ASTMD412中文

合集下载

导热绝缘材料推荐

导热绝缘材料推荐

应该注意的是这里低固定压力的数据只是贝格斯实验室测试数据的例子,因测试条件是 变化的,不应视其为典型数据。
Sil-Pad900S 的典型数据
物理性能
性能
单位
颜色
厚度
Inch(mm)
比重
g/cm2
抗张强度 450Warp&Fill
MPa(Kpsi)
断裂强度 Warp&Fill
KN/m(lbs/in)
张力伸长率
Sil—Pad K一10用以替代价格昂贵且易破碎氧化铍、氮化硼、铝填充的陶瓷导热绝缘 体。与以上产品相比,K一10成本低切不易破碎。
厚度:Sil—Pad K一10具有各种厚度以满足客户需要。
公差:长度、宽度、孔径和孔的位置公差为0.381mm。
片材:有152.4×152.4mm,152.4×304.8mm,203.2×203.2mm,254×254mm, 304.8× 304.8mm尺寸的片材供应。可附胶产品或不附胶。
毛坯尺寸 8 英寸×8 英寸 8 英寸×8 英寸 8 英寸×8 英寸
幅宽 559mm 幅宽 38.1mm 幅宽 305mm
长度 按张供应 按张供应 按张供应 按英尺供应 按英尺供应 按英尺供应
导热绝缘弹性橡胶(2)
Si1-Pad 400 基于玻纤的sil-Pad系列的基础产品
sil—Pad 400是sil—Pad系列的基础产品,是硅橡胶和玻璃纤维的复合物。该 产 品 阻 燃 , 尤 其 适 合 用 做 导 热 绝缘材料。主要用于功率器件和散热器之间的电气绝缘与 传热。
Sil-Pad 400,0.009in 灰
0.009±O.00l( O.229±0.025)
测试方法 目测
ASTM D374

