北京市西城区2019-2020学年下学期初中七年级期末考试数学试卷

合集下载

2020-2021学年北京市西城区七年级(下)期末数学试卷(解析版)

2020-2021学年北京市西城区七年级(下)期末数学试卷(解析版)

2020-2021学年北京市西城区七年级(下)期末数学试卷一、选择题(共30分,每题3分).1.平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.在实数,,31415,中,无理数是()A.B.C.3.1415D.3.若a<b,则下列各式中正确的是()A.a+1>b+1B.a﹣c>b﹣c C.﹣3a>﹣3b D.>4.下列事件中,调查方式选择合理的是()A.为了解某批次汽车的抗撞击能力,选择全面调查B.为了解某市中学生每天阅读时间的情况,选择全面调查C.为了解某班学生的视力情况,选择全面调查D.为选出某校短跑最快的学生参加全市比赛,选择抽样调查5.下列式子正确的是()A.=±3B.=﹣2C.﹣=4D.﹣=26.如图,点E,B,C,D在同一条直线上,∠A=∠ACF,∠DCF=50°,则∠ABE的度数是()A.50°B.130°C.135°D.150°7.下列命题中,假命题是()A.对顶角相等B.同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线被第三条直线所截,同旁内角互补D.如果a>b,b>c,那么a>c8.如图是北京地铁部分线路图.若崇文门站的坐标为(4,﹣1),北海北站的坐标为(﹣2,4),则复兴门站的坐标为()A.(﹣1,﹣7)B.(﹣7,1)C.(﹣7,﹣1)D.(1,7)9.2021年3月12日北京市统计局发布了《北京市2020年国民经济和社会发展统计公报》,其中列举了2020年北京市居民人均可支配收入.如图是小明同学根据2016﹣2020年北京市居民人均可支配收入绘制的统计图.根据统计图提供的信息,下面四个判断中不合理的是()A.2020年北京市居民人均可支配收入比2016年增加了16904元B.2017﹣2020年北京市居民人均可支配收入逐年增长C.2017年北京市居民人均可支配收入的增长率约为8.9%D.2017﹣2020年北京市居民人均可支配收入增长幅度最大的年份是2018年10.如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要()A.4步B.5步C.6步D.7步二、填空题(本题共16分,每小题2分)11.27的立方根为.12.已知是方程y=kx+4的解,则k的值是.13.在平面直角坐标系中,若点P(2,a)到x轴的距离是3,则a的值是.14.将命题“同角的余角相等”,改写成“如果…,那么…”的形式.15.如图,数轴上点A,B对应的数分别为﹣2,1,点C在线段AB上运动.请你写出点C 可能对应的一个无理数是.16.已知|2x﹣y|+(x+2y﹣5)2=0,则x﹣y的值是.17.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠ADC+∠C=180°.其中,能推出AD∥BC的条件是.(填上所有符合条件的序号)18.在平面直角坐标系xOy中,已知三角形的三个顶点的坐标分别是A(0,1),B(1,0),C(1,2),点P在y轴上,设三角形ABP和三角形ABC的面积分别为S1和S2,如果S1≥S2,那么点P的纵坐标y p的取值范围是.三、解答题(本题共32分,第19题8分;其余各题,每小题8分)19.(1)计算:3﹣(2+)+|﹣|;(2)求等式中x的值:25x2=4.20.解不等式组,并把它的解集在数轴上表示出来.21.如图,AD∥BC,∠BAD的平分线交CD于点F,交BC的延长线于点E,∠CFE=∠E.求证:∠B+∠BCD=180°.请将下面的证明过程补充完整:证明:∵AD∥BC,∴=∠E(理由:).∵AE平分∠BAD,∴=.∴∠BAE=∠E.∵∠CFE=∠E,∴∠CFE=∠BAE,∴∥(理由:).∴∠B+∠BCD=180°(理由:).22.2021年3月教育部发布了《关于进一步加强中小学生睡眠管理工作的通知》,明确初中生每天睡眠时间要达到9小时.为了解某校七年级学生的睡眠情况,小明等5名同学组成学习小组随机抽查了该校七年级40名学生一周(7天)平每天的睡眠时间(单位:小时)如下:8 6.8 6.5 7.2 7.1 7.5 7.7 9 8.3 88.3 9 8.5 8 8.4 8 7.3 7.5 7.3 98.3 6 7.5 7.5 9 6.5 6.6 8.4 8.2 8.17 7.8 8 9 7 9 8 6.6 7 8.5该小组将上面收集到的数据进行了整理,绘制成频数分布表和频数分布直方图.平均每天睡眠时间频数分布表分组频数6≤x<6.516.5≤x<7m7≤x<7.577.5≤x<868≤x<8.5138.5≤x<929≤x<9.5n根据以上信息,解答下列问题:(1)表中m=,n=;(2)请补全频数分布直方图;(3)若该校七年级共有360名学生,请你估算其中睡眠时间不少于9小时的学生约有多少人.23.如图,在平面直角坐标系xOy中,A(1,5),B(4,1),将线段AB先向左平移5个单位长度,再向下平移4个单位长度得到线段CD(其中点C与点A,点D与点B是对应点),连接AC,BD.(1)补全图形,直接写出点C和点D的坐标;(2)求四边形ACDB的面积.四、解答题(本题共22分,第24题7分,第25题7分,第26题8分)24.快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的.如果他平均每天的提成不低于318,求他平均每天的送件数.25.如图,点C,D在直线AB上,∠ACE+∠BDF=180°,EF∥AB.(1)求证:CE∥DF;(2)∠DFE的角平分线FG交AB于点G,过点F作FM⊥FG交CE的延长线于点M.若∠CMF=55°,先补全图形,再求∠CDF的度数.26.将二元一次方程组的解中的所有数的全体记为M,将不等式(组)的解集记为N,给出定义:若M中的数都在N内,则称M被N包含;若M中至少有一个数不在N内,则称M不能被N包含.如,方程组的解为,记A:{0,2},方程组的解为,记B:{0,4},不等式x﹣3<0的解集为x<3,记H:x<3.因为0,2都在H内,所以A被H包含;因为4不在H内,所以B不能被H包含.(1)将方程组的解中的所有数的全体记为C,将不等式x+1≥0的解集记为D,请问C能否被D包含?说明理由;(2)将关于x,y的方程组的解中的所有数的全体记为E,将不等式组的解集记为F,若E不能被F包含,求实数a的取值范围.五、填空题(本题6分)27.