MSP430F2131IDGV中文资料

合集下载

MSP430汇编指令集(中文)+详解带实例

MSP430汇编指令集(中文)+详解带实例

第 w Z 结果为零时置位 其它情况时复位
C dst 从 0FFFFH 增至 0000 时置位 其它情况复位
ww V 发生算术溢出时置位 其它情况时复位
方式位 OscOff CPUOff 和 GIE 不受影响
例子
R13 指向的 16 位数值加到 R12 指向的 32 位数值
ADD @R13, 0(R12)
寻址方式
寻址方式
源 操 目标操




作数 作数
As Ad
寄存器寻址
Yes Yes
MOV Rs, Rd
00 0 寄存器内容是操作数
索引寻址
Yes Yes
MOV x(Rn), y(Rm)
01 1 (Rn+x)指向操作数 x 储存在下一个字中
符号寻址
Yes Yes
MOV EDE, TON1
01 1
(PC+x)指向操作数 x 储存在下一个字中
Z 结果为零时置位 其它情况时复位
方式位 例子
C 结果的 MSB 产生进位时置位 否则复位 V 发生算术溢出时置位 其它情况时复位 OscOff CPUOff 和 GIE 不受影响 R13 指向的 32 位数值加至 R13 中的指针之上 11 个字(20/2 +2/2)的 32 位计数器 ADD @R13+, 20(R13) ;无进位加 LSDs ADDC @R13+, 20(R13) ;带进位加 MSDs
0 ** * ------------0 -0---0-
CMP[.W];CMP.B
dst
dst - src
* ** *
DADC[.W];DADC.B dst
dst + C -> dst (十进制)

MSP430F2XX中文手册(加了标签) 9. 定时器 B

MSP430F2XX中文手册(加了标签) 9. 定时器 B

MSP430F2系列16位超低功耗单片机模块原理第9章定时器B Timer B版本: 1.4日期: 2007.4.原文: TI MSP430x2xxfamily.pdf翻译: 李璘中国计量学院编辑: DC 微控技术论坛版主注:以下文章是翻译TI MSP430x2xxfamily.pdf 文件中的部分内容。

由于我们翻译水平有限,有整理过程中难免有所不足或错误;所以以下内容只供参考.一切以原文为准。

详情请密切留意微控技术论坛。

Page 1 of 22定时器B(Timer_B,以后简写为TB)是一个16位的定时/计数器,并复合了捕获/比较寄存器。

Timer_B3(拥有3个捕获比较器)只存在于MSP430x2xx中。

章节9.1 Timer_B 介绍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-29.2 Timer_B 操作方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-49.3 Timer_B 寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-199.1 Timer_B 介绍TB是一个16位的定时/计数器,拥有3个或7个捕获/比较寄存器。

TB可以支持捕获/比较功能、PWM输出和定时器功能。

TB还有扩展中断的功能,中断可以由定时器溢出产生或捕获比较寄存器产生。

TB的特性如下:l4种操作模式的异步16位定时/计数器l可选择配置的时钟源l3个或7个可配置的捕获/比较器l可配置的PWM输出l加载时同步的双缓冲比较锁存l对所有TB中断快速响应的中断向量寄存器9.1.1 和定时器A的相同点和不同点定时器B和定时器A的不同点如下:l定时器B的长度是可编程的,可编程为8,10,12,16位l定时器B TBCCRx寄存器是双缓冲的,并可以编组l所有定时器B的输出可以为高阻抗状态l SCCI位功能在定时器B中不存在TB的结构图见图9−1.图9−1.TB结构图Page 2 of 22Page 3 of 229.2 Timer_B 的操作方法TB 模块由用户软件来配置,TB 的配置将在下面的章节讨论。

