
AP8022 Demo
内置振荡器减少了外围器件(调节振荡器频率所用的电容或电阻)的数量和 PCB 版 图的面积;
VDD 输入范围达到 30v,在辅助线圈输出变化很大时,仍能保证电路正常工组, 无需使用特殊的钳位措施来限定 VDD 的变化。
AP8022 DEMO 系统为反激式开关电源,单路输出额定电压为 12V,最大允许输出电 流 1.5A。
220V 11.98 11.99 12.00 12.00 12.00 12.01 50 40 35 30 25 20
260V 11.98 11.99 12.00 12.00 12.00 12.01 50 40 35 30 25 20
电压调整率
<1%
负载调整率
<1%
二.电源效率测试:
AC 输入
电压 电流 (V) (mA) 220 87.1
AP8022 Demo
Chipown
绕组 1: 绕组 2: 绕组 3:
AD8420 中文手册
f = 1 kHz, VDIFF ≤ 100 mV f = 0.1 Hz至10 Hz, V DIFF ≤ 100 mV f = 1 kHz f = 0.1 Hz至10 Hz VS = 3 V至V S = 5 V VS = ±5 V TA = −40°C至+85°C VS = 2.7 V至5 V 对REF和FB对以及 +IN和−IN有效 TA = +25°C TA = +85°C TA = −40°C TA = −40°C至+85°C TA = +25°C TA = +85°C TA = −40°C TA = −40°C至+85°C
ADI中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI不对翻译中存在的差异或由此产生的错误负责。如需确认任何词语的准确性,请参考ADI提供 的最新英文版数据手册。
AD8420 目录
产品特性 .......................................................................................... 1 应用.................................................................................................... 1 引脚配置 ........................................................................................... 1 概述.................................................................................................... 1 修订历史 .......................................................................................... 2 规格.................................................................................................... 3 绝对最大额定值.............................................................................. 7 热阻 .............................................................................................. 7 ESD警告........................................................................................ 7 引脚配置和功能描述 ..................................................................... 8 典型工作特性 ................................................................................. 9 工作原理 ....................................................................................... 19 架构 ............................................................................................ 19 设置增益 ................................................................................... 19 增益精度 ................................................................................... 20 输入电压范围........................................................................... 20 输入保护 ................................................................................... 20 布局 ............................................................................................ 21 驱动基准引脚........................................................................... 21 输入偏置电流回路 ................................................................. 22 射频干扰(RFI) .......................................................................... 22 输出缓冲 ................................................................................... 23 应用信息 ........................................................................................ 24 AD8420在心电图(ECG)中的应用........................................ 24 经典桥接电路 .......................................................................... 25 4 mA至20 mA单电源接收机 ................................................ 25 外形尺寸 ....................................................................................... 26 订购指南 ................................................................................... 26
升压稳压芯片54228参数
升压稳压芯片54228参数
升压稳压芯片54228主要参数如下:
1. 输入电压范围:一般为
2.7V至5.5V
2. 输出电压范围:可以根据需求设定,通常为
3.3V至15V
3. 输出电流能力:一般为几百毫安(mA)至几安(A)
4. 效率:一般在80%以上
5. 工作温度范围:一般为-40°C至+125°C
6. 供电电流:取决于负载要求,一般在几十微安(μA)至几百毫安(mA)之间
7. 调整速度:指芯片响应负载变化的速度,一般几十纳秒至几微秒不等
8. 负载调整能力:指芯片对负载变化的稳定性能,即输出电压在负载变化时的波动范围
9. 过压保护功能:可以保护负载部分免受输入过压的影响
10. 短路保护功能:可以保护芯片不因负载短路而受损
11. 模块尺寸和引脚布局:根据不同厂商和型号而定,可以是SOT-23、DFN、QFN等封装形式
请注意,以上参数仅为常见的一些基本参数,具体的参数还需查看芯片的数据手册或询问供应商获取详细信息。
ADS8422IBPFBR资料
BurrĆBrown Productsfrom TexasInstrumentsFEATURES APPLICATIONSDESCRIPTIONADS8422SLAS512B–JUNE2006–REVISED DECEMBER2006 16-BIT,4-MSPS,PSEUDO-BIPOLAR,FULLY DIFFERENTIAL INPUT,MICROPOWERSAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE,REFERENCE•DWDM•Fully Differential Input with Pseudo-BipolarInput Range-4V to+4V•Instrumentation•High-Speed,High-Resolution,Zero Latency •16-Bit NMC at4MSPSData Acquisition Systems•1LSB INL Typ•Transducer Interface•92dB SNR,-102dB THD Typ with100-kHz•Medical InstrumentsInput•Spectrum Analysis•Internal4.096-V Reference and Reference•ATEBuffer•REFIN/2Available for Setting Analog InputCommon-Mode VoltageThe ADS8422is a16-bit,4-MHz A/D converter with •Zero Latencyan internal4.096-V reference.The device includes a •High-Speed Parallel Interface16-bit capacitor-based multi-bit SAR A/D converter•Single Supply Operation Capability with inherent sample and hold.This converterincludes a full16-bit interface and an8-bit option •Low Power:155mW at4MHz Typ,Flexiblewhere data is read using two8-bit read cycles if Power-Down Schemenecessary.•Pin-Out Similar to ADS8412/8402The ADS8422has a fully differential,pseudo-bipolar •48-Pin9×9TQFP Packageinput.It is available in a48-lead TQFP package andis characterized over the industrial-40°C to+85°Ctemperature range.HIGH-SPEED SAR CONVERTER FAMILY(1)TYPE/SPEED500kHz~600kHz750kHz1MHz 1.25MHz2MHz3MHz4MHzADS8383ADS8381ADS848118-Bit Pseudo-DiffADS8380(s)18-Bit Pseudo-Bipolar,Fully Diff ADS8382(s)ADS8482ADS8370(s)ADS8371ADS8471ADS8401ADS841116-Bit Pseudo-DiffADS8327/28(s)ADS8372(s)ADS8329/30(s)ADS8405ADS8410(s)ADS8472ADS8402ADS8412ADS842216-Bit Pseudo-Bipolar,Fully DiffADS8406ADS8413(s)14-Bit Pseudo-Diff ADS7890(s)ADS789112-Bit Pseudo-Diff ADS7886ADS7883ADS7881 (1)S:SerialPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2006,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters.ABSOLUTE MAXIMUM RATINGS (1)ADS8422SLAS512B–JUNE 2006–REVISED DECEMBER 2006These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.ORDERING INFORMATION (1)MAXIMUM MAXIMUM INTEGRAL NO MISSING CODES PACKAGE PACKAGE TEMPERATUREORDERING TRANSPORT MODELDIFFERENTIAL LINEARITY RESOLUTION (BIT)TYPEDESIGNATORRANGEINFORMATIONMEDIA QTY.LINEARITY (LSB)(LSB)Small tape andADS8422IPFBTreel 2509×948-Pin ADS8422I ±6±215PFB–40°C to 85°CTQFPTape and reelADS8422IPFBR 1000Small tape andADS8422IBPFBTreel 2509×948-Pin ADS8422IB ±2+1.5/-116PFB–40°C to 85°CTQFPTape and reelADS8422IBPFBR1000(1)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TI website at .over operating free-air temperature range (unless otherwise noted)VALUEUNIT +IN to AGND–0.4to +VA +0.1V –IN to AGND –0.4to +VA +0.1V Voltage+VA to AGND –0.3to 7V +VBD to BDGND–0.3to 7V Digital input voltage to BDGND –0.3to +VBD +0.3V Digital output voltage to BDGND–0.3to +VBD +0.3V T A Operating free-air temperature range –40to 85°C T stgStorage temperature range –65to 150°C Junction temperature (T J max)150°CPower dissipation (T J Max –T A )/θJATQFP 48-pin package θJA thermal impedance 86°C/W Vapor phase (60sec)215°C Lead temperature,solderingInfrared (15sec)220°C (1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.2Submit Documentation Feedback SPECIFICATIONSADS8422 SLAS512B–JUNE2006–REVISED DECEMBER2006T A =–40°C to85°C,+VA=5V,+VAREG=5V to3V,+VBD=5V to2.7V,fSAMPLE=4MSPS,Vref=4.096V(measuredwith internal reference buffer)(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ANALOG INPUTFull-scale input voltage(1)+IN–(–IN)–V ref V ref V+IN–0.2V ref+0.2Absolute input voltage V–IN–0.2V ref+0.2Common-mode input range(V ref)/2–0.2(V ref)/2(V ref)/2+0.2VInput capacitance30pF Input leakage current1nA SYSTEM PERFORMANCEResolution16BitsADS8422I15No missing codes BitsADS8422IB16ADS8422I–6±26LSB Integral linearity(2)(3)(16bit)(2)ADS8422IB–2±12ADS8422I–2±0.72LSB Differential linearity(16bit)ADS8422IB–1±0.7 1.5Offset error–0.5±0.250.5mV Offset error drift±0.2ppm/°C Gain error(4)(5)V ref=4.096V–0.1±0.050.1%FS Gain error drift V ref=4.096V±2ppm/°CAt dc81Common-mode rejection ratio dBAt code0000h with[+IN+(–IN)]/2=78512mV pp at500kHz,Noise At0000h output code40µV RMS Power supply rejection ratio At8000h output code78dB SAMPLING DYNAMICSConversion time0.180µs Acquisition time0.070µs Throughput rate4MHz Aperture delay3ns Aperture jitter7ps RMS Step response70ns Overvoltage recovery140ns(1)Ideal input span,does not include gain or offset error.