puPVC皮革检验标准

puPVC皮革检验标准

puPVC皮革检验标准
PVC皮革是一种广泛应用于家具、汽车内饰、服装、鞋类和包装等多
个领域的合成材料。

为了保证PVC皮革的质量和安全性,国际上采用了一
系列的检验标准。

美国的ASTM国际标准组织也制定了许多与PVC皮革有关的标准。

例如,ASTMD412标准规定了PVC皮革的拉伸强度和断裂伸长率的测试方法,ASTMD6413则规定了PVC皮革的耐燃性的测试方法。

此外,还有
ASTMD3787和ASTMD7255等标准分别规定了PVC皮革的耐磨性和耐裂纹性
的测试方法。

总体来说,PVC皮革的检验标准主要包括拉伸强度、断裂伸长率、抗
撞击性能、耐磨性、耐寒性能、阻燃性等方面的测试。

这些标准旨在确保PVC皮革产品的安全性、耐久性和可靠性。

所有这些标准的制定和遵守对
于保护消费者权益、促进产品质量提升和维护市场秩序具有重要意义。

ASTMD412

ASTMD412

Specimens may be in the shape of dumbbells,rings or straight pieces of uniform cross-sectional area.4.2Measurements for tensile stress,tensile stress at a given elongation,tensile strength,yield point,and ultimate elonga-tion are made on specimens that have not been prestressed. Tensile stress,yield point,and tensile strength are based on the original cross-sectional area of a uniform cross-section of the specimen.4.3Measurement of tensile set is made after a previously unstressed specimen has been extended and allowed to retract by a prescribed procedure.Measurement of“set after break”is also described.5.Significance and Use5.1All materials and products covered by these test meth-ods must withstand tensile forces for adequate performance in certain applications.These test methods allow for the measure-ment of such tensile properties.However,tensile properties alone may not directly relate to the total end use performance of the product because of the wide range of potential perfor-mance requirements in actual use.5.2Tensile properties depend both on the material and the conditions of test(extension rate,temperature,humidity,speci-men geometry,pretest conditioning,etc.);therefore materials should be compared only when tested under the same condi-tions.5.3Temperature and rate of extension may have substantial effects on tensile properties and therefore should be controlled. These effects will vary depending on the type of material being tested.5.4Tensile set represents residual deformation which is partly permanent and partly recoverable after stretching and retraction.For this reason,the periods of extension and recovery(and other conditions of test)must be controlled to obtain comparable results.6.Apparatus6.1Testing Machine—Tension tests shall be made on a power driven machine equipped to produce a uniform rate of grip separation of500650mm/min(2062in./min)for a distance of at least750mm(30in.)(see Note1).The testing machine shall have both a suitable dynamometer and an indicating or recording system for measuring the applied force within62%.If the capacity range cannot be changed for a test (as in the case of pendulum dynamometers)the applied force at break shall be measured within62%of the full scale value, and the smallest tensile force measured shall be accurate to within10%.If the dynamometer is of the compensating type for measuring tensile stress directly,means shall be provided to adjust for the cross-sectional area of the specimen.The response of the recorder shall be sufficiently rapid that the applied force is measured with the requisite accuracy during the extension of the specimen to rupture.If the testing machine is not equipped with a recorder,a device shall be provided that indicates,after rupture,the maximum force applied during extension.Testing machine systems shall be capable of mea-suring elongation of the test specimen in minimum increments of10%.N OTE2—A rate of elongation of10006100mm/min(4064in./min)may be used and notation of the speed made in the report.In case of dispute,the test shall be repeated and the rate of elongation shall be at500 650mm/min(2062in./min).6.2Test Chamber for Elevated and Low Temperatures—The test chamber shall conform with the following requirements: 6.2.1Air shall be circulated through the chamber at a velocity of1to2m/s(3.3to6.6ft/s)at the location of the grips or spindles and specimens maintained within2°C(3.6°F)of the specified temperature.6.2.2A calibrated sensing device shall be located near the grips or spindles for measuring the actual temperature.6.2.3The chamber shall be vented to an exhaust system or to the outside atmosphere to remove fumes liberated at high temperatures.6.2.4Provisions shall be made for suspending specimens vertically near the grips or spindles for conditioning prior to test.The specimens shall not touch each other or the sides of the chamber except for momentary contact when agitated by the circulating air.6.2.5Fast acting grips suitable for manipulation at high or low temperatures may be provided to permit placing dumbbells or straight specimens in the grips in the shortest time possible to minimize any change in temperature of the chamber.6.2.6The dynamometer shall be suitable for use at the temperature of test or it shall be thermally insulated from the chamber.6.2.7Provision shall be made for measuring the elongation of specimens in the chamber.If a scale is used to measure the extension between the bench-marks,the scale shall be located parallel and close to the grip path during specimen extension and shall be controlled from outside the chamber.6.3Dial Micrometer—The dial micrometer shall conform to the requirements of Practice D3767(Method A).For ring specimens,see14.10of these test methods.6.4Apparatus for Tensile Set Test—The testing machine described in6.1or an apparatus similar to that shown in Fig.1 may be used.A stop watch or other suitable timing device measuring in minute intervals for at least30min,shall be provided.A scale or other device shall be provided for measuring tensile set to within1%.7.Selection of Test Specimens7.1Consider the following information in making selec-tions:7.1.1Since anisotropy or grain directionality due toflow introduced during processing and preparation may have an influence on tensile properties,dumbbell or straight specimens should be cut so the lengthwise direction of the specimen is parallel to the grain direction when this direction is known. Ring specimens normally give an average of with and across the grain properties.7.1.2Unless otherwise noted,thermoplastic rubber or ther-moplastic elastomer specimens,or both,are to be cut from injection molded sheets or plaques with a thickness of3.06 0.3mm.Specimens of other thickness will not necessarily give comparable results.Specimens are to be tested in directions both parallel and perpendicular to the direction offlow in the mold.Sheet or plaque dimensions must be sufficient to do this.7.1.3Ring specimens enable elongations to be measuredbygrip separation,but the elongation across the radial width ofthe ring specimens is not uniform.To minimize this effect thewidth of the ring specimens must be small compared to thediameter.7.1.4Straight specimens tend to break in the grips if normalextension-to-break testing is conducted and should be usedonly when it is not feasible to prepare another type ofspecimen.For obtaining non-rupture stress-strain or materialmodulus properties,straight specimens are quite useful.7.1.5The size of specimen type used will be determined bythe material,test equipment and the sample or piece availablefor test.A longer specimen may be used for rubbers having lowultimate elongation to improve precision of elongation mea-surement.8.Calibration of the Testing Machine 8.1Calibrate the testing machine in accordance with Proce-dure A of Practice E 4.If the dynamometer is of the strain-gage type,calibrate the tester at one or more forces in addition to the requirements in Sections 7and 18of Practice E 4.Testers having pendulum dynamometers may be calibrated as follows:8.1.1Place one end of a dumbbell specimen in the upper grip of the testing machine.8.1.2Remove the lower grip from the machine and attach it,by means of the gripping mechanism to the dumbbell specimen in the upper grip.8.1.3Attach a hook to the lower end of the lower specimen grip mechanism.8.1.4Suspend a known mass from the hook of thelowerFIG.1Apparatus for Tensile SetTestspecimen grip mechanism in such a way as to permit the mass assembly to temporarily rest on the lower testing machine grip framework or holder(see Note2).8.1.5Start the grip separation motor or mechanism,as in normal testing,and allow it to run until the mass is freely suspended by the specimen in the upper grip.8.1.6If the dial or scale does not indicate the force applied (or its equivalent in stress for a compensating type tester) within specified tolerance,thoroughly inspect the testing ma-chine for malfunction(for example,excess friction in bearings and other moving parts).Ensure that the mass of the lower grip mechanism and the hook are included as part of the known mass.8.1.7After machine friction or other malfunction has been removed,recalibrate the testing machine at a minimum of three points using known masses to produce forces of approximately 10,20and50%of capacity.If pawls or rachets are used during routine testing,use them for calibration.Check for friction in the head by calibrating with the pawls up.N OTE3—It is advisable to provide a means for preventing the known mass from falling to thefloor in case the dumbbell should break.8.2A rapid approximate calibration of the testing machine may be obtained by using a spring calibration device.9.Test Temperature9.1Unless otherwise specified,the standard temperature for testing shall be2362°C(73.463.6°F).Specimens shall be conditioned for at least3h when the test temperature is23°C (73.4°F).If the material is affected by moisture,maintain the relative humidity at5065%and condition the specimens for at least24h prior to testing.When testing at any other temperature is required use one of the temperatures listed in Practice D1349.9.2For testing at temperatures above23°C(73.4°F)preheat specimens for1062min for Method A and for662min for Method B(see Note3).Place each specimen in the test chamber at intervals ahead of testing so that all specimens of a series will be in the chamber the same length of time.The preheat time at elevated temperatures must be limited to avoid additional vulcanization or thermal aging.N OTE4—Precaution:In addition to other precautions,suitable heat or cold resistant gloves should be worn for arm and hand protection when testing at other than23°C(73.4°F).A mask for the face is very desirable for high temperature testing to prevent the inhalation of toxic fumes when the door of the chamber is open.9.3For testing at temperatures below23°C(73.4°F)condi-tion the specimens at least10min prior to testing.TEST METHOD A—DUMBBELL AND STRAIGHTSPECIMENS10.Apparatus10.1Die—The shape and dimensions of the die for prepar-ing dumbbell specimens shall conform with those shown in Fig. 2.The inside faces in the reduced section shall be perpendicular to the plane formed by the cutting edges and polished for a distance of at least5mm(0.2in.)from the cutting edge.The die shall at all times be sharp and free of nicks(see Note4).N OTE5—The condition of the die may be determined by investigating the rupture point on any series of broken(ruptured)specimens.Remove such specimens from