9。1.1不等式及其解集预学案
《9.1.1不等式及其解集》导学案N0.1
第九章 不等式与不等式组《9.1.1不等式及其解集》导学案N0.1班级 姓名____________小组 小组评价 教师评价_____一、学习目标 1.了解不等式的概念,能用不等式表示简单的不等关系。
2.理解不等式的解与不等式的解集。
3.能判断一个数是否是一个不等式的解,能用数轴正确表示不等式的解集。
二、重点与难点:重点:不等式的解集的表示.难点:不等式解集的确定.三、自主学习:1.等式:表示______关系的式子,叫做等式.练习:下列各式:(1)a b b a +=+,(2)51<-x ,(3)23>,(4)ba ab =,(5)24≠,(6)63=+x 中,是等式的有____________________.(填序号)2.用恰当的式子表示出下列数量关系:(1)a 是正数:________;(2)a 是负数:__________;(3)a 与5和小于7;_________;(4)a 与2的差大于-1:_______;(5)a 的4倍大于8:_______;(6)a 的一半小于3:_________.四.合作探究探索一:不等式的概念阅读课本P114内容,完成下列问题:一辆匀速行驶的汽车在11:20距离A 地50 km,要在12:00之前驶过A 地,车速应满足什么条件? ①如果设车速为x km/h,从时间上看,50x h 和23 h 是什么关系?_______________;②如果设车速为x km/h,从路程上看,汽车要在12:00之前驶过A 地,那么以这个速度行驶23 h 的路程和50 km 是什么关系?_______________。
1.不等式:用表示______关系的式子,叫做不等式.不等号:(1)“>”:读作“______”;(2)“<”:读作“______”;(3)“≠”:读作“_______”;(4)“≥”:读作“_______”或“______”;(5)“≤”:读作“_________”或“_______”.练习:下列各式:①- 3<0;②4x +3y >0;③x =3;④x 2+2x +y 2;⑤x ≠2;⑥x +2>2x +3.其中属于不等式的有 ( )A .1个 B .2个 C .3个 D .4个 探索二:不等式的解不等式23x >50中,你能说出几个使不等式成立的数值吗? ①当x=80时,23x__50;当x=78时,23x__50.即:当x 取某些值(如80,78)时,不等式23x>50成立. ②当x =72时,23x__50;当x =75时,23x__50.即:当x 取某些值(如72,75)时,不等式23x >50不成立. 不等式的解:_________________________________________.练习:P115练习2.探索三:不等式的解集除了80和78,不等式32x>50还有其他解吗?如果有,这些解应满足什么条件?怎样表示不等式的所有解呢? 当x >75时,不等式23x >50总成立;而当x <75或x =75时,不等式23x >50不成立.这就是说,任何一个大于75的数都是不等式23x >50的解,这样的解有无数个;任何一个小于或等于75的数都不是不等式23x >50的解.因此,x >75表示能使不等式23x >50成立的x 的取值范围,它可以在数轴上表示,如下图所示:由上可知,在前面问题中,汽车要在12:00之前驶过A 地,车速必须大于75 km/h . 不等式的解集:______________________________________________.解不等式:_________________________________________________.(与方程类似) 练习:1.P115练习3.2.如果对于不等式x<5,当x=1,2,3,4时都成立,那么就说不等式x<5的解是x=1,2,3,4,这种说法正确吗?五、课堂小结:1.不等式的概念.2.不等式的解和解集的区别和联系如下表:区别 举例:x- 1>2 概念 个数 表示方法不等式的解 x=4,5…… 是一些具体的值 无数个 用等号表示不等式的解集 x>3 是一个范围 一个 用不等号表示联系 在不等式解集范围内的每一个数值都是此不等式的一个解或者说不等式的每一个解都在它的解集的范围内六、拓展提高:不等式4<x 的非负整数解的个数有( )A.4个 B.3个 C.2个 D.1个七、课后作业:教材P119习题1——3八、达标检测一、选择题(共20分)1.下面各式是不等式的个数为 ( )①- 2<1; ②x=1; ③a+b; ④2a+b>0; ⑤a ≠3; ⑥x+1>y+4.A.1B.2C.3D.42.下列说法中正确的是 ( )A.x=3是不等式2x>1的解B.x=3是不等式2x>1的唯一解C.x=3不是不等式2x>1的解D.x=3是不等式2x>1的解集二、填空题(共40分)3.用不等式表示:(1)a 的相反数是正数;____________ (2)y 的2倍与1的和大于3;________________(3)a 的一半小于3;______________ (4)d 与5的积不小于0;_________________(5)x 的2倍与1的和是非正数._________________________.三、解答题(共40分)4.直接写出下列不等式的解集,并把解集在数轴上表示出来:(1)x+3﹥5; (2)2x ﹤8; (3)x-2≥0; (4)3x ≤6.九、教学反思:。
9.1.1不等式及其解集(导学案)