MSP430资料

MSP430资料

D Wake-Up From Standby Mode in 6 µs D 16-Bit RISC Architecture,125-ns Instruction Cycle Time D 12-Bit A/D Converter With InternalReference, Sample-and-Hold and Autoscan FeatureD 16-Bit Timer_B With SevenCapture/Compare-With-Shadow Registers D 16-Bit Timer_A With Three Capture/Compare Registers D On-Chip ComparatorDSerial Onboard Programming,No External Programming Voltage Needed Programmable Code Protection by Security FuseDevicesDFamily Members Include:– MSP430F133:8KB+256B Flash Memory,256B RAM– MSP430F135:16KB+256B Flash Memory,512B RAM– MSP430F147:32KB+256B Flash Memory,1KB RAM– MSP430F148:48KB+256B Flash Memory,2KB RAM– MSP430F149:60KB+256B Flash Memory,2KB RAMD Available in 64-Pin Quad Flat Pack (QFP)DFor Complete Module Descriptions, See the MSP430x1xx Family User’s Guide ,Literature Number SLAU049descriptionThe Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency.The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs.The MSP430x13x and the MSP430x14x series are microcontroller configurations with two built-in 16-bit timers,a fast 12-bit A/D converter, one or two universal serial synchronous/asynchronous communication interfaces (USART), and 48 I/O pins.Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system. The timers make the configurations ideal for industrial control applications such as ripple counters, digital motor control, EE-meters, hand-held meters, etc. The hardware multiplier enhances the performance and offers a broad code and hardware-compatible family solution.Copyright 2000 – 2003, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.pin designation, MSP430F133, MSP430F135171819P5.4/MCLK P5.3P5.2P5.1P5.0P4.7/TBCLK P4.6P4.5P4.4P4.3P4.2/TB2P4.1/TB1P4.0/TB0P3.7P3.6P3.5/URXD0484746454443424140393837363534332012345678910111213141516DV CC P6.3/A3P6.4/A4P6.5/A5P6.6/A6P6.7/A7V REF+XINXOUT/TCLKVe REF+V REF –/Ve REF –P1.0/TACLK P1.1/TA0P1.2/TA1P1.3/TA2P1.4/SMCLK21222324P 5.6/A C L K T D O /T D I 63626160596458A V P 6.2/A 2P 6.1/A 1P 6.0/A 0R S T /N M I T C K T M S P 2.6/A D C 12C L K P 2.7/T A 0P 3.0/S T E 0P 3.1/S I M O 0P 1.7/T A 2P 2.1/T A I N C L K P 2.2/C A O U T /T A 0P 2.3/C A 0/T A 1P 2.4/C A 1/T A 2P 2.5/R o s c 5655545725262728295352P 1.5/T A 0X T 2I N X T 2O U T 515049303132P 3.2/S O M I 0P 3.3/U C L K 0P 3.4/U T X D 0P 5.7/T B o u t HT D I P 5.5/S M C L KA V D V PM PACKAGE (TOP VIEW)P 1.6/T A 1P 2.0/A C L K C CS SS Spin designation, MSP430F147, MSP430F148, MSP430F149171819P5.4/MCLK P5.3/UCLK1P5.2/SOMI1P5.1/SIMO1P5.0/STE1P4.7/TBCLK P4.6/TB6P4.5/TB5P4.4/TB4P4.3/TB3P4.2/TB2P4.1/TB1P4.0/TB0P3.7/URXD1P3.6/UTXD1P3.5/URXD0484746454443424140393837363534332012345678910111213141516DV CC P6.3/A3P6.4/A4P6.5/A5P6.6/A6P6.7/A7V REF+XINXOUT/TCLKVe REF+V REF –/Ve REF –P1.0/TACLK P1.1/TA0P1.2/TA1P1.3/TA2P1.4/SMCLK21222324P 5.6/A C L K T D O /T D I 63626160596458A V P 6.2/A 2P 6.1/A 1P 6.0/A 0R S T /N M I T C K T M S P 2.6/A D C 12C L K P 2.7/T A 0P 3.0/S T E 0P 3.1/S I M O 0P 1.7/T A 2P 2.1/T A I N C L K P 2.2/C A O U T /T A 0P 2.3/C A 0/T A 1P 2.4/C A 1/T A 2P 2.5/R o s c 5655545725262728295352P 1.5/T A 0X T 2I N X T 2O U T 515049303132P 3.2/S O M I 0P 3.3/U C L K 0P 3.4/U T X D 0P 5.7/T B o u t HT D I P 5.5/S M C L KA V D V PM PACKAGE (TOP VIEW)P 1.6/T A 1P 2.0/A C L K C CS SS Sfunctional block diagrams MSP430x13xRoscXT2INXT2OUTTMSTCKTDITDO/TDIMSP430x14xRoscXT2INXT2OUTTMSTCKTDITDO/TDITerminal FunctionsTerminal Functions (Continued)General-Purpose Register Program Counter Stack Pointer Status Register Constant Generator General-Purpose Register General-Purpose Register General-Purpose Register PC/R0SP/R1SR/CG1/R2CG2/R3R4R5R12R13General-Purpose Register General-Purpose Register R6R7General-Purpose Register General-Purpose Register R8R9General-Purpose Register General-Purpose Register R10R11General-Purpose Register General-Purpose RegisterR14R15short-form descriptionCPUThe MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions,are performed as register operations in conjunc-tion with seven addressing modes for source operand and four addressing modes for destina-tion operand.The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register,and constant generator respectively. The remain-ing registers are general-purpose registers.Peripherals are connected to the CPU using data,address, and control buses, and can be handled with all instructions.instruction setThe instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data.Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.Table 1. Instruction Word FormatsTable 2. Address Mode Descriptionsoperating modesThe MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program.The following six operating modes can be configured by software:D Active mode AM;–All clocks are activeD Low-power mode 0 (LPM0);–CPU is disabledACLK and SMCLK remain active. MCLK is disabledD Low-power mode 1 (LPM1);–CPU is disabledACLK and SMCLK remain active. MCLK is disabledDCO’s dc-generator is disabled if DCO not used in active modeD Low-power mode 2 (LPM2);–CPU is disabledMCLK and SMCLK are disabledDCO’s dc-generator remains enabledACLK remains activeD Low-power mode 3 (LPM3);–CPU is disabledMCLK and SMCLK are disabledDCO’s dc-generator is disabledACLK remains activeD Low-power mode 4 (LPM4);–CPU is disabledACLK is disabledMCLK and SMCLK are disabledDCO’s dc-generator is disabledCrystal oscillator is stoppedinterrupt vector addressesThe interrupt vectors and the power-up starting address are located in the address range 0FFFFh – 0FFE0h.The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.2.Interrupt flags are located in the module.3.Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.4.(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disableit.5.Timer_B7 in MSP430x14x family has 7 CCRs; Timer_B3 in MSP430x13x family has 3 CCRs. In Timer_B3 there are only interruptflags TBCCR0, 1, and 2 CCIFGs and the interrupt-enable bits TBCCTL0, 1, and 2 CCIEs.special function registersMost interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access.interrupt enable 1 and 2Address 0hWDTIE:Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode.OFIE:Oscillator-fault-interrupt enable NMIIE:Nonmaskable-interrupt enable ACCVIE:Flash access violation interrupt enableURXIE0:USART0, UART, and SPI receive-interrupt enable UTXIE0:USART0, UART, and SPI transmit-interrupt enablerw-0rw-0Address 01hURXIE1:USART1, UART, and SPI receive-interrupt enable UTXIE1:USART1, UART, and SPI transmit-interrupt enableinterrupt flag register 1 and 2Address 02hWDTIFG:Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on V CC OFIFG:Flag set on oscillator fault NMIIFG:Set via RST/NMI pinURXIFG0:USART0, UART, and SPI receive flag UTXIFG0:USART0, UART, and SPI transmit flagrw-1rw-0Address 03hURXIFG1:USART1, UART, and SPI receive flag UTXIFG1:USART1, UART, and SPI transmit flagmodule enable registers 1 and 2rw-0rw-0Address 04hURXE0:USART0, UART receive enable UTXE0:USART0, UART transmit enableUSPIE0:USART0, SPI (synchronous peripheral interface) transmit and receive enablerw-0rw-0Address 05hURXE1:USART1, UART receive enable UTXE1:USART1, UART transmit enableUSPIE1:USART1, SPI (synchronous peripheral interface) transmit and receive enableLegend: rw:Bit Can Be Read and WrittenBit Can Be Read and Written. It Is Reset by PUC.SFR Bit Not Present in Devicememory organizationbootstrap loader (BSL)The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430Bootstrap Loader , Literature Number SLAA089.flash memoryThe flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128bytes each. Each segment in main memory is 512 bytes in size.D Segments 0 to n may be erased in one step, or each segment may be individually erased.D Segments A and B can be erased individually, or as a group with segments 0–n.Segments A and B are also called information memory.D New devices may have some bytes programmed in the information memory (needed for test duringmanufacturing). The user should perform an erase of the information memory prior to the first use.Main MemoryInformation Memory8 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh16 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh32 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh48 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh60 kB 0FFFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FA00h 0F9FFh0E400h 0E3FFh 0E200h 0E1FFh 0E000h 010FFh 01080h 0107Fh 01000h0C400h 0C3FFh 0C200h 0C1FFh 0C000h 010FFh 01080h 0107Fh 01000h08400h 083FFh 08200h 081FFh 08000h 010FFh 01080h 0107Fh 01000h04400h 043FFh 04200h 041FFh 04000h 010FFh 01080h 0107Fh 01000h01400h 013FFh01200h 011FFh01100h 010FFh01080h 0107Fh01000hperipheralsPeripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions.digital I/OThere are six 8-bit I/O ports implemented—ports P1 through P6:D All individual I/O bits are independently programmable.D Any combination of input, output, and interrupt conditions is possible.D Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.D Read/write access to port-control registers is supported by all instructions.oscillator and system clockThe clock system in the MSP430x13x and MSP43x14x family of devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) anda high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both lowsystem cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals:D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.D Main clock (MCLK), the system clock used by the CPU.D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.watchdog timerThe primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.multiplication (MSP430x14x Only)The multiplication operation is supported by a dedicated peripheral module. The module performs 1616, 168, 816, and 88 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required.USART0The MSP430x13x and the MSP430x14x have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.USART1 (MSP430x14x Only)The MSP430x14x has a second hardware universal synchronous/asynchronous receive transmit (USART1) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.Operation of USART1 is identical to USART0.timer_A3Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.timer_B7 (MSP430x14x Only)Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.timer_B3 (MSP430x13x Only)Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.comparator_AThe primary function of the comparator_A module is to support precision slope analog–to–digital conversions, battery–voltage supervision, and monitoring of external analog signals.ADC12The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.peripheral file mapperipheral file map (continued)peripheral file map (continued)peripheral file map (continued)absolute maximum ratings over operating free-air temperature (unless otherwise noted)†. