13-3三羧酸循环

合集下载

福州大学生物化学考研真题

福州大学生物化学考研真题

福州大学生物化学考研真题一九九九年福州大学研究生入学考试试题生物化学(06年之后没有)一判断下述内容之是非(40%)1 D-型单糖在溶液中成环时一般为a-型。

2 葡萄糖在水溶液中表现出变旋性,而果糖则没有。

3 淀粉水解可制得麦芽糖4 果葡糖浆比果糖甜 5只有植物才能合成多糖 6 卵磷脂是双性分子7 胆固醇是一种有得于心血管的脂类物质 8 蛋白质加入98%浓硫酸中会产生水解 9 构成蛋白质的氨基酸只有20种 10蚕丝水解可得丝氨酸11含一氨基一羟基的氨基酸之pI一般低于7.012 每种氨基酸都能与茚三酮发生相同产物的显色反应13丙烯酰胺中的C-N键实际上也是一种肽键14蛋白质的一级结构一样,其立体结构构造也一定相同15分子量3万的多肽链就是蛋白质16每种球蛋白必含有一个a-螺旋或β-折叠17蛋白质变性一定会沉淀,蛋白质沉淀一定是变性19DNA中没有尿嘧啶,而RNA中没有胸腺嘧啶20在中性pH的溶液中,DNA和RNA都带正电21核酸和脱氧核糖核酸的分子构造比蛋白质简单22酶的活性中心占据酶的大部分空间 23在酶的最适pH,酶的稳定性也最高 24脂溶性维生素大多数为参与代谢酶类的辅2生物化学中最重要的反应有A氧化还原反应 B置换反应 C亲极反应 D电解反应 3地球上含量最大的碳水化合物的聚合物是 A淀粉 B糖原 C纤维素 D 琼胶4维系蛋白质空间构造的最主要的化学作用是A电离作用;B疏水作用;C氢键作用;D碱基堆积作用 5用吸光度检测蛋白质的波长的是酶25从天然水果中撮的维生素C比发酵法生产的好26微量元素在人体中起着类似激素的作用 27淀粉在口腔中就开始被分解为葡萄糖的 28只有偶数碳的脂肪酸可以被代谢利用29ATP中的P-O键水解时必需消耗大量的能量30TCA循环是糖代谢的专用途径31TCA循环中产生的能量远远大于EMP途径 32氨的代谢过程是个消耗能量的过程 33植物之所以呈绿色,是因为叶绿素能够最有效地吸收和利用绿光34生物合成代谢时能够产生ATP和NADPH 35双链DNA复制时,两条链的合成都是连续的36在DNA中插入一对碱基只会影响一个氨基酸37UAU在人的基因中代表酪氨酸,在大肠杆菌中代表丙氨酸38DNA中T的含量愈高,该菌体对紫外线的作用就愈敏感39蛋白质的合成是从C端到N端。

糖代谢作业及答案

糖代谢作业及答案

班级学号姓名第八章糖代谢作业及参考答案一.填空1.??淀粉酶和?–淀粉酶只能水解淀粉的_________键,所以不能够使支链淀粉完全水解。

2.1分子葡萄糖转化为2分子乳酸净生成______________分子ATP3.糖酵解过程中有3个不可逆的酶促反应,这些酶是__________、____________和_____________。

4.糖酵解抑制剂碘乙酸主要作用于___________酶。

5.调节三羧酸循环最主要的酶是____________、___________、______________。

6.2分子乳酸异生为葡萄糖要消耗_________ATP。

7.丙酮酸还原为乳酸,反应中的NADH来自于________的氧化。

8.延胡索酸在____________酶作用下,可生成苹果酸,该酶属于EC分类中的酶类。

9.磷酸戊糖途径可分为______阶段,分别称为_________和_______,其中两种脱氢酶是_______和_________,它们的辅酶是_______。

是碳水化合物在植物体内运输的主要方式。

12.糖酵解在细胞的___中进行,该途径是将_________转变为_______,同时生成________和_______的一系列酶促反应。

13.淀粉的磷酸解过程通过_______酶降解α–1,4糖苷键,靠________和________酶降解α–1,6糖苷键。

14.TCA循环中有两次脱羧反应,分别是由_______和________催化。

15.乙醛酸循环中不同于TCA循环的两个关键酶是和。

16.乳酸脱氢酶在体内有5种同工酶,其中肌肉中的乳酸脱氢酶对__________亲和力特别高,主要催化___________反应。

17.在糖酵解中提供高能磷酸基团,使ADP磷酸化成ATP的高能化合物是____________和______________18.糖异生的主要原料为______________、_______________和________________。

生化题_第十章 糖代谢

生化题_第十章 糖代谢

姓名______________学号________________ 成绩_____________第十章糖代谢一、是非判断题1、ATP是果糖磷酸激酶的变构抑制剂。