9.1不等式9.1.2不等式的性质第1课时不等式的性质、导1. 导入课题:在上节课,我们学习了什么是不等式,对于某些简单的不等式,我们可以直 接写出它的解集.如不等式x+3>6的解集是x>3,不等式2XV8的解集是xv4.但是 对于比较复杂的不等式,与解方程需要依据等式的性质一样,解不等式需要依据 不等式的性质.这节课我们就来探讨不等式有什么性质.(板书课题)2. 学习目标:(1) 探索并理解不等式的性质、体会探索过程中所应用的归纳和类比方法(2) 能运用不等式的性质对不等式进行变形和解简单的不等式(3) 知道符号和“W”的意义及数轴表示不等式的解集时实心点与 空心圈的区别.3. 学习重、难点:重点:不等式的性质及其运用.难点:不等式的性质3的探索与理解.4. 自学指导:认真阅读课文,思考相关问题,运用类比和归纳的方法得 出不等式的性质.(4)自学参考提纲:①等式有哪些性质?分别用文字语言和符号语言把它表示出来②类比等式性质1,我们来看下列问题:a 用“ >”或“V”完成下列两组填空:第一组:5工3, 5+2三 3+2,5-2三 3-2,5+0工3+0.第二组:-1S3, -1+2S3+2, -1-2 .<3-2,-1+0 .<3+0.b.你能发现a 中的规律吗?(注意观察不等式中不等号的方向是否改变) (1)自学内容: 课本P 116至P l17 “练习”之前的内容.(2)自学时间: 8分钟.(3)自学要求:C.由于减去一个数等于加上这个数的相反数,比较等式性质1,归纳出不等式的性质1.d.换一些其他的数验证不等式的性质 1.②类比等式性质2,我们来看下列问题:a 用“ >”或“V”完成下列两组填空:第一组:6=2, 6X 5Z2X 5, 6X (-5) V 2X(-5).第二组:-2二3, (-2) X 6_< 3X 6, (-2) X (-6)3X (-6). b.你能发现a 中的规律吗?(注意观察不等式中不等号的方向是否改变)C.由于除以一个不为零的数等于乘以这个数的倒数,比较等式性质2,归纳出不等式的性质2和性质3.d.换一些其他的数验证不等式的性质 2和性质3.二.自学同学们可结合自学指导进行学习.三.助学(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况(主要是自学的进度和存 在的问题:归纳不等式性质时是否有符号语言表述;验证时选例是否正确、合理 等).②差异指导:根据学情进行相应指导.四.强化:不等式的性质(用表格形式与等式的性质对照呈现出来)初步运用:设a>b 用“ >”或“ V”填空,并说明依据的是不等式的哪条性质① a+2_> b+2;② a-3> b-3;③-4a 工-4b;a b④ a-:⑤a+m_>b+m ;⑥-3.5a+10 -3.5b+1. 2 — 2 — —五、评价1. 学生的自我评价:学生代表交流学习目标的达成情况及学习的感受等2. 教师对学生的评价:(2) 生助生:小组内同学间相互交流研讨,互帮互学(1)(1)表现性评价:教师对学生在本节课学习中的整体表现(如态度、方法、 效率、效果及存在的问题等)进行总结和点评(2)纸笔评价:课堂评价检测.评价作业那么a± c < b± c; (2)如果a< b,且ab c>0,那么 ac w be (或 一 w —);c c (3)如果a<b,且c<0,那么ac2. (15 分)若-2av -2b,则 av b,根据是(C)A.不等式的基本性质1B.不等式的基本性质2C.不等式的基本性质3D.等式的基本性质23. (15分)若m>n,下列不等式一定成立的是(B )A.m-2 > n+2 B .2m >2n C.专 > 2 D.m 2>n 24. (15分)判断下列各题的结论是否正确.(1)若 b-3av 0,则 bv 3a; (2)如果-5x> 20,那么 x >-4;(3)若 a> b,则 ac2>bc2;(4)若 ac > be 2,则 a>b; 2 2 1 1⑸若 a>b,则 a(c 2+1)>b(c 2+1);(6)若 a>b>0,则一v — a b 解:(1) (4) (5) (6)正确,(2) (3)错误.二、综合运用(20分)5. (10分)设口>门,用“ >”或“V”填空:(1) 2m-5工2n-5; (2) -1.5m+1s -1.5n+1.6.(10分)已知某机器零件的设计图纸中标注的零件长度 L 的合格尺寸为: L=40 ± 0.02 (单位:mm ).那么用不等式表示零件长度 L 的取值范围是39.98mm w Lw 40.02mm(时间:12分钟 、基础巩固(60分)满分:100分)1. (20分)填空:(1)如果a< b,三、拓展延伸(20分)7.(1)小明说不等式a>2a永远不会成立,因为如果在这个不等式两边用除以a,就会出现1>2这样错误结论,他的说法对吗?(2)比较-a与-2a的大小.解:(1)他的说法不对,他未考虑 a<0 时的情况;2)当 a>0 时,••• av2a,---a>-2a.当 a=0 时, -a=-2a.当 a<0 时,• a>2a,• -a<-2a.。
初中人教版数学9.1.1 不等式及其解集-导学案(3)
(6)a 与 b 两数的和的平方不可能大于 3. 解: (1)_______(2)_________(3)_________(4)______(5)______ (6) 像上面那样,用符号“____”或“____”表示________关系的式子叫做不 等式;用“_____”表示不等关系的式子也是不等式。 2、当 x=78 时,不等式 x﹥50 成立,那么 78 就是不等式 x﹥50 的解。 与方程类似,我们把使不等式______的____________叫做不等式的解。 完成 P115 思考中提出的问题。 3、一个含有未知数的不等式的________的解,组成这个不等式的_________。 求不等式的_______的过程叫做解不等式。 4、认真阅读 P122 小贴士,说出下列两个数轴所表示解集的不同之处,并与你 的同伴交流: (1) (2) 你能画出数轴并在数轴上表示出下列不等式的解集吗? (1)x﹥-3 (2)x﹤2 (3)x≥-1
2、下列哪些数值是不等式 x+3﹥6 的解?那些不是? -4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12 你还能找出这个不等式的其他解吗?这个不等式有多少个解? 3、用不等式表示. (1)a 与 5 的和是正数; 27; (3)x 的 4 倍大于或等于 8; 0. 4、直接写出下列不等式的解集,并把解集在数轴上表示出来: (1)x+2﹥6; (2)2x﹤10; (3)x-2≥0.5. (4)d 与 e 的和不大于 (2)b 与 15 的和小于
三、知识应用 巩固新知(小组合作,学能展示) 任务 1: 1、不等式 x﹤4 的非负整数解的个数有( (A)4 个. (B)3 个. (C)2 个. ) (D)1 个.
2、已知(a-2) -5﹥3 是关于 x 的一元一次不等式试求 a 的值.