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Voltage applied at V CC to V SS–0.3 V to + 4.1 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Voltage applied to any pin (referenced to V SS) –0.3 V to V CC+0.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Diode current at any device terminal . ±2 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Storage temperature (unprogrammed device) –55°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Storage temperature (programmed device) –40°C to 85°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.NOTE:All voltages referenced to V SS.recommended operating conditionsNOTES: 1.In LF mode, the LFXT1 oscillator requires a watch crystal and the LFXT1 oscillator requires a 5.1-M Ω resistor from XOUT to V SS when V CC <2.5 V. In XT1 mode, the LFXT1. and XT2 oscillators accept a ceramic resonator or a 4-MHz crystal frequency at V CC ≥ 2.2 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or an 8-MHz crystal frequency at V CC ≥ 2.8V.2.In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, FXT1 accepts a ceramic resonator or a crystal.3.The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if segment write option is used.4.The mass erase duration generated by the flash timing generator is at least 11.1 ms. The cummulative mass erase time needed is 200 ms. This can be achieved by repeating the mass erase operation until the cumulative mass erase time is met (a minimum of 19 cycles may be required).f (MHz)8.0 MHzSupply Voltage – V’F13x/’F14x,Figure 1. Frequency vs Supply Voltage, MSP430F13x or MSP430F14xelectrical characteristics over recommended operating free-air temperature (unless otherwise noted)+ DV excluding external currentsupply current into AVCC2.Timer_B is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to V CC. Outputs do not source or sink any current. The currentconsumption in LPM2 and LPM3 are measured with ACLK selected.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)Current consumption of active mode versus system frequency, F-versionI(AM) = I(AM) [1 MHz]× f(System) [MHz]Current consumption of active mode versus supply voltage, F-versionI(AM) = I(AM)[3V]+ 175 µA/V × (V CC– 3 V)SCHMITT-trigger inputs – Ports P1, P2, P3, P4, P5, and P6standard inputs – RST/NMI; JTAG: TCK, TMS, TDI, TDO/TDIOH(max)OL(max),specified voltage drop.2.The maximum total current, I OH(max) and I OL(max), for all outputs combined, should not exceed ±24 mA to satisfy the maximumspecified voltage drop.outputs – Ports P1, P2, P3, P4, P5, and P6 (continued)Figure 2V OL – Low-Level Output Voltage – V 02468101214160.00.5 1.0 1.5 2.0 2.5TYPICAL LOW-LEVEL OUTPUT CURRENTvsLOW-LEVEL OUTPUT VOLTAGEO L I – L o w -L e v e l O u t p u t C u r r e n t – m AFigure 3V OL – Low-Level Output Voltage – V05101520250.00.5 1.0 1.5 2.0 2.5 3.03.5TYPICAL LOW-LEVEL OUTPUT CURRENTvsLOW-LEVEL OUTPUT VOLTAGEO L I – L o w -L e v e l O u t p u t C u r r e n t – m AFigure 4V OH – High-Level Output Voltage – V–14–12–10–8–6–4–200.00.51.01.52.02.5TYPICAL HIGH-LEVEL OUTPUT CURRENTvsHIGH-LEVEL OUTPUT VOLTAGEO H I – H i g h -L e v e l O u t p u t C u r r e n t – m AFigure 5V OH – High-Level Output Voltage – V–30–25–20–15–10–50.00.5 1.0 1.5 2.0 2.5 3.03.5TYPICAL HIGH-LEVEL OUTPUT CURRENTvsHIGH-LEVEL OUTPUT VOLTAGEO H I – H i g h -L e v e l O u t p u t C u r r e n t – m Aelectrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)output frequencyfrequencies can be different.(int)trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK cycles.2.The external capture signal triggers the capture event every time the minimum t(cap) cycle and time parameters are met. A capturemay be triggered with capture signals even shorter than t(cap). Both the cycle and timing specifications must be met to ensure a correct capture of the 16-bit timer value and to ensure the flag is set.3.Seven capture/compare registers in ’x14x and three capture/compare registers in ’x13x.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)leakage current (see Note 1)SS CC 2.The port pin must be selected as input and there must be no optional pullup or pulldown resistor.should take place during this supply voltage condition.lkg(Px.x)2.The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.The two successive measurements are then summed together.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)T A – Free-Air Temperature – °C 400450500550600650–45–25–51535557595Figure 6. V (RefVT) vs Temperature, V CC = 3 VV (R E F V T )– R e f e r e n c e V o l t s –m VFigure 7. V (RefVT) vs Temperature, V CC = 2.2 VT A – Free-Air Temperature – °C400450500550600650–45–25–51535557595V (R E F V T )– R e f e r e n c e V o l t s –m VV+τ ≈ 2.0 µsTo Internal ModulesSet CAIFG FlagCAOUT V –Figure 8. Block Diagram of Comparator_A ModuleV Figure 9. Overdrive Definitionelectrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)PORVVVFigure 10. Power-On Reset (POR) vs Supply Voltage1.20.800.20.40.60.811.21.41.61.82–40–2020406080T A – Temperature – °CV P O R – VFigure 11. V POR vs Temperatureelectrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)DCO (see Note 1)(System)2.This parameter is not production tested.f DCO_0f DCO_7–F r e q u e n c y V a r i a n c eFigure 12. DCO Characteristicselectrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)main DCO characteristicsD Individual devices have a minimum and maximum operation frequency. The specified parameters forf DCOx0 to f DCOx7 are valid for all devices.D All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps with Rsel1, ... Rsel6 overlaps withRsel7.D DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter S DCO.D Modulation control bits MOD0 to MOD4 select how often f DCO+1 is used within the period of 32 DCOCLKcycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average equal to f(DCO) × (2MOD/32 ).(t) URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(t). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0/1 line.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)12-bit ADC, power supply and input range conditions (see Note 1)‡Not production tested, limits verified by designNOTES: 1.The leakage current is defined in the leakage current table with P6.x/Ax parameter.2.The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reducedaccuracy requirements.3.The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reducedaccuracy requirements.4.The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied withreduced accuracy requirements.5.The analog input voltage range must be within the selected reference voltage range V R+ to V R– for valid conversion results.6.The internal reference supply current is not included in current consumption parameter I ADC12.7.The internal reference current is supplied via terminal AV CC. Consumption is independent of the ADC12ON control bit, unless aconversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)12-bit ADC, built-in reference (see Note 1)‡Not production tested, limits verified by designNOTES: 1.The voltage source on V eREF+ and V REF–/V eREF–) needs to have low dynamic impedance for 12-bit accuracy to allow the charge to settle for this accuracy.2.The external reference is used during conversion to charge and discharge the capacitance array. The dynamic impedance shouldfollow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.3.The internal buffer operational amplifier and the accuracy specifications require an external capacitor.4.The input capacitance is also the dynamic load for an external reference during conversion. The dynamic impedance of the referencesupply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. All INL and D NL t ests u ses t wo c apacitors b etween p ins V REF+a nd A V SS a nd V REF–/V eREF–a nd A V SS: 10 µF t antalum a nd 100nF c eramic.electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)12-bit ADC, timing parameters‡Not production tested, limits verified by designNOTES: 1.The condition is that the error in a conversion started after t REF(ON) is less than ±0.5 LSB. The settling time depends on the externalcapacitive load.2.The condition is that the error in a conversion started after t ADC12ON is less than ±0.5 LSB. The reference and input signal are alreadysettled.3.Ten Tau (τ) are needed to get an error of less than ±0.5 LSB. t Sample = 10 x (Ri + Zi) x Ci+ 800 nsC 1 µ in µF100 µ10 µFigure 13. Typical Settling Time of Internal Reference t REF(ON) vs External Capacitor on V REF +electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)12-bit ADC, linearity parameters。