2、沿糖酵解途径简单逆行,可从丙酮酸等小分子前体物质合成葡萄糖。

3、发酵可以在活细胞外进行。

4、催化ATP分子中的磷酰基转移到受体上的酶称为激酶。

5、糖酵解过程在有氧无氧条件下都能进行。

6、变位酶和差向异构酶是同工酶。

7、葡萄糖激酶受G-6-P 负调节。

8、哺乳动物无氧时不能存活,因为葡萄糖酵解不能合成ATP。

9、柠檬酸循环是分解与合成的两用途径。

10、联系糖原异生作用与三羧酸循环的酶是丙酮酸羧化酶。

11、TCA中底物水平磷酸化直接生成的是ATP。

12、三羧酸循环的中间产物可以形成谷氨酸。

13、线粒体中存在两种异柠檬酸脱氢酶分别以NAD+和NADP+为电子受体。

14、丙酮酸脱氢酶系中电子传递的方向为硫辛酸→FAD→NAD+。

15、TCA循环可以产生NADH和FADH2,但不能直接产生ATP。

16、2,6-二磷酸果糖是磷酸果糖激酶的别构活化剂,可消除ATP 对它的抑制。

17、所有来自磷酸戊糖途径的还原能都是在该循环的前三步反应中产生的。

18、动物体内的乙酰CoA不能作为糖异生的物质。

19、糖异生作用的关键反应是草酰乙酸形成磷酸烯醇式丙酮酸的反应。

20、分解糖原的去分枝酶和转移酶是同工酶。

21、糖原合成时需要糖原起始合成酶及引发蛋白参与。

22、控制糖异生途径关键步骤的酶是丙酮酸羧化酶。

23、转醛酶的作用机理中的关键步骤是形成希夫氏碱。

24、在糖类物质代谢中最重要的糖核苷酸是ADPG。

25、葡萄糖激酶对葡萄糖的专一性强,亲和力高,主要在肝脏用于糖原合成。

二、选择题1、由己糖激酶催化的反应的逆反应所需要的酶是:A.果糖二磷酸酶B.葡萄糖-6-磷酸酶C.磷酸果糖激酶D.磷酸化酶2、磷酸果糖激酶所催化的反应产物是:A.F-1-P B.F-6-P C.F-D-P D.G-6-P3、醛缩酶的产物是:A.G-6-P B.F-6-P C.F-D-P D.1,3-二磷酸甘油酸4、下面哪种酶在糖酵解和糖异生中都起作用:A.丙酮酸激酶B.丙酮酸羧化酶C.3-磷酸甘油醛脱氢酶D.己糖激酶E.果糖1,6-二磷酸酯酶5、糖酵解时哪一对代谢物提供P使ADP生成ATP:A.3-磷酸甘油醛及磷酸烯醇式丙酮酸B.1,3-二磷酸甘油酸及磷酸烯醇式丙酮酸C.1-磷酸葡萄糖及1,6-二磷酸果糖D.6-磷酸葡萄糖及2-磷酸甘油酸6、关于酵解,下列叙述错误的是A、Mg2+与ATP形成复合物Mg2+-ATP参加磷酸化反应B、碘乙酸可抑制糖酵解进行C、砷酸盐可抑制糖酵解进行D、2,3-二磷酸甘油酸作为辅助因子起作用E、最重要的调节酶是磷酸果糖激酶7、C1 被同位素标记的葡萄糖分子经EMP 途径降解为丙酮酸后,同位素标记可能出现在丙酮酸的哪一个C 原子上?A、C1;B、C2;C、C3;D、都可能;E、都不会8、糖酵解中限速步骤有关的酶是A、己糖激酶;B、磷酸果糖激酶;C、3-磷酸甘油醛脱氢酶;D、醛缩酶;E、丙酮酸激酶9、糖的有氧氧化的最终产物是:A.CO2+H2O+ATP B.乳酸C.丙酮酸 D.乙酰CoA10、三羧酸循环中哪一个化合物前后各放出一个分子CO2:A.柠檬酸B.乙酰CoA C.琥珀酸D.α-酮戊二酸11、TCA循环中发生底物水平磷酸化的化合物是?A.α-酮戊二酸B.琥珀酰C.琥珀酸CoA D.苹果酸12、丙酮酸脱氢酶系催化的反应不涉及下述哪种物质?A.乙酰CoA B.硫辛酸C.TPP D.生物素E.NAD+13、三羧酸循环的限速酶是:A.丙酮酸脱氢酶B.顺乌头酸酶C.琥珀酸脱氢酶D.延胡索酸酶E.异柠檬酸脱氢酶14、生物素是哪个酶的辅酶:A.丙酮酸脱氢酶B.丙酮酸羧化酶C.烯醇化酶D.醛缩酶E.磷酸烯醇式丙酮酸羧激酶15、三羧酸循环中催化琥珀酸形成延胡索酸的酶是琥珀酸脱氢酶,此酶的辅因子是A.NAD+ B.CoASHC.FAD D.TPP E.NADP+16、关于三羧酸循环,下列叙述错误的是A、是糖、脂肪及蛋白质分解的最终途径B、丙酮酸脱氢酶系分布在线粒体基质中C、乙酰CoA 及NADH 可抑制丙酮酸脱氢酶系D、环中所生成的苹果酸为L 型E、受ATP/ADP 比值的调节17、丙酮酸脱氢酶受到哪些因素调控?A、产物抑制、能荷调控、磷酸化共价调节B、产物抑制、能荷调控、酶的诱导C、产物抑制、能荷调控D、产物抑制、酶的诱导、磷酸化共价调节E、能荷调控、酶的诱导18、需要引物分子参与生物合成反应的有:A.酮体生成B.脂肪合成C.糖异生合成葡萄糖D.糖原合成E.以上都是19、不能经糖异生合成葡萄糖的物质是:A.α-磷酸甘油B.丙酮酸C.乳酸D.乙酰CoA E.生糖氨基酸20、丙酮酸激酶是何途径的关键酶:A.磷酸戊糖途径B.糖异生C.糖的有氧氧化D.糖原合成与分解E.糖酵解21、丙酮酸羧化酶是那一个途径的关键酶:A.糖异生B.磷酸戊糖途径C.胆固醇合成D.血红素合成E.脂肪酸合成22、下列各中间产物中,那一个是磷酸戊糖途径所特有的?A.丙酮酸B.3-磷酸甘油醛C.6-磷酸果糖D.1,3-二磷酸甘油酸E.6-磷酸葡萄糖酸23、三碳糖、六碳糖与七碳糖之间相互转变的糖代谢途径是:A.糖异生B.糖酵解C.三羧酸循环D.磷酸戊糖途径E.糖的有氧氧化24、关于磷酸戊糖途径,下列叙述错误的是()A、碘乙酸及氟化物可抑制糖的氧化B、6-磷酸葡萄糖脱氢酶的受体为NADP+C、转酮酶需要TPP 作为辅酶D、该途径与光合作用碳代谢相同E、5-磷酸核糖是联系核苷酸及核酸代谢的关键分子25、下列途径中哪个主要发生在线粒体中?()A、糖酵解途径;B、三羧酸循环;C、戊糖磷酸途径;D、脂肪酸从头合成26、糖原合成酶的别构活化剂是()A、ADP;B、A TP;C、AMP;D、葡萄糖-1-磷酸;E、葡萄糖-6-磷酸27、糖原中一个糖残基转变为2 分子乳酸,可净得几分子ATP?()A、1;B、2;C、3;D、4;E、528、在肝脏中二分子乳酸转变为一分子葡萄糖,需要消耗几分子ATP?()A、2;B、3;C、4;D、5;E、629、丙酮酸羧化支路中的丙酮酸羧化酶,需要下列化合物中除哪个以外的所有因子?()A、生物素;B、Mg2+;C、乙酰CoA;D、草酰乙酸;E、ATP三、填空题⒈糖酵解途径中的三个调节酶是、和。

生物化学学习指导(下)

生物化学学习指导(下)

糖类代谢要点解答1.糖代谢各途径发生的场所、限速酶或关键酶、能量转换和生理意义2.三羧酸循环的生物学意义有哪些?三羧酸循环是糖有氧分解的重要途径,有着重要的生物学意义。

(1)三羧酸循环是有机体获得生命活动所需能量的最重要途径。

在糖的有氧分解中,每个葡萄糖分子通过糖酵解途径只产生6个或8个ATP,而通过三羧酸循环就可产生24个ATP,远远超过糖酵解阶段或葡萄糖无氧降解(生成2个ATP)所产生的ATP的数目。

此外,脂肪、氨基酸等其他有机物作为呼吸底物彻底氧化时所产生的能量也主要是通过三羧酸循环。

因此,三羧酸循环是生物体能量的主要来源。

(2)三羧酸循环是物质代谢的枢纽。

三羧酸循环具有双重作用,一方面,三羧酸循环是糖、脂肪和氨基酸等有机物彻底氧化的共同途径;另一方面,许多合成代谢都利用三羧酸循环的中间产物作为生物合成的前体,循环中的草酰乙酸、α-酮戊二酸、柠檬酸、琥珀酰CoA和延胡索酸等又是生物体合成糖(糖异生)、氨基酸、脂肪酸和卟啉等的原料。

因此,三羧酸循环可以看成新陈代谢的中心环节,起到物质代谢枢纽的作用。

3.在葡萄糖的有氧氧化过程中,哪些步骤进行脱氢反应?哪些步骤进行脱羧反应?1分子葡萄糖有氧氧化净产生多少分子ATP?葡萄糖的有氧氧化过程包括糖酵解的反应、丙酮酸氧化脱羧和乙酰CoA进入三羧酸循环的反应,脱氢、脱羧及ATP的变化总结如下:4.磷酸戊糖途径有何特点?该途径有何生理意义?磷酸戊糖途径的特点是:第一,该途径不经过EMP-TCA反应,直接在六碳糖的基础上脱羧,脱氢;第二,该途径以NADP+为氢的受体,产生还原力NADPH+H+。

该途径的生理意义:(1)提供生物体重要的还原剂NADPH。

无论动物还是植物,NADPH不能直接被呼吸链氧化。

NADPH的重要功能是在很多合成反应中作为还原剂。

例如,在脂肪酸和胆固醇合成中,在二氢叶酸还原为四氢叶酸等反应中,都是NADPH作为还原剂。

NADPH还可使还原型谷胱甘肽再生.从而保证细胞的抗氧化能力。

基础生物化学试题库及答案2

基础生物化学试题库及答案2

基础生物化学试题三一、填空题1.酶是产生的,具有催化活性的。

2.T.Cech从自我剪切的RNA中发现了具有催化活性的,称之为这是对酶概念的重要发展。

3.结合酶是由和两部分组成,其中任何一部分都催化活性,只有才有催化活性。

4.有一种化合物为A-B,某一酶对化合物的A,B基团及其连接的键都有严格的要求,称为,若对A基团和键有要求称为,若对A,B之间的键合方式有要求则称为。

5.酶发生催化作用过程可表示为E+S→ES→E+P,当底物浓度足够大时,酶都转变为此时酶促反应速成度为。

6.竞争性抑制剂使酶促反应的km 而Vmax 。

7.磺胺类药物能抑制细菌生长,因为它是结构类似物,能性地抑制酶活性。

8.当底物浓度远远大于Km,酶促反应速度与酶浓度。

9.PH对酶活力的影响,主要是由于它和。

10.温度对酶作用的影响是双重的:①②。

11.同工酶是一类酶,乳酸脱氢酶是由种亚基组成的四聚体,有种同工酶。

12.与酶高催化效率有关的因素有、、、和活性中心的。

13.对于某些调节酶来说,、V对[S]作图是S形曲线是因为底物结合到酶分子上产生的一种效应而引起的。

14.测定酶活力时要求在特定的和条件下,而且酶浓度必须底物浓度。

15.解释别构酶变构机理,主要有和两种。

16.能催化多种底物进行化学反应的酶有个Km值,该酶最适底物的Km值。

17.与化学催化剂相比,酶具有、、和等催化特性。

18.在某一酶溶液中加入G-SH能提出高此酶活力,那么可以推测基可能是酶活性中心的必需基团。

19.影响酶促反应速度的因素有、、、、、。

20.从酶蛋白结构看,仅具有三级结构的酶为,具有四级结构的酶,而在系列反应中催化一系列反应的一组酶为。

二、选择题1.有四种辅因子(1)NAD,(2)FAD,(3)磷酸吡哆素,(4)生物素,属于转移基团的辅酶因子为:A、(1)(3)B、(2)(4)C、(3)(4)D、(1)(4)2.哪一种维生素具有可逆的氧化还原特性:A、硫胺素B、核黄素C、生物素D、泛酸3.含B族维生素的辅酶在酶促反应中的作用是:A、传递电子、质子和化学基团B、稳定酶蛋白的构象C、提高酶的催化性质D、决定酶的专一性4.有机磷农药作为酶的抑制剂是作用于酶活性中心的:A、巯基B、羟基C、羧基D、咪唑基5.从组织中提取酶时,最理想的结果是:A、蛋白产量最高B、转换系数最高C、酶活力单位数值很大D、比活力最高6.同工酶鉴定最常用的电泳方法是:A、纸电泳B、SDS—聚丙烯酰胺凝胶电泳C、醋酸纤维薄膜电泳D、聚丙烯酰胺凝胶电泳7.酶催化底物时将产生哪种效应A、提高产物能量水平B、降低反应的活化能C、提高反应所需活化能D、降低反应物的能量水平8.下列不属于酶催化高效率的因素为:A、对环境变化敏感B、共价催化C、靠近及定向D、微环境影响9.米氏常数:A、随酶浓度的增加而增加B、随酶浓度的增加而减小C、随底物浓度的增加而增大D、是酶的特征常数10.下列哪种辅酶结构中不含腺苷酸残基:A、FADB、NADP+C、辅酶QD、辅酶A11.下列那一项符合“诱导契合”学说:A、酶与底物的关系如锁钥关系B、酶活性中心有可变性,在底物的影响下其空间构象发生一定的改变,才能与底物进行反应。