人教版七年级数学下册《9.1.1不等式及其解集》教学设计导学案教案
人教版七年级数学下册《9.1.1不等式及其解集》教学设计导学案教案人教版七班级数学下册《9.1.1不等式及其解集》教学设计PPT课件导学案教案课题:9.1.1不等式及其解集教学目标1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简约的实际问题,使同学自发地查找不等式的解,会把不等式的解集正确地表示到数轴上;2、经受由详细实例建立不等模型的过程,经受探究不等式解与解集的不同意义的过程,渗透数形结合思想;3、通过对不等式、不等式解与解集的探究,引导同学在独立思索的基础上积极参加对数学问题的争论,培育他们的合作沟通意识;让同学充分体会到生活中到处有数学,并能将它们应用到生活的各个领域。
教学难点正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
知识重点建立方程解决实际问题,会解“a*+b=c*+d”类型的一元一次方程教学过程〔师生活动〕设计理念提出问题多媒体演示:1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么缘由呢?2、一辆匀速行驶的汽车在11:20时距离A地50千米。
要在12:00以前驶过A地,车速应当具备什么条件?假设设车速为每小时*千米,能用一个式子表示吗?通过实例创设情境,从“等”过渡到“不等”,培育同学的观测技能,激发他们的学习爱好.探究新知〔一〕不等式、一元一次不等式的概念1、在同学充分发表自己看法的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。
2、以下式子中哪些是不等式?〔1〕a+b=b+a〔2〕-3>-5〔3〕*≠l〔4〕*十36〔5〕2mn〔6〕2*-3上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.3、小组沟通:说说生活中的不等关系.分组活动.先独立思索,然后小组内相互沟通并做记录,最末各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.〔二〕不等式的解、不等式的解集问题1.要使汽车在12:00以前驶过A地,你认为车速应当为多少呢?问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式50的解?问题4,数中哪些是不等式50的解:76,73,79,80,74.9,75.1,90,60你能找出这个不等式其他的解吗?它究竟有多少个解?你从中发觉了什么规律?争论后得出:当*75时,不等式50成立;当*75或*=75时,不等式50不成立。
9.1.1不等式及其解集教学设计.1.1不等式及其解集教学设计
9. 1 不等式9. 1.1不等式及其解集学习目标1. 了解不等式及其解的概念;2•理解不等式的解集及解不等式的意义. (重点)3 •学会并准确运用不等式表示数量关系,形成在表达中渗透数形结合的思想. (难点)教学过程一、情境导入现实生活中,数量之间存在着相等与不相等的关系例如,小明的身高为155cm,小聪的身高为156cm,贝U我们可以用不等号“>”或"<” 来表示他们的身高之间的关系•如:156 > 155 或155 < 156.•问题一辆匀速行驶的汽车站11 : 20距离A地50km.要在12 : 00之前驶过A地,车速应满足什么条件?设车速是x km/h从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50km所用的时间不到一,即一一①从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶- 的路程要超过50km,即・②二、合作探究探究点一:不等式的概念像156>155, 155<156,①,②,这样,我们把用符号“ >”或“ <”连接而成的式子叫做不等式.像2这样的式子也叫做不等式.判断下列式子是不是不等式:(1)-3>0; (2) 4x+3y<0;(3) x=3; (4) x2+xy+y2;(5) X M 5; (6) x+2>y+5.解:(1) (2) ( 5) (6)是不等式;(3) ( 4)不是不等式.方法总结:本题考查不等式的判定,一般用不等号表示不相等关系的式子是不等式. 解答此类题的关键是要识别常见不等号:> .如果式子中没有这些不等号,就不是不等式.探究点二:列简单不等式例1用不等式表示下列数量关系:(1)x 的 5 倍大于-7; 5x >-7(2)a与b的和的一半小于-1 ; ()(3)长、宽分别为xcm, ycm的长方形的面积小于边长为acm的正方形的面积.例2已知一支圆珠笔x元,签字笔与圆珠笔相比每支贵y元•小华想要买3支圆珠笔和10支签字笔,若付50元仍找回若干元,则如何用含x, y的不等式来表示小华所需支付的金额与50元之间的关系?解3x+10(x+y)<50例3根据下列数量关系,列出不等式:(1) x与2的和是负数;⑵m与1的相反数的和是非负数;(3) a与一2的差不大于它的3倍;(4) a, b两数的平方和不小于它们的积的两倍.解析:(1)负数即小于0; (2)非负数即大于或等于0; (3)不大于就是小于或等于;(4)不小于就是大于或等于.解:⑴x+ 2<0;(2) m —1 > 0 ;(3) a + 2 < 3a;⑷探究点三:不等式的解与解集我们曾经学过“使方程两边相等的未知数的值就是方程的解”,与方程类似,能使不等式成立的未知数的值叫不等式的解•例如:100是x>50的解代入法是检验某个值是否是不等式的解的简单、实用的方法判断下列数中哪些是不等式- 的解:60, 73 , 74.9, 75.1 , 76, 79, 80 , 90.你还能找出这个不等式的其他解吗?这个不等式有多少个解?无数个(1 )你发现了哪些数是这个不等式的解?(2 )你从表格中发现了什么规律?一般的,一个含有未知数的不等式的所有的解,组成这个不等式的解集求不等式的解集的过程叫解不等式.想一想:1. 不等式的解和不等式的解集是一样的吗?2. 不等式的解与解不等式一样吗?练一练下列说法正确的是()A. x=3 是2x+1>5 的解B. x=3是2x+1>5的唯一解C. x=3不是2x+1>5的解D. x=3是2x+1>5的解集三、解集的表示方法:第一种:用式子(如x>2),即用最简形式的不等式(如x>a或x<a)来表示.第二种:用数轴,一般标出数轴上某一区间,其中的点对应的数值都是不等式的解.用数轴表示不等式的解集的步骤:第一步:画数轴;第二步:定界点;第三步:定方向.画一画:利用数轴来表示下列不等式的解集(1)x > -1 ;(2)- .J ---------- 6 ------- 1 -------------------- > _>-10 0 -变式:已知x的取值范围在数轴上表示如图,你能写出x的取值范围吗?总结归纳:1. 大于向右画,小于向左画;2. >,<画空心圆.练习:【类型一】对不等式解的理解1.