对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b为非负数.(1)当c=0时,若F(1,﹣1,2)=1,F(3,1,1)=7,则a的值是,b的值是;(2)若F(3,2,1)=5,F(1,2,﹣3)=1,设H=a+2b+c,则H的取值范围是.六、解答题(本题共14分,第28题6分,第29题8分)28.如图,点E,F分别在直线AB,CD上,AB∥CD,∠CFE=60°.射线EM从EA开始,绕点E以每秒3度的速度顺时针旋转至EB后立即返回,同时,射线FN从FC开始,绕点F以每秒2度的速度顺时针旋转至FD停止.射线FN停止运动的同时,射线EM也停止运动,设旋转时间为t(s).(1)当射线FN经过点E时,直接写出此时t的值;(2)当30<t<45时,射线EM与FN交于点P,过点P作KP⊥FN交AB于点K,求∠KPE;(用含t的式子表示)(3)当EM∥FN时,求t的值.29.在平面直角坐标系xOy中,对于点A(x1,y1),B(x2,y2),记d x=|x1﹣x2|,d y=|y1﹣y2|,将|d x﹣d y|称为点A,B的横纵偏差,记为μ(A,B),即μ(A,B)=|d x﹣d y|.若点B在线段PQ上,将μ(A,B)的最大值称为线段PQ关于点A的横纵偏差,记为μ(A,PQ).(1)A(0,﹣2),B(1,4),①μ(A,B)的值是;②点K在x轴上,若μ(B,K)=0,则点K的坐标是.(2)点P,Q在y轴上,点P在点Q的上方,PQ=6,点M的坐标为(﹣5,0).①当点Q的坐标为(0,1)时,求μ(M,PQ)的值;②当线段PQ在y轴上运动时,直接写出μ(M,PQ)的最小值及此时点P的坐标.参考答案一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个1.平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限解:点(1,﹣2)在第四象限.故选:D.2.在实数,,31415,中,无理数是()A.B.C.3.1415D.解:A.是无理数,故本选项符合题意;B.,是整数,属于有理数,故本选项不合题意;C.31415是整数,属于有理数,故本选项不合题意;D.是分数,属于有理数,故本选项不合题意;故选:A.3.若a<b,则下列各式中正确的是()A.a+1>b+1B.a﹣c>b﹣c C.﹣3a>﹣3b D.>解:A.∵a<b,∴a+1<b+1,∴选项A不符合题意;B.∵a<b,∴a﹣c<b﹣c,∴选项B不符合题意;C.∵a<b,∴﹣3a>﹣3b,∴选项C符合题意;D.∵a<b,∴,选项D不符合题意.故选:C.4.下列事件中,调查方式选择合理的是()A.为了解某批次汽车的抗撞击能力,选择全面调查B.为了解某市中学生每天阅读时间的情况,选择全面调查C.为了解某班学生的视力情况,选择全面调查D.为选出某校短跑最快的学生参加全市比赛,选择抽样调查解:∵了解汽车的抗撞击能力具有破坏性,用抽样调查,∴A选项不合题意,∵某市中学生人数较多,适合抽样调查,∴B选项不合题意,∵一个班的学生人数较少,适合选择全面调查,∴C选项符合题意,∵选出短跑最快的学生,每个学生都有可能,应选择全面调查,∴D选项不符合题意,故选:C.5.下列式子正确的是()A.=±3B.=﹣2C.﹣=4D.﹣=2解:A、=3,故此选项不符合题意;B、,故此选项不符合题意;C、﹣=﹣4,故此选项不符合题意;D、﹣,正确,故此选项符合题意,故选:D.6.如图,点E,B,C,D在同一条直线上,∠A=∠ACF,∠DCF=50°,则∠ABE的度数是()A.50°B.130°C.135°D.150°解:∵∠A=∠ACF,∴AB∥CF,∵∠DCF=50°,∴∠ABC=50°,∴∠ABE=130°.故选:B.7.下列命题中,假命题是()A.对顶角相等B.同一平面内,过一点有且只有一条直线与已知直线垂直C.两条直线被第三条直线所截,同旁内角互补D.如果a>b,b>c,那么a>c解:A、对顶角相等,本选项说法是真命题,不符合题意;B、同一平面内,过一点有且只有一条直线与已知直线垂直,本选项说法是真命题,不符合题意;C、两条平行线被第三条直线所截,同旁内角互补,故本选项说法是假命题,符合题意;D、如果a>b,b>c,那么a>c,本选项说法是真命题,不符合题意;故选:C.8.如图是北京地铁部分线路图.若崇文门站的坐标为(4,﹣1),北海北站的坐标为(﹣2,4),则复兴门站的坐标为()A.(﹣1,﹣7)B.(﹣7,1)C.(﹣7,﹣1)D.(1,7)解:由题意可建立如图所示平面直角坐标系,则复兴门站的坐标为(﹣7,1).故选:B.9.2021年3月12日北京市统计局发布了《北京市2020年国民经济和社会发展统计公报》,其中列举了2020年北京市居民人均可支配收入.如图是小明同学根据2016﹣2020年北京市居民人均可支配收入绘制的统计图.根据统计图提供的信息,下面四个判断中不合理的是()A.2020年北京市居民人均可支配收入比2016年增加了16904元B.2017﹣2020年北京市居民人均可支配收入逐年增长C.2017年北京市居民人均可支配收入的增长率约为8.9%D.2017﹣2020年北京市居民人均可支配收入增长幅度最大的年份是2018年解:A、2020年北京市居民人均可支配收入比2016年增加了69434﹣52530=16904元,正确,故本选项不合题意;B、2017﹣2020年北京市居民人均可支配收入逐年增长,正确,故本选项不合题意;C、2017年北京市居民人均可支配收入的增长率×100%≈8.9%,正确,故本选项不合题意;D、2017﹣2020年北京市居民人均可支配收入增长幅度最大的年份是2019年,故本选项合题意;故选:D.10.如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要()A.4步B.5步C.6步D.7步解:由图形知,中间的线段向左平移1个单位,上边的直线向右平移2个单位,最下边的直线向上平移2个单位,只有这样才能使构造的三角形平移的次数最少,其它平移方法都多于5步.∴通过平移使图中的3条线段首尾相接组成一个三角形,最少需要5步.故选:B.二、填空题(本题共16分,每小题2分)11.27的立方根为3.解:∵33=27,∴27的立方根是3,故答案为:3.12.已知是方程y=kx+4的解,则k的值是﹣.解:把代入方程得:﹣2=4k+4,解得:k=﹣.故答案为:﹣.13.在平面直角坐标系中,若点P(2,a)到x轴的距离是3,则a的值是±3.解:因为点P(2,a)到x轴的距离是3,所以|a|=3,解得a=±3.故答案为:±3.14.将命题“同角的余角相等”,改写成“如果…,那么…”的形式如果两个角是同一个角的余角,那么这两个角相等..