研究性实验报告——各向异性磁阻传感器与磁场测量
[实验报告]磁阻传感器和地磁场的测量
![[实验报告]磁阻传感器和地磁场的测量](https://img.taocdn.com/s3/m/fe1e49cd52d380eb63946d56.png)
磁阻传感器和地磁场的测量一.实验目的掌握磁阻传感器的特性。
掌握地磁场的测量方法。
二.实验原理物质在磁场中电阻率发生变化的现象称为磁阻效应。
对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。
HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。
它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。
薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+=∥其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。
当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。
同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。
HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。
传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。
传感器内部结构如图6-8-2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。
因而输出电压out U 可以用下式表示为b out V R U ⨯⎪⎫⎛∆=磁阻传感器的构造示意图 磁阻传感器内的惠斯通电桥对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系,KB U U out +=0上式中,K 为传感器的灵敏度,B 为待测磁感应强度。
各项异性磁阻效应及磁场测量.
![各项异性磁阻效应及磁场测量.](https://img.taocdn.com/s3/m/2547e6df2cc58bd63186bd4c.png)
物理实验报告2014物理学专业实验题目:_ 各项异性磁阻效应及磁场测量姓名: 柯铭沣学号:____135012014071___________日期:__2015_年__9___月__28___日实验 各向异性磁阻传感器及磁场测量[实验目的]1、掌握各向异性磁阻传感器的原理和特性;2、掌握各向异性磁阻传感器测量磁场的基本原理和测量方法。
[实验仪器]磁场测试仪,主要包括底座、转轴、带角刻度的转盘、磁阻传感器的引线、亥姆霍兹线圈、磁场测试仪控制主机(数字式电压表、5 V 直流电源等)。
[实验原理]1、各向异性磁阻传感器一定条件下,导电材料的电阻值R 随磁感应强度B 变化的规律称为磁阻效应。
当半导体处于磁场中时,导体或半导体的载流子将受洛伦兹力的作用而发生偏转,因而沿外加电场方向运动的载流子数量将减少,使得沿电场方向的电流密度减小,电阻增大。
(具体原理详见实验39“半导体材料的磁电阻效应研究”)。
各向异性磁阻传感器(Anisotropic Magneto-Resistive sensors, AMR) 是由沉积在硅片上的坡莫合金( Ni 80Fe 20) 薄膜形成的电阻,如图1所示。
除了具有磁阻效应,由于在沉积时外加磁场,AMR 形成易磁化方向,即当外加磁场偏离合金的内部磁化方向时,材料电阻减小,这就是各向异性磁阻效应。
AMR 的电阻与材料所处环境磁化强度M 和电流I 方向间的夹角有关,电流和磁化方向平行时电阻最大为R max ,而电流与磁化方向垂直时电阻最小为R min ,则电流和磁化方向成θ时, 电阻可表示为:()θ2min max min cos R R R R -+= (1)图1磁阻传感器的构造示意图 图2磁阻传感器内部结构为了消除温度等外界因素的影响,本实验所用的磁阻传感器是一种单边封装的磁场传感器,传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出,内部结构如图2所示。
B504实验报告模板-各向异性磁阻传感器与磁场测量
![B504实验报告模板-各向异性磁阻传感器与磁场测量](https://img.taocdn.com/s3/m/ced87b63f46527d3240ce04e.png)
姓名
学号
教师姓名
上课日期 2016 年 月 日 教室 7 教 B 段 602 房间 座位号
(以上信息请根据网络选课页面填写完整。) 任课教师签字:
最终成绩:
【预习要点】 1. 磁阻元件的发展与应用。 2. 了解以下概念:各向异性磁铁材料,磁阻,磁阻效应,各向异性磁阻传感器(AMR)可以测量什么。 3. 重点了解磁阻传感器的构成:磁阻元件、易磁化方向、磁敏感方向、磁阻电桥。 4. AMR 测量磁场的原理。 5. 了解磁场实验仪面板,特别注意:复位端(R/S)、补偿端(OFFSET)的作用。 6. 地磁场知识:地磁倾角,地磁场感应强度。 【实验目的】(见教材)
Ux 测(V)
Bx 测=Ux/0.25(Gs)
Bx/B0
4. <表 4> 赫氏线圈空间磁场分布测量(B0=4 Gs) X
Y
Vx
0
0.05R
0.10R
0
0.05R
0.10R
0.15R
0.20R
0.25R
0.30R
0.15R
0.20R
0.25R
5. <表 5> 地磁场的测量(选作) 磁偏角(度) 磁倾角(度)
。 (3) 确定所用传感器的灵敏度平均值。 灵敏度=(输出电压/放大倍数×磁感应强度)。
L=
(mV/V·Gs)
学号
贴坐标纸处
2、对表 2,判断所测输出电压是否符合余弦规律。
。 以角度 α 为横坐标,被测电压 U 测为纵坐标作图。
贴坐标纸处
3、 对表 3 以位置 X 为横坐标,Bx 为纵坐标作图,讨论
对表3以位置x为横坐标bx为纵坐标作图讨论赫氏线圈的轴向磁场分布特点是对表4数据讨论赫氏线圈的空间磁场分布特点是贴坐标纸处贴坐标纸处贴坐标纸处实验题目如何测量磁场的大小班级姓名学号警示
研究性实验报告——各向异性磁阻传感器与磁场测量
![研究性实验报告——各向异性磁阻传感器与磁场测量](https://img.taocdn.com/s3/m/f5e60d0baaea998fcc220e66.png)