用不等式表示下列数量关系:(1)a是正数;(2)x 比-3 小;(3)两数m与n的差大于5 .2•下列不是不等式5x—3<6的一个解的是(B )A. 1B.2 C—1 D.—2解析:分别把四个选项中的值代入不等式,能使不等式成立的数分别为5X 1 —3 = 2<6, 5X (—1)—3=—8<6, 5X (—2)— 3 = —13<6,而5X 2 —3 = 7>6 不能使不等式成立,故选B.方法总结:判断某个数值是否为不等式的解的方法:可直接将数值代入不等式的左右两边看不等式是否成立•如果成立,则是不等式的解;反之,则不是.【类型二】对不等式解集的理解下列说法中,正确的是()A. x= 2是不等式x+ 3<4的解B. x= 3是不等式3x<7的解C. 不等式3x<7的解集是x= 2D. x= 3是不等式3x>8的解解析:A不正确,因为当x= 2时,x+ 3<4不成立;B不正确,因为不等式3x<7的解集是x<73 , 当x= 3时,不等式3x<7不成立;C不正确,因为不等式3x<7有无数多个解,而x= 2只是其中一个解,因此只能说x= 2是3x<7的解,而不能说不等式3x<7的解集是x= 2; D正确,因为当x = 3时,不等式3x>8成立.故选D.方法总结:不等式的解可以有无数个,一般是某个范围内的所有数.未知数取解集中任何一个值时,不等式都成立;未知数取解集外任何一个值时,不等式都不成立.四、板书设计1.不等式的概念2 .用不等式表示数量关系3 .不等式的解、解集五、小结与作业1.不等式的解与解集的概念2.不等式的解集的表示方法作业:习题9.1 第1 题和第2 题教学反思本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过等,这些关键词中如果含有“不”“非”等文字,一般应包括,这也是学生容易出错的地方。
9_1_1 不等式及其解集(优质学案)
学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学七年级下册 9.1.1 不等式及其解集 导学案一、学习目标:1. 了解不等式及其解的概念;2. 学会并准确运用不等式表示数量关系,形成在表达中渗透数形结合的思想;3. 理解不等式的解集及解不等式的意义.重点:会用不等式表示简单问题的数量关系,把不等式的解集正确的表示到数轴上.难点:理解不等式解集的意义. 二、学习过程: 自主学习一问题 一辆匀速行驶的汽车在11:20距离A 地50km ,要在12:00之前驶过A 地,车速应满足什么条件? 分析:设车速是 x km/h.从时间上看,汽车要在12:00之前驶过A 地,则以这个速度行驶50km 所用的时间不到____h ,即 _______ ①从路程上看,汽车要在12:00之前驶过A 地,则以这个速度行驶32h 的路程要超过____km ,即 __________ ②【归纳】________________________________________________________,叫做不等式.(1)像a+2≠a-2这样用符号“______”表示不等关系的式子也是不等式. (2)不等式中可以含未知数,也可以不含未知数.例如:a+2>5,4b <6;3<4,-1>-2.(3)“_____”读作“大于或等于”或“不小于”“______”读作“小于或等于”或“不大于” 用不等号填空:大于( ) 小于( ) 不大于( ) 不小于( )学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________不超过( ) 至多( ) 至少( ) 正数( ) 负数( ) 非负数( ) 非正数( ) …… 典例解析例1.下列式子:①3>0;②4x +5>0;③x <3;④x 2+x ;⑤x =−4;⑥x +2>x +1,其中不等式有( )A .3个B .4个C .5个D .6个 【针对练习】判断下列式子是不是不等式:(1)-3>0; (2)4x+3y<0; (3)x=3; (4) x 2+xy+y 2; (5)x ≠5; (6)x+2>y+5.例2.根据下列数量关系列不等式: (1)x 的7倍减去1是正数. (2)y 的13与13的和不大于0.(3)正数a 与1的和的算术平方根大于1. (4)y 的20%不小于1与y 的和.【针对练习】用不等式表示:(1) a 是正数;______ (2) a 是负数;______(3) a 与5的和小于7;_________ (4) a 与2的差大于-1;_________ (5) a 的4倍大于8;_________ (6) a 的一半小于3. _________ 自主学习二对于不等式5032>x ,当x =80时,5032>x ;当x =78时,5032>x ;当x=75时,5032=x ;当x =72时,5032<x .当x 取某些值(如80,78)时,不等式5032>x 成立;当x 取某些值(如75,72)时不等式5032>x 不成立.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【归纳】____________________________________________叫做不等式的解. 思考:除了80和78,不等式5032 x 还有其他解吗?如果有,这些解应满足什么条件?【归纳】____________________________________________________,组成这个不等式的解集.________________________________叫做解不等式. 不等式的解与不等式的解集的区别与联系典例解析例3.下列各数中,哪些是不等式x +2<4的解?哪些不是?-3,-1,0,1,32,2,52,3,4.【针对练习】下列数中哪些是不等式x +3>6的解,哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例4.把下列不等式的解集在数轴上表示出来.(1)x ≥-3; (2)x >-1; (3)x ≤3; (4)x<-32.【针对练习】将下列不等式的解集在数轴上表示出来:① x <-1; ②x <-2; ③x >0; ④x <-52.【总结提升】解集的表示方法:第一种:___________________________________________________________.第二种: ___________________________________________________________. 用数轴表示不等式的解集的步骤:第一步:____________;第二步:____________;第三步:____________. 达标检测1.在下列式子中:①5<7;②2x>3;③a ≠0;④x ≥-5;⑤3x-1;⑥x2≤3;⑦x=3,其中是不等式的有( )A.3个B.4个C.5个D. 6个 2. x 与3的和的一半是负数,用不等式表示为( )A.12x+3>0 B. 12x+3<0 C. 12(x+3)>0 D. 12(x+3)<0 3.在数值-2,-1,0,1,2中,能使不等式x+3>2成立的有( ) A.1个 B.2个 C.3个 D. 4个 4.