植物生理学名词解释

植物生理学名词解释

第四章呼吸作用一、名词解释1、呼吸作用:生物体内的有机物质通过氧化还原而产生CO2,同时释放能量的过程。

2、有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水,同时释放能量的过程。

3、三羧酸循环:丙酮酸在有氧条件下由细胞质进入线粒体逐步氧化分解,最终生成水和二氧化碳。

4、生物氧化:指有机物质在生物体内进行氧化分解,生成CO2和H2O,放出能量的过程。

5、呼吸链:呼吸代谢中间产物的电子和质子,沿着一系列有序的电子传递体组成的电子传递途径,传递到氧分子的总轨道。

6、氧化磷酸化:在生物氧化过程中,电子经过线粒体的呼吸链传递给氧(形成水分子),同时使ADP被磷酸化为ATP的过程。

7、呼吸商:又称呼吸系数。

是指在一定时间内,植物组织释放CO2的摩尔数与吸收氧的摩尔数之比。

8.糖酵解:胞质溶胶中的己糖在无氧或有氧状态下分解成丙酮酸的过程。

二、填空题1、呼吸作用的糖的分解代谢途径中,糖酵解和戊糖磷酸途径在细胞质中进行;三羧酸循环途径在线粒体中进行。

三羧酸循环是英国生物化学家Krebs 首先发现的。

2、早稻浸种催芽时,用温水淋种和时常翻种,其目的就是使呼吸作用正常进行。

当植物组织受伤时,其呼吸速率加快。

春天如果温度过低,就会导致秧苗发烂,这是因为低温破坏了线粒体的结构,呼吸“空转”,缺乏能量,引起代谢紊乱的缘故。

3.呼吸链的最终电子受体是O2氧化磷酸化与电子传递链结偶联,将影响_ ATP _的产生。

4.糖酵解是在细胞细胞基质中进行的,它是有氧呼吸和无氧呼吸呼吸的共同途径。

5.氧化磷酸化的进行与ATP合酶密切相关,氧化磷酸化与电子传递链解偶联将影响__ ATP__的产生。

6.植物呼吸过程中,EMP的酶系位于细胞的细胞基质部分,TCA的酶系位于线粒体的线粒体基质部位,呼吸链的酶系位于线粒体的嵴部位。

7. 一分子葡萄糖经有氧呼吸彻底氧化,可净产生__38__分子ATP,•需要经过__6_底物水平的磷酸化。

13-2三羧酸循环

13-2三羧酸循环

通过与柠檬酸的羧基和羟基相互作用与柠檬酸形成复合物。顺
乌头酸酶有立体专一性,只产生一种异柠檬酸。
顺乌头酸酶是个相当复杂的酶,其中含有由4个铁原子,4个无
机硫原子及4个半胱氨酸硫原子形成的铁硫中心参与底物的去水 和加水反应。这个酶是含铁的非铁卟啉蛋白。
3.异柠檬酸氧化脱羧生成α酮戊二酸和第一个CO2 这是三羧酸循环中第一个氧化脱羧反应,反应由异柠檬酸脱 氢酶催化。
反应1: 二个碳原子以乙酰辅酶A形式进入循环
乙酰CoA与草酰乙酸缩合形成柠檬酸。 由柠檬酸合成酶催化的起始反应是一个类似于醛醇缩合的反应。
CH3
+
柠檬酸合成酶反应机制
B是酶分子中的一个碱 性氨基酸残基
负碳离子
+
柠檬酰辅酶A
乙酰辅酶A上活化的乙酰基的甲基碳在柠檬酸合成酶的作用下丢失一个质子,所产生的负 碳离子对草酰乙酸的羰基碳进行亲核攻击。 这导致缩合产生高度不稳定的柠檬酰辅酶A,可自发水解产生柠檬酸。这个反应是高度放 能的,是整个反应的调节位点。
一。
E.coli丙酮酸脱氢酶 复合体电镜照片
大肠杆菌中丙酮酸脱氢酶的分子量为4600000,是由60条多肽链组成的多面体,直径约
30nm,在电镜下可观察到复合体的存在。 二氢硫辛酸乙酰转移酶位于中心,有24条肽链。丙酮酸脱羧酶也有24条肽链,二氢硫 辛酸脱氢酶由12条肽链组成。
三羧酸循环的途径 三羧酸循环共有八步反应。
盖28埃的距离,两个硫辛酰胺臂就可连接相距56埃的两个功能基团。
第一条硫辛酰胺臂接受了酶1的二碳片段,然后以乙酰基形式转移到第二条臂,再直接转 移到辅酶A上。 带有两个巯基的还原的硫辛酰胺再由酶3氧化,酶3的FAD还原成FADH2。 这些酶(E1,E2和E3)物理上的并列可以保证反应没有不需要的副反应,不使中间物从催化 位点扩散,使反应能顺利进行。 丙酮酸脱氢酶复合体是细胞通过催化连续反应的酶的并列来最经济的实现其功能的例子之

4.08级生化复习题-糖代谢参考答案

4.08级生化复习题-糖代谢参考答案

糖代谢名词解释:1.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。

2.Q酶:Q酶是参与支链淀粉合成的酶。

功能是在直链淀粉分子上催化合成(α-1, 6)糖苷键,形成支链淀粉。

3.乳酸循环乳:酸循环是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过糖异生作用肝糖原或葡萄糖补充血糖,血糖可再被肌肉利用,这样形成的循环称乳酸循环。

4.发酵:厌氧有机体把糖酵解生成NADH中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为酒精发酵。

如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。

5.变构调节:变构调节是指某些调节物能与酶的调节部位结合使酶分子的构象发生改变,从而改变酶的活性,称酶的变构调节。

6.糖酵解途径:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖代谢最主要途径。

7.糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的过程。

是糖氧化的主要方式。

8.肝糖原分解:肝糖原分解指肝糖原分解为葡萄糖的过程。

9.磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。

10.底物水平磷酸化(substrate phosphorlation):ADP或某些其它的核苷-5′—二磷酸的磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。

这种磷酸化与电子的转递链无关。

11.柠檬酸循环(citric acid cycle):也称为三羧酸循环(TAC),Krebs循环。

是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。

12.回补反应(anaplerotic reaction):酶催化的,补充柠檬酸循环中间代谢物供给的反应,例如由丙酮酸羧化酶生成草酰乙酸的反应。

13.乙醛酸循环(glyoxylate cycle):是某些植物,细菌和酵母中柠檬酸循环的修改形式,通过该循环可以收乙乙酰CoA经草酰乙酸净生成葡萄糖。

糖代谢习题及答案

糖代谢习题及答案

第七章糖代谢一、选择题( )1、一摩尔葡萄糖经糖的有氧氧化过程可生成的乙酰辅酶aa 1摩尔;b 2摩尔;c 3摩尔;d 4摩尔;e 5摩尔。

( )2、由己糖激酶催化的反应的逆反应所需的酶是a 果糖二磷酸酶;b 葡萄糖—6—磷酸酶;c 磷酸果糖激酶;d 磷酸化酶。

( )3、糖酵解的终产物是a 丙酮酸;b 葡萄糖;c 果糖;d 乳糖;e 乳酸。

( )4、糖酵解的脱氢步骤反应是a 1,6—二磷酸果糖→3—磷酸甘油醛+磷酸二羟丙酮;b 3—磷酸甘油醛→磷酸二羟丙酮;c 3—磷酸甘油醛→1,3—二磷酸甘油酸;d 1,3—二磷酸甘油酸→3—磷酸甘油酸;e 3—磷酸甘油酸→2—磷酸甘油酸。

( )5、反应:6—磷酸果糖→1,6—二磷酸果糖需要哪些条件?a 果糖二磷酸酶、ATP和二价MG离子;b 果糖二磷酸酶、ADP、无机磷和二价MG离子;c 磷酸果糖激酶、ATP和二价Mg离子;d 磷酸果糖激酶、ADP、无机磷和二价Mg离子;e ATP和二价Mg离子。

( )6、糖酵解过程中催化一摩尔六碳糖裂解为两摩尔三碳糖的反应所需的酶是a 磷酸己糖异构酶;b 磷酸果糖激酶;c 醛缩酶;d磷酸丙糖异构酶;e 烯醇化酶。

( )7、糖酵解过程中NADH+ H+的去路a 使丙酮酸还原成乳酸;b 经α—磷酸甘油穿梭系统进入线粒体氧化;c 经苹果酸穿梭系统进入线粒体氧化;d 2—磷酸甘油酸还原为3—磷酸甘油醛;e 以上都对。

( )8、底物水平磷酸化指aATP水解为ADP和无机磷;b 底物经分子重排后形成高能磷酸键,经磷酸基团转移使ADP磷酸化为ATPc 呼吸链上H传递过程中释放能量使ADP磷酸化形成ATP;d 使底物分子加上一个磷酸根;e 使底物分子水解掉一个ATP。

( )9、缺氧情况下,糖酵解途径生成的NADH+ H+的去路a 进入呼吸链氧化供能;b 丙酮酸还原成乳酸;c 3—磷酸甘油酸还原成3—磷酸甘油醛;d 醛缩酶的辅助因子合成1,6—二磷酸果糖;e 醛缩酶的辅助因子分解成1,6—二磷酸果糖。

糖的代谢习题

糖的代谢习题

第七章一、名词解释1.代谢:生物活体与外界环境不断进行的物质(包括气体、液体和固体)交换过程。

2.糖酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。

其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。

3.糖有氧氧化:葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O,并释放出大量能量的过程称为糖的有氧氧化。

绝大多数组织细胞通过糖的有氧氧化途径获得能量。

4.三羧酸循环:三羧酸循环是指在线粒体中,乙酰CoA首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基被氧化分解,而草酰乙酸再生的循环反应过程。