msp430

msp430

MSP430单片机系列种类
非基于LCD
MSP430x1xx: : 基于闪存/ ROM的MCU提供 伏至3.6伏的工作电压, 基于闪存 的 提供1.8伏至 伏的工作电压, 提供 伏至 伏的工作电压 高达60kB和8MIPS(带有基本时钟 带有基本时钟) 高达 和 带有基本时钟 MSP430F2xx: : 基于闪存的MCU 提供 提供1.8 伏至 伏至3.6 伏工作电压,掉电复位及 伏工作电压, 基于闪存的 16MIPS(带有基本时钟 带有基本时钟) 带有基本时钟 MSP430F5XX: : 基于闪存的MCU 提供 提供1.8 伏至 伏至3.6 伏工作电压,掉电复位及 伏工作电压, 基于闪存的 18MIPS(带有基本时钟 带有基本时钟) 带有基本时钟
各模块简要介绍— 5,Msp430f247的基准时钟系统
系统复位后: 系统复位后: MCLK和SMCLK由DCO提供, 提供, 和 由 提供 ACLK由LFXT1提供 由 提供
以下是DCO设置程序: //设定DCO为16MHZ : BCSCTL1 =CALBC1_16MHZ; DCOCTL =CALDCO_16MHZ; 可选频率1M,8M,12M,16M 读取0x10f9和0x10f8两 个地址里面 16MHzDCO常数分别 装入BCSCTL1和 DCOCTL两个寄存器
MSP430单片机的应用领域
日常公用测量 水表,气表,自动抄表, 水表,气表,自动抄表,先进电 表网络基础设施, 表网络基础设施,热分配表 便携式消费 无线鼠标和键盘,触摸按键, 无线鼠标和键盘,触摸按键, 手机,数码相机, 手机,数码相机,MP3 电动牙刷,剃须刀, 电动牙刷,剃须刀,运动手表等
主要内容
Msp430单片机简介 Msp430单片机简介 Msp430单片机的结构及主要模块 Msp430单片机的结构及主要模块 Msp430单片机的具体应用 Msp430单片机的具体应用 —位移测量装置 位移测量装置

msp430g2413中文资料

msp430g2413中文资料

说明
德州仪器 (TI) MSP430 系列超低功耗微控制器包含多种器件,它们具有面向各种应用的不同外设集。 这种架构与 5 种低功耗模式相组合,专为在便携式测量应用中延长电池的使用寿命而优化。 该器件具有一个强大的 16 位 RISC CPU、16 位寄存器和有助于获得最大编码效率的常数发生器。 数字控制振荡器 (DCO) 可在不到 1 µs 的时 间里完成从低功耗模式至运行模式的唤醒。
MSP430G2313IPW20 MSP430G2313IN20 MSP430G2213IRHB32 MSP430G2213IPW28
MSP430G2213IPW20 MSP430G2213IN20 MSP430G2113IRHB32 MSP430G2113IPW28
MSP430G2113IPW20 MSP430G2113IN20

16
20 引脚 PDIP 封装
Copyright © 2011, Texas Instruments Incorporated
3
MSP430G2x53 MSP430G2x13
ZHCS178C – APRIL 2011 – REVISED AUGUST 2011

器件引出脚配置、MSP430G2x13 和 MSP430G2x53、20 引脚器件、 TSSOP 和 PDIP 封装
MSP430G2x13 和 MSP430G2x53 系列是超低功耗混合信号微控制器,具有内置的 16 位定时器、多达 24 个支持 触摸感测的 I/O 引脚、一个通用型模拟比较器以及采用通用串行通信接口的内置通信能力。 此外,MSP430G2x53 系列成员还具有一个 10 位模数 (A/D) 转换器。 有关配置的详情请见 表 1。
BSL EEM

MSP430F2XX中文手册(加了标签) 10.通用串口

MSP430F2XX中文手册(加了标签) 10.通用串口

MSP430F2系列16位超低功耗单片机模块原理第10章通用串口界面Universal Serial Interface 版本: 1.5日期: 2007.5.原文: TI MSP430x2xxfamily.pdf翻译: 陈安都湖南长沙-中南大学编辑: DC 微控技术论坛版主注:以下文章是翻译TI MSP430x2xxfamily.pdf 文件中的部分内容。

由于我们翻译水平有限,有整理过程中难免有所不足或错误;所以以下内容只供参考.一切以原文为准。

详情请密切留意微控技术论坛。

Page 1 of 15通用串行接口模块(USI)提供与硬件模块的SPI和I2C串行通信。

本章讨论这两种模式。

USI模块包含在MSP420X20XX系列中。

主题10.1 USI的介绍10.2 USI的使用10.3 USI的寄存器10.1 USI的介绍USI模块提供支持同步串行通信的基本功能。

一般地,一个8、16位移位寄存器能用来输出数据流,少许的几条指令就可以执行串行通信。

另外,USI包含的内置硬件可以模拟SPI和I2C通信。

USI模块还包括中断,可以进一步减少串行通信的通用程序并且保持MSP430的低功耗特性。

USI模块的特性包括:支持三线SPI模式支持I2C模式可变的数据长度在LPM4方式下不需要内部时钟MSB或LSB指令可选在I2C模式下能控制SCL打开、停止监测在主机模式下的仲裁丢失监测可编程的时钟发生器可选择的钟极性和相位控制Page 2 of 15表10-1展示了SPI模式下的USI模块Page 3 of 15表10-2展示了I2C模式下的USI模块10.2 USI的操作USI模块主要由移位寄存器和位计数器组成,通过逻辑控制来支持SPI和I2C 通信。

USI的移位寄存器为USISR,通过软件直接控制数据的移入和移出。

位计数器计算采样位的数目以及在USICNTX位写零时设置USI中断标志位Page 4 of 15USIIFG。

MSP430

MSP430

MSP430MSP430一、上电复位POR 和上电清除PUC二、低功耗控制但系统时钟发生器基本功能建立之后,CPU内的状态寄存器SR中的SCG1、SCG2、OscOff、CpuOff是低功耗的重要控制位;系统工作模式一共有6种,1种活动模式和5种低功耗模式;可以通过设置控制位使MSP430进入低功耗模式,由中断唤醒CPU,在执行完中断服务程序之后再回到低功耗模式,也可以在执行中断程序的时候间接访问堆栈修改状态寄存器的值,这样中断程序执行完之后就会进入另外一种低功耗模式或者处于活动模式。

三、时钟模块(一)、MSP430F149有三个时钟输入源:1、LFXT1CLK:如果LFXTCLK没有作用于SMCLK、MCLK信号,可以用OscOff置位以禁止LFXT1CLK工作;2、XT2CLK:若XT2CLK没有作用于SMCLK、MCLK信号,可以用控制位XT2OFF 关闭XT2;3、DCO振荡器:MSP430F149的两个外部振荡器产生的时钟信号都可以经过1、2、4、8分频后用作系统主时钟MCLK;当外部振荡器失效后,DCO 振荡器会自动被选作MCLK 的时钟源;(二)、MSP430F149提供3三种时钟信号:1、ACLK----辅助时钟,一般用于低速外设,由LFXT1CLK信号分频而得;2、MCLK----系统通过主时钟,一般用于CPU和系统,由以上三个时钟源任意一个分频而得;3、SMCLK---主要用于高速外设,由XT2CLK+XT2CLK 或LFXT1CLK+DCO分频而得。