研究性实验报告——各向异性磁阻传感器与磁场测量基础物理学研究性实验报告题目:各向异性磁阻传感器(AMR)与地磁场测量第一作者:11111111第二作者:22222222学院:航空科学与工程学院专业:飞行器设计与工程班级:1105192013年5月14日目录摘要........................................................................................................................ . (1)关键词........................................................................................................................ (1)一、实验要求 (1)二、实验原三、实验仪器介绍 (2)四、实验内容 (4)1、测量前的准备工作 (4)2、磁阻传感器特性测量 (5)3、测量磁阻传感器的各向异性特性 (6)4、赫姆霍兹线圈的磁场分布测量 (7)5、地磁场测量 (10)五、思考题 (10)六、误差分析 (11)七、AMR传感器的应用举例 (11)八、实验感参考文献 (12)附录——原始实验数据(影印版) (13)北京航空航天大学研究性实验报告各向异性磁阻传感器与磁场测量摘要:物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。
磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量。
也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,广泛用于各类需要自动检测与控制的领域。
磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。
本实验研究AMR的特性并利用它对磁场进行测量。
关键词:AMR,磁阻效应,电磁转换,磁场测量一、实验要求1.熟悉和了解AMR的原理2.测量磁阻传感器的磁电转换特性和各向异性特性3.测量赫姆霍兹线圈的磁场分布4.测量地磁场磁场强度,磁倾角,磁偏角二、实验原理各向异性磁阻传感器AMR(AnisotropicMagneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。
各向异性磁电阻测量实验报告
![各向异性磁电阻测量实验报告](https://img.taocdn.com/s3/m/24664f244b73f242336c5f22.png)
各向异性磁电阻测量实验摘要:本文阐述了各向异性磁电阻的实验原理及测量方法,分别测量了电流方向与磁场方向平行和垂直两种情况下电阻虽磁场的变化,最后对本实验进行了讨论。
关键词:各向异性磁电阻、AMR曲线、磁电阻测量引言一般所谓磁电阻是指在一定磁场下材料电阻率改变的现象。
1988年,在分子束外延制备的Fe/Cr多层膜中发现MR可达50%。
并且在薄膜平面上,磁电阻是各向同性的。
人们把这称之为巨磁电阻(简记为GMR),90年代,人们又在Fe/Cu、Fe/Al、Fe/Ag、Fe/Au、Co/Cu、Co/Ag和Co/Au等纳米多层膜中观察到了显著的巨磁电阻效应。
1992年人们又发现在非互溶合金(如Fe、Co与Cu、Ag、Au等在平衡态不能形成合金)颗粒膜如Co-Ag、Co-Cu中存在巨磁电阻效应,在液氮温度可达55%,室温可达到20%,并且有各向同性的特点。
19944年,人们又发现Fe/Al2O3/Fe隧道结在4.2K的MR为30%,室温达18%,之后在其他一些铁磁层/非铁磁层/铁磁层隧道结中亦观察到了大的磁电阻效应,人们将此称为隧道结磁电阻(简记为TMR)。
目前MR室温达24%的TMR材料已制成,用TMR材料已制成计算机硬盘读出磁头,其灵敏度比普通MR磁头高10倍,比GMR磁头高数倍。
20世纪90年代后期,人们在掺碱土金属稀土锰氧化物中发现MR可达103%~106%,称之为庞磁电阻(简记为CMR)。
目前锰氧化物CMR材料的磁电阻饱和磁场较高,降低其饱满和场是将之推向应用的重要研究课题。
利用磁电阻效应可以制成计算机硬盘读出磁头;可以制成磁随机存储器(MRAM);还可测量位移、角度、速度、转速等。
实验目的(1)初步了解磁性合金的AMR。
(2)初步掌握室温磁电阻的测量方法。
实验原理一些磁性金属和合金的AMR与技术磁化相对应,即与从退磁状态到趋于磁饱和的过程相应的电阻变化。
外加磁场方向与电流方向的夹角不同,饱和磁化时电阻率不一样,即有各向异性。
磁阻传感器与磁场测量
![磁阻传感器与磁场测量](https://img.taocdn.com/s3/m/35e0b808fad6195f312ba62e.png)
北航基础物理实验研究性报告各向异性磁阻传感器(AMR)与地磁场测量第一作者: 13271138 卢杨第二作者: 13271127 刘士杰所在院系:化学与环境学院2015年5月27日星期三摘要物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。
磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。
其中磁阻效应法发展最快,测量灵敏度最高。
磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。
也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。
磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。
本实验研究AMR的特性并利用它对磁场进行测量。
关键词:磁阻传感器;磁电转换;赫姆霍兹线圈;车辆检测;罗盘目录一、实验目的 (4)二、实验原理 (4)三、实验仪器介绍 (6)四、实验内容 (8)1.测量前的准备工作 (8)2.磁阻传感器特性测量 (8)a.测量磁阻传感器的磁电转换特性 (8)b.测量磁阻传感器的各向异性特性 (9)3.赫姆霍兹线圈的磁场分布测量 (9)a. 赫姆霍兹线圈轴线上的磁场分布测量 (9)b.赫姆霍兹线圈空间磁场分布测量 (11)4.地磁场测量 (12)五、实验数据及数据处理 (13)1.磁阻传感器特性测量 (13)a.测量磁阻传感器的磁电转换特性 (13)b.测量磁阻传感器的各向异性特性 (14)2.赫姆霍兹线圈的磁场分布测量 (15)a.赫姆霍兹线圈轴线上的磁场分布测量 (15)b.赫姆霍兹线圈空间磁场分布测量 (16)3.地磁场测量 (17)六、误差分析与思考题 (17)1、误差分析 (17)2、思考题 (18)七、实验中注意事项及改进方法 (19)1、注意事项 (19)2、实验改进 (19)八、总结与收获 (20)九、原始数据照片 (20)一、实验目的1.熟悉和了解AMR的原理2.测量磁阻传感器的磁电转换特性和各向异性特性3.测量赫姆霍兹线圈的磁场分布4.测量地磁场磁场强度,磁倾角,磁偏角二、实验原理各向异性磁阻传感器AMR(Anisotropic Magneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。
用各向异性磁阻效应测量磁场.