the grips of the testing machine,stack the joined-together specimens on top of each other,and note if there is any tendency for tensile breaks to occur at the same position on each of the specimens. Rupture consistently at the same place indicates that the die may be dull, nicked,or bent at that location.10.2Bench Marker—The two marks placed on the speci-men and used to measure elongation or strain are called“bench marks”(see Note5).The bench marker shall consist of a base plate containing two raised parallel projections.The surfaces of the raised projections(parallel to the plane of the base plate) are ground smooth in the same plane.The raised projection marking surfaces shall be between0.05and0.08mm(0.002 and0.003in.)wide and at least15mm(0.6in.)long.The angles between the parallel marking surfaces and the sides of the projections shall be at least75°.The distance between the centers of the two parallel projections or marking surfaces shall be within1%of the required or target bench mark distance.A handle attached to the back or top of the bench marker base plate is normally a part of the bench marker.N OTE6—If a contact extensometer is used to measure elongation, bench marks are not necessary.10.3Ink Applicator—Aflat unyielding surface(hardwood, metal,or plastic)shall be used to apply either ink or powder to the bench marker.The ink or powder shall adhere to the specimen,have no deteriorating effect on the specimen and be of contrasting color to that of the specimen.10.4Grips—The testing machine shall have two grips,one of which shall be connected to the dynamometer.10.4.1Grips for testing dumbbell specimens shall tighten automatically and exert a uniform pressure across the gripping surfaces,increasing as the tension increases in order to prevent slippage and to favor failure of the specimen in the straight reduced section.Constant pressure pneumatic type grips also are satisfactory.At the end of each grip a positioning device is recommended for inserting specimens to the same depth in the grip and for alignment with the direction of pull.10.4.2Grips for testing straight specimens shall be constant pressure pneumatic,wedged,or toggle type designed to trans-mit the applied gripping force over the entire width of the gripped specimen.11.Specimens11.1Dumbbell Specimens—Whenever possible,the test specimens shall be injection molded or cut from aflat sheet not less than1.3mm(0.05in.)nor more than3.3mm(0.13in.) thick and of a size which will permit cutting a specimen by one of the standard methods(see Practice D3182).Sheets may be prepared directly by processing or fromfinished articles by cutting and buffing.If obtained from a manufactured article, the specimen shall be free of surface roughness,fabric layers, etc.in accordance with the procedure described in Practice D3183.All specimens shall be cut so that the lengthwise portion of the specimens is parallel to the grain unless otherwise specified.In the case of sheets prepared in accor-dance with Practice D3182,the specimen shall be2.060.2 mm(0.0860.008in.)thick died out in the direction of the e Die C,Fig.2(unless otherwise noted)to cutthespecimens from the sheet with a single impact stroke (hand ormachine)to ensure smooth cut surfaces.11.1.1Marking Dumbbell Specimens —Dumbbell speci-mens shall be marked with the bench marker described in 10.2,with no tension on the specimens at the time of marking.Marksshall be placed on the reduced section,equidistant from itscenter and perpendicular to the longitudinal axis.The betweenbench mark distance shall be as follows:for Die C or Die D ofFig.2,25.0060.25mm (1.0060.01in.);for any other Dieof Fig.2,50.0060.5mm (2.0060.02in.).11.1.2Measuring Thickness of Dumbbell Specimens —Three measurements shall be made for the thickness,one at thecenter and one at each end of the reduced section.The medianof the three measurements shall be used as the thickness incalculating the cross sectional area.Specimens with a differ-ence between the maximum and the minimum thickness exceeding 0.08mm (0.003in.),shall be discarded.The width of the specimen shall be taken as the distance between the cutting edges of the die in the restricted section.11.2Straight Specimens —Straight specimens may be pre-pared if it is not practical to cut either a dumbbell or a ring specimen as in the case of a narrow strip,small tubing or narrow electrical insulation material.These specimens shall be of sufficient length to permit their insertion in the grips used for the test.Bench marks shall be placed on the specimens as described for dumbbell specimens in 11.1.1.To determine the cross sectional area of straight specimens in the form of tubes,the mass,length,and density of the specimen may be required.The cross sectional area shall be calculated from these mea-surements asfollows:FIG.2Standard Dies for Cutting DumbbellSpecimensA 5M /DL (1)where:A =cross-sectional area,cm 2,M =mass,g,D =density,g/cm 3,and L =length,cm.N OTE 7—A in square inches =A (cm 2)30.155.12.Procedure12.1Determination of Tensile Stress,Tensile Strength andYield Point —Place the dumbbell or straight specimen in thegrips of the testing machine,using care to adjust the specimensymmetrically to distribute tension uniformly over the crosssection.This avoids complications that prevent the maximumstrength of the material from being evaluated.Unless otherwisespecified,the rate of grip separation shall be 500650mm/min(2062in./min)(see Note 7).Start the machine and note thedistance between the bench marks,taking care to avoidparallax.Record the force at the elongation(s)specified for thetest and at the time of rupture.The elongation measurement ismade preferably through the use of an extensometer,anautographic mechanism or a spark mechanism.At rupture,measure and record the elongation to the nearest 10%.SeeSection 13for calculations.N OTE 8—For materials having a yield point (yield strain)under 20%elongation when tested at 500650mm/min (2062in./min),the rate ofelongation shall be reduced to 5065mm/min (2.060.2in./min).If thematerial still has a yield point (strain)under 20%elongation,the rate shall be reduced to 560.5mm/min (0.260.002in./min).The actual rate of separation shall be reported.12.2Determination of Tensile Set —Place the specimen in the grips of the testing machine described in 6.1or the apparatus shown in Fig.1,and adjust symmetrically so as to distribute the tension uniformly over the cross section.Sepa-rate the grips at a rate of speed as uniformly as possible,that requires 15s to reach the specified elongation.Hold the specimen at the specified elongation for 10min,release quickly without allowing it to snap back and allow the specimen to rest for 10min.At the end of the 10min rest period,measure the distance between the bench marks to the nearest 1%of the original between bench mark e a stop watch for the timing operations.See Section 13for calculations.12.3Determination of Set-After-Break —Ten minutes after a specimen is broken in a normal tensile strength test,carefully fit the two pieces together so that they are in good contact over the full area of the break.Measure the distance between the bench marks.See Section 13for calculations.13.Calculation 13.1Calculate the tensile stress at any specified elongation as follows:T ~xxx !5F ~xxx !/A (2)where:Dimensions of Standard Dumbbell Dies A (Metric Units)DimensionUnits Tolerance Die A Die B Die C Die D Die E Die F Amm 61252525161616Bmm max 404040303030Cmm min 140140115100125125Dmm 66B 323232323232D-Emm 61131313131313Fmm 62383819193838Gmm 61141414141414Hmm 62252525161616Lmm 62595933335959Wmm 60.05,–0.001266336Zmm 61131313131313A Dies whose dimensions are expressed in metric units are not exactly the same as dies whose dimensions are expressed in U.S.customary units.Dies dimensioned in metric units are intended for use with apparatus calibrated in metric units.B For dies used in clicking machines it is preferable that this tolerance be 60.5mm.FIG.2a (continued)Dimensions of Standard Dumbbell Dies A (U.S.Customary Units)DimensionUnits Tolerance Die A Die B Die C Die D Die E Die F Ain.60.041110.620.620.62Bin.max 1.6 1.6 1.6 1.2 1.2 1.2Cin.min 5.5 5.5 4.5455Din.60.25B 1.25 1.25 1.25 1.25 1.25 1.25D-Ein.60.040.50.50.50.50.50.5Fin.60.08 1.5 1.50.750.75 1.5 1.5Gin.60.040.560.560.560.560.560.56Hin.60.081110.630.630.63Lin.60.08 2.32 2.32 1.31 1.31 2.32 2.32Win.60.002,–0.0000.5000.2500.2500.1250.1250.250Zin.60.040.50.50.50.50.50.5ADies whose dimensions are expressed in metric units are not exactly the same as dies whose dimensions are expressed in U.S.customary units.B For dies used in clicking machines it is preferable that this tolerance by 60.02in.FIG.2b(continued)T(xxx)=tensile stress at(xxx)%elongation,MPa(lbf/ in.2),F(xxx)=force at specified elongation,MN or(lbf),andA=cross-sectional area of unstrained specimen,m2 (in.2).13.2Calculate the yield stress as follows:Y~stress!5F~y!/A(3) where:Y(stress)=yield stress,that stress level where the yield point occurs,MPa(lbf/in.2),F(y)=magnitude of force at the yield point,MN(lbf), andA=cross-sectional area of unstrained specimen,m2 (in.2).13.3Evaluate the yield strain as that strain or elongation magnitude,where the rate of change of stress with respect to strain,goes through a zero value.13.4Calculate the tensile strength as follows:TS5F~BE!/A(4) where:TS=tensile strength,the stress at rupture,MPa(lbf/ in.2),F(BE)=the force magnitude at rupture,MN(lbf),andA=cross-sectional area of unstrained specimen,m2 (in.2).13.5Calculate the elongation(at any degree of extension)as follows:E5100@L–L~o!#/L~o!