解:命题“同角的余角相等”,可以改写成:如果两个角是同一个角的余角,那么这两个角相等.故答案为如果两个角是同一个角的余角,那么这两个角相等.15.如图,数轴上点A,B对应的数分别为﹣2,1,点C在线段AB上运动.请你写出点C可能对应的一个无理数是答案不唯一,如﹣.解:∵点C在AB上,∴点C对应的无理数在﹣2~1之间,∴可以是﹣,故答案为:答案不唯一,如﹣.16.已知|2x﹣y|+(x+2y﹣5)2=0,则x﹣y的值是﹣1.解:∵|2x﹣y|+(x+2y﹣5)2=0,∴2x﹣y=0,x+2y﹣5=0,即,解得:x=1,y=2,∴x﹣y=1﹣2=﹣1,故答案为:﹣1.17.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠ADC+∠C=180°.其中,能推出AD∥BC的条件是②④.(填上所有符合条件的序号)解:①∵∠1=∠2,∴AB∥CD;②∵∠3=∠4,∴AD∥BC;③∵∠A=∠CDE,∴AB∥CD;④∵∠ADC+∠C=180°,∴AD∥BC.故答案为:②④.18.在平面直角坐标系xOy中,已知三角形的三个顶点的坐标分别是A(0,1),B(1,0),C(1,2),点P在y轴上,设三角形ABP和三角形ABC的面积分别为S1和S2,如果S1≥S2,那么点P的纵坐标y p的取值范围是y P≤﹣2或y P≥4.解:如图,,,∵,∴|y P﹣1|≥3解得:y P≤﹣2或y P≥4三、解答题(本题共32分,第19题8分;其余各题,每小题8分) 19.(1)计算:3﹣(2+)+|﹣|;(2)求等式中x的值:25x2=4.解:(1)原式=3﹣2﹣+=2﹣;(2)25x2=4,x2=,x=±,即x1=,x2=﹣.20.解不等式组,并把它的解集在数轴上表示出来.解:解不等式x﹣4>﹣3,得x>1,解不等式﹣3≤x,得:x≤4,则不等式组的解集为1<x≤4,将不等式组的解集表示在数轴上如下:21.如图,AD∥BC,∠BAD的平分线交CD于点F,交BC的延长线于点E,∠CFE=∠E.求证:∠B+∠BCD=180°.请将下面的证明过程补充完整:证明:∵AD∥BC,∴∠DAE=∠E(理由:两直线平行,内错角相等).∵AE平分∠BAD,∴∠DAE=∠BAE.∴∠BAE=∠E.∵∠CFE=∠E,∴∠CFE=∠BAE,∴AB∥CD(理由:同位角相等,两直线平行).∴∠B+∠BCD=180°(理由:两直线平行,同旁内角互补).【解答】证明:∵AD∥BC,∴∠DAE=∠E(理由:两直线平行,内错角相等),∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠E.∵∠CFE=∠E,∴∠CFE=∠BAE,∴AB∥CD(理由:同位角相等,两直线平行).∴∠B+∠BCD=180°(理由:两直线平行,同旁内角互补).故答案为:∠DAE;两直线平行,内错角相等;∠DAE;∠BAE;AB;CD;同位角相等,两直线平行;两直线平行,同旁内角互补.22.2021年3月教育部发布了《关于进一步加强中小学生睡眠管理工作的通知》,明确初中生每天睡眠时间要达到9小时.为了解某校七年级学生的睡眠情况,小明等5名同学组成学习小组随机抽查了该校七年级40名学生一周(7天)平每天的睡眠时间(单位:小时)如下:8 6.8 6.5 7.2 7.1 7.5 7.7 9 8.3 88.3 9 8.5 8 8.4 8 7.3 7.5 7.3 98.3 6 7.5 7.5 9 6.5 6.6 8.4 8.2 8.17 7.8 8 9 7 9 8 6.6 7 8.5该小组将上面收集到的数据进行了整理,绘制成频数分布表和频数分布直方图.平均每天睡眠时间频数分布表分组频数6≤x<6.516.5≤x<7m7≤x<7.577.5≤x<868≤x<8.5138.5≤x<929≤x<9.5n根据以上信息,解答下列问题:(1)表中m=5,n=6;(2)请补全频数分布直方图;(3)若该校七年级共有360名学生,请你估算其中睡眠时间不少于9小时的学生约有多少人.解:(1)由题意知6.5≤x<7的频数m=5,9≤x<9.5的频数n=6,故答案为:5、6;(2)补全频数分布直方图如下:(3)估计睡眠时间不少于9小时的学生约有360×=54(人).23.如图,在平面直角坐标系xOy中,A(1,5),B(4,1),将线段AB先向左平移5个单位长度,再向下平移4个单位长度得到线段CD(其中点C与点A,点D与点B是对应点),连接AC,BD.(1)补全图形,直接写出点C和点D的坐标;(2)求四边形ACDB的面积.解:(1)如图所示,点C坐标为(﹣4,1),点D坐标(﹣1,﹣3),(2)四边形ACDB的面积=×8×4×2=32.四、解答题(本题共22分,第24题7分,第25题7分,第26题8分)24.快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的.如果他平均每天的提成不低于318,求他平均每天的送件数.解:(1)设快递员小李平均每送一件的提成是x元,平均每揽一件的提成是y元,根据题意得:,解得,答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)设他平均每天的送件数是m件,则他平均每天的揽件数是(200﹣m)件,根据题意得:,解得160≤m≤164,∵m是正整数,∴m的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.25.如图,点C,D在直线AB上,∠ACE+∠BDF=180°,EF∥AB.(1)求证:CE∥DF;(2)∠DFE的角平分线FG交AB于点G,过点F作FM⊥FG交CE的延长线于点M.若∠CMF=55°,先补全图形,再求∠CDF的度数.【解答】(1)证明:∵∠ACE+∠BDF=180°,∠ADF+∠BDF=180°,∴∠ACE=∠ADF,∴CE∥DF;(2)解:补全图形,如图所示,∵CE∥DF,即CM∥DF,∴∠CMF+∠DFM=180°,∵∠CMF=55°,∴∠DFM=125°,∵FM⊥FG,∴∠GFM=90°,∴∠DFG=∠DFM﹣∠GFM=35°,∵FG是∠DFE的角平分线,∴∠DFE=2∠DFG=70°,∵EF∥AB,∴∠CDF+∠DFE=180°,∴∠CDF=110°.26.将二元一次方程组的解中的所有数的全体记为M,将不等式(组)的解集记为N,给出定义:若M中的数都在N内,则称M被N包含;若M中至少有一个数不在N内,则称M不能被N包含.如,方程组的解为,记A:{0,2},方程组的解为,记B:{0,4},不等式x﹣3<0的解集为x<3,记H:x<3.因为0,2都在H内,所以A被H包含;因为4不在H内,所以B不能被H包含.