这一循环反应过程又称为柠檬酸循环或Krebs循环。

5.磷酸戊糖途径:磷酸戊糖途径是指从G-6-P脱氢反应开始,经一系列代谢反应生成磷酸戊糖等中间代谢物,然后再重新进入糖氧化分解代谢途径的一条旁路代谢途径。

是体内生成NADPH的主要代谢途径,是体内生成5-磷酸核糖的唯一代谢途径。

6.糖异生作用:由非糖物质转变为葡萄糖或糖原的过程称为糖异生。

在肝脏中进行。

其途径基本上是糖酵解过程的逆过程。

7.三碳途径:肝中可经糖异生途径利用糖无氧酵解产生的丙酮酸、乳酸等三碳化合物来合成糖原的过程,就是肝糖原合成的三碳途径或间接途径。

8.光合作用:绿色植物、光合细菌或藻类等将光能转变成化学能的过程,即利用光能,由CO2和H2O 合成糖类化合物并释放出氧气的过程,称为光合作用。

9.光反应:光能转变成化学能的反应,即植物的叶绿素吸收光能进行光化学反使水分子活化分裂出O2、H+和释放出电子,并产生NADPH和ATP。

10.暗反应:由光反应产生的NADPH在ATP供给能量情况下,将CO2还原成糖的反应过程。

这是一个酶催化的反应过程,不需要光参加,所以称为暗反应。

11.光合磷酸化:通过光激发导致电子传递与磷酸化作用相偶联合成ATP的过程,称为光合磷酸化。

12.脂类:脂类是生物体内不溶于水而溶于有机溶剂的一大类物质的总称。

第19章 代谢总论

第19章 代谢总论

第19章代谢总论1、合成代谢2、分解代谢3、在能量贮存和传递中,哪些物质起着重要作用?答案:1、又称生物合成,是生物体利用小分子或大分子的结构元件建造成自身大分子的过程。

2、有机营养物,不管是从外界环境获得的,还是自身贮存的,通过一系列反应步骤转变为较小的、较简单的物质的过程。

3、高能化合物(如磷酸肌酸、磷酸烯醇式丙酮酸等)可将其高能磷酸基团转移给ADP生成ATP,生成的ATP分子又可将其高能磷酸基团转移给其他化合物使之获得能量,所以ATP 不仅是机体细胞最直接的能源,同时A TP在能量的传递中起中间题的作用。

物质氧化产生的高能位电子和脱下的氢原子通过辅酶Ⅰ或辅酶Ⅱ传递给生物合成中需要还原力的反应。

FMN和FAD都能接受两个电子和两个氢原子,它们在氧化还原反应中,特别是在氧化呼吸链中起着传递电子和氢原子的作用。

乙酰-CoA形成的硫脂键和A TP的高能磷酸键相似,都在水解时释放出大量的自由能。

因此可以说,乙酰-CoA具有高的乙酰基转移势能。

第20章生物能学1、生物氧化2、氧化磷酸化作用3、磷氧比值4、底物水平磷酸化5、解偶联剂6、怎样判断一个生物化学反应在标准状态下进行的方向?A TP、磷酸烯醇式丙酮酸、磷酸肌酸、葡糖糖-6-磷酸在水解时的标准自由能变化分别为-30.5kJ/mol、-61.9 kJ/mol 、-43.1kJ/mol、-13.8kJ/mol,当反应物、产物的起始浓度都为1mol/L时,判断下列反应进行的方向:①磷酸肌酸+ADP→ATP+肌酸;②磷酸烯醇式丙酮酸+ADP→ATP+丙酮;③葡糖糖-6-磷酸+ADP→葡萄糖+A TP。

7、从ATP的结构特点说明其在机体细胞能量传递中的作用。

答案:1、生物氧化指有机物质在生物体内氧化分解成二氧化碳和水,同时释放出能量形成ATP的过程。

由于生物氧化是在细胞内进行,氧化过程消耗氧气而放出二氧化碳和水,所以生物氧化又称为“细胞呼吸”或“呼吸作用”。

中国农业大学硕士研究生生物化学试题

中国农业大学硕士研究生生物化学试题

中国农业大学硕士研究生生物化学试题1997年生物化学一、名词解释(每题3分,共30分)1 操纵子2 反馈抑制3 密码子的简并性4 蛋白质四级结构5 盐析6 碱性氨基酸7 Z-DNA8 ATP9 核苷磷酸化酶10 磷酸果糖激酶二、填空(每空1分,共28分)1 DNA损伤后的修复主要有共修复、______________和_________________三种方式。

2 DNA,RNA和肽链的合成方向分别是______________、_________________和______________。

3真核生物mRNA前体的加工主要包括_______________________、___________________、___________________和___________________________。

4 在含有完整的线粒体系统中,加入解偶联剂后,能进行_____________,但不能发生____________________作用。

5 果糖1,6-二磷酸可在____________________的作用下,裂解生成2分子三碳糖。

6 ____________________氧化脱羧,形成______________________,这一过程是连接糖酵解和三羧酸循环的纽带。

7氨基酸降解的反应主要有三种方式,即________________________,___________________ 和_______________反应。

8 高等绿色植物体内,在___________________酶和___________________酶的共同作用下,可以将氨和α-酮戊二酸合成为谷氨酸。

9 蛋白质的平均含氮量为______________,它是___________法测定蛋白质含量的计算基础;蛋白质溶液在____________nm有特征吸收峰,该波长是固_______________法测定蛋白质含量所采用的波长。

生物化学糖代谢小结

生物化学糖代谢小结

糖代谢知识要点(一)糖酵解途径:糖酵解途径中,葡萄糖在一系列酶的催化下,经10 步反应降解为2 分子丙酮酸,同时产生2 分子NADH+H和2 分子ATP。

主要步骤为:(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛和磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H 及磷酸变成丙酮酸,脱去的2H 被NAD所接受,形成NADH+H。

(二)丙酮酸的去路:(1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1 分子NADH+H。

乙酰辅酶A 进入三羧酸循环,最后氧化为CO和HO。

(2)在厌氧条件下,可生成乳酸和乙醇。

同时NAD得到再生,使酵解过程持续进行。

(三)三羧酸循环:在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。

柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧和脱羧生成琥珀酰CoA;琥珀酰CoA 发生底物水平磷酸化产生1 分子GTP 和琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。

三羧酸循环每循环一次放出2 分子CO,产生3 分子NADH+H和一分子FADH。

(四)磷酸戊糖途径:在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段和非氧化阶段被氧化分解为CO,同时产生NADPH + H。

其主要过程是G-6-P 脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。

6 分子核酮糖-5-磷酸经转酮反应和转醛反应生成5 分子6-磷酸葡萄糖。

中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H提供各种合成代谢所需要的还原力。

(五)糖异生作用:非糖物质如丙酮酸,草酰乙酸和乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。

糖异生作用不是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程是在线粒体和细胞液中进行的。

生物化学三羧酸循环与氧化磷酸化复习题

生物化学三羧酸循环与氧化磷酸化复习题

作者:佚名出处:佚名一、A型题1.下列关于营养素在体外燃烧和生物体氧化的叙述哪一项是正确的?A.都需要催化剂B.都需要在温和条件下进行C.都是逐步释放能量D.生成的终产物基本相同E.氧与碳原子直接化合生成CO22.生物氧化是指A.生物体的脱氢反应B.生物体释出电子的反应C.营养物氧化成H2O及CO2的过程D.生物体与氧分子结合的反应E.生物体加氧反应3.人体各种活动的直接能量供给者是A.葡萄糖B.脂酸C.ATP D.GTPE.乙酰CoA4.磷酸肌酸+ADP→肌酸+ATP (1)ATP→ADP+Pi (2)反应(1)的ΔG0′=-6.8kJ/mol,反应(2)的ΔG0′=-51.6 kJ/mol。