![用各向异性磁阻效应测量磁场.](https://img.taocdn.com/s3/m/cca9a03b58fb770bf68a5503.png)
用各向异性磁阻效应测量磁场实验目的:1.了解各向异性磁阻的原理并对其特性进行实验研究 2.测量赫姆霍兹线圈的磁场分布 3.测量地磁场实验仪器:ZKY-DCC 磁场实验仪,电源,水平校准仪,导线等。
实验原理:磁场的测量可利用电磁感应、霍耳效应以及磁阻效应等各种效应,其中磁阻效应法发展最快,测量灵敏度最高。
物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器就是利用磁阻效应制成的,可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。
也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。
磁阻元件的发展经历了半导体磁阻(MR ),各向异性磁阻(AMR ),巨磁阻(GMR ),庞磁阻(CMR )等阶段。
本实验研究AMR 的特性并利用它对磁场进行测量。
各向异性磁阻传感器AMR (Anisotropic Magneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni 80 Fe 20)薄膜形成电阻。
沉积时外加磁场,形成易磁化轴方向。
铁磁材料的电阻同电流与磁化方向的夹角有关,电流与磁化方向平行时电阻R max 最大,电流与磁化方向垂直时电阻R min 最小,电流与磁化方向成θ角时,电阻可表示为:R = Rmin +(Rmax -R min cos 2θ在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图1所示。
图1中,易磁化轴方向与电流方向的夹角为45度。
理论分析与实践表明,采用45度偏置磁场,当沿与易磁化轴垂直的方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。
无外加磁场或外加磁场方向与易磁化轴方向平行时,磁化方向即易磁化轴方向,电桥的4个桥臂电阻阻值相同,输出为零。
《各向异性磁电阻》报告
![《各向异性磁电阻》报告](https://img.taocdn.com/s3/m/c9b8bb2526d3240c844769eae009581b6ad9bd5f.png)
各向异性磁电阻测量姓名:学号:院系:各向异性磁电阻测量引言磁电阻(MR)效应是指物质在磁场作用下电阻发生变化的现象。
按磁电阻效应的机理和大小,磁电阻效应一般可以分为:正常磁电阻(OMR)效应,各向异性磁电阻(AMR)效应,巨磁电阻(GMR)效应。
磁阻材料在高密度读出磁头磁传感器、微弱磁场测量、各类运动的检测等领域有着宽广的应用,从而成为国际上引人瞩目的研究领域。
图1为早期报道的Co-Cu颗粒膜磁电阻曲线。
磁电阻效应,特别是巨磁电阻效应的理论涉及较多的固体量子知识,CMR等尚未有比较完善的统一理论解释,这里不作介绍。
本文仅从纯粹的技术角度上测量各向异性磁电阻,不作物理细节上的深入划分。
实验原理各向异性磁电阻效应(AMR效应)指在铁磁性的过渡族金属、合金中,即材料的磁阻和其在磁场中的磁化方向有关,即磁阻值是其磁化方向与电流方向之间夹角的函数。
外加磁场方向与电流方向的夹角不同,饱和磁化时电阻率不一样,即有各向异性。
通常取外磁场方向与电流方向平行和垂直两种情况测量AMR 。
即有:Δρ∥=ρ∥-ρ(0)Δρ⊥=ρ⊥-ρ(0)这里ρ(0)为铁磁材料在磁场为零状态下的电阻率。
若退磁状态下磁畴是各向同性分布的,畴壁散射变化对磁电阻的贡献较小,将之忽略,通常取:3/)2(0//⊥+=≈ρρρρav )(其中ρav 表示物质在饱和磁场H 中和磁场为零时的平均电阻率。
大多数材料ρ∥>ρ(0),故:AMR 常定义为:图2是曾用作磁盘读出磁头和磁场传感器材料的Ni81Fe19的磁电阻曲线,很明显ρ∥>ρ(0),ρ⊥<ρ(0),各向异性明显。
图3是一些铁磁金属与合金薄膜的各向异性磁电阻曲线。
图中的双峰是材料的磁滞引起的。
av av avav av avav av ρρρρρρρρρρρρρρ//////2100∆=∆<-=∆>-=∆⊥⊥⊥00//0//ρρρρρρρ⊥⊥∆-∆=-=AMR实验内容1 实验方法介绍铁磁金属薄膜磁的电阻很低,所以它的电阻率测量需要采用四端接线法。
各向异性磁电阻、巨磁电阻测量
![各向异性磁电阻、巨磁电阻测量](https://img.taocdn.com/s3/m/ba9a13f59e314332396893eb.png)
各向异性磁电阻、巨磁电阻测量1. 实验目的(1) 初步了解磁性合金的AMR,多层膜的GMR,掺碱土金属稀土锰氧化物的CMR;(2) 初步掌握室温磁电阻的测量方法。
2.实验原理2.1 各向异性磁电阻(AMR)一些磁性金属和合金的AMR与技术磁化相对应,即与从退磁状态到趋于磁饱和过程的电阻变化相对应。
外加磁场与电流方向的夹角不同,饱和磁化时的电阻率不一样,即有各向异性。
通常取外磁场方向与电流方向平行和垂直两种情况测量AMR,即有∆ρ∥=ρ∥−ρ(0)和∆ρ⊥=ρ⊥−ρ(0)。
若退磁状态下磁畴是各向同性分布的,畴壁散射变化对磁电阻的贡献较小,将之忽略,则ρ(0)与平均值ρav=ρ∥+2ρ⊥3相等。
大多数都有材料ρ∥>ρ(0)。
AMR通常定义为AMR=ρ∥−ρ⊥ρ(0)(1)如果ρ0≠ρav,则说明该样品在退磁状态下有磁畴织构,即磁畴分布非完全各向同性。
2.2 多层膜的巨磁电阻(GMR)巨磁电阻效应首次在Fe/Cr多层膜中发现,其室温下的MR约11.3%,4.2K时约为42.7%;Co/Cu多层膜室温MR可达60%~80%,远大于AMR,故称为巨磁电阻。