(1)将方程组的解中的所有数的全体记为C,将不等式x+1≥0的解集记为D,请问C能否被D包含?说明理由;(2)将关于x,y的方程组的解中的所有数的全体记为E,将不等式组的解集记为F,若E不能被F包含,求实数a的取值范围.解:(1)C能被D包含.理由如下:解方程组得到它的解为,∴C:{2,﹣1},∵不等式x+1≥0的解集为x≥﹣1,∴D:x≥﹣1,∵2和﹣1都在D内,∴C能被D包含;(2)解关于x,y的方程组得到它的解为,∴E:{a+1,a﹣l},解不等式组得它的解集为1≤x<4,∴F:,1≤x<4,∵E不能被F包含,且a﹣1<a+1,∴a﹣1<1或a+1≥4,∴a<2或a≥3,所以实数a的取值范围是a<2或a≥3.五、填空题(本题6分)27.对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b为非负数.(1)当c=0时,若F(1,﹣1,2)=1,F(3,1,1)=7,则a的值是2,b的值是1;(2)若F(3,2,1)=5,F(1,2,﹣3)=1,设H=a+2b+c,则H的取值范围是≤H≤5.解:(1)∵F(x,y,z)=ax+by+cz,∴当c=0时,若F(1,﹣1,2)=1,F(3,1,1)=7可得:,解方程组得:.故答案为2,1.(2)当F(3,2,1)=5,F(1,2,﹣3)=1时,F(x,y,z)=ax+by+cz得:,用含c的代数式表示a,b得:.∵a,b为非负数,∴,解不等式组得:.∵H=a+2b+c=,∵H随c的增大而增大,∴当c=时,H=,当c=1时,H=5.∴.故答案为.六、解答题(本题共14分,第28题6分,第29题8分)28.如图,点E,F分别在直线AB,CD上,AB∥CD,∠CFE=60°.射线EM从EA开始,绕点E以每秒3度的速度顺时针旋转至EB后立即返回,同时,射线FN从FC开始,绕点F以每秒2度的速度顺时针旋转至FD停止.射线FN停止运动的同时,射线EM也停止运动,设旋转时间为t(s).(1)当射线FN经过点E时,直接写出此时t的值;(2)当30<t<45时,射线EM与FN交于点P,过点P作KP⊥FN交AB于点K,求∠KPE;(用含t的式子表示)(3)当EM∥FN时,求t的值.解:(1)∵FN的速度为每秒2°,∠CFE=60°,∴当射线FN经过点E时,所用的时间t为:t=60°÷2°=30;(2)过点P作直线HQ∥AB,如图所示:∵AB∥CD,∴HQ∥AB∥CD,∴∠FPQ=∠CFP=2t,∠EPQ=∠KEP=3t,∴∠EPF=∠EPQ﹣∠FPQ=3t﹣2t=t,∵KP⊥FN,∴∠KPF=90°,∴∠KPE=90°﹣∠EPF=90°﹣t;(3)∵EM与FN的速度不相等,∴当0<t≤60时,EM与FN不平行;当60<t≤90时,EM与FN可能平行,当EM∥FN时,设FN与AB交于点G,如图所示:∵EM∥FN,∴∠AGF=∠MEB,由题意可得:∠MEB=3t﹣180°,∴∠AGF=3t﹣180°,∵AB∥CD,∴∠AGF+∠CFN=180°,∵∠CFN=2t,∴3t﹣180°+2t=180°,解得:t=72.29.在平面直角坐标系xOy中,对于点A(x1,y1),B(x2,y2),记d x=|x1﹣x2|,d y=|y1﹣y2|,将|d x﹣d y|称为点A,B的横纵偏差,记为μ(A,B),即μ(A,B)=|d x﹣d y|.若点B在线段PQ上,将μ(A,B)的最大值称为线段PQ关于点A的横纵偏差,记为μ(A,PQ).(1)A(0,﹣2),B(1,4),①μ(A,B)的值是5;②点K在x轴上,若μ(B,K)=0,则点K的坐标是(﹣3,0)或(5,0).(2)点P,Q在y轴上,点P在点Q的上方,PQ=6,点M的坐标为(﹣5,0).①当点Q的坐标为(0,1)时,求μ(M,PQ)的值;②当线段PQ在y轴上运动时,直接写出μ(M,PQ)的最小值及此时点P的坐标.解:(1)∵A(0,﹣2),B(1,4),∴d x=|x1﹣x2|=|0﹣1|=1,d y=|y1﹣y2|=|﹣2﹣4|=6,则μ(A,B)=|d x﹣d y|=|1﹣6|=5,故答案是5.(2)∵B(1,4),点K在x轴上,设K(x,0),∴d x=|x1﹣x2|=|1﹣x|,d y=|y1﹣y2|=|4﹣0|=4,∵μ(B,K)=0,∴μ(B,K))=|d x﹣d y|=||1﹣x|﹣4|=0,∴1﹣x=4或1﹣x=﹣4,解得,x=﹣3或x=5,∴K的坐标是(﹣3,0)或(5,0).故答案是(﹣3,0)或(5,0).(2)①∵点P、Q在y轴上,点P在点Q的上方,PQ=6,点Q的坐标为(0,1),∴点P的坐标为(0,7),设点T(0,t)为线段PQ上任意一点,则1≤t≤7;∵点M的坐标为(﹣5,0),∴d x=5,d y=t,∴μ(M,T)=|d x﹣d y|=5﹣t|;由|1≤t≤7,可得﹣2≤5﹣t≤4;∴0≤μ(M,T)≤4,∴μ(M,PQ)的最大值是4,∴μ(M,PQ)=4.②∵μ(M,PQ)=μ(M,P)或μ(M,Q),设点Q(0,t),则P(0,t+6),∴μ(M,Q)=|5﹣|t||,μ(M,P)=|5﹣|t+6||,∵当μ(M,P)=μ(M,Q)时,μ(M,PQ)有最小值,即|5﹣|t||=|5﹣|t+6||时,μ(M,PQ)有最小值,∴t=2或﹣8,则μ(M,PQ)有最小值为3,∴点P的坐标为(0,8)或(0,﹣2),∴μ(M,PQ)的最小值是3,此时点P的坐标是(0,8)或(0,﹣2).。

2019-2020学年北京市海淀区七年级(下)期末数学试卷

2019-2020学年北京市海淀区七年级(下)期末数学试卷

2019-2020学年北京市海淀区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.如图所示,匕2和匕1是对顶侣的是(B.±2A.+16 C. -2 D.23.己知a<b,下列不等式中,变形正确的是()A・a—3>b—3B・?>: C.—3a>—3b D.3a-l>3b-l4.在平而直角坐标系中,如果点P(—1,-2+m)在第三象限,那么m的取值范困为()A.m<2B.m<2C. m<0D.mVO5.下列调查方式,你认为最合适的是()A.旅客上飞机前的安检,采用抽样调查方式B. 了解某地区饮用水矿物质含量:的情况,采用抽样调查方式C.调查某种品牌笔芯的使用寿命,采用全面调查方式D.调查浙江卫视傍跑吧.兄弟口步目的收视率.采用全而调查方式6.如图,将含30。

角的直角三角板的直角顶点放任直尺的一边上,己知匕1=35气则£2的度数是()A.55°B.45°C.35°7.下列命题中,是假命题的是()A.在同一平而内.过一点有且只有一条直线与己知直线垂直B同旁内角互补,两直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平•行D.两条直线被第三条直线所截,同位角相等8.如图,。