磷酸肌酸水解成磷酸及肌酸时,ΔG0′为A.-6.3 kJ B.+6.3 kJC.-51.6 kJ D.+51.6 kJE.-57.9 kJ5.下列化合物水解时,ΔG0′最大的是A.葡萄糖-6-磷酸B.焦磷酸C.ATP水解成ADP及Pi D.烯醇丙酮酸磷酸E.AMP水解成腺苷及Pi6.关于三羧酸循环的叙述正确的是A.循环一周可生成4分子NADH B.循环一周可使2个ADP磷酸化成ATP C.乙酰CoA可经草酰乙酸进行糖异生D.丙二酸可抑制延胡索酸转变成苹果酸E.琥珀酰CoA是α-酮戊二酸氧化脱羧的产物7.1分子乙酰CoA经三羧酸循环氧化后的产物是A.草酰乙酸B.草酰乙酸和CO2C.CO2+H2O D.草酰乙酸+ CO2+H2OE.2 CO2+4分子还原当量8.三羧酸循环中有底物水平磷酸化的反应是A.异柠檬酸→α-酮戊二酸B.α-酮戊二酸→琥珀酸C.琥珀酸→延胡索酸D.延胡索酸→苹果酸E.苹果酸→草酰乙酸9.三羧酸循环和有关的呼吸链反应中能产生ATP最多的步骤是A.柠檬酸→异柠檬酸B.异柠檬酸→α-酮戊二酸C.α-酮戊二酸→琥珀酸D.琥珀酸→苹果酸E.苹果酸→草酰乙酸10.下列关于乙酰CoA的叙述错误的是A.*CH3CO~SCOA经三羧酸循环一周后,*C出现于CO2中B.它是丙酮酸羧化酶的变构激活剂C.从丙酮酸生成乙酰CoA是不可逆的D.乙酰CoA不能通过线粒体E.乙酰CoA含高能键111mol丙酮酸在线粒体氧化成CO2及H2O,可生成多少摩尔ATP?A.4mol B.8molC.12 mol D.14molE.15 mol12.谷氨酸氧化成CO2及H2O时可生成ATPA.9个B.12个C.18个D.24个E.27个13.调节三羧酸循环运转最主要的酶是A.丙酮酸脱氢酶B.乌头酸酶C.异柠檬酸脱氢酶D.苹果酸脱氢酶E.α-酮戊二酸脱氢酶14.关于三羧酸循环的叙述错误的是?A.是三大营养素分解的共同途径B.三羧酸循环还有合成功能,提供小分子原料C.生糖氨基酸都通过三羧酸循环的环节才能转变成糖D.乙酰CoA经三羧酸循环氧化时,可提供4对氢原E.乙酰CoA进入三羧酸循环后即只能被氧化15.关于高能键的叙述正确的是A.所有高能键都是高能磷酸键B.高能磷酸键都是以核苷二磷酸或核苷三磷酸形式C.实际上并不存在"键能"特别高的高能键D.高能键只能在电子传递链中偶联产生E.有ATP参与的反应都是不可逆的16.关于电子传递链的叙述错误的是A.最普遍的电子传递链从NADH开始B.氧化如不与磷酸化偶联,电子传递可以不终止C.电子传递方向从高电势向低电势D.氧化磷酸化在线粒体进行E.每对氢原子氧化时都生成3个ATP17.关于电子传递链的叙述错误的是A.电子传递链各组分组成4个复合体B.电子传递链中的递氢体同时也是递电子体C.电子传递链中的递电子体同时也是递氢体D.电子传递的同时伴有ADP的磷酸化E.抑制细胞色素氧化酶后,电子传递链中各组分都处于还原状态18.列有关细胞色素的叙述哪一项是正确的?A.全部存在于线粒体中B.全部含有血红素辅基C.都是递氢体D.都是递电子体E.与CO、CN-结合后丧失活性19.氰化物中毒是由于抑制了哪种细胞色素?A.cyta B.cytbC.cytc D.cytaa3E.cytc120.P/O比值是指A.每消耗一摩尔氧所消耗无机磷的摩尔数B.每消耗一克原子氧所消耗无机磷的克原子数C.每消耗一摩尔氧所消耗无机磷的克原子D.每消耗一克原子氧所消耗无机磷的摩尔数E.每消耗一摩尔氧所合成ATP的摩尔数作者:佚名出处:佚名一、A型题1.下列有关嘌呤核苷酸从头合成的叙述正确的是?A.嘌呤环的氮原子均来自氨基酸的α-氨基B.合成中不会产生自由嘌呤碱C.氨基甲酰磷酸为嘌呤环的形成提供氨甲酰基D.在由IMP合成AMP和GMP时均有ATP供能E.次黄嘌呤鸟嘌呤磷酸核糖转移酶催化IMP转变为GMP2.下列哪一个反应不需要1′-焦磷酸-5′-磷酸核糖(PRPP)A.5′-磷酸1′-氨基核糖的合成B.由次黄嘌呤转变为次黄苷酸C.嘧啶合成中乳清酸的生成D.由腺嘌呤转变为腺苷酸E.由鸟嘌呤转变为鸟苷酸3.氨甲喋呤和氨基喋呤抑制核苷酸合成中的哪个反应A.谷氨酰胺中酰胺氮的转移B.向新生成的环状结构中加入CO2C.天冬氨酸上氮的提供D.ATP中磷酸键能量的传递E.二氢叶酸还原成四氢叶酸4.人体嘌呤核苷酸分解代的主要产物是A.尿素B.尿酸C.肌苷D.尿苷酸E.肌酸5.嘧啶环中的两个氮原子来自A.谷氨酰胺和氨B.谷氨酰胺和天冬酰胺C.谷氨酰胺和天冬氨酸D.谷氨酸和氨甲酰磷酸E.天冬氨酸和氨甲酰磷酸6.dTMP合成的直接前体是A.dUMP B.dUDPC.TMP D.TDPE.dCMP7.嘧啶核苷酸生物合成途径的反馈抑制是由于控制了下列哪个酶的活性A.二氢乳清酸酶B.乳清酸焦磷酸化酶C.二氢乳清酸脱氢酶D.天冬氨酸转氨甲酰酶E.羟甲基胞苷酸合成酶8.5-Fu的抗癌作用机制是A.合成错误的DNA,抑制癌细胞的生长B.抑制尿嘧啶的合成,从而减少RNA的生物合成C.抑制胞嘧啶的合成,从而抑制DNA的生物合成D.抑制胸腺嘧啶核苷酸合成酶的活性,从而抑制抑制DNA的生物合成E.抑制二氢叶酸还原酶的活性,从而抑制了TMP的合成9.下列有关嘧啶分解代的叙述正确的是A.产生尿酸B.可引起痛风C.产生尿囊酸D.需要黄嘌呤氧化酶E.产生氨和二氧化碳10.合成嘌呤核苷酸过程中首先合成的是A.GMP B.AMPC.IMP D.XMPE.以上都不是11.氮杂丝氨酸能以竞争性抑制作用干扰或阻断核苷酸合成,因为它在结构上与A.丝氨酸类似B.甘氨酸类似C.天冬氨酸类似D.谷氨酰氨类似E.天冬酰氨类似12.6-巯基嘌呤核苷酸不抑制A.IMP→AMP B.IMP→GMPC.酰氨转移酶D.嘌呤磷酸核糖转移酶E.尿嘧啶磷酸核糖转移酶13.下列嘌呤核苷酸之间的转变,哪个是不能直接进行的A.GMP→IMP B.AMP→IMPC.AMP→GMP D.IMP→XMPE.XMP→GMP14.哺乳动物体直接催化尿酸生成的酶是A.尿酸氧化酶B.黄嘌呤氧化酶C.酰苷脱氢酶D.鸟嘌呤脱氢酶E.以上都不对15.治疗痛风有效的别嘌呤A.可抑制黄嘌呤氧化酶B.可抑制腺苷脱氢酶C.可抑制尿酸氧化酶D.可抑制鸟嘌呤脱氢酶E.以上都不对16.在嘧啶核苷酸的合成中,合成氨基甲酰磷酸的部位是A.线粒体B.微粒体C.胞质D.溶酶体E.溶酶体17.阿糖胞苷可抑制A.二氢叶酸还原酶B.核糖核苷酸还原酶C.胸腺嘧啶核苷酸合成酶D.二氢乳清酸脱氢酶E.氨基甲酰基转移酶18.催化dUMP转变微dTMP的酶是A.核苷酸还原酶B.胸腺嘧啶核苷酸合成酶C.核苷酸激酶D.甲基转移酶E.脱氧胸苷激酶19.PRPP酰氨转移酶活性过高可以导致痛风症,此酶催化A.从R-5-P生成PRPP B.从甘氨酸合成嘧啶环C.从PRPP生成磷酸核糖胺D.从IMP生成AMPE.从IMP生成GMP20.脱氧核糖核苷酸生成方式是A.直接由核糖还原B.由核苷还原C.由核苷酸还原D.由二磷酸核苷还原E.由三磷酸核苷还原作者:佚名出处:佚名一、A型题1.DNA以半保留方式进行复制,若一完全被标记的DNA分子,置于无放射标记的溶液中复制两代,所产生的4个DNA分子中放A.两个分子有放射性,两个分子无放射性B.均有放射性C.两条链中的半条具有放射性D.两条链中的一条具有放射性E.均无放射性2.下列关于DNA的复制的叙述哪个是错误的?A.有DNA指导的RNA聚合酶参加B.有RNA指导的DNA聚合酶参加C.为半保留复制D.以四种dNTP为原料E.有DNA指导的DNA聚合酶参加3.复制是指A.以DNA为模板合成DNA B.以DNA为模板合成RNAC.以DNA为模板合成蛋白质D.以RNA为模板合成RNAE.以RNA为模板合成DNA4.DNA复制时哪种酶不需要A.DNA指导的DNA聚合酶B.DNA指导的RNA聚合酶C.连接酶D.RNA指导的DNA聚合酶E.拓扑异构酶5.原核生物的DNA聚合酶A.DNA聚合酶Ⅰ由7种、9个亚单位B.DNA聚合酶Ⅱ有最强的外切核酸酶的活性C.DNA聚合酶Ⅲ是真正的起复制作用的酶D.催化过程产生的焦磷酸是主要底物E.用4种脱氧核苷作底物6.DNA拓扑异构酶的作用是A.解开DNA双螺旋使其易于复制B.使DNA解链旋转时不致缠结C.把DNA异构为RNA作为引物D.辨认复制起始点E.稳定分开的双螺旋7.DNA连接酶A.使DNA形成超螺旋结构B.使DNA双链缺口的两个末端相连接C.合成RNA引物D.将双螺旋解链E.祛除引物,填补空缺8.复制起始靠什么辨认起始点A.DNA聚合酶ⅠB.DNA聚合酶ⅢC.解旋酶D.dnaB蛋白E.σ因子9.下列哪种突变可引起读码框移A.转换和颠倒B.颠倒C.点突变D.缺失E.插入3个或3的倍数个核苷酸10.与DNA修复过程缺陷有关的疾病是A.着色性干皮病B.卟啉病C.黄疸D.黄嘌呤尿症E.痛风11.DNA上某段碱基顺序为5′ ACTAGTCAG 3′ 转录的mRNA上相应的碱基顺序为A.5′ TGATCAGTC 3′ B.5′UGAUCAGUC 3′C.5′CUGACUAGU 3′D.5′CTGACTAGT 3′E.5′CAGCUGACU 3′12.DNA指导的RNA聚合酶由数个亚单位组成,其核心酶的组成是A.α2ββ′B.α2ββ′δC.ααβ′D.ααβE.αββ′13.识别转录起点的是A.ρ因子B.核心酶C.RNA聚合酶的α亚单位D.σ因子E.dnaB蛋白14.原核生物参与转录起始的酶是A.解链酶B.引物酶C.RNA聚合酶ⅢD.RNA聚合酶全酶E.RNA聚合酶核心酶15.真核生物的TATA盒是A.DNA合成的起始位点B.RNA聚合酶与DNA模板稳定结合处C.RNA聚合酶活性中心D.翻译起始点E.转录起始点16.在真核生物中,经RNA聚合酶Ⅱ催化的转录产物是A.mRNA B.18SrRNAC.28SrRNA D.tRNAE.全部RNA17.外显子是A.基因突变的表现B.断裂开的DNA片段C.不转录的DNA就是反义链D.真核生物基因中为蛋白质编码的序列E.真核生物基因的非编码序列18.真核生物mRNA的转录后加工有A.磷酸化B.焦磷酸化C.祛除外显子D.首尾修饰和剪接E.把含子连接起来19.哺乳动物核糖体大亚基的沉降常数是A.40S B.70SC.30S D.80SE.60S20.snRNA的功能是A.参与DNA复制B.参与RNA剪接C.激活RNA聚合酶D.形成核糖体E.是rRNA的前体作者:佚名出处:佚名一、A型题1.成人体氨的最主要代去路为A.合成非必需氨基酸B.合成必需氨基酸C.合成NH4+随尿排出D.合成尿素E.合成嘌呤、嘧啶核苷酸等2.血中NPN明显增高的主要原因是A.蛋白质进食太多B.肝脏功能不良C.肾脏功能不良D.尿素合成增加E.谷氨酰胺合成增加3.蛋白质的互补作用是指A.糖和蛋白质混合食用,以提高食物的生理价值作用B.脂肪和蛋白质混合食用,以提高食物的生理价值C.几种生理价值低的蛋白质混合食用,以提高食物的生理价值作用D.糖、脂肪、蛋白质及维生素混合食用,以提高食物的生理价值作用E.用糖和脂肪代替蛋白质的作用4.S-腺苷甲硫氨酸的重要作用是A.补充甲硫氨酸B.合成四氢叶酸C.提供甲基D.生成腺嘌呤核苷E.合成同型半胱氨酸5.肾脏中产生的氨主要来自A.氨基酸的联合脱氨基作用B.谷氨酰胺的水解C.尿素的水解D.氨基酸的非氧化脱氢基作用E.胺的氧化6.血液中非蛋白氮中主要成分是A.尿素B.尿酸C.肌酸D.多肽E.氨基酸7.为了减少病人含氮代废物的产生和维持氮的总平衡最好是A.尽量减少蛋白质的供应量B.禁食含蛋白质的食物C.摄取低蛋白高糖饮食D.供给足量的糖E.低蛋白、低糖、低脂肪饮食8.营养充足的婴儿、孕妇、恢复期病人,常保持A.氮平衡B.氮的负平衡C.氮的正平衡D.氮的总平衡E.以上都不是9.L-氨基酸氧化酶A.需要吡哆醛磷酸B.催化氧化脱羧基反应C.催化脱水反应D.被分子氧氧化生成H2O2E.需以NAD+作为氧化剂10.在鸟氨酸和氨基甲酰磷酸存在时合成尿素还需要加入A.精氨酸B.HCO3-C.瓜氨酸D.氨E.以上都不是11.S-腺苷甲硫氨酸A.是以甜菜碱为甲基供体,使S-腺苷同型半胱氨酸甲基化生成的B.其合成与甲硫氨酸和AMP的缩合有关C.是合成亚精胺的甲基供给体D.是合成胆碱的甲基供给体E.以上都不是12.脑中氨的主要去路是A.合成尿素B.扩散入血C.合成谷氨酰胺D.合成氨基酸E.合成嘌呤13.下列哪一种氨基酸是生酮兼生糖氨基酸A.丙氨酸B.苯丙氨酸C.氨酸D.羟脯氨酸E.亮氨酸14.肌肉中氨基酸脱氨的主要方式是A.联合脱氨作用B.L-谷氨酸氧化脱氨作用C.转氨作用D.鸟氨酸循环E.嘌呤核苷酸循环15.下列哪一种氨基酸经过转氨作用可生成草酰乙酸?A.谷氨酸B.丙氨酸C.氨酸D.天冬氨酸E.脯氨酸16.下列哪一种物质是体氨的储存及运输形式?A.谷氨酸B.酪氨酸C.谷氨酰胺D.谷胱甘肽E.天冬酰胺17.下列哪种物质是体硫酸基的提供者?A.ATP B.NADP+C.PAPS D.FADE.GMP18.参与生物转化作用的氨基酸为A.甘氨酸B.丝氨酸C.谷氨酸D.酪氨酸E.色氨酸19.能转变为乙酰乙酰CoA的氨基酸为A.精氨酸B.亮氨酸C.甲硫氨酸D.氨酸E.脯氨酸20.肠道中氨基酸的主要腐败产物是A.吲哚B.色胺组胺D.氨腐胺21.甲基的直接供体A.N10-甲基四氢叶酸B.S-腺苷甲硫氨酸C.甲硫氨酸D.胆碱E.肾上腺素22.体硫酸盐来自哪种物质?A.胱氨酸B.半胱氨酸C.甲硫氨酸D.牛磺酸E.以上都不是23.甲状腺素、儿茶酚胺类及黑素等都是以什么氨基酸为原料合成的?A.色氨酸B.苯丙氨酸C.酪氨酸D.甲硫氨酸E.色氨酸24.不能与α-酮酸进行转氨基作用的氨基酸是A.Val B.TrpC.Lys D.AlaE.Ile25血氨的主要来源是A.氨基酸脱氨基作用生成的氨B.蛋白质腐败产生的氨C.尿素在肠中细菌脲酶作用下产生的氨D.体胺类物质分解释出的氨E.肾小管远端谷氨酰胺水解产生的氨26.在尿素合成中,能穿出线粒体进入胞质继续进行反应的代物是A.精氨酸B.瓜氨酸C.鸟氨酸D.氨基甲酰磷酸E.精氨酸代琥珀酸27.鸟氨酸循环的限速酶是A.氨基甲酰磷酸合成酶ⅠB.鸟氨酸氨基甲酰转移酶C.精氨酸代琥珀酸合成酶D.精氨酸代琥珀酸裂解酶E.精氨酸酶。