(5) where:E=the elongation in percent(of original bench mark distance),L=observed distance between bench marks on the extended specimen,andL(o)=original distance between bench marks(use same units for L and L(o)).13.6The breaking or ultimate elongation is evaluated when L is equal to the distance between bench marks at the point of specimen rupture.13.7Calculate the tensile set,by using Eq5,where L is equal to the distance between bench marks after the10min retraction period.13.8Test Result—A test result is the median of three individual test measurement values for any of the measured properties as described above,for routine testing.There are two exceptions to this and for these exceptions a total offive specimens(measurements)shall be tested and the test result reported as the median offive.13.8.1Exception1—If one or two of the three measured values do not meet specified requirement values when testing for compliance with specifications.13.8.2Exception2—If referee tests are being conducted.TEST METHOD B—CUT RING SPECIMENS 14.Apparatus14.1Cutter—A typical ring cutter assembly is illustrated in Fig. 3.This is used for cutting rings fromflat sheets by mounting the upper shaft portion of the cutter in a rotating housing that can be lowered onto a sheet held by the rubber holding plate as shown in Fig.4.14.1.1Blade Depth Gage—This gage consists of a cylin-drical disk having a thickness of at least0.5mm(0.02in.) greater than the thickness of the rubber to be cut and a diameter less than the inside diameter of the specimen used for adjusting the protrusion of the blades from the body of the cutter.See Fig.3.14.2Rubber Holding Plate—The apparatus for holding the sheet during cutting shall have plane parallel upper and lower surfaces and shall be a rigid polymeric material(hard rubber, polyurethane,polymethylmethacrylate)with holes approxi-mately1.5mm(0.06in.)in diameter spaced6or7mm(0.24 or0.32in.)apart across the central region of the plate.All the holes shall connect to a central internal cavity which can be maintained at a reduced pressure for holding the sheet in place due to atmospheric pressure.Fig.4illustrates the design of an apparatus for holding standard sheets(approximately1503 15032mm)during cutting.14.3Source of Reduced Pressure—Any device such as a vacuum pump that can maintain an absolute pressure below10 kPa(0.1atm)in the holding plate central cavity.14.4Soap Solution—A mild soap solution shall be used on the specimen sheet to lubricate the cutting blades.14.5Cutter Rotator—A precision drill press or other suit-able machine capable of rotating the cutter at an angular speed of at least30rad/s(approximately300r/min)during cutting shall be used.The cutter rotator device shall be mounted on a horizontal base and have a vertical support orientation for the shaft that rotates the spindle and cutter.The run-out of the rotating spindle shall not exceed0.01mm(0.004in.).14.6Indexing Table—A milling table or other device with typical x-y motions shall be provided for positioning the sheet and holder with respect to the spindle of the cutter rotating device.14.7Tensile Testing Machine—A machine as specified in 6.1shall be provided.14.8Test Fixture—A testfixture as shown in Fig.5shall be provided for testing the ring specimens.The testing machine shall be calibrated as outlined in Section8.14.9Test Chamber—A chamber for testing at high and low temperatures shall be provided as specified in6.2.14.9.1Thefixtures specified in14.8are satisfactory for testing at other than room temperature.However at extreme temperatures,a suitable lubricant shall be used to lubricate the spindle bearings.14.9.2The dynamometer shall be suitable for use at the temperature of test or thermally insulated from the chamber.14.10Dial Micrometer—A dial micrometer shall be pro-vided that conforms to the requirements of Practice D3767.14.10.1The base of the micrometer used to measure the radial width shall consist of an upper cylindrical surface(with its axis oriented in a horizontal direction)at least12mm(0.5 in.)long and15.560.5mm(0.6160.02in.)in diameter.To accommodate small diameter rings that approach the15.5mm (0.61in.)diameter of the base and to avoid any ring extension in placing the ring on the base,the bottom half ofthecylindrical surface may be truncated at the cylinder centerline,that is,a half cylinder shape.This permits placing small rings on the upper cylindrical surface without interference fit prob-lems.Curved feet on the end of the dial micrometer shaft to fit the curvature of the ring(s),may be used.15.Ring Specimen15.1ASTM Cut Rings —Two types of cut ring specimens may be used.Unless otherwise specified,the Type 1ring specimen shall be used.15.1.1Ring Dimensions :mm in.Type 1Circumference (inside)50.060.01 2.060.004Diameter (inside)15.9260.0030.63760.001Radial width 1.060.010.04060.0004Thickness,minimum 1.00.040maximum 3.30.13Type 2Circumference mean 100.060.2 4.060.0004Diameter (inside)29.860.06 1.1960.0001Radial width 2.060.020.0860.0008Thickness,minimum 1.00.04maximum 3.30.1315.2ISO Cut Rings —The normal size and the small sizering specimens in ISO 37have the following dimensions given in mm.See ISO 37for specific testing procedures for these rings.Normal Small Diameter,inside44.660.2mm 8.060.1mm Diameter,outside52.660.2mm 10.060.1mm Thickness 4.060.2mm 1.060.1mmN OTE 1—Dimension C to be 2mm (0.08in.)less than the inside diameter of the ring.FIG.3Typical Ring CutterAssembly15.3Rings Cut from Tubing —The dimensions of the ring specimen(s)depend on the diameter and wall thickness of the tubing and should be specified in the product specification.15.4Preparation of Cut Ring Specimens —Place the blades in the slots of the cutter and adjust the blade depth using the blade depth gage.Place the cutter in the drill press and adjust the spindle or table so that the bottom of the blade holder is about 13mm (0.5in.)above the surface of the holding plate.Set the stop on the vertical travel of the spindle so that the tipsof the cutting blades just penetrate the surface of the plate.Place the sheet on the holding plate and reduce the pressure in the cavity to 10kPa (0.1atm)or less.Lubricate the sheet with mild soap solution.Lower the cutter at a steady rate until it reaches the stop.Be sure that the blade holder does not contact the sheet.If necessary,readjust the blade depth.Return the spindle to its original position and repeat the operation on another sheet.15.5Preparation of Ring Specimens from Tubing —Place the tubing on a mandrel preferably slightly larger than the inner diameter of the tubing.Rotate the mandrel and tubing inaDimensionmm in.Dimension mm in.A1787.0F 190.75B152 6.0G 230.90C89 3.5H 1.50.062D2299.0E 60.25FIG.4Rubber HoldingPlateFIG.5Assembly,Ring Tensile TestFixturelathe.Cut ring specimens to the desired axial length by means of a knife or razor blade held in the tool post of the y thin wall tubingflat and cut ring specimens with a die or cutting mechanism having two parallel blades.15.6Ring Dimension Measurements:15.6.1Circumference—The inside circumference can be determined by a stepped cone or by“go-no go”gages.Do not use any stress in excess of that needed to overcome any ellipticity of the ring specimen.The mean circumference is obtained by adding to the value for the inside circumference, the product of the radial width and p(3.14).15.6.2Radial Width—The radial width is measured at three locations distributed around the circumference using the mi-crometer described in14.10.15.6.3Thickness—For cut rings,the thickness of the disk cut from the inside of the ring is measured with a micrometer described in Practice D3767.15.6.4Cross-Sectional Area—The cross-sectional area is calculated from the median of three measurements of radial width and thickness.For thin wall tubing,the area is calculated from the axial length of the cut section and wall thickness.16.Procedure16.1Determination of Tensile Stress,Tensile Strength, Breaking(Ultimate)Elongation and Yield Point—In testing ring specimens,lubricate the surface of the spindle with a suitable lubricant,such a mineral oil or silicone oil.Select one with documented assurance that it does not interact or affect the material being tested.The initial setting of the distance between the spindle centers may be calculated and adjusted according to the following equation:IS5@C~TS!–C~SP!#/2(6) where:IS=initial separation of spindle centers,mm(in.),C(TS)=circumference of test specimen,inside circumfer-ence for Type1rings,mean circumference forType2rings,mm(in.),andC(SP)=circumference of either(one)spindle,mm(in.). Unless otherwise specified the rate of spindle separation shall be500650mm/min(2062in./min)(see Notes7and 8).Start the test machine and record the force and correspond-ing distance between the spindles.At rupture,measure and record the ultimate(breaking)elongation and the tensile(force) strength.See Section17for calculations.N OTE9—When using the small ISO ring,the rate of spindle separation shall be100610mm/min(460.4in./min).16.2Tests at Temperatures Other than Standard—Use the test chamber described in6.2and observe the precautionary statement in Note2.For tests at temperatures above23°C (73.4°F),preheat the specimens662min at the test temperature.For below room temperature tests cool the speci-mens at the test temperature for at least10min prior to test. Use test temperatures prescribed in Practice D1349.Place each specimen in the test chamber at intervals such that the recommendations of9.2are followed.17.Calculation17.1Stress-strain properties for ring specimens are in gen-eral calculated in the same manner as for dumbbell and straight specimens with one important exception.Extending a ring specimen generates a nonuniform stress(or strain)field across the width(as viewed from left to right)of each leg of the ring. The initial inside dimension(circumference)is less than the outside dimension(circumference),therefore for any extension of the grips,the inside strain(or stress)is greater than the outside strain(or stress)because of the differences in the initial (unstrained)dimensions.17.2The following options are used to calculate stress at a specified elongation(strain)and breaking or ultimate elonga-tion.17.2.1Stress at a Specified Elongation—The mean circum-ference of the ring is used for determining the elongation.The rationale for this choice is that the mean circumference best represents the average strain in each leg of the ring.17.2.2Ultimate(Breaking)Elongation—This is calculated on the basis of the inside circumference since this represents the maximum strain(stress)in each leg of the ring.This location is the most probable site for the initiation of the rupture process that occurs at break.17.3Calculate the tensile stress at any specified elongation by using Eq2in13.1.17.3.1The elongation to be used to evaluate the force as specified in Eq2(13.1),is calculated as follows:E5200@L/MC~TS!#(7) where:E=elongation(specified),percent,L=increase in grip separation at specified elonga-tion,mm(in.),andMC(TS)=mean circumference of test specimen,mm(in.).17.3.2The grip separation for any specified elongation can be found by rearranging Eq7,as given below:L5E3MC~TS!/200(8) 17.4Calculate the yield stress by using Eq3in13.2. 17.5Evaluate the yield strain as given in13.3.Since yield strain may be considered to be an average bulk property of any material,use the mean circumference for this evaluation. 17.6Calculate the tensile strength by using Eq4in13.4.17.7Calculate the breaking or ultimate elongation as fol-lows(see Notes9and10):E5200/@L/IC~TS!#(9) where:E=breaking or ultimate elongation,percent,L=increase in grip separation at break,mm(in.),and IC(TS)=inside circumference of ring test specimen,mm (in.).17.8The inside circumference is used for both types of rings,see15.1.1for e the inside diameter to calculate the inside circumference for Type2rings.N OTE10—Eq8,Eq9,and10are applicable only if the initial setting of the spindle centers is adjusted in accordance with Eq7.N OTE11—The user of these test method should be aware that because of the different dimensions used in calculating(1)stress at a specified elongation(less than the ultimate elongation)and(2)the ultimate (breaking)elongation(see20.1and20.2),it is possible that a stress at a specified elongation,slightly less(4to5%)than the ultimateelongation。