(2)LSB means least significant bit and is equal to2V REF/65536.(3)This is endpoint INL,not best fit.(4)Measured relative to an ideal full-scale input[+IN–(–IN)]of8.192V.(5)This specification does not include the internal reference voltage error and drift.3Submit Documentation FeedbackSPECIFICATIONS (Continued)ADS8422SLAS512B–JUNE 2006–REVISED DECEMBER 2006T A =–40°C to 85°C,+VA =5V,+VAREG =5.25V to 3V,+VBD =5V to 2.7V,f SAMPLE =4MSPS,V ref =4.096V (measured with internal reference buffer)(unless otherwise noted)PARAMETERTEST CONDITIONS MIN TYP MAX UNITDYNAMIC CHARACTERISTICS10kHz–114Total harmonic distortion(THD)(1)V IN =8V pp100kHz –102dB500kHz –10010kHz93Signal to noise ratio (SNR)V IN =8V pp100kHz 92dB500kHz 9010kHz92.5Signal to noise +distortion (SINAD)V IN =8V pp100kHz 91.5dB500kHz 89.510kHz116Spurious free dynamic range (SFDR)V IN =8V pp 100kHz 109dB 500kHz106–3dB Small signal bandwidth 30MHz Maximum input frequency,f i(max)(2)V IN =8V pp 2MHzVOLTAGE REFERENCE INPUT Reference voltage at REFIN,V ref 3.94.096 4.15V Reference resistance1000M ΩINTERNAL REFERENCE OUTPUT Internal reference start-up time From 95%(+VA),with 1-µF capacitor on REFOUT 25ms Reference voltage range,V ref I O =0,T A =25°C 4.0884.0964.104V Source current Static load10µA Line regulation +VA =4.75V to 5.25V ±1mV DriftI O =0±6PPM/°C ANALOG COMMON-MODE,PIN 3Output voltage range I O =0V REF /2-0.016V REF /2V REF /2+0.016V Source currentStatic load200µA(1)Calculated on the first nine harmonics of the input frequency.(2)ADC Sampling circuit is optimized to accept inputs until Nyquist frequency.Dynamic performance may degrade rapidly above f i(max).4Submit Documentation Feedback SPECIFICATIONS(Continued)ADS8422 SLAS512B–JUNE2006–REVISED DECEMBER2006T A =–40°C to85°C,+VA=5V,+VAREG=5V to3V,+VBD=5V to2.7V,fSAMPLE=4MSPS,Vref=4.096V(measuredwith internal reference buffer)(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DIGITAL INPUT/OUTPUTLogic family–CMOSV IH I IH=5µA0.75×(+VBD)+VBD+0.3V IL I IL=5µA–0.30.8Logic level VV OH I OH=2TTL loads+VBD–0.6V OL I OL=2TTL loads0.4Data format–Twos complementPOWER SUPPLY REQUIREMENTS+VA 4.755 5.25Power supply voltage+VAREG 2.85 3.0 5.25V+VBD 2.7 3.0 5.25+VA+VA=5V,PD1=1,PD2=12427mA+VAREG=5V,PD1=1,PD2=11214+VAREG mA Supply current+VAREG=3V,PD1=1,PD2=11214+VBD=3V,10pF/pin0.55+VBD(1)mA+VBD=5V,20pF/pin 1.8POWER DOWN(2)+VA 2.5 3.4mA Supply current PD1=0,PD2=1,+VA=5V+VAREG5µA Power17mW Power-up time(PD1,PD2):(0,1)→(1,1)5µs+VA5Supply current PD1=0,PD2=0µA+VAREG5Power40µW(PD1,PD2):(0,0)→(1,1),1-µF Storage25Power-up time mscapacitor from REFOUT to AGNDTEMPERATURE RANGEOperating free-air–4085°C (1)This includes the current required for charging the external load capacitance on the digital outputs and is measured with four digitaloutputs toggling at the same time.(2)(PD1,PD2)=(1,0)is reserved.Do not use this power-down pins combination.5Submit Documentation FeedbackTIMING CHARACTERISTICS FROM DIGITAL INPUTSTIMING CHARACTERISTICS OF DIGITAL OUTPUTSADS8422SLAS512B–JUNE 2006–REVISED DECEMBER 2006All specifications typical at –40°C to 85°C,+VBD =2.7V to 5.25V(1)(2)PARAMETERMIN TYP MAX UNIT CONVERSION AND ACQUISITION t (ACQ)Acquisition time,internal to device,not externally visible 70ns t w1Pulse duration,CONVST low 20ns t w2Pulse duration,CONVST high 100ns t p1Period,CONVST250ns t q1Quiet time,last toggle of interface input signals during acquisition before CONVST falling (3)30ns t q2Quiet time,CONVST falling to first toggle of interface input signals(3)10nsPOWER DOWNPD1low for only ADC reset (no powerdown)20500t w3Pulse durationPD1low for ADC reset and also ADC powerdown1500ns PD2low pulse duration for REFOUT and COMMOUT buffers powerdown1500Pulse duration,all others unspecified10ns(1)All input signals are specified with t r =t f =5ns (10%to 90%of V DD )and timed from after 90%of transition.(2)All digital output signals loaded with 10-pF capacitors at +VBD =2.7V and 20-pF capacitor at +VBD =5.25V and timed to reaching 90%of transition.(3)Quiet time zones are for meeting performance and not functionality.All specifications typical at –40°C to 85°C,+VBD =2.7V to 5.25V(1)(2)PARAMETERMIN TYP MAX UNITCONVERSION AND ACQUISITION t (CONV)Conversion time,internal to device,not externally visible 180ns t d1Delay time,CONVST fall to conversion start (aperture delay)3ns DATA READ OPERATIONt d2Delay time,CONVST low to data valid if CS =RD =0225ns t d3Delay time,data valid to BUSY low if CS =RD =05ns t d4Delay time,RD (or CS)low to data valid 17ns t d5Delay time,BYTE toggle to data valid20ns t d6Delay time,data three-state after RD (or CS)high 12ns POWER DOWNt d7Delay time,PD1low to BUSY rising20ns Delay time,PD1high to device operational (with PD2held high)5µs t d8Delay time,PD2high to REFOUT/COMMOUT valid 25ms Delay time,power up (after AV DD =4.75V)25ms t d9Delay time,data three-state after PD1low1.5µs(1)All input signals are specified with t r =t f =5ns (10%to 90%of V DD )and timed from after 90%of transition.(2)All digital output signals loaded with 10-pF capacitors at +VBD =2.7V and 20-pF capacitor at +VBD =5.25V and timed to reaching 90%of transition.6Submit Documentation FeedbackPIN ASSIGNMENTSBUSY BDGND +VBD DB0DB1DB2DB3DB4DB5DB6DB7BDGNDREFIN REFOUT COMMOUT+VA AGND +IN AGND CAP1+VAREGNC AGNDD B 1D B 1D B C A P A G N A G N D B 1D B 1D B 1D B 1D B +V B ADS8422SLAS512B–JUNE 2006–REVISED DECEMBER 2006PFB Package (Top View)A.NC -No connectionB.Pins 9and 13are internally regulated 3-V outputs and are externally to be connected to decoupling capacitors only.C.+VAREG can be connected to a 3-V to 5-V supply.D.Pin 3outputs REFIN/2E.Pin 38can be used for ADC powerdown and pin 37for analog output powerdown.TERMINAL FUNCTIONSNAME NO I/O DESCRIPTION5,8,12,14,AGND –Analog ground15,44,45BDGND 25,35–Digital ground for bus interface digital supply BUSY 36O Status output.High when a conversion is in progress.Byte select ed for 8-bit bus reading.BYTE 39I 0:No fold back1:Low byte D[7:0]of the 16most significant bits is folded back to high byte of the 16most significant pins DB[15:8].This pin outputs REFIN/2and can be used to set the common-mode voltage of the differential analog input,(+IN +COMMOUT 3O –IN)/2.CONVST 40I Convert start.This input is low true and can act independent of the CS input.CS42I Chip select.CAP1,CAP29,13ODecoupling of internally generated 3-V supply.Add 1-µF capacitor from these pins to AGND.8-BIT BUS16-BIT BUS Data Bus BYTE =0BYTE =1BYTE =0DB1516O D15(MSB)D7D15(MSB)DB1417O D14D6D14DB1318O D13D5D13DB1219O D12D4D12DB1120O D11D3D11DB1021OD10D2D107Submit Documentation FeedbackTYPICAL CHARACTERISTICS250000FFFDFFFEFFFF 00000001Code - HexC O U N T SFFFDFFFEFFFF 00000001Code - HexC O U N T S4.094-40-25-1052035506580T - Free-Air Temperature -CA ºR E F O U T - I n t e r n a l R e f e r e n c e V o l t a g e - VADS8422SLAS512B–JUNE 2006–REVISED DECEMBER 2006TERMINAL FUNCTIONS (continued)NAME NO I/O DESCRIPTION DB922O D9D1D9DB823O D8D0(LSB)D8DB726O D7All ones D7DB627O D6All ones D6DB528O D5All ones D5DB429O D4All ones D4DB330O D3All ones D3DB231O D2All ones D2DB132O D1All ones D1DB033O D0(LSB)All onesD0(LSB)–IN 7I Inverting input channel +IN 6I Noninverting input channel NC 11–No connectionLow true signal.A logic low longer than 1.5µs applied to this pin powers down only the analog outputs that include PD237I REFOUT and COMMOUT.