生物化学试题库及其答案——蛋白质降解和氨基酸代谢

生物化学试题库及其答案——蛋白质降解和氨基酸代谢

一、填空题1.根据蛋白酶作用肽键的位置,蛋白酶可分为酶和酶两类,胰蛋白酶则属于酶。

2.转氨酶类属于双成分酶,其共有的辅基为或;谷草转氨酶促反应中氨基供体为氨酸,而氨基的受体为该种酶促反应可表示为。

3.植物中联合脱氨基作用需要酶类和酶联合作用,可使大多数氨基酸脱去氨基。

4.在线粒体内谷氨酸脱氢酶的辅酶多为;同时谷氨酸经L-谷氨酸氢酶作用生成的酮酸为,这一产物可进入循环最终氧化为CO2和H2O。

5.动植物中尿素生成是通循环进行的,此循环每进行一周可产生一分子尿素,其尿素分子中的两个氨基分别来自于和。

每合成一分子尿素需消耗分子ATP。

6.根据反应填空7.氨基酸氧化脱氨产生的a-酮酸代谢主要去向是、、、。

8.固氮酶除了可使N2还原成以外,还能对其它含有三键的物质还原,如等。

该酶促作用过程中消耗的能量形式为。

9.生物界以NADH或NADPH为辅酶硝酸还原酶有三个类别,其中高等植物子叶中则以硝酸还原酸酶为主,在绿藻、酵母中存在着硝酸还原酶或硝酸还原酶。

10.硝酸还原酶催化机理如下图请填空完成反应过程。

11.亚硝酸还原酶的电子供体为,而此电子供体在还原子时的电子或氢则来自于或。

12.氨同化(植物组织中)通过谷氨酸循环进行,循环所需要的两种酶分别为和;它们催化的反应分别表示为和。

13.写出常见的一碳基团中的四种形式、、、;能提供一碳基团的氨基酸也有许多。

请写出其中的三种、、。

二、选择题(将正确答案相应字母填入括号中)1.谷丙转氨酶的辅基是()A、吡哆醛B、磷酸吡哆醇C、磷酸吡哆醛D、吡哆胺E、磷酸吡哆胺2.存在于植物子叶中和绿藻中的硝酸还原酶是()A、NADH—硝酸还原酶B、NADPH—硝酸还原酶C、Fd—硝酸还原酶D、NAD(P)H—硝酸还原酶3.硝酸还原酶属于诱导酶,下列因素中哪一种为最佳诱导物()A、硝酸盐B、光照C、亚硝酸盐D、水分4.固氮酶描述中,哪一项不正确()A、固氮酶是由钼铁蛋白质构成的寡聚蛋白B、固氮酶是由钼铁蛋白质和铁蛋白构成寡聚蛋白C、固氮酶活性中心富含Fe原子和S2-离子D、固氮酶具有高度专一性,只对N起还原作用25.根据下表内容判断,不能生成糖类的氨基酸为()6.一般认为植物中运输贮藏氨的普遍方式是()与谷氨酸合成谷氨酰胺;A、经谷氨酰胺合成酶作用,NH3B、经天冬酰胺合成酶作用,NH与天冬氨酸合成天冬酰胺;3C、经鸟氨酸循环形成尿素;D、与有机酸结合成铵盐。