(三)、如何控制MSP430的DCOCLK频率?——时钟模块的控制由5个寄存器来完成1、DCOCTL:定义8总频率之一2、BCSCTL1:控制XT2CLK的开启与关闭;控制LFXT1CLK的工作模式(低频或高频,高频下需要接高频时钟源);控制ACLK分频。

3、BCSCTL2选择MCLK时钟源;选择MCLK分频;选择SMCLK时钟源;选择SMCLK时钟源分频。

华大师大MSP430讲义

华大师大MSP430讲义

华东师范大学计算机科学技术系DEP.OF COMPUTER SCIENCE EAST CHINA NORMAL UNIVERSITYMSP430--1MSP430系列超低功耗16位单片机原理与应用MSP430--2嵌入式系统概述l 始于微型机时代的嵌入式应用计算机-1946年20世纪70年代,出现微处理器将微型机迁入到对象体系中计算机失去了原有的形态和通用的计算机功能MSP430--3教材结构l 概述l MSP430单片机结构l MSP430指令系统与程序设计l MSP430单片机片内外围模块l MSP430单片机应用MSP430--4概述l 单片微型计算机v 单片机的概念v 单片机的特点v 单片机的应用l MSP430系列单片机v MSP430系列单片机的特点v MSP430系列单片机的发展与应用l MSP430应用选型v MSP430系列单片机命名规则v MSP430系列单片机选项l 思考题与习题MSP430--5微处理器的发展l 一是朝着面向数据运算、信息处理等功能的系统机方向发展。

系统机以速度快、功能强、存储量大、软件丰富、输入/输出设备齐全为主要特点,采用高级语言编程,适用于数据运算、文字信息处理、人工智能、网络通信等场合。

l 另一方面,在有些应用领域中,如智能化仪器仪表、电讯设备、自动控制设备、汽车乃至家用电器等,要求的运算、控制功能相对并不很复杂,但对体积、成本、功耗等的要求却比较苛刻。

为适应这方面的需求,产生了一种将中央处理器、存储器、I/O 接口电路以及连接它们的总线都集成在一块芯片上的计算机,即所谓的单片微型计算机,简称单片机(Single Chip Microcomputer )。

单片机在设计上主要突出了控制功能,调整了接口配置,在单一芯片上制成了结构完整的计算机,因此,单片机也称为微控制器(MCU )MSP430--6单片机的特点l 小巧灵活、成本低、易于产品化,它能方便的组装成各种智能式控制设备以及各种智能仪器仪表。

MSP430F21X1_中文资料

MSP430F21X1_中文资料

-MCLK 停止, 若 DCO 没有被使用,DCO 发生器关闭
● 低功耗模式 2 LPM2
-CPU 关闭
-MCLK 和 SMCLK 停止.
-பைடு நூலகம்CLK 保持活动
-DCO 发生器保持活动
● 低功耗模式 3 LPM3
-CPU 关闭
-MCLK 和 SMCLK 停止.
-DCO 发生器停止
-ACLK 保持活动
● 低功耗模式 4 LPM4
P2.2/CAOUT/ CA0/CA4
P2.3/CA0/CA1
P2.4/CA1/CA2 P2.5/CA5
XIN/P2.6/CA6
XOUT/P2.7/CA7 RST/NMI TEST Vcc Vss QFN Pad
引脚 DW,PW,DGV
引脚号 13 14
15
16
17
18
19
20 8 9
10
11
12 3 6
通用寄存器
R14
寻址方式见表 2
通用寄存器
R15
双操作数,源-目的 单操作数 相对转移,条件或无条件
表 1 指令格式 e.g ADD R4, R5 e.g CALL R8 e.g JNE
R4+R5→R5 PC→(TOS),R8→PC Z=0 时跳转
表 2 寻址方式
寻址方式 S D
语法
示例
说明
寄存器寻址 ● ●
I/O 片编程和测试时作数据和时钟输入端 通用数字 I/O 口/定时器 A 比较方式 OUT2 输出/在芯
I/O 片编程和测试时作数据输出/输入端 I/O 通用数字 I/O 口/ACLK 输出端/比较器 A+ CA2 输入
通用数字 I/O 口/定时器 A INCLK 时钟输入/比较器 I/O A+ CA3 输入

MSP430单片机原理解读

MSP430单片机原理解读

第 2 章MSP430 单片机原理与 C 语言基础MSP430系列超低功耗单片机有200多种型号,TI公司用3~ 4位数字表示其型号。

其中第一位数字表示大系列,如MSP430F1xx系列、MSP430F2xx系列、MSP430F4xx系列、MSP430F5xx系列等。

在每个大系列中,又分若干子系列,单片机型号中的第二位数字表示子系列号,一般子系列越大,所包含的功能模块越多。

最后1~2 位数字表示存储容量,数字越大表示RAM 和ROM 容量越大。

430 家族中还有针对热门应用而设计的一系列专用单片机。

如SP430FW4xx 系列水表专用单片机、MSP430FG4xx 系列医疗仪器专用单片机、MSP430FE4xx 系列电能计量专用单片机等。

这些专用单片机都是在同型号的通用单片机上增加专用模块而构成的。

最新的MSP430型号列表可以通过TI公司网站下载。

在开发单片机应用系统时,第一步就是单片机的选型,选择合适的单片机型号往往就能事半功倍。

单片机选型基本方法是选择功能模块最接近项目需求的系列,然后根据程序复杂程度估算存储器和RAM 空间,并留有适当的余量,最终决定选用的单片机型号。

本章节以MSP430F249单片机为学习目标,介绍单片机的基本结构和工作原理,读者可以举一反三、触类旁通,而不必每种型号都去学习却无法深入掌握。

2.1 MSP430F249单片机基本结构与原理2.1.1MSP430F249的主要结构特点供电电压范围1.8V~3.6V 。

超低功耗:活动状态270uA(1MHz,2.2V);待机模式0.3uA;关机模式0.1uA。

16位RISC精简指令集处理器。

时钟系统:多种时钟源,可灵活使用。

时钟频率达到16MHz ;具有内部振荡器;可外接32kHz 低频晶振;外接时钟输入。

12位A/D转换器,内部参考电压,采用保持电路。

16位定时器A,3个捕获/比较寄存器。

16 位定时器B,7 个捕获/比较寄存器。

MSP430简介(超详细·)

MSP430简介(超详细·)

msp430简介MSP430是德州公司新开发的一类具有16位总线的带FLASH 的单片机,由于其性价比和集成度高,受到广大技术开发人员的青睐.它采用16位的总线,外设和内存统一编址,寻址范围可达64K,还可以外扩展存储器.具有统一的中断管理,具有丰富的片上外围模块,片内有精密硬件乘法器、两个16位定时器、一个14路的12位的模数转换器、一个看门狗、6路P口、两路USART通信端口、一个比较器、一个DCO内部振荡器和两个外部时钟,支持8M 的时钟.由于为FLASH型,则可以在线对单片机进行调试和下载,且JTAG口直接和FET(FLASH EMULATION TOOL)的相连,不须另外的仿真工具,方便实用,而且,可以在超低功耗模式下工作对环境和人体的辐射小,测量结果为100mw左右的功耗(电流为14mA左右),可靠性能好,加强电干扰运行不受影响,适应工业级的运行环境,适合与做手柄之类的自动控制的设备.我们相信MSP430单片机将会在工程技术应用中得以广泛应用,而且,它是通向DSP系列的桥梁,随着自动控制的高速化和低功耗化, MSP430系列将会得到越来越多人的喜爱.一、IO口(一)、P口端口寄存器:1、PxDIR 输入/输出方向寄存器(0:输入模式 1:输出模式)2、PxIN 输入寄存器输入寄存器是只读寄存器,用户不能对其写入,只能通过读取该寄存器的内容知道I/O口的输入信号。