ASTM-D412硫化橡胶和热塑性弹性体拉伸试验方法

ASTM-D412硫化橡胶和热塑性弹性体拉伸试验方法

名称:D 412—98a(2002年重新批准)硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法希望采用本标准使用者在进行实验时,参照英文版本一起使用以便对译文提出建议并准确进行实验。

因此凡出现与英文版本相冲突,则以英文版本为准。

本标准已被国防部代理机构批准使用。

注释——9.2部分于2003.1被更新。

1. 范围1.1 这些方法是用来评估硫化橡胶和热塑性弹性体拉伸性能的程序。

这些方法不适用硬橡胶和相似硬度、低延伸率材料。

方法如下:方法A——哑铃状和直片状试样方法B——剪切环形状试样(不适用)注释1——这两种不同的方法不会产生同样的结果。

1.2 在本实验中,数值的表达不管是以SI还是非SI为单位,都认为是标准的。

在每一系统中数值可能不是等同的,因此必须单独使用每一系统,而不要合并这些数值。

1.3本标准没有对所有的安全问题进行详细的描述。

建立一个合适的安全和健康规则和决定其应用规则限制是使用者的责任。

2. 参考资料2.1 ASTM 标准:D 1349 橡胶标准实验温度准则D 1566 与橡胶相关的术语D 3182 混合标准化合物和准备标准硫化橡胶片的材料,设备和程序准则D 3183 实验用产品片准备准则D 3767 橡胶尺寸测量准则D 4483 橡胶和黑烟末工业中标准实验方法的测量精度准则E 4 实验机器力检查准则2.2 ASTM 附件:剪切环形试样,方法B (D 412)2.3 ISO 标准:ISO 37 硫化橡胶,热缩性橡胶张应力性能3.1 术语3.1 定义3.1.1 张力设置——在试样被伸展之后所保留的延长长度,允许以规定方式缩进,以占原始长度的百分比来表达。