下列说法错误的是( )A.1不是x ≥2的解B.不等式x+3>3的解集是x>0C.0是x<13的一个解 D. x=6是x-7<0的解集学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.如图表示不等式的解集为________.6.方程2x=10的解有____个,不等式2x<10的解有______个,不等式2x<10的解集是_______.7.满足x ≤3.5的非负整数解是_____________.8.某种药品的说明书上,贴有如图所示的标签,则一次服用这种药品的剂量范围是__________mg.9.用不等式表示下列关系:(1) x 的2倍与6的差小于3; __________ (2) x 的平方不小于5; _________(3) x 的13与x 的2倍的和是非负数; ___________ (4) a 与4的和的30%小于7; ______________ (5) x 除以2的商加上2,至多为5; __________ (6) a 与b 两数和的平方大于10. ______________ 10.把下列不等式的解集在数轴上表示出来.(1) x>-3; (2) x ≤4; (3) x<3.5.11.根据下列语句写出不等式:(1)火车提速后,时速(v)最高可达300km/h; ______________ (2)某班学生中身高(h)最高的为1.84m; ______________(3)小明今天锻炼身体花了tmin,他每天锻炼身体的时间不少于30min; (4)某校男子跳高纪录是1.75m ,在今年的校田径运动会上,小明的跳高成绩是hm,打破了该校男子跳高纪录. ______________学习笔记记录区___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________。
9.1.1不等式及其解集学案
课题: 9.1.1 不等式及其解集学案学习目标: 1、了解不等式的概念。
2.、理解不等式的解、不等式的解集的概念。
3、能在数轴上正确表示不等式的解集。
学习重点、难点:理解不等式的解集,会在数轴上表示解集.使用说明与学法指导.1.先利用10分钟时间精读一遍教材114-115页,回忆并类比方程的定义方程的解的概念,学习体会不等式的解和解集的概念.重难点内容用红笔进行勾画,疑惑记录在课本或预习案上;2.利用15分钟独立完成探究案,找出自己的疑惑和需要讨论的问题,用红笔做好标记;预习案1.等式:用“=”连接的表示相等关系的式子叫做等式.2. 方程的解:使方程左右两边相等的未知数的值叫做方程的解3. 你能列出下列式子吗?(1)5小于7; (2)a是正数; (3)m的2倍大于或等于-1;(4)x-3不等于2 (5)a不大于1 ;不等式:像上面的这些式子,用符号“”,“”,“”“”或“”表示不等关系的式子叫做不等式。
4.判断下列哪些数值能使不等式x+3 > 6成立?想一想:使不等式x+3 > 6成立的数值还有没有?有多少个?总结1:1、不等式的解:使不等式的的值叫做不等式的解.2、不等式的解有个。
由上题我们可以发现,当x>3时,不等式x+3 > 6总成立;而当x≤3时,不等式x+3 > 6总不成立.这就是说,任何一个大于3的数都是不等式x+3 > 6的解,因此x>3表示了能使不等式x+3 > 6成立的x的取值范围,叫做不等式x+3 > 6的解的集合,简称解集总结2: 1.不等式解集:一个含有未知数的不等式的组成这个不等式的解集。
2.注意:解集中包括了每一个解,解集是一个范围。
我的疑惑:探究案(1)(2探究一:1.下列式子中哪些是不等式?(1)a +b=b+a (2)-3>-5 (3)x ≠l (4)x 十3≥6 (5) 2m< n (6)2x-3 (7)51 x2.判断: 数-3,-2,-1,0,1,2,3中,哪些是不等式2x+3<5 的解? 哪些不是?3. 下列说法正确的是( )A. x=3是2x>1的解集B. x=3不是2x>1的解C. x=3是2x>1的唯一解D. x=3是2x>1的解 探究二:1.写出下列数轴上表示的解集:探究三:用数轴表示不等式解集的方法 1.用数轴表示不等式的解集的步骤:画数轴 找点 画点 画方向 2.用数轴表示不等式的解集,应记住下面的规律:(1)有等号(“≥ ,≤”)画实心点,无等号 (“>,<”) 画空心圆。
024 9.1.1不等式及其解集导学案-最新教学文档
七 年级 数学 学科导学案 编制: 使用时间《 不等式及其解集 》导学案 NO: 024 班级 小组名 姓名 小组评价 教师评价学习目标 1.理解不等式、不等式的解与解集的意义,会把不等式的解集正确地表示在数轴上。
2.经理由具体事例建立不等模型的过程以及探究不等式的解与解集的不同意义的过程,渗透数形结合思想。
学习重点 理解不等式、不等式的解与解集的意义,会把不等式的解集正确地表示在数轴上;学习难点理解不等式、不等式的解与解集的意义,会把不等式的解集正确地表示在数轴上。
一、 自主学习1. 什么是等式?下列各式中哪些是等式?(1)6x 5-x 2+; (2)0x y 3-x 32=; (3)n 31m 2=+; (4)21+8; (5)5x+7>3x; (6)x-1=3.预习教材P114--P115的内容,完成下列各题2. 用 表示不等关系的式子,叫做不等式,常见的符号有“>”、“<”、“≠”、“≥”、“≤”.3. 对于一个含有未知数的不等式,任何一个使这个不等式成立的 的值,都叫做这个不等式的解.一个含有未知数的不等式的 ,组成这个不等式的解集。
4. 在数轴上表示解集的规律:(1)大于向右画,小于向左画;(2)有等号(≤≥、)画 ;无等号(>、<)画 ,即不包括这一点。
二、 合作探究(交流)学点1. 不等式的概念例1. 下列式子哪些不是不等式?①7x 2=; ②12x 3>; ③34x +≠;④y 5x 6+; ⑤b 2a 31≥; ⑥m 5x 31+≤.练习1. 用不等式表示下列语句:(1)a 的绝对值不小于a 的相反数;(2)-4与x 的3倍的差比x 的一半小;(3)x 的32与3的差比x 的一半小;(4)m 与n 的和的平方大于4.学点2. 不等式的解,解集和用数轴表示解集例2. 判断下列说法是否正确,为什么?(1)不等式1x <的解集表示在数轴上为表示1的点左侧的所有点。
9.1.1不等式及其解集导学案
初中数学人教版七年级下册第九章 不等式与不等式组9.1.1不等式及其解集学习目标:1. 结合具体问题,了解不等式及不等式的解的意义.2.了解不等式的解集的概念,并能在数轴上表示出不等式的解集.【引】问题:纯电动车在运行过程可以实现零污染,完全不排放污染大气的有害气体,成为越来越多人的选择。
一辆匀速行驶的新能源汽车在11:20距离重庆50千米,要在12:00 准时(之前)到达重庆,问车速应满足什么条件?解:设车速为x 千米/小时,则从路程: 从时间:【成】等式:用“=”表示相等关系的式子叫做等式.不等式: 用 表示不等关系的式子,叫做不等式.【辨】下列式子中哪些是不等式?63)1(>-x 052)2(=+x y x 53)3(<64)4(<- 26)5(+y 02)6(2≠-x【成】不等式的解:使 的未知数的值.不等式的解集:含有未知数的不等式的解不等式:求 叫做解不等式.【用】问题:纯电动车在运行过程可以实现零污染,完全不排放污染大气的有害气体,成为越来越多人的选择。