为直线A8上一点,0E平分ZBOC.ODLOE于点若匕BOC=80。

,则40D的度数是()CA. 70°B. 50。

C. 40°9・象棋在中国有着三千多年的历史•由于用具简单•趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“焉”和“卓”的点的坐标分别 为(4,3), (-2,1),则表示棋子“炮”的点的坐标为()汉界B. (0,3)C・(3,2)A. (-3,3)10.如图,任平面直角坐标系xOy^.如果一个点的坐标D・(13)J,可以用来表示关于心y 的二元一次方程组:写就二:的解,那么这个点是()二、填空题(本大题共6小题,共13.0分)11. 列不等式表示:X 与2的差小于一 1.12. 把无理数M7, MT ,西,-归表示在数轴匕在这四个无理数中,被墨迹(如图所13. 若(a-3)2 + v f hT2 = 0> 则a+b=・14. 写出二元一次方程2x + y = 5的一个非负整数解15. 如图,写出能判定AB//CD 的一对角的数量关系:A816.在平而直角坐标系中,对于点P (x,y ).如果点Q (x,<)的纵坐标满足V =(X -y^X >y^)那么称点Q 为点尸的“关联点,,.请写出点(3,5)的“关联点 ly —x (? lx Vy 时)的坐标:如果点P (x,y )的关联点。

2018-2019学年北京市西城区七年级(下)期末数学试卷

2018-2019学年北京市西城区七年级(下)期末数学试卷

2018-2019学年北京市西城区七年级(下)期末数学试卷一.选择题(木题共30分,每小题3分)第1~10题均有四个选项,符合题意的选项只有一个.1.(3分)点P(﹣6,6)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列各数中的无理数是()A.6.2B.C.D.π﹣3.14 3.(3分)不等式组的解集是()A.x<2B.x≥﹣5C.﹣5<x<2D.﹣5≤x<2 4.(3分)下列计算正确的是()A.a2•a3=a6B.a8÷a2=a4C.(a2)3=a6D.(﹣2ab)3=﹣8a3b5.(3分)若a<b,则下列结论不正确的是()A.a+4<b+4B.a﹣3<b﹣3C.﹣2a>﹣2b D.6.(3分)如图,在△ABC中,E为AC边上一点,若∠1=20°,∠C=60°,则∠AEB等于()A.90°B.80°C.60°D.50°7.(3分)下列命题正确的是()A.相等的两个角一定是对顶角B.两条平行线被第三条直线所截,内错角互补C.过直线外一点有且只有一条直线与己知直线平行D.在同一平而内,垂直于同一条直线的两条直线互相垂直8.(3分)某超市开展“六一节”促销活动,一次购买的商品超过200元时,就可享受打折优惠.小红同学准备为班级购买奖品,需买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,她至少买多少支钢笔才能享受打折优惠?设买x支钢笔才能享受打折优惠,那么以下正确的是()A.15×6+8x>200B.15×6+8x=200C.15×8+6x>200D.15×6+8x≥2009.(3分)小何所在年级准备开展参观北京故宫博物院的实践活动,他和他选修的“博物馆课程”小组成员共同为同学们推荐了一条“古建之美”线路:行走在对公众开放的古老城墙之上,观“营造之道﹣﹣紫禁城建筑艺术展”,赏数字影视作品《角楼》,品“古建中的数学之美”.在故宫导览图中建立如图所示的平面直角坐标系xOy,午门的坐标为(0,﹣3),那么以下关于古建馆的这条参观线路“从午门途经东南角楼到达东华门展厅”的说法中,正确的是()A.沿(0,﹣3)→(﹣3,﹣3)→(﹣3,﹣2)到达东华门展厅B.沿(0,﹣3)→(2,﹣3)→(2,﹣2)→(3,﹣2)到达东华门展厅C.沿(0,﹣3)→(0,﹣2)→(3,﹣2)到达东华门展厅需要走4个单位长度D.沿(0,﹣3)→(3,﹣3)→(3,﹣2)到达东华门展厅需要走4个单位长度10.(3分)如图,在平面直角坐标系xOy中,A(1,1),B(﹣1,2),C(2,3),D(﹣2,4),E(3,5),F(﹣3,6).按照A→B→C→D→E→F的顺序,分别将这六个点的横、纵坐标依次循环排列下去,形成一组数1,1,﹣1,2,2,3,﹣2,4,3,5,﹣3,6,1,1,﹣1,2,…,第一个数记为a1,第二个数记为a2,…,第n个数记为a n(n为正整数),那么a9+a11和a2022的值分别为()A.0,3B.0,2C.6,3D.6,2二.填空题(本题共18分,第11~14题每小题2分,第15、16题每小题2分,第17、18题每小题2分)11.(2分)49的平方根是.12.(2分)计算:=.13.(2分)计算:3a(2a﹣1)+2ab3÷b3=.14.(2分)下列各组数:①2,3,4;②2,3,5;③2,3,7;④3,3,3,其中能作为三角形的三边长的是(填写所有符合题意的序号).15.(4分)在平面直角坐标系xOy中,A,B,C三点的坐标如图所示,那么点A到BC边的距离等于,△ABC的面积等于.16.(4分)图中的四边形均为矩形,根据图中提供的信息填空:(1)①,②;(2)(x+p)(x+)=x2+.17.(2分)若关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,则实数a满足的条件是.18.(2分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是(填写序号).三.解答题(本题共52分,第19~23题每小题6分,第24、25题每小题6分,第26题8分)19.(6分)解不等式,并把解集表示在数轴上.20.(6分)先化简,再求值:(2a+b)2+(a+b)(a﹣b)﹣3ab,其中a=2,b=.21.(6分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=100°,求∠1的度数.22.(6分)小明的作业中出现了如下解题过程解答下列问题:(1)以上解题过程中,从第几步开始出现了错误?(2)比较与3的大小,并写出你的判断过程.23.(6分)如图,在平面直角坐标系xOy中,A,B两点的坐标分别为A(4,1),B(2,﹣2).(1)过点B作x轴的垂线,垂足为M,在BM的延长线上截取MC=2BM,平移线段AB 使点A移动到点C,画出平移后的线段CD;(2)直接写出C,D两点的坐标;(3)画出以线段AD为斜边的等腰直角三角形ADE,并使点E与点B分别位于AD边所在直线的两侧.