(D 1566)3.1.2 破裂后张力设置——通过把两破裂的哑铃体橡胶片破裂点放在一起进行测量。

(D 1566)3.1.3 抗拉强度——施加给试样使其破裂的张应力。

(D 1566)3.1.4 张应力——伸展试样的力。

(D 1566)3.1.5 一定延伸率的张应力——使试样均匀横截面伸展到给定延伸时所需要的力。

ASTM D412标准中文版

ASTM D412标准中文版
第 2 页 共 9页
7 试样的选取 7.1 选取试样时应考虑以下及点 7.1.1 在制备和处理过程中,由流动引起的材料的各向异性和取向会影响拉伸性 能。因此在制备哑铃或直条形试样时,在知道压延方向的前提下,试样裁取的方 向应平行于压延方向。对于环形试样其通常是对取向特性作出一定的平均。 7.1.2 除有特别要求,对于热塑性橡胶或弹性体,试样应从厚度为 3.0±0.3mm 的 注射成型的试片上裁取,由其他厚度的试样得到的试验结果物可比性。试样应为 垂直和平行成型流动方向的两组。试片或试板的大小应能满足试验要求。 7.1.3 对于环形试样的伸长可以夹头的分离来测量,但对于试样半径宽度上的伸 长分布是不一致的。为了减少这影响,应试样宽度应小于环形试样的直径。 7.1.4 用直条形小、试样作普通的拉伸试验时,试样的破坏一般发生在夹头中。 因此尽当样品无法制取其他形状的样品时才使用直条形试样。 对于非破坏性的应 力应变或材料模量实验,才用直条形试样。 7.1.4 试样的尺寸大小取决于材料的要求、试验设备和试验用的样品试片。对于 低扯断伸长率的材料,为力提高测量伸长的精度可使用较长的试样。 8 试验设备的校准 8.1 对于测量精度型的测力计按规范 E 4 的过程 A 校准试验机,按照规范 E 4 的 7 和 18 节试验校准一个或多个力值点。对于摆锤式测力计按以下步骤校准: 8.1.1 将哑铃试样的一端放入试验机上夹头。 8.1.2 将下夹头移试验机从试验机上移开,也就是说试样的夹持机构在试验机的 上夹头。 8.1.3 在下夹头上安装钩子,以持试样下端 8.1.4 将一个以知重量的砝码挂到钩子上,这样就可以在试样的下夹具上临时的 施加一定质量(见注 2). 8.1.5 开启夹具移动的监视装置,在普通的试验中,保持其持续运行直到砝码自 由的悬挂于试样上。 8.1.6 如果圆盘或标尺(或者相当于是应力补偿的试验器)不能在规定的精度内 指示力值,应彻底检查设备的故障(例如轴或其他移动部件的摩擦) 。应确定下 夹头和钩子的质量也被计算在内。 8.1.7 在试验机的摩擦和其他故障被排除后,再对试验机进行校准,用以知的砝 码在试验机满量程约 10、20 和 50%处测量三点。如果平常试验时使用棘轮和棘 齿,在校准时也应使用他们。通过安装棘轮来检查摩擦。 注 3——应有防止砝码从试验机上掉落的装置。 8.2 可用弹簧来作大致的快速校准。 9 试验温度 9.1 除有其他规定,标准试验温度为 23±2℃。试样应至少在 23℃温度下调节 3 小时。如果材料受湿度的影响,试验前试样应在 50±5%R.H.的环境中调节 24 小 时以上。如在其他温度中试验应使用规范 D 1349 所列的温度。 9.2 如试验在高于 23℃的温度中进行,对于方法 A 试样应预热 10±2min;对于 方法 B 应预热 6±2min。在每次试验间隔前,分别将试样放如试验箱,这样所有 的试样会连续接受相同的预热时间。高温下的预热试验应受严格限制,以防止过 硫和热老化。 注 3——警告:除其他警告外,应使用绝热、绝冷的手套以保护手不受高低温的 伤害。在高温实验时应使用面罩以防止实验箱门打开时吸入有毒气体。

ASTM D412硫化橡胶和热塑性弹性体拉伸试验方法

ASTM D412硫化橡胶和热塑性弹性体拉伸试验方法

名称:D 412—98a(2002年重新批准)硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法希望采用本标准使用者在进行实验时,参照英文版本一起使用以便对译文提出建议并准确进行实验。

因此凡出现与英文版本相冲突,则以英文版本为准。

本标准已被国防部代理机构批准使用。

注释——9.2部分于2003.1被更新。

1. 范围1.1 这些方法是用来评估硫化橡胶和热塑性弹性体拉伸性能的程序。

这些方法不适用硬橡胶和相似硬度、低延伸率材料。

方法如下:方法A——哑铃状和直片状试样方法B——剪切环形状试样(不适用)注释1——这两种不同的方法不会产生同样的结果。

1.2 在本实验中,数值的表达不管是以SI还是非SI为单位,都认为是标准的。

在每一系统中数值可能不是等同的,因此必须单独使用每一系统,而不要合并这些数值。

1.3本标准没有对所有的安全问题进行详细的描述。

建立一个合适的安全和健康规则和决定其应用规则限制是使用者的责任。

2. 参考资料2.1 ASTM 标准:D 1349 橡胶标准实验温度准则D 1566 与橡胶相关的术语D 3182 混合标准化合物和准备标准硫化橡胶片的材料,设备和程序准则D 3183 实验用产品片准备准则D 3767 橡胶尺寸测量准则D 4483 橡胶和黑烟末工业中标准实验方法的测量精度准则E 4 实验机器力检查准则2.2 ASTM 附件:剪切环形试样,方法B (D 412)2.3 ISO 标准:ISO 37 硫化橡胶,热缩性橡胶张应力性能3.1 术语3.1 定义3.1.1 张力设置——在试样被伸展之后所保留的延长长度,允许以规定方式缩进,以占原始长度的百分比来表达。

(D 1566)3.1.2 破裂后张力设置——通过把两破裂的哑铃体橡胶片破裂点放在一起进行测量。

(D 1566)3.1.3 抗拉强度——施加给试样使其破裂的张应力。

(D 1566)3.1.4 张应力——伸展试样的力。

(D 1566)3.1.5 一定延伸率的张应力——使试样均匀横截面伸展到给定延伸时所需要的力。

astm橡胶裁刀标准

astm橡胶裁刀标准

astm橡胶裁刀标准ASTM(美国材料与试验协会)发布了许多与橡胶裁刀相关的标准。

这些标准主要涵盖了橡胶裁刀的设计、材料、测试方法等方面。

以下是一些与橡胶裁刀相关的ASTM标准:1.ASTM D5286 - 08(2018) "Standard Test Methods for RubberProperty—Vulcanization Using Oscillating Disk Cure Meter":该标准规定了使用振荡盘硫化仪测定橡胶硫化特性的测试方法。

2.ASTM D3767 - 19 "Standard Practice for Rubber—Measurement of Dimensions":该标准规定了测量橡胶制品尺寸的常用做法,可能涉及到裁刀的设计和使用。

3.ASTM D3194 - 16 "Standard Test Method for Rubber fromNatural Sources—Determination of Ash Content":该标准规定了测定天然橡胶中灰分含量的方法,这可能与橡胶裁刀的生产和使用相关。

4.ASTM D412 - 16 "Standard Test Methods for VulcanizedRubber and Thermoplastic Elastomers—Tension":该标准规定了在拉伸状态下测试橡胶和热塑性弹性体(弹性体)的方法,这可能与裁刀的强度和性能有关。

5.ASTM D2240 - 15e1 "Standard Test Method for RubberProperty—Durometer Hardness":该标准规定了测定橡胶的硬度的方法,硬度是一个可能与橡胶裁刀相关的性能指标。

请注意,标准的具体版本和内容可能随时间而变化,建议查阅最新的ASTM标准文档以获取准确和最新的信息。

ASTM D412-98a_chs硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法

ASTM D412-98a_chs硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法

名称:D 412—98a(2002年重新批准)硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法希望采用本标准使用者在进行实验时,参照英文版本一起使用以便对译文提出建议并准确进行实验。