2020年(生物科技行业)生物化学第三版习题答案第八章

2020年(生物科技行业)生物化学第三版习题答案第八章

(生物科技行业)生物化学第三版习题答案第八章第八章糖代谢自养生物分解代谢糖代谢包括异养生物自养生物合成代谢异养生物能量转换(能源)糖代谢的生物学功能物质转换(碳源)可转化成多种中间产物,这些中间产物可进壹步转化成氨基酸、脂肪酸、核苷酸。

糖的磷酸衍生物能够构成多种重要的生物活性物质:NAD、F AD、DNA、RNA、A TP。

分解代谢:酵解(共同途径)、三羧酸循环(最后氧化途径)、磷酸戊糖途径、糖醛酸途径等。

合成代谢:糖异生、糖原合成、结构多糖合成以及光合作用。

分解代谢和合成代谢,受神经、激素、别构物调节控制。

第一节糖酵解glycolysis一、酵解和发酵1、酵解glycolysis(在细胞质中进行)酵解酶系统将Glc降解成丙酮酸,且生成A TP的过程。

它是动物、植物、微生物细胞中Glc分解产生能量的共同代谢途径。

在好氧有机体中,丙酮酸进入线粒体,经三羧酸循环被彻底氧化成CO2和H2O,产生的NADH 经呼吸链氧化而产生A TP和水,所以酵解是三羧酸循环和氧化磷酸化的前奏。

若供氧不足,NADH把丙酮酸仍原成乳酸(乳酸发酵)。

2、发酵fermentation厌氧有机体(酵母和其它微生物)把酵解产生的NADH上的氢,传递给丙酮酸,生成乳酸,则称乳酸发酵。

若NAPH中的氢传递给丙酮酸脱羧生成的乙醛,生成乙醇,此过程是酒精发酵。

有些动物细胞即使在有O2时,也会产生乳酸,如成熟的红细胞(不含线粒体)、视网膜。

二、糖酵解过程(EMP)Embden-MeyerhofPathway,1940在细胞质中进行1、反应步骤P79图13-1酵解途径,三个不可逆步骤是调节位点。

(1)、葡萄糖磷酸化形成G-6-P反应式此反应基本不可逆,调节位点。

△G0=-4.0Kcal/mol使Glc活化,且以G-6-P形式将Glc限制在细胞内。

催化此反应的激酶有,已糖激酶和葡萄糖激酶。

激酶:催化A TP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,壹般需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象似乎是激酶的共同特征。

13-3三羧酸循环

13-3三羧酸循环
琥珀酰-CoA
succinate + GTP + CoASH △G0’= -29 kJ/mol
这个反应与酵解中的两个底物水平的磷酸化类似,不同的是在动物
细胞中核苷酸产物不是ATP,而是GTP。
GTP可参与蛋白质合成。但大部分合成的GTP通过二磷酸核苷激酶的 反应最终驱动ATP的合成。
GTP + ADP
如果考虑丙酮酸脱氢酶的反应,考虑到每分子葡萄糖产生2分子丙酮酸,葡萄糖 通过酵解和三羧酸循环的分解代谢方程式为:
葡萄糖 + 6H2O + 10 NAD+ + 2FAD + 4ADP + 4 Pi → 6CO2 + 10 NADH + 10H+ + 2FADH2 + 4ATP
到此为止,每摩尔葡萄糖在这个方程式中只产生4摩尔ATP。在酵解部分产生的 ATP是2摩尔。
5
琥珀酰辅酶A + Pi + GDP
琥珀酰辅酶A合成酶
-2.9
琥珀酸 + GTP + CoA-SH
6
琥珀酸 + FAD 延胡索酸 + FADH2
琥珀酸脱氢酶
0
7
延胡索酸 + H2O 苹果酸
延胡索酸酶
-3.8
8
苹果酸 + NAD+ 草酰乙酸 +NADH + H+ 苹果酸脱氢酶
+29.7
总计
-57.3
三羧酸循环反应要点: (1)两碳片段(乙酰辅酶A)与4碳受体(草酰乙酸)结合形成柠檬酸。 (2)当柠檬酸进一步代谢时, 以CO2形式失去两个碳。 (3)有4个氧化反应,3个用NAD+作辅酶,一个用FAD作辅酶。 (4)只有一个反应直接产生高能磷酸化合物。 (5)草酰乙酸再产生,以进行下一轮循环。

柠檬酸循环的名词解释

柠檬酸循环的名词解释

柠檬酸循环的名词解释介绍柠檬酸循环(Krebs cycle),也称为三羧酸循环(tricarboxylic acid cycle)或卡尔文循环(Calvin cycle),是生物体内进行细胞呼吸的关键代谢途径之一。

它在有氧条件下通过氧化葡萄糖产生能量,并生成二氧化碳、水和能量富集的还原辅酶。

循环过程柠檬酸循环是一系列复杂的生化反应,涉及多个底物和酶的参与。

以下是柠檬酸循环的主要步骤:1.乳酸脱氢酶反应–乳酸通过乳酸脱氢酶转化为丙酮酸,同时产生NADH。

2.丙酮酸变羧化反应–丙酮酸通过丙酮酸脱羧酶的作用,变羧化为柠檬酸,并释放出二氧化碳。

3.柠檬酸异构反应–柠檬酸经过柠檬酸异构酶的作用,转化为异柠檬酸。

4.异柠檬酸变羧化反应–异柠檬酸通过异柠檬酸脱羧酶的作用,变羧化为α-酮戊二酸,并释放出二氧化碳。

5.α-酮戊二酸脱氢反应–α-酮戊二酸通过α-酮戊二酸脱氢酶的作用,产生NADH和脱羧产物。

6.脱羧产物再生–脱羧产物在多次反应中生成辅酶A,再经过复杂的反应路径得到柠檬酸。

7.总反应方程式–以上反应综合在一起,得到柠檬酸循环的总反应方程式:乳酸 + NAD+ + CoA-SH + ADP + Pi → Acetyl-CoA + NADH + H+ + ATP +H2O + CO2。

循环中的产物柠檬酸循环在每一次循环过程中产生以下重要的产物:1.ATP:通过底物级磷酸化反应(substrate-level phosphorylation),柠檬酸循环每循环一次可以产生1个ATP。

2.NADH和FADH2:在柠檬酸循环中,通过NAD+和FAD接受氢原子的转移,产生NADH和FADH2,这些将在后续的细胞呼吸过程中发挥重要的作用。

3.CO2:柠檬酸循环中产生的二氧化碳是细胞释放掉的废物,它将在呼吸过程中通过肺部排出体外。

循环调控柠檬酸循环的调控对于维持正常的细胞呼吸过程至关重要。

以下是柠檬酸循环的调控机制:1.NADH和ATP浓度:高浓度的NADH和ATP会抑制柠檬酸循环的进行,这是因为细胞内能源和氧气供应充足,不需要继续产生更多的能量。

生化糖代谢练习题

生化糖代谢练习题

糖代谢练习题第一部分填空1、TCA循环中有两次脱羧反应,分别是由________和________催化。

2、在糖酵解中提供高能磷酸基团,使ADP磷酸化成ATP的高能化合物是_______________ 和________________3、糖酵解途径中的两个底物水平磷酸化反应分别由_____________ 和_____________ 催化。

4、三羧酸循环在细胞___________进行;糖酵解在细胞___________进行。

5、一次三羧酸循环可有________次脱氢过程和________次底物水平磷酸化过程。

6、每一轮三羧酸循环可以产生_________分子GTP,_________分子NADH和_________分子。

FADH27、丙酮酸还原为乳酸,反应中的NADH+H+来自的氧化。

8、糖酵解在细胞内的中进行,该途径是将转变为 ,同时生成的一系列酶促反应。

9、许多非糖物质如______,______,以及某些氨基酸等能在肝脏中转变为糖原,称为___________10、线粒体内部的ATP是通过载体,以方式运出去的。