一辆匀速行驶的新能源汽车在11:20距离重庆50千米,要在12:00之前到达重庆,问车速应满足什么条件?【练】1.用不等式表示:(1)a 与5和小于7;(2)a 的2倍与3的和大于5;(3)a 的平方与1的和超过0;(4)a 是非负数.【展】(1)请在纸上任意写一个数据;(2)快速判断出小组内同学的数据是否是不等式 x+3>25的解;(3)你能直接说出不等式x+3>25的解集吗?【练】在数轴上表示出以下不等式的解集:x ≥3-;x >3-;x <3-;x ≤3-.【展】实数m,n 在数轴上对应的点的位置如图所示,用“>”和“<”填空.1__0;m n +() 2__0;m n -() 3__0;mn () 24__;m n ()5__.m n () 【课后作业】作业1:基础巩固作业(必做题)1.下列各式中,不等式有 ( )① 20-<; ② 1303x y +>;③ 2x =-;④ 22x xy y ++; ⑤ 3x ≠ ⑥1 3.x y ->+A .1个B .2个C .3个D .4个2.下列四个x 的值,哪个不是不等式3x+2<10的解 ( )A .3x =-B .30x =-C .0x =D .3x =3.用不等式表示:(1)a 1233的与的差大于;(2)4x 与3的和小于零;(3)x 的2倍与6的差是正数;(4)15b c 的与的和是负数.作业2:能力发展作业(必做题)1.已知关于x 的不等式 的解集如图所示,则a 的值是()A.-5B.-4C.-2D.-12.不等式x <3的非负数解是 .作业3:探究拓展作业(选做题)(1)通过查阅资料了解等号和不等号的来历.(2)通过查阅资料了解减少碳排放的途径.。
《9.1.1不等式及其解集》导学案
《9.1.1不等式及其解集》导学案学习目标:1、 掌握不等式、不等式的解、不等式的解集的概念,并了解什么叫解不等式。
2、 会用数轴表示不等式的解集,会用代入法验证不等式的解。
一、自主先学问题1:一辆匀速行驶的汽车在11:20距离A 地50km ,要在12:00正好到达到A 地,问车速应该是多少?若设车速为X km/h ,你能用一个方程表示吗?问题2:一辆匀速行驶的汽车在11:20距离A 地50km ,要在12:00之前驶过A 地,车速应满足什么条件?若设车速为X km/h ,你能用一个式子表示吗?前面我们学过表示相等关系的式子要用“等式”来表示,那么表示不等关系的式子又用什么来表示呢?二、精讲点拨知识点一:不等式的概念用式子表示下列语句:⑴ a 与1的和是正数;⑵ y 的2倍与1的和小于3;⑶ y 的3倍与x 的2倍的和是非负数⑷ x 乘以3的积加上2最多为5.⑸x 的一半不等于6;根据上面的式子和类比等的定义,总结:不等式的定义:练习:下列式子中哪些是不等式?(1)3>2 (2)a 2+1> 0 (3)3x²+2x(4)x<3x+1 (5)x=2x+5 (6)a+b≠c (7)42 x 知识点二:不等式的解和不等式的解集的概念。
(1) x=78,75,72 能使不等式32X >50 成立吗?(方法:代入验证) 我们知道,使方程左右两边相等的未知数的值叫方程的解。
类似方程解的概念,请给出不等式的解的概念。
思考:判断下列数中哪些是不等式32X >50的解:76,73,79,80,74.9,75.1,90,60 你还能找出这个不等式的其它解吗?这个不等式有多少个解?(1) 是不等式32X >50的解有 可以发现,当x> 时,不等式32X >50总成立;而当x ≤ 时,不等式32X >50不成立。
因此,X>75表示了能使不等式32X >50成立的x 的取值范围,叫做不等式32X >50 表示相等关系的式子叫等式。
不等式及其解集学案
9.1.1不等式及其解集(学案)[学习目标]1、了解不等式、一元一次不等式的概念,会用不等式表示不等关系。
2、理解不等式的解和解集的意义,会把不等式的解集在数轴上表示出来。
学习重点:不等式解集的概念及在数轴上表示不等式解集的方法。
学习难点:不等式解集的确定。
[学习过程]一、课前复习:复习等式、方程、方程的解、一元一次方程等有关概念。
等式:方程:方程的解:二、自主学习:活动一学习不等式及不等式解的概念。
1、什么叫不等式,它与等式有什么区别?常见的不等号有__、__、__、__、__.2、下列式子哪些是不等式?为什么?(1) ①-8<0 ②2x-4>0 ③x-2≠0 ④5a+1=0 ⑤7m+13、用不等式表示:①x与3的差是正数;②x与2的积小于8;③x 与2的差不小于5.4、什么叫不等式的解?不等式的解有多少个?下列数值哪些是不等式x+3>6的解?哪些不是?-4,0,1,2.5,3,3.2,4.8,8活动二学习不等式的解集及表示方法。
1.问题:不等式x-3>0有多少个解?为什么?如何表示它的解集?2.直接想出不等式的解集。
(1) x+3>6 (2) 2 x <8 (3) x-2≥03. 不等式的解集有其它表示方法吗?阅读书本122页,把你学到的方法在组内和同伴交流。
4.把2中不等式的解集用数轴分别表示出来。
说出用数轴表示不等式解集的步骤及注意点。
活动三学习一元一次不等式的概念。
1.观察不等式(1) x+3>6 (2) 2 x <8 (3) x-2≥0说出它们有什么共同特征,类比一元一次方程,说出一元一次不等式的定义。
2.找出下列不等式中的一元一次不等式。
(1)-8<0 (2) 2x-4>0 (3)3x+y>0 (4) x2-2≠0 (5) (6)活动四自测与反馈1、判断下列式子中哪些是不等式?哪些式子还是一元一次不等式?①a+1≥0②3x-1③6≠-6 ④2x<y ⑤-5x+1>3x ⑥6a-1=5 ⑦x+3≤6不等式有:一元一次不等式有:(填序号)。
9.1.1 不等式及其解集(导学案)