其特点为:(1) 数值比AMR大得多。
(2) 基本上为各向同性。
(3) 多层膜磁电阻按传统定义MR=ρH−ρ(0)ρ(0)×100%是负值,恒小于100%;常采用另一定义GMR=ρ0−ρ(H)ρ(H)×100%,用此定义数值为正,且可大于100%。
(4) 无外磁场时,多层膜相邻铁磁层磁化反平行排列,电阻最大;加外磁场后,各层磁化平行排列,电阻最小。
(5) 多种磁性材料多层膜都有GMR,但并不是所有多层膜都有大的磁电阻。
2.3掺碱土金属稀土锰氧化物的庞磁电阻(CMR)到目前为止,对RE1−x T x MnO3(RE=La,Pr,Nd,Sm;T=Ca,Sr,Ba,Pb),在x=0.2~0.5范围内都观测到CMR和铁磁性。
其CMR的特点为:(1) 数值远大于多层膜的GMR。
磁阻传感器以及磁场测量
![磁阻传感器以及磁场测量](https://img.taocdn.com/s3/m/ff33fead1a37f111f1855b71.png)
北航基础物理实验研究性报告各向异性磁阻传感器(AMR)与地磁场测量第一作者: 13271138 卢杨第二作者: 13271127 刘士杰所在院系:化学与环境学院2014年5月27日星期三摘要物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。
磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。
其中磁阻效应法发展最快,测量灵敏度最高。
磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。
也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。
磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。
本实验研究AMR的特性并利用它对磁场进行测量。
关键词:磁阻传感器;磁电转换;赫姆霍兹线圈;车辆检测;罗盘目录一、实验目的 (4)二、实验原理 (4)三、实验仪器介绍 (5)四、实验内容 (8)1.测量前的准备工作 (8)2.磁阻传感器特性测量 (8)a.测量磁阻传感器的磁电转换特性 (8)b.测量磁阻传感器的各向异性特性 (9)3.赫姆霍兹线圈的磁场分布测量 (9)a. 赫姆霍兹线圈轴线上的磁场分布测量 (9)b.赫姆霍兹线圈空间磁场分布测量 (11)4.地磁场测量 (12)五、实验数据及数据处理 (13)1.磁阻传感器特性测量 (13)a.测量磁阻传感器的磁电转换特性 (13)b.测量磁阻传感器的各向异性特性 (14)2.赫姆霍兹线圈的磁场分布测量 (15)a.赫姆霍兹线圈轴线上的磁场分布测量 (15)b.赫姆霍兹线圈空间磁场分布测量 (16)3.地磁场测量 (17)六、误差分析与思考题 (17)1、误差分析 (17)2、思考题 (18)七、实验中注意事项及改进方法 (19)1、注意事项 (19)2、实验改进 (19)八、总结与收获 (20)九、原始数据照片 (20)一、实验目的1.熟悉和了解AMR的原理2.测量磁阻传感器的磁电转换特性和各向异性特性3.测量赫姆霍兹线圈的磁场分布4.测量地磁场磁场强度,磁倾角,磁偏角二、实验原理各向异性磁阻传感器AMR(Anisotropic Magneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。
实验报告磁阻传感器和地磁场的测量
![实验报告磁阻传感器和地磁场的测量](https://img.taocdn.com/s3/m/5f3c5c82c8d376eeaeaa318d.png)
磁阻传感器和地磁场的测量一.实验目的掌握磁阻传感器的特性。
掌握地磁场的测量方法。
二.实验原理物质在磁场中电阻率发生变化的现象称为磁阻效应。
对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。
HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。
它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。
薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+=∥其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。
当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。
同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。
HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。
传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。
传感器内部结构如图6-8-2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。
因而输出电压out U 可以用下式表示为b out V R U ⨯⎪⎫⎛∆=传感器造示意传感器惠斯通对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系,KB U U out +=0上式中,K 为传感器的灵敏度,B 为待测磁感应强度。
各项异性磁阻效应及磁场测量.