(NOTE:The combination PD1=1,PD2=0is reserved.Do not use this combination.)REFIN 1I Reference input.Add 0.1-µF decoupling capacitor between REFIN and REFM.REFOUT 2O Reference output.Add 1-µF capacitor between the REFOUT pin and REFM pin when internal reference is used.REFM 47,48I Reference groundLow true signal.A low pulse applied to this pin resets the ADC;the ongoing conversion is aborted.A low pulse shorter RESET/PD138I than 0.5µs only resets,and one longer than 1.5µs resets and also powers down the ADC.Note that analog outputs REFOUT and COMMOUT can be powered down by PD2,if necessary.RD 41I Synchronization pulse for the parallel output.+VA 4,46–Analog power supplies,4.75V to 5.25VDC +VAREG 10–Regulator supply,2.85V to 5.25VDC +VBD24,34–Digital power supply for busINTERNAL REFERENCE VOLTAGEHISTOGRAM OF 262144HISTOGRAM OF 262144vsCONVERSIONS OF DC INPUT AT CONVERSIONS OF DC INPUT AT FREE-AIR TEMPERATURE CENTER CODE (Internal Reference)CENTER CODE (External Reference)(Three Devices Shown)Figure 1.Figure 2.Figure 3.8Submit Documentation Feedback0.0100.0200.0300.040-40-25-1052035506580G a i n E r r o r - %F ST - Free-Air Temperature -CA º00.0500.1000.1500.200-40-25-1052035506580T - Free-Air Temperature -CA ºO f f s e t V o l t a g e - m V8486889092f - Input Frequency - kHzi S N R - S i g n a l -t o -N o i s e R a t i o - d B8486889092941101001000f - Input Frequency - kHziS I N A D - S i g n a l -t o -N o i s e + D i s t o r t i o n - d B110100013.51414.51515.516E f f e c t i v e N u m b e r o f B i t s - E N O Bf - Input Frequency - kHzi 9091929394-40-25-1052035506580T - Free-Air Temperature -CA ºS N R - S i g n a l -t o -N o i s e R a t i o - d B110f - Input Frequency - kHzi 859095100105110115120125S F D R - S p u r i o u s F r e e D y n a m i c R a n g e - d B-120-115-110-95-90-851101001000f - Input Frequency - kHzi T H D - T o t a l H a r m o n i c D i s t o r t i o n - d B-120-115T - Free-Air Temperature -CA ºT H D - T o t a l H a r m o n i c D i s t o r t i o n - d BADS8422SLAS512B–JUNE 2006–REVISED DECEMBER 2006TYPICAL CHARACTERISTICS (continued)OFFSET VOLTAGEGAIN ERRORSIGNAL-TO-NOISE RATIOvsvsvsFREE-AIR TEMPERATUREFREE-AIR TEMPERATUREINPUT FREQUENCYFigure 4.Figure 5.Figure 6.SIGNAL-TO-NOISE +DISTORTIONEFFECTIVE NUMBER OF BITSSIGNAL-TO-NOISE RATIOvsvsvsINPUT FREQUENCYINPUT FREQUENCYFREE-AIR TEMPERATUREFigure 7.Figure 8.Figure 9.TOTAL HARMONIC DISTORTIONSPURIOUS FREE DYNAMIC RANGETOTAL HARMONIC DISTORTIONvsvsvsINPUT FREQUENCYINPUT FREQUENCYFREE-AIR TEMPERATUREFigure 10.Figure 11.Figure 12.9Submit Documentation FeedbackThroughput - KSPS99.51010.51111.512+V A R E G C u r r e n t - m A1201304000Throughput - KSPSP - P o w e r D i s s i p a t i o n - m WD2325Throughput - KSPS+V A C u r r e n t - m A-40-25-1052035506580T - Free-Air Temperature -CA ºI N L - L SB sf - Frequency - kHzC M R R - C o m m o n -M o d e R e j e c t i o n R a t i o - d B1-40-25-1052035506580T - Free-Air Temperature -CA ºD N L - L SB s-1-0.500.511.516384327684915265536Code D N L - L S B sADS8422SLAS512B–JUNE 2006–REVISED DECEMBER 2006TYPICAL CHARACTERISTICS (continued)POWER DISSIPATION+VAREG CURRENT+VA CURRENTvsvsvsTHROUGHPUTTHROUGHPUTTHROUGHPUTFigure 13.Figure 14.Figure 15.DIFFERENTIAL NONLINEARITYINTEGRAL NONLINEARITYCOMMON-MODE REJECTION RATIOvsvsvsFREE-AIR TEMPERATUREFREE-AIR TEMPERATUREFREQUENCYFigure 16.Figure 17.Figure 18.DNLFigure 19.10Submit Documentation Feedback-2-1.5-1-0.500.511.524915265536Code I N L - L S B s-200-120-80-400200400600800100012001400160018002000f - Frequency - kHzA m p l i t u d e - dB o f F u l l -S c a l e-200-160-120-80-400200400600800100012001400160018002000f - Frequency - kHzA m p l i t u d e - dB o f F u l l -S c a l eSLAS512B–JUNE 2006–REVISED DECEMBER 2006TYPICAL CHARACTERISTICS (continued)INLFigure 20.FFT (10kHz)Figure 21.FFT (100kHz)Figure 22.-200-160-120-80-400f - Frequency - kHzA m p l i t u d e - dB o f F u l l -S c a l eTIMING DIAGRAMSCONVSTBUSYCONVERTSLAS512B–JUNE 2006–REVISED DECEMBER 2006TYPICAL CHARACTERISTICS (continued)FFT (500kHz)Figure 23.Note:The DB shown here is internal to the device and output on the pins only if and when CS and RD are both low (after t d4ns).This is shown in Figure 25.Figure 24.Conversion Control TimingBYTERDDBCSICCSLAS512B–JUNE 2006–REVISED DECEMBER 2006d4Figure 25.Data Read TimingNote:Data is valid from the first conversion initiated 5µs after PD1is pulled high.Figure 26.ADC Power-Down TimingPD1= 0RESET TIMINGSLAS512B–JUNE 2006–REVISED DECEMBER 2006Note:Analog outputs are valid 25ms after PD2is pulled high.Figure 27.Analog Output Power-Down TimingNote:Data valid from first conversion initiated 100ns after PD1is pulled high.Figure 28.ADC ResetPRINCIPLES OF OPERATION REFERENCEANALOG INPUT SLAS512B–JUNE2006–REVISED DECEMBER2006The ADS8422is a member of a family of high-speed multi-bit successive approximation register(SAR) analog-to-digital converters(ADC).The architecture is based on charge redistribution,which inherently includes a sample/hold function.See Figure34for the application circuit for the ADS8422.The conversion clock is generated internally.The conversion time is a maximum of180ns that is capable of sustaining a4-MHz throughput.The analog input is provided to two input pins:+IN and-IN.When a conversion is initiated,the differential input on these pins is sampled on the internal capacitor array.While a conversion is in progress,both inputs are disconnected from any internal function.The ADS8422has a built-in4.096-V reference but can operate with an external4.096-V reference.When internal reference is used,pin2(REFOUT)should be connected to pin1(REFIN)with a0.1-µF decoupling capacitor and a1-µF storage capacitor between pin2(REFOUT)and pins47and48(REFM).The internal reference of the converter is double buffered.If an external reference is used,the second buffer provides isolation between the external reference and the CDAC.This buffer is also used to recharge all of the capacitors of the CDAC during conversion.Pin2(REFOUT)can be left unconnected(floating)if an external reference is used.The ADS8422has a pseudo-bipolar,fully differential input.When the input is differential,the amplitude of the input equals the difference between+IN and–IN.The peak-to-peak amplitude of each input is V REF.However since the two inputs are180°out of phase,the peak-to-peak amplitude of the difference voltage[+IN–(–IN)]is equal to2V REF.The common-mode input range is from V REF/2–0.2V to V REF/2+0.2V.In order to avoid additional external circuitry on the board,the ADS8422outputs reference input on REFIN divided by2on pin3(COMMOUT).This voltage can be used to set the common-mode of the output from the input driver.Figure29,Figure30,Figure31,Figure32,and Figure33show the recommended circuits to interface an analog input signal to the ADS8422.-VIN 4VppVincm+VIN=-VIN=390WSLAS512B–JUNE2006–REVISED DECEMBER2006PRINCIPLES OF OPERATION(continued)A.Input common-mode voltage(Vincm)range is restricted by the amplifier.Refer to the amplifier data sheet for moreinformation.Output common mode of the THS4131is set by the voltage at pin2.The COMMOUT pin of the ADS8422is designed to source pin2of the THS4131.However to use this feature both the positive supply and negative supply rails must equal(|-VCC|=|+VCC|),absolutely.Figure29.Fully Differential Input Driver Circuit for Unipolar or Bipolar SignalsVincm +VIN-VIN390WSLAS512B–JUNE 2006–REVISED DECEMBER 2006PRINCIPLES OF OPERATION (continued)A.Input common-mode voltage (Vincm)range is restricted by the amplifier.Refer to the amplifier data sheet for more information.Output common mode of the THS4131is set by the voltage at pin 2.The COMMOUT pin of the ADS8422is designed to source pin 2of the THS4131.However to use this feature both the positive supply and negative supply rails must equal (|-VCC|=|+VCC|),absolutely.Figure 30.Single-Ended Input Driving Circuit for When Input is Unipolar or BipolarVin 2.04850W--VIN42.048V50W SLAS512B–JUNE 2006–REVISED DECEMBER 2006PRINCIPLES OF OPERATION (continued)Figure 31.Single-Ended Driving Circuit for When Input is