第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集一、新课导入1.导入课题:前面我们学习了方程和方程组,知道它们都属于等式的范畴.在现实世界和日常生活中存在大量不等关系的问题.为此,我们还须学习不等式,下面我们就从最基础的不等式及其相关概念入手吧!(板书课题)2.学习目标:(1)知道不等式及其相关概念.(2)知道不等式的解与解集的意义,能把不等式的解集在数轴上表示出来.3.学习重、难点:重点:不等式的概念,不等式的解与解集的意义,把不等式的解集在数轴上表示出来.难点:把简单的实际问题抽象为数学不等式.二、分层学习1.自学指导:(1)自学内容:课本P114第1行至倒数第6行的内容.(2)自学时间:3分钟.(3)自学要求:认真阅读课文,重要的概念和存在疑问的地方做上记号.(4)自学参考提纲:①对于课本中的“问题”,若设车速为xkm/h,则:(a)从时间角度看,因为时间=路程速度,所以依题意可列关系式<5023x.(b)从路程角度看,因为路程=时间×速度,所以依题意又可列关系式2503x>.②像①中( A )( B )所列关系式及a+2≠a-2这样用符号“>”“<”或“≠”连接的,表示大小关系的式子叫做不等式.③在下列所给式子:①a+3≠1;②12x>2;③3<5;④3x+1;⑤-2>-1;⑥1x<-1;⑦a+b=b+a中,属于不等式的有①②③⑤⑥.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题:是否理解不等式的意义.②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流、展示、纠错.4.强化:(1)不等式的概念.(2)注意事项:①判断一个式子是否是不等式的关键是看有没有用不等号连接,常见的不等号有:“>”“<”“≠”“≥”“≤”,其中“≥”和“≤”的含义将在下一节学习.②不等式不成立(如“-2>-1”)不能理解成不是不等式.(3)练习:用不等式表示:①a是正数;②a是负数;③a与5的和小于7;④a与2的差大于-1;⑤a的4倍大于8;⑥a的一半小于3.解:①a>0;②a<0;③a+5<7;④a-2>-1;⑤4a>8;⑥12a<3.1.自学指导:(1)自学内容:课本P114倒数第5行至P115“练习”前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课文,重要的概念或不理解的地方做上记号. (4)自学参考提纲:①什么叫不等式的解?什么叫不等式的解集?说说它们的区别.②不等式的解和方程的解有何区别?你能举例说明吗?③不等式的解集在数轴上如何表示?空心圈表示什么意思?画线方向怎样确定?2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题:a.是否知道不等式的解与解集的区别.b.是否能说明用数轴表示不等式解集的道理和方法.②差异指导:对少数学有困难和学法不当的学生进行引导.(2)生助生:小组内学生之间相互交流和帮助.4.强化:(1)不等式的解及不等式的解集的意义.(2)不等式解集在数轴上表示时,空心圈及画解集的方向的意义.(3)练习:①下列数中哪些是不等式x+3>6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12答案:3.2,4.8,8,12是x+3>6的解,其余不是.②直接说出下面不等式的解集,并用数轴把它们表示出来.(a)x+3>6;(b)2x<8;(c)x-2>0.答案:(a)解集为:x>3.(b)解集为:x<4.(c)解集为:x>2.三、评价1.学生的自我评价(围绕三维目标):各小组长汇报本组的学习收获和不足.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):等与不等是现实世界中存在的一种矛盾,但它们之间又是密切联系的.本课在教学上采用方程等式的观点进行不等式的教学,并进一步学习了解不等式的解集,这样既激发了学生的学习兴趣,又降低了他们在学习上的难度,充分调动了学生学习的积极性,让学生在教学活动中占主体地位.(时间:12分钟满分:100分)一、基础巩固(60分)1.(15分)在下列数学式子:①-2<0;②3x-5>0;③x=1;④x2-x;⑤x≠-2;⑥x+2>x-1中,是不等式的有①②⑤⑥(填序号).2.(15分)有理数a,b在数轴上的位置如图所示,用不等式表示:①a+b < 0;②ab < 0;③a-b > 0.3.(15分)下列数值中,哪些是不等式2x+3>9的解?哪些不是?-4,-2,0,3,3.01,4,6,100解:3.01,4,6,100是2x+3>9的解,-4,-2,0,3不是.4.(15分)用不等式表示:(1)a与5的和是正数;(2)a与2的差是负数;(3)b与15的和小于27;(4)b与12的差大于-5.解:(1)a+5>0;(2)a-2<0;(3)b+15<27;(4)b-12>-5.二、综合运用(20分)5.直接写出不等式的解集,并把解集在数轴上表示出来.(1)x+2>6;(2)2x<10;(3)x-2>0.5;(4)3x>-10.解:(1)解集为:x>4.(2)解集为:x<5.(3)解集为:x>2.5.(4)解集为:x>-10 3.三、拓展延伸(20分)6.下列说法,其中正确的有①②④⑥(填序号).①方程2x+3=1的解是x=-1;②x=-1是方程2x+3=1的解;③不等式2x+3>1的解是x=3;④x=3是不等式2x+3>1的解;⑤x>5是不等式x+2>6的解集;⑥x>4是不等式x+2>6的解集.。
学案5:9.1.1不等式及其解集
9.1.1不等式及其解集学案【学习目标】1.了解不等式的概念.2.准确理解不等式的解及解集,能正确运用不等式与数轴表示不等式的解集.【学习重点、难点】重点:1.准确理解不等式的解及解集.2.正确的表示不等式的解集.难点:不等式解集的理解.【学习过程】一、温故知新谈谈你对我们已经学过的方程和方程解的认识,可以举例说明.二、探索新知问题1:无棣到滨州的路程约是60千米,老师10:50从无棣出发,要在11:40之前赶到滨州,车速应满足什么条件?若设车速为x ,可得式子问题2:给出题组:你能用适当的式子表示下列问题中的数量关系吗?⑴0大于-5;⑵x 与3的差大于-1;⑶x 2减去10是正数.问题3:请同学们观察一下,上面我们得到的这些式子有什么特点?问题4:自学课本不等式的概念.判断下列各式中,哪些是不等式?(1)-3>-5,(2)x >1,(3)2x +y <6,(4)2-x <3x +5,(5)3x +1=0,(6)3250<x . 问题5:在开始的问题中,不等式6065>x 虽然这个不等式明确表示了车速应满足的条件,但我们希望更明确得出x 应取哪些值.你认为车速可以是60千米/时吗?可以是66千米/时吗?可以是78千米/时吗?你是怎样思考的?你能给这些符合条件的值取个名字吗? 问题6:你还能找出不等式6065>x 的其他解吗?这个不等式有多少个解?能把这些解都表示出来吗?完成后自学课本解集和解不等式的概念,并仿照课本给出的方法把你的答案表示在数轴上.温馨提示:用数轴表示不等式的解集的步骤:第一步:画数轴;第二步:定界点;第三步:定方向.三、同步巩固1.下列数哪些是不等式3x>6的解?哪些不是?-2.5,0,3,82.在数轴上表示不等式x>2 的解集,正确的是()3.回答下列问题:(1)直接写出2x<8的解集;(2)直接写出x-2>4的解集;4.请说出一个不等式,使得2是它的一个解,而5不是它的解.四、我的收获与疑惑:1.本节课你有哪些收获?你还有哪些疑惑?2.预习时的疑难解决了吗?五、课后作业:P119第1题,P120第2、3题同步巩固答案:1.3,82.B3.(1)x<4 (2)x>64.x<4。
新人教版七年级数学下册9.1.1 不等式及其解集学案
课题:9.1.1 不等式及其解集【学习目标】1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;2、通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上.【学习重点】正确理解不等式、 不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