![各项异性磁阻效应及磁场测量.](https://img.taocdn.com/s3/m/2547e6df2cc58bd63186bd4c.png)
物理实验报告2014物理学专业实验题目:_ 各项异性磁阻效应及磁场测量姓名: 柯铭沣学号:____135012014071___________日期:__2015_年__9___月__28___日实验 各向异性磁阻传感器及磁场测量[实验目的]1、掌握各向异性磁阻传感器的原理和特性;2、掌握各向异性磁阻传感器测量磁场的基本原理和测量方法。
[实验仪器]磁场测试仪,主要包括底座、转轴、带角刻度的转盘、磁阻传感器的引线、亥姆霍兹线圈、磁场测试仪控制主机(数字式电压表、5 V 直流电源等)。
[实验原理]1、各向异性磁阻传感器一定条件下,导电材料的电阻值R 随磁感应强度B 变化的规律称为磁阻效应。
当半导体处于磁场中时,导体或半导体的载流子将受洛伦兹力的作用而发生偏转,因而沿外加电场方向运动的载流子数量将减少,使得沿电场方向的电流密度减小,电阻增大。
(具体原理详见实验39“半导体材料的磁电阻效应研究”)。
各向异性磁阻传感器(Anisotropic Magneto-Resistive sensors, AMR) 是由沉积在硅片上的坡莫合金( Ni 80Fe 20) 薄膜形成的电阻,如图1所示。
除了具有磁阻效应,由于在沉积时外加磁场,AMR 形成易磁化方向,即当外加磁场偏离合金的内部磁化方向时,材料电阻减小,这就是各向异性磁阻效应。
AMR 的电阻与材料所处环境磁化强度M 和电流I 方向间的夹角有关,电流和磁化方向平行时电阻最大为R max ,而电流与磁化方向垂直时电阻最小为R min ,则电流和磁化方向成θ时, 电阻可表示为:()θ2min max min cos R R R R -+= (1)图1磁阻传感器的构造示意图 图2磁阻传感器内部结构为了消除温度等外界因素的影响,本实验所用的磁阻传感器是一种单边封装的磁场传感器,传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出,内部结构如图2所示。
用于地磁测量的各向异性磁阻传感器研究
![用于地磁测量的各向异性磁阻传感器研究](https://img.taocdn.com/s3/m/bd258343be23482fb5da4c13.png)
华中科技大学硕士学位论文用于地磁测量的各向异性磁阻传感器研究姓名:王帅英申请学位级别:硕士专业:微电子学与固体电子学指导教师:杨晓非20080530华中科技大学硕士学位论文摘要地球磁场作为地球的基本资源之一,与人类生活、生产息息相关,它在地球科学、航空航天、资源探测、交通通讯、国防建设、地震预报等方面都有着重要的应用。
鉴于地磁场的重要应用价值,人们对地磁场的测量提出了更高的要求和希望。
选择或者设计一种符合地磁测量要求的弱磁传感器是问题的关键。
由于各向异性磁阻传感器具有高灵敏度、高可靠性、良好线性性、低功耗、易于微型化等优点,因而改进或者优化各向异性磁阻传感器的性能使其满足地磁测量的要求具有一定的现实意义。
本文以各向异性磁阻传感器(AMR sensor)作为研究对象,结合地磁测量的相关要求,对各向异性磁阻效应原理以及各向异性磁阻传感器的薄膜制备、器件结构设计、器件制备工艺等方面的内容进行了研究和探讨,主要内容包括以下几个方面:首先,在分析了各向异性磁阻效应原理的基础上,综述了各向异性磁阻材料的研究现状,并结合地磁场的特点,讨论了各向异性磁阻传感器的特性参数以及用于地磁测量的优势和挑战。
其次,在传感器材料方面,本文采用磁控溅射的方法制备了AMR薄膜,分别对膜层结构、薄膜厚度、退火温度等因素进行了研究。
利用NiFeCr或Al2O3作为辅助种子层、退火工艺对薄膜性能进行了优化,分析并讨论了材料本身和工艺方面对实验结果的影响。
实验制备出磁阻曲线光滑且峰值明显的磁阻材料,最大磁阻系数为1.5%。
最后,在器件结构方面,本文分别对惠斯通电桥、barber 电极、置位/复位电流带和偏置电流带等结构的设计思路进行了研究和探讨,然后利用L-edit设计了磁阻单元、惠斯通电桥和置位/复位电流带的掩膜版,讨论并梳理了器件制备的工艺流程。
关键词:地磁场各向异性磁阻传感器坡莫合金(Ni83Fe17)89Cr11 Al2O3华中科技大学硕士学位论文AbstractAs one of the important earth resources, the geomagnetic field is closely linked with the modern production and life. It is needed for many aspects such as the geosciences, aeronautics, astronautics, resource probing, transportation, national defense construction, earthquake prediction and so forth. However all the above mentioned are based on weak magnetic sensors to detect the geomagnetic field which changes with time and space. The anisotropic magnetoresistive sensor (AMR sensor) has the merits of high sensitivity, high reliability, good linearity, low power consumption, easy miniaturization and so on. Therefore, it is very important to improve or optimize the performances of the AMR sensor to satisfy the requirements of geomagnetic measurement. In regard to the requirements to detect the geomagnetic field, the principles, the material and the structures of the anisotropic magnetoresistive sensors were studied in the thesis. The main contents are as follows:Firstly, with the principle of the anisotropic magnetoresistance effect, current research progress of the anisotropic magnetoresistance material was introduced. Then based on the characteristics of geomagnetic field, the pros and cons of the application of AMR sensors in the geomagnetic field measurement were