Single-Ended Unipolar and has Common-Modeof 2.048VA.This circuit is used to specify ADS8422performance parameters listed in the data sheet.Figure 32.Driver Circuit for When Input is Fully Differential Riding on Common-Mode of 2.048V+VIN =with Vincm=0V8Vpp-VIN =+VIN-VIN0V+4V-4V49.9W DIGITAL INTERFACETiming and ControlSLAS512B–JUNE 2006–REVISED DECEMBER 2006PRINCIPLES OF OPERATION (continued)Figure 33.Driver Circuit for Bipolar Fully Differential Input Signals with 0-V Common-ModeThe input current on the analog inputs depends upon a number of factors:sample rate,input voltage,and source impedance.Essentially,the current into the ADS8422charges the internal capacitor array during the sample period.After this capacitance has been fully charged,there is no further input current.The source of the analog input voltage must be able to charge the input capacitance (30pF)to a 16-bit settling level within the 70ns acquisition time of the device.When the converter goes into hold mode,the input impedance is greater than 1G Ω.Care must be taken regarding the absolute analog input voltage.To maintain the linearity of the converter,both -IN and +IN inputs should be within the limits specified.Outside of these ranges,the converter linearity may not meet specifications.To minimize noise,low bandwidth input signals with low pass filters should be used.Care should be taken to ensure that the output impedances of the sources driving the +IN and –IN inputs are matched.If this is not observed,the two inputs could have different settling times.This may result in offset error,gain error,and linearity error which change with temperature and input voltage.When the converter enters hold mode,the voltage difference between the +IN and -IN inputs is captured on the internal capacitor array.See the timing diagrams for detailed information on timing signals and their requirements.The ADS8422uses an internal oscillator generated clock which controls the conversion rate and in turn the throughput of the converter.No external clock input is required.Reading DataRESETSLAS512B–JUNE 2006–REVISED DECEMBER 2006PRINCIPLES OF OPERATION (continued)Conversions are initiated by bringing the CONVST pin low for a minimum of 20ns (after the 20ns minimum requirement has been met,the CONVST pin can be brought high).The converter switches from sample to hold mode on the falling edge of the CONVST command.A clean and low jitter falling edge of this signal is important to the performance of the converter.The BUSY pin is brought high immediately following CONVST going low.BUSY stays high through the conversion process and returns low when the conversion has ended and data is available on the DB pins.Once the conversion is started,it cannot be stopped except with an asynchronous RESET (or a logical PD1).If CONVST is detected high at the end of conversion,the device immediately enters sampling mode and the analog input is connected to the CDAC.Otherwise,the CDAC is connected to the analog input only when CONVST goes high.The high duration of CONVST should be at least 100ns.There is no maximum high pulse duration specification for CONVST.The ADS8422outputs full parallel data in 2’s complement format as shown in Table 1.The parallel output is active when CS and RD are both low.There is a minimal quiet zone requirement around the falling edge of CONVST.This is 30ns prior to the falling edge of CONVST and 10ns after the falling edge.No data read should be attempted within this zone.Any other combination of CS and RD three-states the parallel output.BYTE is used for multi-word read operation.BYTE is used whenever lower bits on the bus are output on the higher byte of the bus.Refer to Table 1for ideal output codes.Table 1.Ideal Input Voltages and Output CodesDESCRIPTION ANALOG VALUEDIGITAL OUTPUT 2'S COMPLIMENT Full scale range2V ref Least significant bit (LSB)2V ref )/65536BINARY CODE HEX CODE +Full scale (+V ref )–01111111111111117FFF Midscale 0V 00000000000000000000Midscale –1LSB 0V –1111111111111111FFFF -Full scale–V ref +10000000000000008000The output data can be read as a full 16-bit word on pins DB15–DB0(MSB-LSB)if BYTE is low.The result may also be read on an 8-bit bus for convenience.This is done by using only pins DB15-DB8.In this case two reads are necessary:the first as before,leaving BYTE low and reading the 8most significant bits on pins DB15-DB8,then bringing BYTE high.When BYTE is high,the low bits (D7-D0)appear on pins DB15-DB8.These multi-word read operations can be performed with a multiple active (toggling)RD signal or with the RD signal tied low for simplicity.Table 2.Conversion Data Read OutDATA READ OUTBYTE PINS PINS DB15–DB8DB7–DB0High D7-D0All One's LowD15-D8D7-D0RESET/PD1is an asynchronous active low input signal.Maximum RESET/PD1low time is 0.5µs to avoid ADC powerdown.Current conversion is aborted no later than 20ns after the converter is in reset mode.The converter returns to normal operation mode no later than 20ns after the RESET/PD1input is brought high (see Figure 28).The converter provides two power saving options:ADC powerdown (using pin 38,PD1)and analog output powerdown (PD2).。
TA8429芯片资料翻译译文
附件1:外文资料翻译译文TA8429H 中文资料3.0A 全桥驱动芯片TA8429H 是适用于直流有刷电机控制的全桥驱动IC 集成电路,最大允许电流为3.0A (平均电流)。
提供过热保护和短路保护,以及待机功能。
产品特点:● 最大输出平均电流为3A ,最大输出峰值电流为4.5A● 空闲模式可用:I st ≤ 100 μA (最大值) ● 提供过热保护和短路保护● 通过2个低电平有效TTL 电平兼容的输入端控制可得到四种模式(正转、反转、短制动、停机) ● 自带续流二极管 ● 采用HZIP 封装● 工作电压范围:V 27~7V cc = ()V 27~0V opr s = 框图:注释1:引脚(3),(5),(7),(9)为空; 注释2:散热片通过低电阻接地接;引脚功能:内电路:功能极限参数(T a=25℃)注释1:t=100ms注释2:无散热片注释3:T c=85℃电气特性(V cc=24V,V s=24V,T a=25℃)特性符号测试电路测试条件最小类型最大单位静态电流(I) (V CC Line) I CC11停机模式― 6 12mA I CC2正转/反转模式―20 40I CC3制动模式―20 40静态电流(II) (V S Line) I S11停机模式― 3 8mA I S2正转/反转模式―16 40I S3 制动模式― 3 8输入电压V INL2―――0.8V V INH― 2.0 ――输入电流I INL2V IN = GND ――12µA I INH V IN = V CC ――10输出饱和电压V sat13I O = 1.5 A ― 2.1 2.8V V sat2I O = 3.0 A ― 3.3 4.1输出漏电流I LU4V L = 25 V ――50µA I LL V L = 25 V ――50二极管正向电压V FU5I F = 3.0 A ― 5.0 ―V V FL I F = 3.0 A ― 1.5 ―极限电流I SD――― 5 ― A 热管及电路工作温度T SD―――150 ―℃待机电流I ST 1 ―――100 µA传输延迟时间t pLH 2 ―― 1 10µs t pHL 2 ―― 1 10I S1, I S2, I S3, I CC1, I CC2, I CC3, I ST测试电路2V INH, V INL, I INH, I INL, t pHL, t pLH测试电路3V sat注释1:V sat = V SU + V SL注释2:校准回波损耗 1.5 / 3.0 AI LU, I LL测试电路5 V FU,V FL应用电路1(单电源运行)应用电路2(双电源(控制和电机)运行)注释1:建议为实现可靠运行预留约100µs输入死区时间;注释2:需要时连接;注释3:在设计输出线路时,Vs和GND线要特别注意,因为集成电路可能会因为输出间短路,空气污染,错误接地而烧毁。
8422芯片手册
8422芯片手册一、引言在现代科技的推动下,信息技术日新月异,芯片技术作为信息技术的核心之一,不断发展和创新。
本手册将详细介绍8422芯片,包括其结构、功能、应用领域等方面的内容,旨在帮助读者更好地了解和应用这一先进的芯片技术。
二、8422芯片概述2.1 芯片特性•高性能:8422芯片采用先进的制程工艺和设计技术,具备出色的运算能力和处理速度。
•低功耗:8422芯片通过优化功耗管理机制,实现低功耗运行,延长设备电池寿命。
•高可靠性:8422芯片采用可靠性设计,具备良好的抗干扰能力和稳定性。
•易集成:8422芯片提供丰富的接口和标准化的开发环境,方便与其他设备和系统进行集成。
2.2 芯片结构2.2.1 核心处理器8422芯片内置一颗高性能的核心处理器,采用多核架构,支持多线程处理,提供强大的计算和运算能力。
2.2.2 存储单元8422芯片具备大容量的存储单元,包括闪存、缓存和外部存储等,满足各种数据存储需求,并通过优化算法提高数据读写速度。
2.2.3 输入输出模块8422芯片提供多种输入输出接口,包括通用串口、USB、以太网等,支持外部设备的连接和数据传输,实现与外界的高效交互。
三、8422芯片的功能3.1 数据处理8422芯片可以进行高速数据处理,包括图像、音频、视频等多种数据类型的处理。
通过先进的图像算法和信号处理技术,实现图像的增强、压缩、解码和编码等功能。
3.2 通信功能8422芯片支持多种通信协议和网络技术,包括WiFi、蓝牙、NFC等,实现设备之间的数据传输和通信。
同时,8422芯片还具备安全加密功能,保护数据的机密性和完整性。
3.3 嵌入式系统8422芯片可作为嵌入式系统的核心芯片,支持多种操作系统和软件平台,包括Linux、Android等。
它可以用于智能家居、物联网设备、智能手机等领域,提供强大的计算和控制能力。
3.4 人工智能8422芯片具备人工智能加速能力,支持深度学习和神经网络算法,实现人脸识别、语音识别、智能推荐等功能。
S842资料