【学习难点】正确理解不等式解集的意义。
一【自主学习】(认真学习课本内容,完成以下问题)1、 什么叫做不等式?什么是不等式的解?什么是不等式的解集?什么是一元一次不等式?2、不等式5种符号(“≥、≤、≠”“<”“>”)的读法和含义? 3>5是不等式吗? x 20>5是不等式吗?它是一元一次不等式吗?为什么?3、下列式子中,哪些是不等式?哪些是一元一次不等式?① —3>0;②5x —8y <0; ③ x=6 ; ④ m ≠9 ;⑤ 2x ≥x+1;⑥ X 2≤04、用适当的式子表示下列问题中的数量关系:1、0大于-5;2、y 的2倍比6小;3、x 与3的差大于-1;4、x 2减去10是正数;5、a 的4倍不小于8 ; 6、b 的一半不大于3(或40x >2000)对于40x >2000虽然给出了小明不迟到的条件,但到底x 要满足什么条件呢?这样的x 有多少个呢?组内进行交流、探究出x 的取值范围并得出结论:2、不等式的解集在数轴上的表示在数轴上表示:X>5和X≥7注意:空心圆圈表示不可以取该数;实心圆点表示可以取该数。
3、燃放某种烟花时,为了确保安全,人在点燃导火线后要在燃放前转移到10m外的安全区域。
已知导火线的燃烧速度为0.02m/s,人离开的速度为4m/s,那么导火线的长度应为三、【达标测试】1、用不等式表示图中的解集:2、下列式子哪些是不等式?哪些不是不等式?(1) -2<5 (2)x+3> 2x (3) 4x-2y<0 (4) a-2b(5)x2-2x+1<0 (6) a+b≠c (7)5m+3=8 (8)x≤-43、下列数哪些是不等式3X>6的解?哪些不是?-4, 3 ,0,1,2.5,-2.5 ,3.2,4.8,8,124、直接想出不等式的解集:(1)x+3>8 (2) 2y<8 (3)a-2 <0四、【我的感悟】:这节课我的最大收获是:我不能解决的问题是:________________________________________________________________________【课后反思】:。
学案4:9.1.1不等式及其解集
9.1.1 不等式及其解集学案1. 知道不等式的定义,理解不等式的解集和方程的解的不同.2. 会在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.3. 知道一元一次不等式的定义1、用“>”或“<”填空.7+3 4+3 7×2 4×22、以上式子是等式吗?它是用 或 号表示 关系的式子,叫做 .3、求不等式的解集的过程叫做 .4、不等式用符号>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于。
“≤”读作“小于等于”. 表示小于或等于,也就是不大于。
例如:x ≥y 表示 ,也就是 .下列等式哪些是不等式?①42>;②230a +>;③235x x +;④24x x <+;⑤23x x =-;⑥2231x x x +<+;⑦a b c +≠;⑧58>;⑨8x ≥用不等式表示①a 与4的和是正数②m 的3倍大于n 的2倍③a 与b 和的2倍是非正数5、当x = 时,35x +=成立当x 满足什么数值时,35x +>成立呢?使方程两边相等的未知数的值就是方程的解使 成立的 的值叫做不等式的解例如:当3,4,5.....x =时,不等式成立当2,1,0...x =时,不等式不成了我们发现,当x 时,不等式35x +>总是成立;当x 时,不等式35x +>总不成立. 一般地,一个含有未知数的不等式的 ,组成这个不等式的解集.求不等式的 的过程叫做解不等式.一个不等式的解有 个.6、在数轴上表示不等式的解集:不等式x +2>5的解集,可以表示成x >3. x >3表示x 取哪些数?在数轴上表示大于3的数的点应该数3所对应点的 (填写左边还是右边)?因此我们可以在数轴上把x >3直观地表示出来.画图时要注意方向(向 )和端点(不包括数3,在对应点画 圆圈).如图所示:同样,如果某个不等式的解集为x ≤-2, 那么它表示x 取那些数?此时在作x ≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画 圆点.如图所示:总结:小于向 画,大于向 画;无等号画 圆圈,有等号画 圆点.7、自我检测1.用不等式表示下列数量关系:①a 比1大;②x 与一3的差是正数;③x 的4倍与5的和是负数2.在-4,-2,-1,0,1,3中,找出使不等式成立的x 值:(1)x +5 > 3,(2) 3x < 53.写出不等式x -5>0的一个解:____4.若x <-3,满足此不等式的最大整数为____;答案:1、a>1 x-(-3)>0 4x+5<02、(1)-1,0,1,3(2)-4,-2,-1,0,13、6(比5大的数都可以)4、-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) x+5>6 (2) 2x<6
三、、拓展提高:1、在数轴上表示下列不等式的解集:
(1)x<二、合作探究:
1、用不等式表示下列问题中的数量关系:
⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;
⑶x的2倍与1的和大于—1⑷a的一半与4的差的绝对值不小于a.
(5)某商品原价为a元,降价x%后,价格仍不低于15元。
2、判断下列数中哪些是不等式2x+3>9的解?哪些不是?
-4,-2, 0,3,3.01, 4, 6, 100.
时间:5月25日七台河市十六中学预学指导案学生姓名:
课题
9.1.1不等式及其解集
年级学科
二年级数学
备课人
于晓新
课时数
1
质检审核
预学目标:1、通过具体情景,感受现实世界和日常生活中存在着大量的不等关系。
2、了解不等式的意义,经历实际问题中数量关系的分析和抽象过程。
预学重难点:了解不等式的意义,经历实际问题中数量关系的分析和抽象过程。
4、类似于一元一次方程,____________________________________叫做一元一次不等式.
5、不等式用符号>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于。
“≤”读作“小于等于”.表示小于或等于也就是不大于。例如:x≥y表示___________,也就是_________________.
预学指导
问题生成单
一、自主学习:
1、用“>”或“<”填空.
7+3__4+3 7×24×2
2、以上式子是等式吗?它是用______或______号表示___关系的式子,这样的式子叫做____________.
3、我们把使不等式成立的______________叫做不等式的解.使不等式成立的未知数的____________叫做不等式的解的集合,简称_________.求不等式的解集的过程叫做______________.