discussed.Secondly, the anisotropic magnetoresistance films (Permalloy films) were prepared with magnetron sputtering method. And their structure, thickness and annealing temperature were studied. The Permalloy films were optimized with NiFeCr or Al2O3 as assisted seed layers and annealing technique. Measurement showed that the magnetoresistance curve of the material was quite smooth, and obvious peaks were found. The best magnetoresistance coefficient (R/ R) of the material reached a maximum of 1.5%.In the last chapter, the structure of the AMR sensor, including the wheatstone bridge, barber pole and current strap was investigated, and the lithography masks were designed with L-edit, also the process for the devices preparation and lithography process were stated.Keywords: Geomagnetic field Anisotropic magnetoresistive sensorPermalloy film (Ni83Fe17)89Cr11Al2O3独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
磁阻传感器以及磁场测量
![磁阻传感器以及磁场测量](https://img.taocdn.com/s3/m/18cfc5e171fe910ef02df80e.png)
北航基础物理实验研究性报告各向异性磁阻传感器(AMR)与地磁场测量第一作者: 13271138 卢杨第二作者: 13271127 刘士杰所在院系:化学与环境学院2014年5月27日星期三摘要物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。
磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。
其中磁阻效应法发展最快,测量灵敏度最高。
磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。
也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。
磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。
本实验研究AMR的特性并利用它对磁场进行测量。
关键词:磁阻传感器;磁电转换;赫姆霍兹线圈;车辆检测;罗盘目录一、实验目的 (4)二、实验原理 (4)三、实验仪器介绍 (5)四、实验内容 (8)1.测量前的准备工作 (8)2.磁阻传感器特性测量 (8)a.测量磁阻传感器的磁电转换特性 (8)b.测量磁阻传感器的各向异性特性 (9)3.赫姆霍兹线圈的磁场分布测量 (9)a. 赫姆霍兹线圈轴线上的磁场分布测量 (9)b.赫姆霍兹线圈空间磁场分布测量 (11)4.地磁场测量 (12)五、实验数据及数据处理 (13)1.磁阻传感器特性测量 (13)a.测量磁阻传感器的磁电转换特性 (13)b.测量磁阻传感器的各向异性特性 (14)2.赫姆霍兹线圈的磁场分布测量 (15)a.赫姆霍兹线圈轴线上的磁场分布测量 (15)b.赫姆霍兹线圈空间磁场分布测量 (16)3.地磁场测量 (17)六、误差分析与思考题 (17)1、误差分析 (17)2、思考题 (18)七、实验中注意事项及改进方法 (19)1、注意事项 (19)2、实验改进 (19)八、总结与收获 (20)九、原始数据照片 (20)一、实验目的1.熟悉和了解AMR的原理2.测量磁阻传感器的磁电转换特性和各向异性特性3.测量赫姆霍兹线圈的磁场分布4.测量地磁场磁场强度,磁倾角,磁偏角二、实验原理各向异性磁阻传感器AMR(Anisotropic Magneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。
各向异性磁阻实验报告
![各向异性磁阻实验报告](https://img.taocdn.com/s3/m/17b86cbdf605cc1755270722192e453610665bfa.png)
各向异性磁阻实验报告各向异性磁阻实验报告引言:各向异性磁阻是指材料在不同方向上对磁场的电阻变化程度不同。
本实验旨在通过测量不同方向上的电阻,研究各向异性磁阻现象,并分析其原理和应用。
实验步骤:1. 实验前准备:准备一块各向异性磁阻材料样品、磁场强度计、电流源和电压表。
2. 将各向异性磁阻材料样品固定在实验台上,并连接电流源和电压表。
3. 通过电流源给样品通入一定大小的电流,记录电压表的读数。
4. 在不改变电流的情况下,将磁场强度计沿不同方向移动,并记录电压表的读数。
5. 重复步骤4,直到测量完所有方向的电压。
实验结果:根据实验数据,我们可以得到各向异性磁阻材料在不同方向上的电阻值。
通过对比不同方向上的电阻值,可以观察到各向异性磁阻现象的存在。
讨论与分析:各向异性磁阻现象是由于材料内部的微观结构导致的。
在各向异性磁阻材料中,存在着一定的磁畴结构。
当外加磁场方向与磁畴结构方向一致时,磁畴边界的移动受到阻碍,电阻增加;而当外加磁场方向与磁畴结构方向垂直时,磁畴边界的移动相对容易,电阻减小。
各向异性磁阻材料由于其特殊的磁畴结构,具有广泛的应用前景。
例如,在磁存储器领域,各向异性磁阻材料被用于读写头的设计,提高数据存取速度和容量。
此外,在传感器和磁性材料领域,各向异性磁阻材料也有着重要的应用,如磁敏传感器和磁性电阻随动器等。
各向异性磁阻的研究还涉及到材料的制备和性能优化。
通过调控材料的成分、晶体结构和磁畴结构,可以实现各向异性磁阻材料的定制化设计,以满足不同领域的需求。
结论:通过本次实验,我们成功地观察到了各向异性磁阻现象,并了解了其原理和应用。
各向异性磁阻材料在磁存储、传感器和磁性材料等领域具有广泛的应用前景。
进一步的研究和开发将有助于推动各向异性磁阻技术的发展。
致谢:感谢实验指导老师的悉心指导,使我们能够顺利完成本次实验。
同时,也感谢实验室的同学们在实验过程中的帮助与支持。
参考文献:[1] 张三, 李四. 各向异性磁阻材料的研究进展[J]. 物理学报, 2020, 69(8): 080101.[2] Wang, Y., & Li, S. (2019). Anisotropic magnetoresistance in magnetic tunnel junctions. Journal of Applied Physics, 125(5), 051101.。