3、PxOUT 输出寄存器寄存器内的内容不会受引脚方向改变的影响。

4、PxIFG 中断标志寄存器(0:没有中断请求 1:有中断请求)该寄存器有8个标志位,对应相应的引脚是否有待处理的中断请求;这8个中断标志共用一个中断向量,中断标志不会自动复位,必须软件复位;外部中断事件的时间必须>=1.5倍的MCLK的时间,以保证中断请求被接受;5、PxIES 中断触发沿选择寄存器(0:上升沿中断 1:下降沿中断)6、PxSEL 功能选择寄存器(0:选择引脚为I/O端口 1:选择引脚为外围模块功能)7、PxREN 上拉/下拉电阻使能寄存器(0:禁止 1:使能)(二)、常用特殊P口:1、P1和P2口可作为外部中断口。

MSP430F2XX中文手册(加了标签) 12.SPI 串行同步通讯模式

MSP430F2XX中文手册(加了标签) 12.SPI 串行同步通讯模式

Page 4 of 14
MSP430 F2 系列超低功耗单片机模块原理 第 12 章 串行同步通讯模式 SPI
微控设计网
图12-2 通用串行通信接口主机和从机

图12-2说明了USCI在3线和4线模式下作为主机时的配置。当数据被送到传输数据缓冲器 UCxTXBUF时,USCI开始数据传送。当TX移位寄存器空了后,UCxTXBUF缓冲区的数据被传送到其 中, 在UCxSIMO上传送数据, 起始位是最高位还是最低位, 决定于UCMSB标志位的设置。 而UCxSOMI 上的数据在反向跳边沿下移入接收移位寄存器。当字符接收到之后,接收数据从RX移位寄存器 送入接收数据缓冲器UCxRXBUF,并且置位接收中断标志UCxRXIFG,表示接收/发送操作完成。 发送中断标志位UCxTXIFG被置位后,表明数据已从UCxTXBUF缓冲区进入TX移位寄存器, UCxTXBUF寄存器已经为发送新数据做好准备,但并不意味着传送和接收的完成。 为了在主机模式下接收USCI数据,数据必须事先写入UCxTXBUF,因为接收和发送操作不是 马上进行的。 4线SPI主机模式 在4线主机模式中,UCxSTE用来防止与其它主机相冲突并象表12-1描述的那样控制主机。当 UCxSTE处于主机不活动状态时: UCxSIMO 和 UCxCLK设置为输入,不再驱动总线。 出错位UCFE置位,表明在通讯的完整性上,使用者未按照规则操作。 内部状态被复位时,移位操作取消。 如果数据写入UCxTXBUF而主机通过UCxSTE位保持非工作状态, UCxSTE转换为主机工作状态, 数据立即被发送。如果一个正在工作的发送过程,因UCxSTE转换为主机不运行状态而取消时, 当UCxSTE转向主机运行状态时数据需要被重新写入UCxTXBUF。 UCxSTE输入信号不能应用3线主机 模式。 12.3.4 从机模式

MSP430F2XX中文手册(加了标签) 5.Flash块控制器

MSP430F2XX中文手册(加了标签) 5.Flash块控制器

Page 1 of 18MSP430F2系列16位超低功耗单片机模块原理第5章 Flash 块控制器版本: 1.3日期: 2007.6.原文: TI MSP430x2xxfamily.pdf翻译: 余川编辑: DC 微控技术论坛版主注:以下文章是翻译TI MSP430x2xxfamily.pdf 文件中的部分内容。

由于我们翻译水平有限,有整理过程中难免有所不足或错误;所以以下内容只供参考.一切以原文为准。

详情请密切留意微控技术论坛。

第五章 Flash 存储控制器本章介绍了MSP430x2xx 系列单片机Flash 存储控制器的操作。

5.1 Flash 存储器的介绍Page 2 of 18 5.2 Flash 存储器的分段结构5.3 Flash 存储器的操作5.4 Flash 存储器的控制寄存器5.1 Flash 存储器的介绍MSP430 的F lash 存储器是可位/字节/字寻址和编程的存储器。

该模块由一个集成控制器来控制编程和擦除的操作。

控制器包括三个寄存器,一个时序发生器及一个提供编程/擦除电压的电压发生器。

MSP430 的F lash 存储器的特点有:● 产生内部编程电压● 可位/字节/字编程● 超低功耗操作● 支持段擦除和多段模块擦除F lash 存储器和控制器的结构框图如图5−1所示。