Solid State RelayThe S842 is a bi-directional, single-pole, single-throw, normally open multipurpose relay. The circuit is composed of one LED on the input side which activates an optically coupled IC on the output - controlling the firing angle of two back-to-back SCRs. This circuit assures no false triggering under most adverse conditions, and a tight zero-volt window not exceeding 5V.DESCRIPTIONFEATURES APPLICATIONSOPTIONS/SUFFIXES SCHEMATIC DIAGRAMMAXIMUM RATINGSAPPROVALSInverse parallel SCR output • High transient immunity • 700V blocking voltage• 1.2A maximum continuous current • Low input control current • High input-to-output isolation • Solid state reliability • Zero-volt switching•Programmable controls •Valve control •Solenoids •Remote switching •Home appliances •Metering equipment •Heating elements •Gas pump control circuitry•High Output Isolation • -H Surface Mount Option • -S Tape and Reel•-TRPARAMETER UNIT MIN TYPMAX Storage Temperature °C -55125Operating Temperature °C -4085Continuous Input Current mA 40Transient Input Current mA 400Reverse Input Control VoltageV 6Output Power DissipationW1.2BABT CERTIFICATE #607837:BS EN 60950, BS EN 41003, BS EN 60065•UL FILE #E90096•Solid State RelayELECTRICAL CHARACTERISTICS - 25°CPARAMETER UNIT MIN TYP MAX TEST CONDITIONSINPUT SPECIFICATIONSLED Forward Voltage V 1.2 1.5If = 10mALED Reverse Voltage V612Ir = 10uAMust Operate Current m5 2.5Io = 1.2A, resistive loadAJunction Capacitance p5Vf = 0VFOUTPUT SPECIFICATIONSBlocking Voltage V700Io = 700uAContinuous Load Current A 1.2If = 5mASurge Current Rating A10T = 16msHolding Current m10AOn-Voltage V 1.2Io = 1.2AVoltage Across Load at Turn-On V5If = 5mALeakage Currentµ100250Vo = 250VAThermal Resistance°150C/Power Factor0.3Critical Rate of Rise (dV/dt)V400/µsCOUPLED SPECIFICATIONSIsolation Voltage V2500T = 1 minute-H Suffix V3750T = 1 minuteIsolation Resistance G100ΩCoupled Capacitance p6FSolid State RelayPERFORMANCE DATAThis solid state relay has been designed with a driver circuit that controls the operation of two back-to-back silicon controlled rectifiers(SCRs), each responsible for one half of the AC cycle. If an AC signal is examined, the turn on, turn off and zero-volt switching can be seen. Figure 1 shows a typical 60 Hz, 120Vac signal with a corresponding relay input signal:ZERO-VOLT SWITCHINGFigure 1 shows the sequence of zero-volt switching operation. At Stage 1, an input signal is applied to the relay. The relay will not turn on until the threshold voltage of 5V is reached. Once this point is reached (Stage 2), SCR #1 (designated as the SCR which controls positive AC voltage) turns on. However, SCR #1 only conducts for an instant, as the cycle quickly crosses zero. At this point (Stage 3), SCR #1 will turn off and SCR #2 (negative AC voltage) turns on. Likewise, at the next zero cross (Stage 4), SCR #2 will turn off and SCR #1 conducts again. Even though the input signal is terminated at Stage 5, the relay will continue to conduct (typical SCR behavior) until Stage 6, when SCR #1 crosses zero and ceases to conduct. Please note that turn on can likewise begin on the negative phase of the AC cycle with a -5V threshold, though only the positive phase is shown here.Solid State RelayMECHANICAL DIMENSIONS16 PIN DUAL IN-LINE PACKAGE16 PIN SURFACE MOUNT DEVICEEND VIEW END VIEWTOP VIEW TOP VIEW。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TL F 11109DP8420V 21V 22V-33 DP84T22-25 microCMOS Programmable 256k 1M 4M Dynamic RAM Controller DriversMay1992 DP8420V 21V 22V-33 DP84T22-25microCMOS Programmable256k 1M 4M Dynamic RAMController DriversGeneral DescriptionThe DP8420V 21V 22V-33 DP84T22-25dynamic RAMcontrollers provide a low cost single chip interface betweendynamic RAM and all8- 16-and32-bit systems TheDP8420V 21V 22V-33 DP84T22-25generate all the re-quired access control signal timing for DRAMs An on-chiprefresh request clock is used to automatically refresh theDRAM array Refreshes and accesses are arbitrated onchip If necessary a WAIT or DTACK output inserts waitstates into system access cycles including burst mode ac-cesses RAS low time during refreshes and RAS prechargetime after refreshes and back to back accesses are guaran-teed through the insertion of wait states Separate on-chipprecharge counters for each RAS output can be used formemory interleaving to avoid delayed back to back access-es because of precharge An additional feature of theDP8422V DP84T22is two access ports to simplify dual ac-cessing Arbitration among these ports and refresh is doneon chip To make board level circuit testing easier theDP84T22incorporates TRI-STATE output buffersFeaturesY On chip high precision delay line to guarantee criticalDRAM access timing parametersY microCMOS process for low powerY High capacitance drivers for RAS CAS WE and DRAMaddress on chipY On chip support for nibble page and static columnDRAMsY TRI-STATE outputs(DP84T22only)Y Byte enable signals on chip allow byte writing in a wordsize up to32bits with no external logicY Selection of controller speeds 25MHz and33MHzY On board Port A Port B(DP8422V DP84T22only) re-fresh arbitration logicY Direct interface to all major microprocessors(applica-tion notes available)Y4RAS and4CAS drivers(the RAS and CAS configura-tion is programmable)of Pins of AddressLargest Direct Drive AccessControl(PLCC)OutputsDRAM Memory PortsPossible Capacity Available DP8420V689256kbit4Mbytes Single Access PortDP8421V68101Mbit16Mbytes Single Access PortDP8422V84114Mbit64Mbytes Dual Access Ports(A and B) DP84T2284114Mbit64Mbytes Dual Access and TRI-STATE Block DiagramDP8420V 21V 22V DP74T22DRAM ControllerTL F 11109–1FIGURE1TRI-STATE is a registered trademark of National Semiconductor CorporationStaggered Refresh TM is a trademark of National Semiconductor CorporationC1995National Semiconductor Corporation RRD-B30M105 Printed in U S ATable of Contents1 0INTRODUCTION2 0SIGNAL DESCRIPTIONS2 1Address R W and Programming Signals2 2DRAM Control Signals2 3Refresh Signals2 4Port A Access Signals2 5Port B Access Signals(DP8422V DP84T22)2 6Common Dual Port Signals(DP8422V DP84T22) 2 7Power Signals and Capacitor Input2 8Clock Inputs3 0PROGRAMMING AND RESETTING3 1External Reset3 2Programming Methods3 2 1Mode Load Only Programming3 2 2Chip Selected Access Programming3 3Internal Programming Modes4 0PORT A ACCESS MODES4 1Access Mode04 2Access Mode14 3Extending CAS with Either Access Mode4 4Read-Modify-Write Cycles with Either Access Mode 4 5Additional Access Support Features4 5 1Address Latches and Column Increment4 5 2Address Pipelining4 5 3Delay CAS during Write Accesses5 0REFRESH OPTIONS5 1Refresh Control Modes5 1 1Automatic Internal Refresh5 1 2Externally Controlled Burst Refresh5 1 3Refresh Request Acknowledge5 2Refresh Cycle Types5 2 1Conventional Refresh5 2 2Staggered Refresh TM5 2 3Error Scrubbing Refresh5 3Extending Refresh5 4Clearing the Refresh Address Counter5 5Clearing the Refresh Request Clock6 0PORT A WAIT STATE SUPPORT6 1WAIT Type Output6 2DTACK Type Output6 3Dynamically Increasing the Number of Wait States6 4Guaranteeing RAS Low Time and RAS PrechargeTime7 0RAS AND CAS CONFIGURATION MODES7 1Byte Writing7 2Memory Interleaving7 3Address Pipelining7 4Error Scrubbing7 5Page Burst Mode8 0TEST MODE9 0DRAM CRITICAL TIMING PARAMETERS9 1Programmable Values of t RAH and t ASC9 2Calculation of t RAH and t ASC10 0DUAL ACCESSING(DP8422V and DP84T22V)10 1Port B Access Mode10 2Port B Wait State Support10 3Common Port A and Port B Dual Port Functions10 3 1GRANTB Output10 3 2LOCK Input10 4TRI-STATE Outputs(DP84T22Only)11 0ABSOLUTE MAXIMUM RATINGS12 0DC ELECTRICAL CHARACTERISTICS13 0AC TIMING PARAMETERS14 0FUNCTIONAL DIFFERENCES BETWEEN THEDP8420V 21V 22V DP84T22AND THEDP8420 21 2215 0DP8420V 21V 22V DP84T22USER HINTS21 0IntroductionThe DP8420V 21V 22V DP84T22are CMOS Dynamic RAM controllers that incorporate many advanced features which include address latches refresh counter refresh clock row column and refresh address multiplexer delay line refresh access arbitration logic and high capacitive drivers The programmable system interface allows any manufacturer’s microprocessor or bus to directly interface via the DP8420V 21V 22V DP84T22to DRAM arrays up to 64Mbytes in sizeAfter power up the user must first reset and program the DP8420V 21V 22V DP84T22before accessing the DRAM The chip is programmed through the address busResetDue to the differences in power supplies an External(hard-ware)Reset must be performed before