11、1分子葡萄糖经糖酵解代谢途径转化为_________分子乳酸净生成_________分子ATP。

12、糖酵解在细胞_________中进行,该途径能将_________转变为丙酮酸。

13、三羧酸循环脱下的_________通过呼吸链氧化生成_________的同时还产生ATP。

14、糖酵解过程中有 3 个不可逆的酶促反应,这些酶是__________、 ___________ 和_____________。

15、由非糖物质生成葡萄糖或糖元的作用,称为__________作用。

16、糖是人和动物的主要物质,它通过而放出大量,以满足生命活动的需要。

17、lmol 葡萄糖氧化生成CO2和H2O时,净生成__________mol ATP。

18、三羧酸循环的第一步反应产物是___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酸脱水生成延胡索酸的逆反应。 延胡索酸酶分子量为200000,由4个相同亚基组成,每个亚基含3个自由巯基,是
酶活性所必需的。已从猪心制备了延胡索酸酶结晶。
反应8:脱氢产生进入下一轮循环的底物 苹果酸脱氢生成草酰乙酸。 这是三羧酸循环中第4次氧化还原反应。L-苹果酸脱氢酶催化依赖于NAD+的脱氢 ,完成循环。NAD+接受氢还原成NADH。
黄素辅酶 有两种从维生素B2或核黄素 (riboflavin)衍生出来的辅酶: ·黄素腺嘌呤二核苷酸(flavin adenine dinucleotide, FAD) ·黄素单核苷酸(flavin mononucleotide, FMN)。
异咯嗪
核糖醇
核黄素
黄素单核苷酸
黄素腺嘌呤二核苷酸
还原的黄素需要再氧化以便使琥珀酸脱氢酶能再参与反应。因琥珀 酸脱氢酶可直接与位于线粒体内膜的电子传递系统联接,琥珀酸脱 氢产生的还原的黄素(FADH2)可以转移到酶的铁硫中心,然后进入 电子传递系统再氧化。
三羧酸循环的8个反应可写成一个化学平衡方程,总反应式为:
乙酰辅酶A + 2H2O + 3NAD+ + FAD + GDP + Pi → 2CO2 + 3NADH + 3H+ + FADH2 + CoA-SH + GTP
在动物中,琥珀酰CoA合成酶反应形成的GTP在能量上与ATP相等。在后面的讨论 中将用ATP代替GTP。
参加代谢,对有机体有毒性。 丙二酸是琥珀酸脱氢酶的竞争性抑制剂。
反应7:碳-碳双键的水合反应 延胡索酸水化生成苹果酸
延胡索酸酶催化这个立体专一水化反应。用标记氘的实验证明H+和OH- 以反式加
成,酶具有立体异构特异性,OH-只加入延胡索酸双键的一侧,因此只形成L-苹 果酸。延胡索酸的异构体马来酸不是这个酶的底物,这个酶也不能催化从D-苹果
2 2 2 2
葡萄糖氧化的△G0’是-2870kJ/mol, ATP水解的△G0’是30.5kJ/mol。葡萄糖完全氧化能量的利用效率为40% (38x30.5/2870)。
在标准条件下测定的值很可能要比在体内低。
糖,脂肪和某些氨基酸代谢最终产生乙酰CoA,通过三羧酸循环彻 底氧化成CO2。通过三羧酸循环进行氧化是体内最主要的产生ATP的途径,在生物进化
+
+
在标准热力学条件下,平衡有利于逆反应。但是在生理条件下,反应产物草酰乙
酸因不断合成柠檬酸而减少,使其在细胞中浓度极低,约少于10-6mol/L,使反应 向右进行。
三羧酸循环反应的总结
反应

△G0’ (kJ/mol)
1
乙酰辅酶A + 草酰乙酸 + H2O
柠檬酸 + CoA-SH + H+
柠檬酸合成酶
反应6:依赖于黄素的脱氢 反应6,7和8把4碳的琥珀酸转换成4碳的草酰乙酸。这三个反应的 第一个是由琥珀酸脱氢酶催化的,依赖于FAD的脱氢。这是三羧酸
循环中第三个氧化还原反应,琥珀酸脱氢生成延胡索酸。
氢的受体是酶的辅基FAD,这个反应自由能变化不足以还原NAD+。
FAD是通过异咯嗪环上的第8(7)位碳上的甲基与酶蛋白质中的组氨 酸残基上的咪唑环氮3连接。
如果考虑丙酮酸脱氢酶的反应,考虑到每分子葡萄糖产生2分子丙酮酸,葡萄糖 通过酵解和三羧酸循环的分解代谢方程式为:
葡萄糖 + 6H2O + 10 NAD+ + 2FAD + 4ADP + 4 Pi → 6CO2 + 10 NADH + 10H+ + 2FADH2 + 4ATP
到此为止,每摩尔葡萄糖在这个方程式中只产生4摩尔ATP。在酵解部分产生的 ATP是2摩尔。
虽然柠檬酸是一个对称分子,但它以中间碳原子为中心形成一个四面体,且与顺乌头酸酶 有三个不同作用位点,是不对称结合。13CH214COO-与CH2COO-不一致,是由于不对称结合造 成的。柠檬酸脱水时氢原子仅来自草酰乙酸部分,所以三羧酸循环的第一轮没有标记的 CO2释出。
虽然第二轮循环开始有标记的CO2释出,也不表明是来自乙酰CoA,因为琥珀酸是对称分子, 所以使延胡索酸,苹果酸和草酰乙酸经第一轮循环后都出现同位素标记的碳原子。
中保存下来。
三羧酸循环中碳骨架的不对称反应 乙酰CoA经三羧酸循环产生两分子CO2,草酰乙酸经循环可以再次生 成。用同位素14C,13C分别标记乙酰CoA的甲基及羧基碳,发现在第 一轮循环中没有标记的CO2释放,说明释放出的两个碳原子并非乙酰 CoA的碳原子。
柠檬酸是对称分子,经酶催化生成的α-酮戊二酸应可能有两个产 物。 若用标记乙酰CoA合成第一个羧基标记的柠檬酸,由此产生的α-酮 戊二酸应一半在α羧基上标记,另一半在γ羧基上标记,也就是 α-酮戊二酸的两个羧基都应标记,但是事实上从体内分离的α-酮 戊二酸只是γ羧基上有标记。
GDP + ATP
△G0’= 0.0 kJ/mol
在植物和细菌中,通过琥珀酰CoA和ADP直接合成ATP。
在合成GTP或ATP的反应中,先形成脱水的琥珀酰磷酸,然后通过使
琥珀酰-CoA合成酶的一个特定的组氨酸磷酸化使酶活化。
N-磷酸组氨酸再把其磷酸转移到核苷二磷酸底物。
琥珀酰-CoA合成酶催化的反应中N-磷酸组氨酸残基的结构
5
琥珀酰辅酶A + Pi + GDP
琥珀酰辅酶A合成酶
-2.9
琥珀酸 + GTP + CoA-SH
6
琥珀酸 + FAD 延胡索酸 + FADH2
琥珀酸脱氢酶
0
7
延胡索酸 + H2O 苹果酸
延胡索酸酶
-3.8
8
苹果酸 + NAD+ 草酰乙酸 +NADH + H+ 苹果酸脱氢酶
+29.7
总计
-57.3
三羧酸循环反应要点: (1)两碳片段(乙酰辅酶A)与4碳受体(草酰乙酸)结合形成柠檬酸。 (2)当柠檬酸进一步代谢时, 以CO2形式失去两个碳。 (3)有4个氧化反应,3个用NAD+作辅酶,一个用FAD作辅酶。 (4)只有一个反应直接产生高能磷酸化合物。 (5)草酰乙酸再产生,以进行下一轮循环。
葡萄糖氧化产生的ATP大多数不是直接从酵解和三羧酸循环产生的,而是通过还
原的电子载体在呼吸链中再氧化产生的。
三羧酸循环和氧化 磷酸化所生成的ATP
t
ADP ATP
葡萄糖完全氧化产生的ATP: 每一轮三羧酸循环由琥珀酰CoA合成酶催化的反应产生一分子GTP,GTP可产生ATP 。 共有4个脱氢反应,其中有3对电子经NADH进入电子传递链,最后传递给氧生成 H2O,每对电子产生3分子ATP,3对电子共产生9分子ATP。一对电子经FADH2进入电 子传递链,可产生2分子ATP。
-32.2
2a
柠檬酸 顺乌头酸 + H2O
顺乌头酸酶
2b
顺乌头酸 + H2O 异柠檬酸
顺乌头酸酶
+6.3
3.
异柠檬酸 + NAD+ α-酮戊二酸
异柠檬酸脱氢酶
-20.9
+ CO2 + NADH + H+
4
α-酮戊二酸 + NAD+ + CoASH
α-酮戊二酸脱氢酶
-33.5
琥珀酰辅酶A + CO2 + NADH + H&#GTP + CoASH △G0’= -29 kJ/mol
这个反应与酵解中的两个底物水平的磷酸化类似,不同的是在动物
细胞中核苷酸产物不是ATP,而是GTP。
GTP可参与蛋白质合成。但大部分合成的GTP通过二磷酸核苷激酶的 反应最终驱动ATP的合成。
GTP + ADP
反应5:底物水平的磷酸化 琥珀酰-CoA转化成琥珀酸,并产生GTP。这是三羧酸循环中唯一一 个底物水平磷酸化。 琥珀酰-CoA的硫酯键是一个高能硫酯键,它的势能可被用来驱动磷 酸键的形成。 在琥珀酰-CoA合成酶的催化下,二磷酸鸟苷(GDP)磷酸化成三磷 酸鸟苷(GTP)。
Succinyl-CoA + GDP + Pi
每一轮循环共产生1 + 9 + 2 = 12分子ATP 。 若从丙酮酸脱氢酶的反应开始计算,共产生15分子ATP。
每分子葡萄糖可以产生2分子丙酮酸,因此每分子葡萄糖经酵解,三羧酸循环及 氧化磷酸化3个阶段共产生6或8 + 2X15 = 36-38个ATP分子。
每摩尔葡萄糖完全氧化产生的ATP摩尔数
琥珀酸脱氢酶中含有三种不同的铁硫簇:2Fe-2S(两个铁原子与两 个无机硫结合),3Fe-3S和4Fe-4S。 琥珀酸脱氢酶是三羧酸循环中唯一位于线粒体内膜的酶。心肌线粒 体内膜提纯的酶分子量是100000,由70000和29000两个亚基组成。
琥珀酸脱氢酶也有立体专一性,只形成反式异构体延胡索酸(反丁 烯二酸),不形成顺式异构体马来酸(顺丁烯二酸)。马来酸不能
相关文档
最新文档