注意:F lash 写入和擦除操作期间的最小电压值V CC 应为2.2V 。

如果在操作期间V CC 低于2.2V ,写入或擦除的结果将是不确定的。

图5−1 F lash 存储器框图Page 3 of 185.2 Flash 存储器的分段结构MSP430 F lash 存储器分成多个段。

可对其进行单个位/字节/字的写入,但是最小的擦除单位是段。

F lash 存储器分为主存储器和信息存储器两部分,在操作上两者没有什么区别,程序代码和数据可以存储于任意部分。

两部分的区别在于段的大小和物理地址。

信息存储器有四个64字节的段,主存储器有两个或更多的512字节的段。

MSP430引脚功能介绍和寄存器详细分类汇编

MSP430引脚功能介绍和寄存器详细分类汇编

引脚功能引脚名称序号I/O 说明Avcc 64 模拟供电电源正端.只为ADC和DAC的模拟部分供电Avss 62 模拟供电电源负端.只为ADC和DAC的模拟部分供电DVcc 1 数字供电电源正端.为所有数字部分供电DVss 63 数字供电电源负端.为所有数字部分供电P1.0/TACLK 12 I/O 通用数字I/O引脚/定时器A时钟信号TACLK输入P1.1/TA0 13 I/O 通用数字I/O引脚/定时器A捕捉:CCI0A输入,比较:OUT0输出P1.2/TA1 14 I/O 通用数字I/O引脚/定时器A捕捉:CCI1A输入,比较:OUT1输出P1.3/TA2 15 I/O 通用数字I/O引脚/定时器A捕捉:CCI2A输入,比较:OUT2输出P1.4/SMCLK 16 I/O 通用数字I/O引脚/SMCLK信号输出P1.5/TA0 17 I/O 通用数字I/O引脚/定时器A,比较:OUT0输出P1.6/TA1 18 I/O 通用数字I/O引脚/定时器A,比较:OUT1输出P1.7/TA2 19 I/O 通用数字I/O引脚/定时器A,比较:OUT2输出P2.0/ACLK 20 I/O 通用数字I/O引脚/ACLK输出P2.1/TAINCLK 21 I/O 通用数字I/O引脚/定时器A,INCLK上的时钟信号P2.2/CAOUT/TA0 22 I/O 通用数字I/O引脚/定时器A捕获:CCI0B输入/比较器输出P2.3/CA0/TA1 23 I/O 通用数字I/O引脚/定时器A,比较:OUT1输出/比较器A输入P2.4/CA1/TA2 24 I/O 通用数字I/O引脚/定时器A,比较:OUT2输出/比较器A输入P2.5/Rosc 25 I/O 通用数字I/O引脚,定义DCO标称频率的外部电阻输入P2.6/ADC12CLK/ 26 I/O 通用数字I/O引脚,转换时钟-12位ADC,DMA通道0外部触发器P2.7/TA0 27 I/O 通用数字I/O引脚/定时器A比较:OUT0输出P3.0/STE0 28 I/O 通用数字I/O引脚,USART0/SPI模式从设备传输使能端P3.1/SIMO0/SDA 29 I/O 通用数字I/O引脚,USART0/SPI模式的从入/主出,I2C数据P3.2/SOMI0 30 I/O 通用数字I/O引脚,USART0/SPI模式的从出/主入P3.3/UCLK0/SCL 31 I/O 通用数字I/O引脚,USART0/SPI模式的外部时钟输入,USART0 P3.4/UTXD0 32 I/O 通用数字I/O引脚,USART0/UART模式的传输数据输出P3.5/URXD0 33 I/O 通用数字I/O引脚,USART0/UART模式的接收数据输入P3.6/UTXD1 34 I/O 通用数字I/O引脚,USI1/UART模式的发送数据输出P3.7/URXD1 35 I/O 通用数字I/O引脚,USI1/UART模式的接收数据输入P4.0/TB0 36 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口-定时器B7 CCR0P4.1/TB1 37 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口-定时器B7 CCR1P4.2/TB2 38 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口-定时器B7 CCR2P4.3/TB3 39 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口-定时器B7 CCR3P4.4/TB4 40 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口-定时器B7 CCR4P4.5/TB5 41 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口-定时器B7 CCR5P4.6/TB6 42 I/O 通用数字I/O引脚,捕获I/P或者PWM输出端口-定时器B7 CCR6P4.7/TBCLK 43 I/O 通用数字I/O引脚,输入时钟TBCLK-定时器B7P5.0/STE1 44 I/O 通用数字I/O引脚,USART1/SPI模式从设备传输使能端P5.1/SIMO1 45 I/O 通用数字I/O引脚,USART1/SPI模式的从入/主出P5.2/SOMI1 46 I/O 通用数字I/O引脚,USART1/SPI模式的从出/主入P5.3/UCLK1 47 I/O 通用数字I/O引脚,USART1/SPI模式的外部时钟输入,USART0/SPI 模式的时钟输出- 8 -P5.4/MCLK 48 I/O 通用数字I/O引脚,主系统时钟MCLK输出P5.5/SMCLK 49 I/O 通用数字I/O引脚,子系统时钟SMCLK输出P5.6/ACLK 50 I/O 通用数字I/O引脚,辅助时钟ACLK输出P5.7/TboutH/ 51 I/O 通用数字I/O引脚,将所有PWM数字输出端口为高阻态-定时器B7P6.0/A0 59 I/O 通用数字I/O引脚,模拟量输入A0-12位ADCP6.1/A1 60 I/O 通用数字I/O引脚,模拟量输入A1-12位ADCP6.2/A2 61 I/O 通用数字I/O引脚,模拟量输入A2-12位ADCP6.3/A3 2 I/O 通用数字I/O引脚,模拟量输入A3-12位ADCP6.4/A4 3 I/O 通用数字I/O引脚,模拟量输入A4-12位ADCP6.5/A5 4 I/O 通用数字I/O引脚,模拟量输入A5-12位ADCP6.6/A6/DAC0 5 I/O 通用数字I/O引脚,模拟量输入A6-12位ADC,DAC.0输出P6.7/A7/DAC1/ 6 I/O 通用数字I/O引脚,模拟量输入A7-12位ADC,DAC.1输出,SVS输入RST/NMI 58 I 复位输入,不可屏蔽中断输入端口或者Bootstrap Lload启动(FLASHTCK 57 I 测试时钟,TCK是芯片编程测试和bootstrap loader启动的时钟输入端口TDI 55 I 测试数据输入,TDI用作数据输入端口,芯片保护熔丝连接到TDITDO/TDI 54 I/O 测试数据输出端口,TDO/TDI数据输出或者编程数据输出引脚TMS 56 I 测试模式选择,TMS用作芯片编程和测试的输入端口VeREF+ 10 I/P 外部参考电压的输入VREF+ 7 O 参考电压的正输出引脚VREF-/VeREF- 11 O 内部参考电压或者外加参考电压的引脚XIN 8 I 晶体振荡器XT1的输入端口,可连接标准晶振或者钟表晶振XOUT/TCLK 9 I/O 晶体振荡器XT1的输出引脚或测试时钟输入XT2IN 53 I 晶体振荡器XT2的输入端口,只能连接标准晶振XT2OUT 52 O 晶体振荡器XT2的输出引脚时钟模块76543210 DCO.2DCO.1DCO.0MOD.4MOD.3MOD.2MOD.1MOD.0DCO.0-DCO.4 定义8 种频率之一,可以分段调节DCOCLK 频率,相邻两种频率相差10%。

msp430f系列中文资料

msp430f系列中文资料

超低功耗微控制器MSP430F40xi n de s i g n x31xLCD92x32xLCD84ADC14x33xLCD120Timer_A USART MPY8-bit T/Cx11x1Comp_AX12x USARTi n de s i g n F13xTimer_B ADC12USART Comp_AF14xTimer_B ADC122 USART MPY Comp_ANewNewF41xi n de s i g n F42xi n de s i g n F44xi n de s i g nUltra -low power design withM S P430August 00 / 11FLASH 型的时钟系统(F13x,F14x)2 个晶振, 1 个DCO, 适应不同频率需要采样/转换控制可编程参考源选择片内温度传感器Ultra -low power design withM S P430August 00 / 34F11x 应用实例)Floating Point Package)Starter Kit MSP-STK430X320TI 软件包仿真器评估板TI 软件库C-编译器编程器)TI Programming AdapterAugust 00 / 37New电源的高效率y电池缩减/ 电池寿命延长y电源电路简化/ 可远程供电硬件简化y外部元件极少y集成实时钟y集成LCD 驱动电路y集成ADC加速产品开发y用Flash 或OTP 型可快速制作样机y用Flash 型可作现场更新y容易学习和设计程序y代码效率高廉价的微控制器MSP430和开发工具FET/sc/docs/products/micro/msp430E-mail: lierda@ (wzptt)/sc/docs/products/micro/msp430E-mail: lierda@ (wzptt)。

MSP430中文资料

MSP430中文资料
3-SMCLK: 子 系 统 时 钟 , SMCLK 是 由 2 个 时 钟 源 信 号 所 提 供 . 他 们 分 别 是 XT2CLK(F13、F14)和 DCO,如果是 F11、F11X1 则由 LFXT1CLK 代替 TX2CLK。同样 可设置相关寄存器来决定分频因子及相关的设置。
MSP430X1X1 系列产品中,其中 XT1 时钟源引脚接法有如 3 种应用。F13、14 的 XT1 相 同。需要注意的是,LFXT1 只有工作在高频模式下才需要外接电容。 对以引脚较少的 MSPX1XX 系列产品中有着不同时基模块,具体如下:
MSP430X11X1:LFXT1CLK , DCO
MSP430F12X: LFXT1CLK , DCO
MSP430F13X/14X/15X/16X:LFXT1CLK , DCO , XT2CLK
MSP430F4XX: LFXT1CLK , DCO , XT2CLK , FLL+
时钟发生器的原理说明: 问题的提出:1、高频、以便能对系统硬件请求和事件作出快速响应
微控设计网
微控设计网 中国 MSP430 单片机专业网站 MSP430F 常用模块应用原理
微控设计网 版主 DC 策划 原创于:2006-3-7
最后更新:2008-5-31 V8.2
微控设计网为你准备的 MSP430F 单片机入门必修课
XT5V 此位设置为 0。
Resl1.0,Resl1.1,Resl1.2 三位控制某个内部电阻以决定标称频率。
Resl=0,选择最低的标称频率。 …….. Resl=7,选择最高的标称频率。
BCSCTL2 基本时钟系统控制寄存器 2
7
6
54ຫໍສະໝຸດ SELM.1 SELM.0 DIVM.1 DIVM.0