各向异性磁阻实验报告
![各向异性磁阻实验报告](https://img.taocdn.com/s3/m/1c41b3d1dbef5ef7ba0d4a7302768e9951e76ea4.png)
各向异性磁阻实验报告
《各向异性磁阻实验报告》
在这个科技飞速发展的时代,磁性材料的研究和应用变得愈发重要。
各向异性
磁阻作为一种新型磁性材料,具有许多独特的特性,因此受到了广泛关注。
为
了更深入地了解各向异性磁阻的性能和特点,我们进行了一系列实验,并撰写
了本报告。
实验一:各向异性磁阻的磁化曲线测量
我们首先对各向异性磁阻样品进行了磁化曲线测量。
通过施加外加磁场,我们
观察到了各向异性磁阻样品的磁化过程,并得到了相应的磁化曲线。
实验结果
表明,各向异性磁阻样品在外加磁场作用下呈现出明显的磁化特性,具有较高
的矫顽力和饱和磁感应强度。
实验二:各向异性磁阻的磁阻率测量
接着,我们对各向异性磁阻样品进行了磁阻率测量。
实验结果显示,各向异性
磁阻样品在不同方向上的磁阻率存在显著差异,表现出明显的各向异性特点。
这一特性使得各向异性磁阻在磁传感器和磁存储器等领域具有广泛的应用前景。
实验三:各向异性磁阻的磁滞回线测量
最后,我们进行了各向异性磁阻样品的磁滞回线测量。
实验结果表明,各向异
性磁阻样品的磁滞回线呈现出非常规的形状,具有明显的非线性特性。
这一特
点为各向异性磁阻在磁存储器和磁传感器等领域的应用提供了新的可能性。
通过以上实验,我们对各向异性磁阻的性能和特点有了更深入的了解。
各向异
性磁阻作为一种新型磁性材料,具有许多独特的特性,因此在磁存储器、磁传
感器和磁电子器件等领域具有广泛的应用前景。
我们相信,随着对各向异性磁
阻的研究不断深入,其在各种领域的应用将会得到进一步拓展和发展。
[实验报告]磁阻传感器和地磁场的测量
![[实验报告]磁阻传感器和地磁场的测量](https://img.taocdn.com/s3/m/cc6fed973b3567ec102d8af5.png)
磁阻传感器和地磁场的测量实验目的掌握磁阻传感器的特性。
掌握地磁场的测量方法。
二.实验原理物质在磁场中电阻率发生变化的现象称为磁阻效应。
对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。
HMC1021Z型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。
它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。
薄膜的电阻率()依赖于磁化强度M和电流丄方向2间的夹角=,具有以下关系式()(// )COS其中=、=分别是电流丄平行于M和垂直于M时的电阻率。
当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。
同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。
HMC1021Z磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。
传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。
传感器内部结构如图6-8-2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。
因而输出电压U out可以用下式表示_______________________________________________ 为R U outV bR对于一定的工作电压,如 V b 6.00V , HMC1021Z 磁阻传感器输出电压 U out 与外界磁场的 磁感应强度成正比关系,U out U o KB上式中,K 为传感器的灵敏度, 旦为待测磁感应强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.基础物理学研究性实验报告题目:各向异性磁阻传感器(AMR)与地磁场测量第一作者:第二作者:学院:航空科学与工程学院专业:飞行器设计与工程班级:1105192013年5月14日1目录摘要 ............................................................................................... 错误!未定义书签。
关键词 ........................................................................................... 错误!未定义书签。
一、实验要求 ............................................................................... 错误!未定义书签。
二、实验原理 ............................................................................... 错误!未定义书签。
三、实验仪器介绍 ....................................................................... 错误!未定义书签。
四、实验内容 ............................................................................... 错误!未定义书签。
1、测量前的准备工作 ......................................................... 错误!未定义书签。
2、磁阻传感器特性测量...................................................... 错误!未定义书签。
3、测量磁阻传感器的各向异性特性.................................. 错误!未定义书签。
4、赫姆霍兹线圈的磁场分布测量...................................... 错误!未定义书签。
5、地磁场测量 ..................................................................... 错误!未定义书签。
五、思考题 ................................................................................... 错误!未定义书签。
六、误差分析 ............................................................................... 错误!未定义书签。
七、AMR传感器的应用举例 ...................................................... 错误!未定义书签。
八、实验感想 ............................................................................... 错误!未定义书签。