programming the chipProgrammingAfter resetting the chip the user can program the controller by either one of two methods Mode Load Only Program-ming or Chip Select Access ProgrammingInitialization PeriodOnce the DP8420V 21V 22V DP84T22has been pro-grammed for the first time a60ms initialization period is entered During this time the DRC performs refreshes to the DRAM array so further warm up cycles are unnecessary The initialization period is entered only after the first pro-gramming after a resetAccessing ModesAfter resetting and programming the chip the DP8420V 21V 22V DP84T22is ready to access the DRAM There are two modes of accessing with these con-trollers Mode0 which indicates RAS synchronously and Mode1 which indicates RAS asynchronouslyRefresh ModesThe DP8420V 21V 22V DP84T22have expanded refresh capabilities compared to previous DRAM controllers There are three modes of refreshing available Internal Automatic Refreshing Externally Controlled Burst Refreshing and Re-fresh Request Acknowledge Refreshing Any of these modes can be used together or separately to achieve the desired resultsRefresh TypesThese controllers have three types of refreshing available Conventional Staggered and Error Scrubbing Any refresh control mode can be used with any type of refreshWait SupportThe DP8420V 21V 22V DP84T22have wait support avail-able as DTACK or WAIT Both are programmable DTACK Data Transfer ACKnowledge is useful for processors whose wait signal is active high WAIT is useful for those processors whose wait signal is active low The user can choose either at programming These signals are used by the on chip arbiter to insert wait states to guarantee the arbitration between accesses refreshes and precharge Both signals are independent of the access mode chosen and both signals can be dynamically delayed further through the WAITIN signal to the DP8420V 21V 22V DP84T22 Sequential Accesses(Static Column Page Mode)The DP8420V 21V 22V DP84T22have address latches used to latch the bank row and column address inputsOnce the address is latched a COLumn INCrement(COL-INC)feature can be used to increment the column address The address latches can also be programmed to be fall through COLINC can be used for Sequential Accesses of Static Column DRAMs Also COLINC in conjunction with ECAS inputs can be used for Sequential Accesses to Page Mode DRAMsRAS and CAS Configuration(Byte Writing)The RAS and CAS drivers can be configured to drive a one two or four bank memory array up to32bits in width The ECAS signals can then be used to select one of four CAS drivers for Byte Writing with no extra logicMemory InterleavingWhen configuring the DP8420V 21V 22V DP84T22for more than one bank Memory Interleaving can be used By tying the low order address bits to the bank select lines B0 and B1 sequential back to back accesses will not be de-layed since these controllers have separate precharge counters per bankAddress PipeliningThe DP8420V 21V 22V DP84T22are capable of perform-ing Address Pipelining In address pipelining the DRC will guarantee the column address hold time and switch the in-ternal multiplexor to place the row address on the address bus At this time another memory access to another bank can be initiatedDual AccessingThe DP8422V DP84T22have all the features previously mentioned and unlike the DP8420V 21V the DP8422V DP84T22have a second port to allow a second CPU to access the same memory array The DP8422V DP84T22 have four signals to support Dual Accessing these signals are AREQB ATACKB LOCK and GRANTB All arbitration for the two ports and refresh is done on chip by the control-ler through the insertion of wait states Since the DP8422V DP84T22have only one input address bus the address lines must be multiplexed externally The signal GRANTB can be used for this purposeTRI-STATE OutputsThe DP84T22implements TRI-STATE outputs When the input OE is asserted the output buffers are enabled when OE is negated logic1 the output buffers at TRI-STATE (high Z)TerminologyThe following explains the terminology used in this data sheet The terms negated and asserted are used Asserted refers to a‘‘true’’signal Thus ‘‘ECAS0asserted’’means the ECAS0input is at a logic0 The term‘‘COLINC assert-ed’’means the COLINC input is at a logic1 The term negat-ed refers to a‘‘false’’signal Thus ‘‘ECAS0negated’’means the ECAS0input is at a logic1 The term‘‘COLINC negated’’means the input COLINC is at a logic0 The table shown below clarifies this terminologySignal Action Logic LevelActive High Asserted HighActive High Negated LowActive Low Asserted LowActive Low Negated High3Connection DiagramsTL F 11109–2Top View FIGURE 2Order Number DP8420V-33See NS Package Number V68ATL F 11109–3Top View FIGURE 3Order Number DP8421V-33See NS Package Number V68ATL F 11109–4Top View FIGURE 4Order Number DP8422V-33or DP84T22-25See NS Package Number V84A42 0Signal DescriptionsPin Device(If Not InputDescriptionName Applicable to All)Output2 1ADDRESS R W AND PROGRAMMING SIGNALSR0–10DP8422V T22I ROW ADDRESS These inputs are used to specify the row address during an accessto the DRAM They are also used to program the chip when ML is asserted(exceptR0–9DP8420V 21V IR10)C0–10DP8422V T22I COLUMN ADDRESS These inputs are used to specify the column address during anaccess to the DRAM They are also used to program the chip when ML is assertedC0–9DP8420V 21V I(except C10)B0 B1I BANK SELECT Depending on programming these inputs are used to select a groupof RAS and CAS outputs to assert during an access They are also used to programthe chip when ML is assertedECAS0–3I ENABLE CAS These inputs are used to enable a single or group of CAS outputswhen asserted In combination with the B0 B1and the programming bits theseinputs select which CAS output or CAS outputs will assert during an access TheECAS signals can also be used to toggle a group of CAS outputs for page nibblemode accesses They also can be used for byte write operations If ECAS0isnegated during programming continuing to assert the ECAS0while negating AREQor AREQB during an access will cause the CAS outputs to be extended while theRAS outputs are negated(the ECASn inputs have no effect during scrubbingrefreshes)WIN I WRITE ENABLE IN This input is used to signify a write operation to the DRAM IfECAS0is asserted during programming the WE output will follow this input Thisinput asserted will also cause CAS to delay to the next positive clock edge if addressbit C9is asserted during programmingCOLINC I COLUMN INCREMENT When the address latches are used and RFIP is negatedthis input functions as COLINC Asserting this signal causes the column address to (EXTNDRF)Ibe incremented by one When RFIP is asserted this signal is used to extend therefresh cycle by any number of periods of CLK until it is negatedML I MODE LOAD This input signal when low enables the internal programming registerthat stores the programming information2 2DRAM CONTROL SIGNALSQ0–10DP8422V T22O DRAM ADDRESS These outputs are the multiplexed output of the R0–9 10andC0–9 10and form the DRAM address bus These outputs contain the refreshQ0–9DP8421V Oaddress whenever RFIP is asserted They contain high capacitive drivers with20XQ0–8DP8421V Oseries damping resistorsRAS0–3O ROW ADDRESS STROBES These outputs are asserted to latch the row addresscontained on the outputs Q0–8 9 10into the DRAM When RFIP is asserted theRAS outputs are used to latch the refresh row address contained on the Q0–8 9 10outputs in the DRAM These outputs contain high capacitive drivers with20X seriesdamping resistorsCAS0–3O COLUMN ADDRESS STROBES These outputs are asserted to latch the columnaddress contained on the outputs Q0–8 9 10into the DRAM These outputs havehigh capacitive drivers with20X series damping resistorsWE O WRITE ENABLE or REFRESH REQUEST This output asserted specifies a writeoperation to the DRAM When