若点P在△ADE的三边上运动,直接写出线段PM长的最大值,以及相应点P的坐标.24.(7分)(1)2019年4月,中国新闻出版研究院发布了《第十六次全国国民阅读调查报告》,以下是小明根据该报告提供的数据制作的“2017﹣2018年我国未成年人图书阅读率统计图”的一部分.报告中提到,2018年9﹣13周岁少年儿童图书阅读率比2017年提高了3.1个百分点,2017年我国0﹣17周岁未成年人图书阅读率为84.8%.根据以上信息解决下列问题:①写出图1中a的值;②补全图1;(2)读书社的小明在搜集资料的过程中,发现了《人民日报》曾经介绍过多种阋读法,他在班上给同学们介绍了其中6种,并调查了全班40名同学对这6种阅读法的认可程度,制作了如下的统计表和统计图:最愿意使用的阅读方法人数统计表阅读方法类型划记人数1.读书不二法4B.比较品读法正5C.字斟句酌法8D.精华提炼法E.多维研读法6F.角色扮演法7合计4040根据以上信息解决下列问题:①补全统计表及图2;②根据调査结果估计全年级500名同学最愿意使用“D.精华提炼法”的人数.25.(7分)阅读下面材料:2019年4月底,“百年器象﹣﹣清华大学科学博物馆筹备展”上展出了一件清华校友捐赠的历史文物“Husun型六分仪”(图①),它见证了中国人民解放军海军的发展历程.六分仪是测量天体高度的手提式光学仪器,它的主要原理是几何光学中的反射定律.观测者手持六分仪(图②)按照一定的观测步骤(图③显示的是其中第6步)读出六分仪圆弧标尺上的刻度,再经过一定计算得出观测点的地理坐标.请大家证明在使用六分仪测量时用到的一个重要结论(两次反射原理).已知:在图④所示的“六分仪原理图”中,所观测星体记为S,两个反射镜面位于A,B 两处,B处的镜面所在直线FBC自动与0°刻度线AE保持平行(即BC∥AE),并与A 处的镜面所在直线NA交于点C,SA所在直线与水平线MB交于点D六分仪上刻度线AC 与0°刻度线的夹角∠EAC=ω,观测角为∠SDM.(请注意小贴士中的信息)求证:∠SDM=2ω.请在答题卡上完成对此结论的以下填空及后续证明过程(后续证明无需标注理由).证明:∵BC∥AE,∴∠C=∠EAC().∵∠EAC=ω,∴∠C=ω().∵∠SAN=∠CAD(),又∵∠BAC=∠SAN=α(小贴士已知),∴∠BAD=∠BAC+∠CAD=2α.∵∠FBA是△的外角,∴∠FBA=∠BAC+∠C().即β=α+ω.补全证明过程:(请在答题卡上完成)26.(6分)已知:△ABC,点M是平面上一点,射线BM与直线AC交于点D,射线CM 与直线AB交于点E.过点A作AF∥CE,AF与BC所在的直线交于点F.(1)如图1,当BD⊥AC,CE⊥AB时,写出∠BAD的一个余角,并证明∠ABD=∠CAF;(2)若∠BAC=80°,∠BMC=120°.①如图2,当点M在△ABC内部时,用等式表示∠ABD与∠CAF之间的数量关系,并加以证明;②如图3,当点M在△ABC外部时,依题意补全图形,并直接写出用等式表示的∠ABD与∠CAF之间的数量关系.2018-2019学年北京市西城区七年级(下)期末数学试卷一.选择题(木题共30分,每小题3分)第1~10题均有四个选项,符合题意的选项只有一个.1.(3分)点P(﹣6,6)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣6,6)所在的象限是第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各数中的无理数是()A.6.2B.C.D.π﹣3.14【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、6.2是有限小数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、=3是整数,是有理数,选项错误;D、π﹣3.14是无限不循环小数,是无理数,选项正确.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)不等式组的解集是()A.x<2B.x≥﹣5C.﹣5<x<2D.﹣5≤x<2【分析】不等式组的解集是组成不等式组的两个不等式解集的交集.【解答】解:不等式组的解集是﹣5≤x<2.故选:D.【点评】考查了不等式的解集.不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内.4.(3分)下列计算正确的是()A.a2•a3=a6B.a8÷a2=a4C.(a2)3=a6D.(﹣2ab)3=﹣8a3b【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(a2)3=a6,正确;D、(﹣2ab)3=﹣8a3b3,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.5.(3分)若a<b,则下列结论不正确的是()A.a+4<b+4B.a﹣3<b﹣3C.﹣2a>﹣2b D.【分析】由不等式的性质解答即可.【解答】解:A、∵a<b,∴a+4<b+4,故本选项不符合题意;B、∵a<b,∴a﹣3<b﹣3,故本选项不符合题意;C、∵a<b,∴﹣2a>﹣2b,故本选项不符合题意;D、∵a<b,∴a<b,故本选项符合题意;故选:D.【点评】本题考查了不等式的基本性质,不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.6.(3分)如图,在△ABC中,E为AC边上一点,若∠1=20°,∠C=60°,则∠AEB等于()A.90°B.80°C.60°D.50°【分析】根据三角形的外角性质计算,得到答案.【解答】解:由三角形的外角性质可知,∠AEB=∠1+∠C=80°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.7.(3分)下列命题正确的是()A.相等的两个角一定是对顶角B.两条平行线被第三条直线所截,内错角互补C.过直线外一点有且只有一条直线与己知直线平行D.在同一平而内,垂直于同一条直线的两条直线互相垂直【分析】利用对顶角的定义、平行线的性质等知识分别判断后即可确定正确的选项.【解答】解:A、相等的两个角不一定是对顶角,故错误;B、两条平行线被第三条直线所截,内错角相等,故错误;C、过直线外一点有且只有一条直线与己知直线平行,正确;D、在同一平而内,垂直于同一条直线的两条直线互相垂直,错误,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、平行线的性质等知识,难度不大.8.