因此凡出现与英文版本相冲突,则以英文版本为准。

本标准已被国防部代理机构批准使用。

注释——9.2部分于2003.1被更新。

1. 范围1.1 这些方法是用来评估硫化橡胶和热塑性弹性体拉伸性能的程序。

这些方法不适用硬橡胶和相似硬度、低延伸率材料。

方法如下:方法A——哑铃状和直片状试样方法B——剪切环形状试样注释1——这两种不同的方法不会产生同样的结果。

1.2 在本实验中,数值的表达不管是以SI还是非SI为单位,都认为是标准的。

在每一系统中数值可能不是等同的,因此必须单独使用每一系统,而不要合并这些数值。

1.3本标准没有对所有的安全问题进行详细的描述。

建立一个合适的安全和健康规则和决定其应用规则限制是使用者的责任。

2. 参考资料2.1 ASTM 标准:D 1349 橡胶标准实验温度准则D 1566 与橡胶相关的术语D 3182 混合标准化合物和准备标准硫化橡胶片的材料,设备和程序准则D 3183 实验用产品片准备准则D 3767 橡胶尺寸测量准则D 4483 橡胶和黑烟末工业中标准实验方法的测量精度准则E 4 实验机器力检查准则2.2 ASTM 附件:剪切环形试样,方法B (D 412)2.3 ISO 标准:ISO 37 硫化橡胶,热缩性橡胶张应力性能3.1 术语3.1 定义3.1.1 张力设置——在试样被伸展之后所保留的延长长度,允许以规定方式缩进,以占原始长度的百分比来表达。

(D 1566)3.1.2 破裂后张力设置——通过把两破裂的哑铃体橡胶片破裂点放在一起进行测量。

(D 1566)3.1.3 抗拉强度——施加给试样使其破裂的张应力。

(D 1566)3.1.4 张应力——伸展试样的力。

(D 1566)3.1.5 一定延伸率的张应力——使试样均匀横截面伸展到给定延伸时所需要的力。

ASTM D412-98a(2002)硫化橡胶、热塑橡胶和热塑合成橡胶的拉伸试验方法(中文版部分)

ASTM D412-98a(2002)硫化橡胶、热塑橡胶和热塑合成橡胶的拉伸试验方法(中文版部分)

名称:D 412—98a(2002年重新批准)硫化橡胶和热塑性弹性体——拉伸性能的标准实验方法希望采用本标准使用者在进行实验时,参照英文版本一起使用以便对译文提出建议并准确进行实验。

因此凡出现与英文版本相冲突,则以英文版本为准。

本标准已被国防部代理机构批准使用。

注释——9.2部分于2003.1被更新。

1. 范围1.1 这些方法是用来评估硫化橡胶和热塑性弹性体拉伸性能的程序。

这些方法不适用硬橡胶和相似硬度、低延伸率材料。

方法如下:方法A——哑铃状和直片状试样方法B——剪切环形状试样注释1——这两种不同的方法不会产生同样的结果。

1.2 在本实验中,数值的表达不管是以SI还是非SI为单位,都认为是标准的。

在每一系统中数值可能不是等同的,因此必须单独使用每一系统,而不要合并这些数值。

1.3本标准没有对所有的安全问题进行详细的描述。

建立一个合适的安全和健康规则和决定其应用规则限制是使用者的责任。

2. 参考资料2.1 ASTM 标准:D 1349 橡胶标准实验温度准则D 1566 与橡胶相关的术语D 3182 混合标准化合物和准备标准硫化橡胶片的材料,设备和程序准则D 3183 实验用产品片准备准则D 3767 橡胶尺寸测量准则D 4483 橡胶和黑烟末工业中标准实验方法的测量精度准则E 4 实验机器力检查准则2.2 ASTM 附件:剪切环形试样,方法B (D 412)2.3 ISO 标准:ISO 37 硫化橡胶,热缩性橡胶张应力性能3.1 术语3.1 定义3.1.1 张力设置——在试样被伸展之后所保留的延长长度,允许以规定方式缩进,以占原始长度的百分比来表达。

(D 1566)3.1.2 破裂后张力设置——通过把两破裂的哑铃体橡胶片破裂点放在一起进行测量。

(D 1566)3.1.3 抗拉强度——施加给试样使其破裂的张应力。

(D 1566)3.1.4 张应力——伸展试样的力。

(D 1566)3.1.5 一定延伸率的张应力——使试样均匀横截面伸展到给定延伸时所需要的力。

br行业检测标准值

br行业检测标准值

br行业检测标准值BR行业是指由丁腈橡胶(Buna-N)和天然橡胶(Natural Rubber)共混而成的合成橡胶。

该行业广泛应用于汽车、医疗、食品、化工和电子等领域。

为了确保BR行业产品的质量和安全性,相关检测标准值是非常重要的。

以下是BR行业常用的检测标准值:1.物理性能测试:- 拉伸强度(Tensile Strength):根据ASTM D412标准,样品在一定的拉伸速率下进行拉伸测试,测量其最大承受力。