negated this output specifies a read operation to the (RFRQ)ODRAM When the controller is programmed in address pipelining mode or whenECAS0is negated during programming this output will function as RFRQ Whenasserted this pin specifies that13m s or15m s have passed If DISRFSH is negatedthe DP8420V 21V 22V DP84T22will perform an internal refresh as soon aspossible If DISRFRSH is asserted RFRQ can be used to externally request a refreshthrough the input RFSH This output has a high capacitive driver and a20X seriesdamping resistorOE DP84T22I OUTPUT ENABLE This input asserted enables the output buffers for the rowcolumn RASs CASs and WE If this input is disabled logic1 the output buffers are at (Only)TRI-STATE facilitating the board level circuit testing52 0Signal Descriptions(Continued)Pin Device(If Not InputDescriptionName Applicable to All)Output2 3REFRESH SIGNALSRFIP O REFRESH IN PROGRESS This output is asserted prior to a refresh cycle and isnegated when all the RAS outputs are negated for that refreshRFSH I REFRESH This input asserted with DISRFRSH already asserted will request arefresh If this input is continually asserted the DP8420V 21V 22V DP84T22willperform refresh cycles in a burst refresh fashion until the input is negated If RFSH isasserted with DISRFSH negated the internal refresh address counter is cleared(useful for burst refreshes)DISRFSH I DISABLE REFRESH This input is used to disable internal refreshes and must beasserted when using RFSH for externally requested refreshes2 4PORT A ACCESS SIGNALSADS I ADDRESS STROBE or ADDRESS LATCH ENABLE Depending on programmingthis input can function as ADS or ALE In mode0 the input functions as ALE and (ALE)Iwhen asserted along with CS causes an internal latch to be set Once this latch is setan access will start from the positive clock edge of CLK as soon as possible In Mode1 the input functions as ADS and when asserted along with CS causes the accessRAS to assert if no other event is taking place If an event is taking place RAS will beasserted from the positive edge of CLK as soon as possible In both cases the lowgoing edge of this signal latches the bank row and column address if programmed todo soCS I CHIP SELECT This input signal must be asserted to enable a Port A accessAREQ I ACCESS REQUEST This input signal in Mode0must be asserted some time afterthe first positive clock edge after ALE has been asserted When this signal isnegated RAS is negated for the access In Mode1 this signal must be assertedbefore ADS can be negated When this signal is negated RAS is negated for theaccessWAIT O WAIT or DTACK This output can be programmed to insert wait states into a CPUaccess cycle With R7negated during programming the output will function as a (DTACK)OWAIT type output In this case the output will be active low to signal a wait conditionWith R7asserted during programming the output will function as DTACK In thiscase the output will be negated to signify a wait condition and will be asserted tosignify the access has taken place Each of these signals can be delayed by anumber of positive clock edges or negative clock levels of CLK to increase themicroprocessor’s access cycle through the insertion of wait statesWAITIN I WAIT INCREASE This input can be used to dynamically increase the number ofpositive clock edges of CLK until DTACK will be asserted or WAIT will be negatedduring a DRAM access62 0Signal Descriptions(Continued)Pin Device(If Not InputDescriptionName Applicable to All)Output2 5PORT B ACCESS SIGNALSAREQB DP8422V T22I PORT B ACCESS REQUEST This input asserted will latch the row column and bankaddress if programmed and requests an access to take place for Port B If the onlyaccess can take place RAS will assert immediately If the access has to be delayedRAS will assert as soon as possible from a positive edge of CLKATACKB DP8422V T22O ADVANCED TRANSFER ACKNOWLEDGE PORT B This output is asserted whenthe access RAS is asserted for a Port B access This signal can be used to generate onlythe appropriate DTACK or WAIT type signal for Port B’s CPU or bus2 6COMMON DUAL PORT SIGNALSGRANTB DP8422V T22O GRANT B This output indicates which port is currently granted access to the DRAMarray When GRANTB is asserted Port B has access to the array When GRANTB is onlynegated Port A has access to the DRAM array This signal is used to multiplex thesignals R0–8 9 10 C0–8 9 10 B0–1 WIN LOCK and ECAS0–3to the DP8422Vwhen using dual accessingLOCK DP8422V T22I LOCK This input can be used by the currently granted port to‘‘lock out’’the otherport from the DRAM array by inserting wait states into the locked out port’s access onlycycle until LOCK is negated2 7POWER SIGNALS AND CAPACITOR INPUTV CC I POWER Supply VoltageGND I GROUND Supply Voltage ReferenceCAP I CAPACITOR This input is used by the internal PLL for stabilization The value of theceramic capacitor should be0 1m F and should be connected between this input andground2 8CLOCK INPUTSThere are two clock inputs to the DP8420V 21V 22V DP84T22CLK and DELCLK These two clocks may both be tied to the same clock input or they may be two separate clocks running at different frequencies asynchronous to each otherCLK I SYSTEM CLOCK This input may be in the range of0Hz up to33MHz(up to25MHzin the DP84T22V) This input is generally a constant frequency but it may becontrolled externally to change frequencies or perhaps be stopped for some arbitraryperiod of timeThis input provides the clock to the internal state machine that arbitrates betweenaccesses and refreshes This clock’s positive edges and negative levels are used toextend the WAIT(DTACK)signals This clock is also used as the reference for theRAS precharge time and RAS low time during refreshAll Port A and Port B accesses are assumed to be synchronous to the system clockCLKDELCLK I DELAY LINE CLOCK The clock input DELCLK may be in the range of6MHz to20MHz and should be a multiple of2(i e 6 8 10 12 14 16 18 20MHz)to havethe DP8420V 21V 22V DP84T22switching characteristics hold If DELCLK is notone of the above frequencies the accuracy of the internal delay line will suffer This isbecause the phase locked loop that generates the delay line assumes an input clockfrequency of a multiple of2MHzFor example if the DELCLK input is at7MHz and we choose a divide by3(programbits C0–2)this will produce2 333MHz which is16 667%off of2MHz Therefore theDP8420V 21V 22V DP84T22delay line would produce delays that are shorter(faster delays)than what is intended If divide by4was chosen the delay line wouldbe longer(slower delays)than intended(1 75MHz instead of2MHz) (See Section9for more information )This clock is also divided to create the internal refresh clock73 0Programming and ResettingDue to the variety in power supplies power-up times an EXTERNAL RESET must be performed before the DRAM controller can be programmed and usedAfter going through the reset procedure the DP8420V 21V 22V DP84T22can be programmed by either of two methods Mode Load Only Programming or Chip Select Ac-cess Programming After programming the DRC for the first time after reset the chip enters a 60ms initialization period during this period the controller performs refreshes every 13m s or 15m s this makes further DRAM warm up cycles unnecessary After this stage the chip can be repro-grammed as many times as the user wishes and the 60ms period will not be entered into unless the chip is reset and programmed againDuring the 60ms initialization period RFIP is asserted low and RAS toggles every 13m s or 15m s depending on the programming bit for refresh (C3) CAS will be inactive (logic 1)and the ‘‘Q’’outputs will count from 0to 2047refreshing the entire DRAM array The actual initialization time period is given by the following formula T e 4096 (Clock Divisor Select) (Refresh Clock Fine Tune) (DELCLK Frq )3 1EXTERNAL RESETAt power up if the internal