(3分)某超市开展“六一节”促销活动,一次购买的商品超过200元时,就可享受打折优惠.小红同学准备为班级购买奖品,需买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,她至少买多少支钢笔才能享受打折优惠?设买x支钢笔才能享受打折优惠,那么以下正确的是()A.15×6+8x>200B.15×6+8x=200C.15×8+6x>200D.15×6+8x≥200【分析】根据题意表示出购买6本影集和若干支钢笔的总钱数大于200进而得出答案.【解答】解:设买x支钢笔才能享受打折优惠,根据题意可得:15×6+8x>200.故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,正确表示出总钱数是解题关键.9.(3分)小何所在年级准备开展参观北京故宫博物院的实践活动,他和他选修的“博物馆课程”小组成员共同为同学们推荐了一条“古建之美”线路:行走在对公众开放的古老城墙之上,观“营造之道﹣﹣紫禁城建筑艺术展”,赏数字影视作品《角楼》,品“古建中的数学之美”.在故宫导览图中建立如图所示的平面直角坐标系xOy,午门的坐标为(0,﹣3),那么以下关于古建馆的这条参观线路“从午门途经东南角楼到达东华门展厅”的说法中,正确的是()A.沿(0,﹣3)→(﹣3,﹣3)→(﹣3,﹣2)到达东华门展厅B.沿(0,﹣3)→(2,﹣3)→(2,﹣2)→(3,﹣2)到达东华门展厅C.沿(0,﹣3)→(0,﹣2)→(3,﹣2)到达东华门展厅需要走4个单位长度D.沿(0,﹣3)→(3,﹣3)→(3,﹣2)到达东华门展厅需要走4个单位长度【分析】由午门(0,﹣3)到东南角楼(3,﹣3)需要走3个单位长度,东南角楼(3,﹣3)到达东华门展厅(3,﹣2)需要走1个单位长度可得答案.【解答】解:根据题意知从午门(0,﹣3)到东南角楼(3,﹣3)需要走3个单位长度,从东南角楼(3,﹣3)到达东华门展厅(3,﹣2)需要走1个单位长度,∴沿(0,﹣3)→(3,﹣3)→(3,﹣2)到达东华门展厅需要走4个单位长度,故选:D.【点评】本题主要考查坐标确定位置,解题的关键是掌握平面直角坐标系中点的坐标的概念和表示.10.(3分)如图,在平面直角坐标系xOy中,A(1,1),B(﹣1,2),C(2,3),D(﹣2,4),E(3,5),F(﹣3,6).按照A→B→C→D→E→F的顺序,分别将这六个点的横、纵坐标依次循环排列下去,形成一组数1,1,﹣1,2,2,3,﹣2,4,3,5,﹣3,6,1,1,﹣1,2,…,第一个数记为a1,第二个数记为a2,…,第n个数记为a n(n为正整数),那么a9+a11和a2022的值分别为()A.0,3B.0,2C.6,3D.6,2【分析】这一组数每12个一循环,只需找出2022整除12的余数就可知道其值.【解答】解:由题可知,a9=3,a11=﹣3,∴a9+a11=0∵2022=12×168+6∴a2022=a6=3;故选:A.【点评】本题主要考查找规律的能力,熟练掌握找规律的能力是解答本题的关键.二.填空题(本题共18分,第11~14题每小题2分,第15、16题每小题2分,第17、18题每小题2分)11.(2分)49的平方根是±7.【分析】根据平方根的定义解答.【解答】解:49的平方根是±7.故答案为:±7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(2分)计算:=5.【分析】首先计算乘方、开方,然后计算加法,求出算式的值是多少即可.【解答】解:=2+3=5故答案为:5.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.13.(2分)计算:3a(2a﹣1)+2ab3÷b3=6a2﹣a.【分析】单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.关注:从法则可以看出,单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除;③对被除式里含有的字母直接作为商的一个因式.【解答】解:3a(2a﹣1)+2ab3÷b3=6a2﹣3a+2a=6a2﹣a.故答案为6a2﹣a.【点评】本题考查了整式乘除,熟练运算整式乘除法则进行运算是解题的关键.14.(2分)下列各组数:①2,3,4;②2,3,5;③2,3,7;④3,3,3,其中能作为三角形的三边长的是①④(填写所有符合题意的序号).【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:①3+2>4,能构成三角形.②2+3=5,不能构成三角形.③2+3<7,不能构成三角形.④3+3>3,能构成三角形.故答案为①④.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.15.(4分)在平面直角坐标系xOy中,A,B,C三点的坐标如图所示,那么点A到BC边的距离等于3,△ABC的面积等于6.【分析】由A(2,4),B(﹣1,1),C(3,1),得出BC∥x轴,BC=4,得出点A到BC边的距离=3,由三角形面积公式即可求出△ABC的面积.【解答】解:由题意得:A(2,4),B(﹣1,1),C(3,1),∴BC∥x轴,BC=1+3=4,∴点A到BC边的距离=4﹣1=3,∴△ABC的面积=×4×3=6;故答案为:3,6.【点评】本题考查了三角形的面积、坐标与图形性质;熟练掌握三角形面积的计算,由点的坐标得出BC∥x轴,BC=4是解题的关键.16.(4分)图中的四边形均为矩形,根据图中提供的信息填空:(1)①q,②x;(2)(x+p)(x+q)=x2+(p+q)x+pq.【分析】(1)根据题意表示出所求即可;(2)利用多项式乘以多项式法则判断即可.【解答】解:(1)①q;②x;(2)(x+p)(x+q)=x2+(p+q)x+pq.故答案为:(1)①q;②x;(2)q,(p+q)x+pq【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.(2分)若关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,则实数a满足的条件是﹣4<a≤﹣3.【分析】根据关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,即可求出实数a满足的条件.【解答】解:∵关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,∴实数a满足的条件是﹣4<a≤﹣3.