- 断裂伸长率(Elongation at Break):根据ASTM D412标准,测试样品在拉伸过程中的最大延伸程度。

- 硬度(Hardness):根据ASTM D1415标准,用硬度计测量样品的硬度值。

- 密度(Density):根据ASTM D297标准,使用密度计测量样品的密度。

2.热性能测试:- 热稳定性(Thermal Stability):根据ASTM D573标准,将样品暴露在高温环境下,观察其性能的变化情况。

- 热变形温度(Heat Deflection Temperature):根据ASTM D648标准,在一定的压力下测量样品的变形温度。

- 玻璃化转变温度(Glass Transition Temperature):根据ASTM D3418标准,使用动态热分析仪测量样品的玻璃化转变温度。

3.化学性能测试:- 酸值(Acid Value):根据ASTM D974标准,用滴定法测量样品中酸性物质的含量。

4.耐候性测试:- 紫外线老化试验(UV Aging Test):根据ASTM D1148标准,将样品暴露在紫外线下进行老化,评估其耐候性能。

- 低温影响试验(Low Temperature Impact Test):根据ASTMD1790标准,测试样品在低温条件下的抗冲击性能。

以上是BR行业常见的一些检测标准值,这些标准有助于确保产品的质量和安全性。

不同地区和行业可能会有不同的具体标准和要求,因此在进行检测时需要根据相关的国家标准或行业标准进行操作。

ASTM D412标准中文版

ASTM D412标准中文版
第 3 页 共 9页
9.3 对于低温试验,试样应至少预冷 10min。
试验方法 A——直条和哑铃试样
10 设备 10.1 裁刀——裁刀的外形和尺寸应符合图 2 所示。裁刀中狭窄部分的内侧应于 裁刀端面面垂直,并且至少有从裁刀端面起 5mm 长的部分经过抛光。裁刀外形应 保持不变,并无缺损。 (见注 4) 注 4——可通过观察试样断裂点来确定裁刀的情况。将断裂试样从夹头上取下, 沿断裂面拼合, 观察试样破坏是否发生在相同的位置。 如果破坏发生在相同位置, 表示裁刀在此位置可能变钝、缺损或弯曲。 10.2 作标线——在试样上画两条标线用来测量伸长合应变的称为作标线(见注 5) 。标线器应包括一个平板,平板上有两个相互平行的凸起。凸起的表面(与平 板表面平行)应有狭长的平面,两个面保持在同一平面内。凸起的平面宽度为 0.05 到 0.08mm 长至少 15mm。平板与凸起之间的角度至少为 75º。两凸起平面中 心的距离应保持在要求或目标距离偏差的 1%内。在标线器的背面或顶部应包含 有一个手把。 注 4——如果使用接触式引伸计则无须作标线。 10.3 墨线标志——使用一个扁平坚硬的表面(硬木、金属或塑料)来制作墨水 或墨粉的标距。墨水或墨粉应与试样粘合牢固,不对试样产生腐蚀,并且与试样 的颜色形成对比。 10.4 夹头——试验计有两个夹头,一个与测力计相连。 10.4.1 试验哑铃试样的夹头应有自紧装置在夹头表面产生恒定的压力,随着伸 长的增加夹持力也增加以防止滑动,并且使破坏发生在试样的狭窄部分。恒定的 气动夹头也同样适用。在夹具的断部由一特殊部位,可使试样塞入夹具的长度相 同并且应力分布均匀。 10.4.2 用于试验直条试样的夹具应有气动夹具,钳形口或栓型扣,这样可将夹 具的夹持力均匀的施加在整个试样宽度上。 11 试样 11.1 哑铃试样——只要有可能, 试样应用注射成型或从厚 1.3 到 3.3mm 的试片 上裁取。可用一种试验方法裁取试样的厚度和尺寸(见规范 D 3182) 。试直接制备,那么其表面不 应有硬皮或织物等。根据规范 D 3183 的要求。所有试样都应是平行于试片长度 方向裁取,除非有特别规定。如果试样是按规范 D 3182 制备的,其厚度应为 2.0±0.2mm,并沿材料取向方向裁切。使用 C 型裁刀(图 2) ,用一简单的冲压 装置,并保证裁切面的光滑。. 11.1.1 标注哑铃试样——哑铃试样应按 10.2 中所述划标线,在划线时试样不应 受张力。标线应划在狭窄部分,与试样中心距离相等并垂直与纵轴。两标线间距 离为:C 型、D 型试样为 25.00±0.25mm;其它为 50.00±0.5mm 11.1.2 哑铃试样厚度测量——试样厚度应测三点,一点在中心两点在狭窄部分 的两端。取三个值的中值用来计算截面积。如试样厚度的极差大于 0.08,则该试 样作废。试样的宽度可按裁刀的工作部位宽度计算。 11.2 直条试样——如无法从样品上裁切哑铃或环形试样则可裁切直条试样(如 窄带、小管或细电绝缘材料) 。试样应足够长能塞进夹具。标距按 11.1.1 作。从 管上计算试验截面积,应使用管子的质量、长度和密度。截面积按下式计算:

D412硫化橡胶、热塑性橡胶和热塑性弹性体----抗拉试验方法1

D412硫化橡胶、热塑性橡胶和热塑性弹性体----抗拉试验方法1

D412-92硫化橡胶、热塑性橡胶和热塑性弹性体----抗拉试验方法1 1.范围1.1本试验方法描述了硫化橡胶、热塑性橡胶,和热塑性弹性体的抗拉性能测定方法。

本方法不适用于硬质橡皮及类似的低伸长率的材料,本方法包括如下两种:方法A:哑铃片或直片试样方法B:环形试片1.2无论是用SI单位或非SI单位表示的数值,在本标准中皆认为是标准值,不同系统的值可能不完全相等,因此各系统只能分别使用,而不能混用。

1.3本标准不涉及与之相关的所有安全因素,标准的使用者有责任制定适当的安全、健康的规定,在使用之前确定其规定极限的适用性。

2.参考文件2.1 ASTM标准D1349:橡皮试验标准温度的实施方法2D1566:有关橡皮的名词术语D3182:橡皮试验实施方法:用于混合标准混合物和准备标准硫化试片的材料、设备和程序2D3183:橡皮试验实施方法:由产品准备试片D3767:橡皮试验实施方法:尺寸测定D4483:橡皮试验实施方法:橡皮、炭黑、工业试验方法标准中精确度的确定E4:试验机的负荷检验2.2 ASTM附件:环形试样,方法B(D412)42.3 ISO标准:ISO37:硫化橡皮和热塑性橡皮抗拉性能的测定3.术语:3.1定义:3.1.1拉伸残变:试样按一定方式拉抻,再让其收缩后仍保留的伸长部分。

用原始长度的百分率表示(D1566)3.1.2拉断伸长率:哑铃片拉断后,将两断点对在一起,测出的拉伸残变3.1.3拉伸强度:将试样拉断所需的最大拉力(D1566)3.1.4张力:拉伸试样所用的力(D1566)3.1.5固定伸长力时的张力:将试样断面均匀一致的部分拉到---给定伸长率所需的第力(D1566)3.1.6热塑性弹性体:橡皮类材料的一个分支,与传统的硫化橡皮不同,具有象热塑性材料一样的加工性能和再使用性能3.1.7最大伸长率:试样被拉断的伸长率3.1.8屈服点:张力—变形曲线上的一点(拉断处除外),此时张力随变形的变化率经过一零值,并可能变为负值。

D41298a硫化橡胶和热塑性弹性体的标准测试方法――拉伸

D41298a硫化橡胶和热塑性弹性体的标准测试方法――拉伸

D412-98a硫化橡胶和热塑性弹性体的标准测试方法――拉伸应力1.范围1.1这个测试方法包括以下的用于估计硫化热固性橡胶和热塑性弹性体的拉伸性能的程序。

这些方法在硬橡胶和硬度相似的,低延伸率的材料方面是不适用的。

这些方法如下:测试方法A -亚玲状的和直截面的试样。

测试方法B -剪成环状的试样。

备注1――这两种不同的方法会产生不同的结果。

1.2这些用国际单位制或者是非国际单位制表示的数值应该被认为是这个标准分开的规范化。

在每一个系统的这些数值是不用精确相等;因此每一个系统必须独立使用,不能把数字混合。

1.3这个标准并不是为了引起在使用过程中的所有的安全重视,这只是一个对这个标准的使用者责任,使他建立一个恰当的安全和健康的操作规程和决定调整优先使用方法的适用性。

2. 参考文献2.1 ASTM标准:D 1349橡胶实践――测试的标准温度。

D 1566与橡胶有关的术语D 3128橡胶实践――混合标准化合物和预先准备标准的硫化片材料,设备和过程。

D 3183橡胶实践――从产品上才下来的用于测试目的预先准备好的片材。

D 3767橡胶实践――尺寸的测量D 4483橡胶和碳黑工业在测试方法标准上的决定精度的实践。

E 4测试机器上的力的校验2.2 ASTM附件圆环形的试样,B方法(D412)2.3 ISO 37硫化和热塑性性橡胶,拉伸应力特性的决定方法。

3. 专业术语3.1定义:3.1.1压缩形变――样品被拉伸后回复到特定的形状后剩下的延长率,用于与原来长度的比值的百分比计算。

(D 1566)3.1.2 断裂后的压缩形变――一种身长率的测试方法,是通过把在一点处断裂的两个哑铃状的片放好再测量它的身长率。

3.1.3 拉伸强度――把一个样品拉断时的的最大的拉伸应力。

(D 1566)3.1.4 拉伸应力――拉伸一个试样时的应力。

(D 1566)3.1.5 在给定身长率下的拉伸应力――把有相同截面积的试样拉伸到一个给定的伸长率时的应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档