参考文献 ....................................................................................... 错误!未定义书签。
附录——原始实验数据(影印版).................................................. 错误!未定义书签。
各向异性磁阻传感器与磁场测量摘要:物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。
磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量。
也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,广泛用于各类需要自动检测与控制的领域。
磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。
本实验研究AMR的特性并利用它对磁场进行测量。
关键词:AMR,磁阻效应,电磁转换,磁场测量一、实验要求1.熟悉和了解AMR的原理2.测量磁阻传感器的磁电转换特性和各向异性特性3.测量赫姆霍兹线圈的磁场分布4.测量地磁场磁场强度,磁倾角,磁偏角二、实验原理各向异性磁阻传感器AMR(Anisotropic Magneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni80 Fe20)薄膜形成电阻。
沉积时外加磁场,形成易磁化轴方向。
铁磁材料的电阻与电流和磁化方向的夹角有关,电流与磁化方向平行时电阻Rmax最大,电流与磁化方向垂直时电阻Rmin最小,电流与磁化方向成θ角时,电阻可表示为:R = R min+(R max-R min)cos2θ在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图1所示。
图1中,易磁化轴方向与电流方向的夹角为45度。
理论分析与实验表明,采用45度偏置磁场,当沿与易磁化轴垂直的方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。
无外加磁场或外加磁场方向与易磁化轴方向平行时,磁化方向即易磁化轴方向,电桥的4个桥臂电阻阻值相同,输出为零。
当在磁敏感方向施加如图1所示方向的磁场时,合成磁化方向将在易磁化方向的基础上逆时针旋转。
结果使左上和右下桥臂电流与磁化方向的夹角增大,电阻减小ΔR;右上与左下桥臂电流与磁化方向的夹角减小,电阻增大ΔR。
通过对电桥的分析可知,此时输出电压可表示为:U=V×ΔR/R (1)b为电桥工作电压,R为桥臂电阻,ΔR/R为磁阻阻值的相对变化率,式中Vb与外加磁场强度成正比,故AMR磁阻传感器输出电压与磁场强度成正比,可利用磁阻传感器测量磁场。
商品磁阻传感器已制成集成电路,除图1所示的电源输入端和信号输出端外,还有复位/反向置位端、补偿端两个功能性输入端口,以确保磁阻传感器的正常工作。
复位/反向置位端的作用是:当AMR置于超过其线性工作范围的磁场中时,磁干扰可能导致磁畴排列紊乱,改变传感器的输出特性。
此时按下复位/反向置位端,通过内部电路沿易磁化轴方向产生强磁场,使磁畴重新沿易磁化轴方向整齐排列,恢复传感器的使用特性。
补偿端的作用是:当4个桥臂电阻不严格相等,或是外界磁场干扰,使得被测磁场为零而输出电压不为零时,此时可调节补偿电流,通过内部电路在磁敏感方向产生磁场,用人为的磁场偏置补偿传感器的偏离。
三、实验仪器介绍实验仪结构如图2所示,核心部分是磁阻传感器,辅以磁阻传感器的角度、位置调节及读数机构,赫姆霍兹线圈等组成。
本仪器所用磁阻传感器的工作范围为±6高斯,灵敏度为1mV/V/Guass。
当磁阻电桥的工作电压为1V,被测磁场磁感应强度为1高斯时,输出信号为1mV。
磁阻传感器的输出信号通常须经放大电路放大后,再接显示电路,故由显示电压计算磁场强度时还需考虑放大器的放大倍数。
本实验仪电桥工作电压5V,放大器放大倍数50,磁感应强度为1高斯时,对应的输出电压为0.25伏。
赫姆霍兹线圈是由一对彼此平行的共轴圆形线圈组成。
两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。
这种线圈的特点是能在公共轴线中点附近产生较广泛的均匀磁场,根据毕奥-萨伐尔定律,可以计算出赫姆霍兹线圈公共轴线中点的磁感应强度为:式中N 为线圈匝数,I 为流经线圈的电流强度,R 为赫姆霍兹线圈的平均半径,m H /10470-⨯=πμ为真空中的磁导率。
采用国际单位制时,由上式计算出的磁感应强度单位为特斯拉(1特斯拉=10000高斯)。
本实验仪N =310,R =0.14m ,线圈电流为1mA 时,赫姆霍兹线圈中部的磁感应强度为0.02高斯。
实验仪的前面板示意图如图3所示。
恒流源为赫姆霍兹线圈提供电流,电流的大小可以通过旋钮调节,电流值由电流表指示。
电流换向按钮可以改变电流的方向。
补偿(OFFSET)电流调节旋钮调节补偿电流的方向和大小。
电流切换按钮使电流表显示赫姆霍兹线圈电流或补偿电流。
图3 仪器前面板示意图 磁阻传感器盒传感器轴向移动锁紧螺钉 传感器绕轴旋转锁紧螺钉传感器水平旋转锁紧螺钉 赫姆霍兹线圈 传感器横向移动锁紧螺钉 线圈水平旋转锁紧螺钉 信号接口盒仪器水平调节螺钉图2 磁场实验仪传感器采集到的信号经放大后,由电压表指示电压值。
放大器校正旋钮在标准磁场中校准放大器放大倍数。
复位(R/S)按钮每按下一次,向复位端输入一次复位脉冲电流,仅在需要时使用。
四、实验内容1、测量前的准备工作连接实验仪与电源,开机预热20分钟。
将磁阻传感器位置调节至赫姆霍兹线圈中心,传感器磁敏感方向与线圈轴线一致。
调节赫姆霍兹线圈电流为零,按复位键恢复传感器特性,调节补偿电流以补偿地磁场等因素产生的偏离,使传感器输出为零。
调节赫姆霍兹线圈电流至300mA(线圈产生的磁感应强度6高斯),调节放大器校准旋钮,使输出电压为1 .500伏。
2、磁阻传感器特性测量a.测量磁阻传感器的磁电转换特性磁电转换特性是磁阻传感器最基本的特性。
磁电转换特性曲线的直线部分对应的磁感应强度,即磁阻传感器的工作范围,直线部分的斜率除以电桥电压与放大器放大倍数的乘积,即为磁阻传感器的灵敏度。
按表1数据从300mA逐步调小赫姆霍兹线圈电流,记录相应的输出电压值。
切换电流换向开关(赫姆霍兹线圈电流反向,磁场及输出电压也将反向),逐步调大反向电流,记录反向输出电压值。
各测量值记录如下:作图如下:由上图可知,传感器在-6至6高斯范围内都处于线性工作状态。
选取图中A,B两点计算斜率:k= 1.026+1.2394+5V/Gauss=0.2517 V/Gauss则传感器灵敏度为:K=k/(5V*50)=(0.2517/5*50)V/V/Gauss=1.01mV/V/Gauss 误差主要来源:传感器未严格处于线圈中心。
3、测量磁阻传感器的各向异性特性AMR只对磁敏感方向上的磁场敏感,当所测磁场与磁敏感方向有一定夹角α时,AMR测量的是所测磁场在磁敏感方向的投影。
由于补偿调节是在确定的磁敏感方向进行的,实验过程中应注意在改变所测磁场方向时,保持AMR方向不变。
将赫姆霍兹线圈电流调节至200mA,测量所测磁场方向与磁敏感方向一致时的输出电压。