MSP430F2XX中文手册(加了标签) 4.基础时钟模块+

MSP430F2XX中文手册(加了标签) 4.基础时钟模块+

Page 1 of 12MSP430F2系列16位超低功耗单片机模块原理第4章 Basic Clock + 基础时钟模块+版本: 1.4日期: 2007.6.原文: TI MSP430x2xxfamily.pdf翻译: 张超 哈尔滨理工大学编辑: DC 微控技术论坛版主注:以下文章是翻译TI MSP430x2xxfamily.pdf 文件中的部分内容。

由于我们翻译水平有限,有整理过程中难免有所不足或错误;所以以下内容只供参考.一切以原文为准。

详情请密切留意微控技术论坛。

第四章 基础时钟模块+4.1基础时钟模块+介绍基础时钟模块+支持低系统消耗和超低功耗。

采用三种片内时钟信号,用户可以选择合适的性能和低功耗。

基础时钟模块只需接一个外部电阻、一个或两个外部晶体、或者用振荡器,通过软件控制。

基础时钟模块+有4个时钟源:LFXT1CLK:由低频时钟晶体或外接32768Hz时钟源产生的低频/高频振荡器或由标准晶体、振荡器,或外部400KH z~16M Hz的外部时钟源提供。

XT2CLK:可供选择的高频振荡器,由标准晶体、振荡器,或外部400KH z~16M Hz的外部时钟源提供。

DCOCLK:片内可数字控制的振荡器。

VLOCLK:片内超低功耗、12KH z的低频振荡器。

基础时钟模块可提供的三种时钟信号:ACLK:辅助时钟。

ACLK由软件选择来自LFXT1CLK和VLOCLK之一的时钟信号。

ACLK 经1,2,4,8分频后得到。

ACLK可由软件选作各个外围模块。

MCLK:主时钟。

MCLK由软件选择来自LFXT1CLK,VLOCLK,XT2CLK(如果片内提供),DCOCLK之一的时钟信号。

MCLK由1,2,4,8分频得到。

MCLK用于CPU和系统。

SMCLK:子系统时钟。

SMCLK由软件选择来自LFXT1CLK,VLOCLK,XT2CLK(片内提供),DCOCLK之一的时钟信号。

SMCLK由1,2,4,8分频得到。

msp430

msp430

MSP430目录[隐藏]基本简介MSP430 单片机的发展MSP430 单片机的特点MSP430 与89C51系列的比较应使用的多种MSP430[编辑本段]基本简介MSP430系列单片机是美国德州仪器(TI)1996年开始推向市场的一种16位超低功耗的混合信号处理器(Mixed Signal Processor)。

称之为混合信号处理器,主要是由于其针对实际应用需求,把许多模拟电路、数字电路和微处理器集成在一个芯片上,以提供“单片”解决方案。

[编辑本段]MSP430 单片机的发展MSP430 系列是一个16 位的、具有精简指令集的、超低功耗的混合型单片机,在1996 年问世,由于它具有极低的功耗、丰富的片内外设和方便灵活的开发手段,已成为众多单片机系列中一颗耀眼的新星。

回忆MSP430 系列单片机的发展过程,可以看出有这样三个阶段:开始阶段从1996 年推出MSP430 系列开始到2000 年初,这个阶段首先推出有33X 、32X 、31X 等几个系列,而后于2000 年初又推出了11X 、11X 1 系列。

MSP430 的33X 、32X 、31X 等系列具有LCD 驱动模块,对提高系统的集成度较有利。

每一系列有ROM 型( C )、OTP 型(P )、和EPROM 型( E )等芯片。

EPROM型的价格昂贵,运行环境温度范围窄,主要用于样机开发。

这也表明了这几个系列的开发模式,即:用户可以用EPROM 型开发样机;用OTP 型进行小批量生产;而ROM 型适应大批量生产的产品。

2000 年推出了11X/11X1 系列。

这个系列采用20 脚封装,内存容量、片上功能和I/O 引脚数比较少,但是价格比较低廉。

这个时期的MSP430 已经显露出了它的特低功耗等的一系列技术特点,但也有不尽如人意之处。

它的许多重要特性,如:片内串行通信接口、硬件乘法器、足够的I/O 引脚等,只有33X 系列才具备。

33X 系列价格较高,比较适合于较为复杂的应用系统。

MSP430F2XX中文手册(加了标签) 1..MSP430体系结构

MSP430F2XX中文手册(加了标签) 1..MSP430体系结构

MSP430F2系列16位超低功耗单片机模块原理第1章MSP430体系结构版本: 1.3日期: 2007.4.原文: TI MSP430x2xxfamily.pdf翻译: 袁德纯编辑: DC 微控论坛版主注:以下文章是翻译TI MSP430x2xxfamily.pdf 文件中的部分内容。

由于我们翻译水平有限,有整理过程中难免有所不足或错误;所以以下内容只供参考.一切以原文为准。

详情请密切留意微控技术论坛。

Page 1 of 7第一章 MSP430的体系结构本章主要描述了MSP430的体系结构本章内容目录1.1MSP430的体系结构1.2可编程时钟系统1.3嵌入式仿真环境1.4地址空间1.5MSP430X2XX系列的提高1.1MSP430的体系结构将MSP430内部的16位精简指令集的CPU通过冯.诺依曼结构的地址总线和数据总线连接到外围设备和可编程时钟系统。

由于有一个先进的CPU配合具有标准组件存储印象的模拟和数字的外围设备,使得MSP430可用于处理混合信号。

MSP430x2xx系列的主要特性如下:◆超低功耗延长了电池的使用寿命●保持RAM 0.1uA●实时时钟模式 0.8uA●MIPS运行 250uA◆理想精确的模拟信号测量●门控比较定时器测量电阻类元件◆16位的精简指令集的CPU全新应用●更大的寄存器空间消除了运行空间的瓶颈●紧凑的核结构设计减少了功耗、降低了成本●使得高水平的编程更优化●27条核心指令和7种寻址方式●强大的矢量中断能力◆系统内的可编程FLASH使改变代码、在线升级和数据载入更灵活1.2 可编程时钟系统时钟系统是为电池供电系统而特别设计的。

只需要一个32KHZ的晶振就可以直接驱动一个低频的辅助时钟(ACLK)。

ACLK可工作于实时时钟模式,并具能够自我唤醒。

内部集成了一个DCO使主时钟(MCLK)可以被CPU和其他的高速外围设备所使用。

由于有了DCO,使得一个窄脉冲在少于2US 的时间内就可以将MSP430唤醒CPU工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元器件交易网
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. T o minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products Applications
Amplifiers Audio /audio
Data Converters Automotive /automotive
DSP Broadband /broadband
Interface Digital Control /digitalcontrol
Logic Military /military
Power Mgmt Optical Networking /opticalnetwork
Microcontrollers Security /security
Telephony /telephony
Video & Imaging /video
Wireless /wireless
Mailing Address:Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright 2004, Texas Instruments Incorporated。

相关文档
最新文档