power up reset worked all inter-nal latches and flip-flops are cleared and the part is ready to be programmed The power up state can also be achieved by performing an External Reset which is required to insure proper operation External Reset is achieved by asserting ML and DISRFSH for at least 16positive clock edges In order to perform simply a Reset the ML signal must be negated before DISRFSH is negated as shown in Figure 5a This procedure will only reset the controller which now is ready for programmingWhile performing an External Reset if the user negates DISRFSH at least one clock period before negating ML as shown in Figure 5b ML negated will program the DP8420V 21V 22V DP84T22with the values in R0–9 C0–9 B0–1and ECAS0 The 60ms initialization period will be entered since it is the first programming after reset This is a good way of resetting and programming the part at the same time Make sure the right programming bits are on the address bus before ML is negatedThe DRC may be programmed any time on the fly but the user must make sure that No Access or Refresh is in prog-ress Reset is asynchronousTL F 11109–5FIGURE 5a Chip Reset but Not ProgrammedTL F 11109–6FIGURE 5b Chip Reset and Programmed83 0Programming and Resetting (Continued)3 2PROGRAMMING METHODS 3 2 1Mode Load Only ProgrammingTo use this method the user asserts ML enabling the inter-nal programming register After ML is asserted a valid pro-gramming selection is placed on the address bus B0 B1and ECAS0inputs then ML is negated When ML is negat-ed the programming bits are latched into the internal pro-gramming register and the DP8420V 21V 22V DP84T22is programmed see Figure 6 When programming the chip the controller must not be refreshing RFIP must be high (1)to have a successful programming3 2 2Chip Selected Access ProgrammingThe chip can also be programmed by performing a chip selected access To program the chip using this method ML is asserted then CS is asserted and a valid program-ming selection is placed on the address bus When AREQ is asserted the programming bits affecting the wait logic be-come effective immediately then DTACK is asserted allow-ing the access to terminate After the access ML is negated and the rest of the programming bits take effectTL F 11109–7FIGURE 6 ML Only ProgrammingTL F 11109–8FIGURE 7 CS Access Programming93 0Programming and Resetting(Continued)3 3PROGRAMMING BIT DEFINITIONSSymbol DescriptionECAS0Extend CAS Refresh Request Select0The CASn outputs will be negated with the RASn outputs when AREQ(or AREQB DP8422V DP84T22only)is negated The WE output pin will function as write enable1The CASn outputs will be negated during an acccess(Port A(or Port B DP8422V DP84T22only))when their corresponding ECASn inputs are negated This feature allows the CAS outputs to be extended beyond the RASoutputs negating Scrubbing refreshes are NOT affected During scrubbing refreshes the CAS outputs will negatealong with the RAS outputs regardless of the state of the ECAS inputsThe WE output will function as ReFresh ReQuest(RFRQ)when this mode is programmedB1Access Mode Select0ACCESS MODE0 ALE pulsing high sets an internal latch On the next positive edge of CLK the access(RAS) will start AREQ will terminate the access1ACCESS MODE1 ADS asserted starts the access(RAS)immediately AREQ will terminate the accessB0Address Latch Mode0ADS or ALE asserted for Port A or AREQB asserted for Port B with the appropriate GRANT latch the input row column and bank address1The row column and bank latches are fall throughC9Delay CAS during WRITE Accesses0CAS is treated the same for both READ and WRITE accesses1During WRITE accesses CAS will be asserted by the event that occurs last CAS asserted by the internal delay line or CAS asserted on the positive edge of CLK after RAS is assertedC8Row Address Hold Time0Row Address Hold Time e25ns minimum1Row Address Hold Time e15ns minimumC7Column Address Setup Time0Column Address Setup Time e10ns miniumum1Column Address Setup Time e0ns minimumC6 C5 C4RAS and CAS Configuration Modes Error Scrubbing during Refresh0 0 0RAS0–3and CAS0–3are all selected during an access ECASn must be asserted for CASn to be assertedB0and B1are not used during an access Error scrubbing during refresh0 0 1RAS and CAS pairs are selected during an access by B1 ECASn must be asserted for CASn to be assertedB1e0during an access selects RAS0–1and CAS0–1B1e1during an access selects RAS2–3and CAS2–3B0is not used during an AccessError scrubbing during refresh0 1 0RAS and CAS singles are selected during an access by B0–1 ECASn must be asserted for CASn to be assertedB1e0 B0e0during an access selects RAS0and CAS0B1e0 B0e1during an access selects RAS1and CAS1B1e1 B0e0during an access selects RAS2and CAS2B1e1 B0e1during an access selects RAS3and CAS3Error scrubbing during refresh0 1 1RAS0–3and CAS0–3are all selected during an access ECASn must be asserted for CASn to be assertedB1 B0are not used during an accessNo error scrubbing (RAS only refreshing)1 0 0RAS pairs are selected by B1 CAS0–3are all selected ECASn must be asserted for CASn to be assertedB1e0during an access selects RAS0–1and CAS0–3B1e1during an access selects RAS2–3and CAS0–3B0is not used during an accessNo error scrubbing103 0Programming and Resetting(Continued)3 3PROGRAMMING BIT DEFINITIONS(Continued)Symbol DescriptionC6 C5 C4RAS and CAS Configuration Modes(Continued)1 0 1RAS and CAS pairs are selected by B1 ECASn must be asserted for CASn to be assertedB1e0during an access selects RAS0–1and CAS0–1B1e1during an access selects RAS2–3and CAS2–3B0is not used during an accessNo error scrubbing1 1 0RAS singles are selected by B0–1 CAS0–3are all selected ECASn must be asserted for CASn to beassertedB1e0 B0e0during an access selects RAS0and CAS0–3B1e0 B0e1during an access selects RAS1and CAS0–3B1e1 B0e0during an access selects RAS2and CAS0–3B1e1 B0e1during an access selects RAS3and CAS0–3No error scrubbing1 1 1RAS and CAS singles are selected by B0 1 ECASn must be asserted for CASn to be assertedB1e0 B0e0during an access selects RAS0and CAS0B1e0 B0e1during an access selects RAS1and CAS1B1e1 B0e0during an access selects RAS2and CAS2B1e1 B0e1during an access selects RAS3and CAS3No error scrubbingC3Refresh Clock Fine Tune Divisor0Divide delay line refresh clock further by30(If DELCLK Refresh Clock Clock Divisor e2MHz e15m s refresh period)1Divide delay line refresh clock further by26(If DELCLK Refresh Clock Clock Divisor e2MHz e13m s refresh period)C2 C1 C0Delay Line Refresh Clock Divisor Select0 0 0Divide DELCLK by10to get as close to2MHz as possible0 0 1Divide DELCLK by9to get as close to2MHz as possible0 1 0Divide DELCLK by8to get as close to2MHz as possible0 1 1Divide DELCLK by7to get as close to2MHz as possible1 0 0Divide DELCLK by6to get as close to2MHz as possible1 0 1Divide DELCLK by5to get as close to2MHz as possible1 1 0Divide DELCLK by4to get as close to2MHz as possible1 1 1Divide DELCLK by3to get as close to2MHz as possibleR9Refresh Mode Select0RAS0–3will all assert and negate at the same time during a refresh1Staggered Refresh RAS outputs during refresh are separated by one positive clock edge Depending on the configuration mode chosen either one or two RASs will be assertedR8Address Pipelining Select0Address pipelining is selected The DRAM controller will switch the DRAM column address back to the row address after guaranteeing the column address hold time1Non-address pipelining is selected The DRAM controller will hold the column address on the DRAM address bus until the access RASs are negatedR7WAIT or DTACK Select0WAIT type output is selected1DTACK(Data Transfer ACKnowledge)type output is selectedR6Add Wait States to the Current Access if WAITIN is Low0WAIT or DTACK will be delayed by one additional positive edge of CLK1WAIT or DTACK will be delayed by two additional positive edges of CLK11。