故答案为﹣4<a≤﹣3.【点评】本题考查了一元一次不等式的整数解,理解关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3是解题的关键.18.(2分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是④(填写序号).【分析】根据图象信息一一判断即可.【解答】解:①从1月到4月,手机销售总额连续下降;错误,3月到4月是增长的.②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;错误,2月到3月是增长的.③音乐手机4月份的销售额比3月份有所下降;错误,是增加长的.④今年1~4月中,音乐手机销售额最低的是3月;正确.故答案为④【点评】本题考查折线统计图,条形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三.解答题(本题共52分,第19~23题每小题6分,第24、25题每小题6分,第26题8分)19.(6分)解不等式,并把解集表示在数轴上.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:2(x+2)﹣5(x﹣2)≥20,2x+4﹣5x+10≥20,2x﹣5x≥20﹣4﹣10,﹣3x≥6,x≤﹣2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20.(6分)先化简,再求值:(2a+b)2+(a+b)(a﹣b)﹣3ab,其中a=2,b=.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2+a2﹣b2﹣3ab=5a2+ab,当a=2,b=﹣时,原式=20﹣1=19.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.(6分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=100°,求∠1的度数.【分析】(1)欲证明AB∥CD,只要证明∠1=∠3即可.(2)根据∠1+∠4=90°,想办法求出∠4即可解决问题.【解答】(1)证明:∵FG∥AE,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥CD.(2)解:∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=100°,∴∠ABD=180°﹣∠D=80°,∵BC平分∠ABD,∴∠4=∠ABD=40°,∵FG⊥BC,∴∠1+∠4=90°,∴∠1=90°﹣40°=50°.【点评】本题考查三角形内角和定理,平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(6分)小明的作业中出现了如下解题过程解答下列问题:(1)以上解题过程中,从第几步开始出现了错误?(2)比较与3的大小,并写出你的判断过程.【分析】(1)由于≠+(a≥0,b≥0),故从第二步开始出现了错误;(2)先比较与的大小,再根据两个正数,被开方数较大,相应的算术平方根也较大即可求解.【解答】解:(1)以上解题过程中,从第二步开始出现了错误;(2)结论:<3.∵<,∴<,∴<3.【点评】本题考查了实数大小比较,算术平方根,掌握实数大小比较的法则以及算术平方根的定义是解题的关键.23.(6分)如图,在平面直角坐标系xOy中,A,B两点的坐标分别为A(4,1),B(2,﹣2).(1)过点B作x轴的垂线,垂足为M,在BM的延长线上截取MC=2BM,平移线段AB 使点A移动到点C,画出平移后的线段CD;(2)直接写出C,D两点的坐标;(3)画出以线段AD为斜边的等腰直角三角形ADE,并使点E与点B分别位于AD边所在直线的两侧.若点P在△ADE的三边上运动,直接写出线段PM长的最大值,以及相应点P的坐标.【分析】(1)先利用几何语言画出点M、点C,再利用点A和C点的坐标关系确定平移的方向与距离,然后根据此平移规律写出B点的对应点D的坐标,从而描点得到线段CD;(2)由(2)确定两点坐标;(3)根据等腰直角三角形的判定方法,利用E点在AD的垂直平分线上且到AD的距离等于AD的一半可确定E点位置,利用几何图形可确定线段PM长的最大值,从而得到P 点坐标.【解答】解:(1)如图,CD为所作;(2)C点坐标为(2,4),D点坐标为(0,1);(3)如图,等腰直角三角形ADE为所作,线段PM长的最大值为3,此时点P的坐标为(2,3).【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了等腰直角三角形的判定.24.(7分)(1)2019年4月,中国新闻出版研究院发布了《第十六次全国国民阅读调查报告》,以下是小明根据该报告提供的数据制作的“2017﹣2018年我国未成年人图书阅读率统计图”的一部分.报告中提到,2018年9﹣13周岁少年儿童图书阅读率比2017年提高了3.1个百分点,2017年我国0﹣17周岁未成年人图书阅读率为84.8%.根据以上信息解决下列问题:①写出图1中a的值;②补全图1;(2)读书社的小明在搜集资料的过程中,发现了《人民日报》曾经介绍过多种阋读法,他在班上给同学们介绍了其中6种,并调查了全班40名同学对这6种阅读法的认可程度,制作了如下的统计表和统计图:最愿意使用的阅读方法人数统计表阅读方法类型划记人数1.读书不二法4B.比较品读法正5C.字斟句酌法8D.精华提炼法E.多维研读法6F.角色扮演法7合计4040根据以上信息解决下列问题:①补全统计表及图2;②根据调査结果估计全年级500名同学最愿意使用“D.精华提炼法”的人数.【分析】(1)求出a的值即可补全条形统计图,(2)求出表格中D组的人数,划记“正”字,表格补充完整,计算出C组、D组所占的百分比,即可补全扇形统计图,(3)样本估计总体,样本中D组占25%,因此根据500人的25%就是“精华提炼法”人数.【解答】解:(1)①a=93.2%+3.1%=96.3%,故a的值为96.3%.②补全的条形统计图如图所示:(2)①40﹣4﹣5﹣8﹣6﹣7=10人,划两个“正”字,补全统计表如下:C组占8÷40=20%,D组占10÷40=25%,补全的扇形统计图如图所示:②500×25%=125人,答:全年级500名同学最愿意使用“D.精华提炼法”的人数为125人.【点评】考查条形统计图、扇形统计图、频数统计表的制作方法,理解图表中的各个数据之间的关系是解决问题的关键,几个图表联系在一起分析数量关系是常用的方法.25.(7分)阅读下面材料:2019年4月底,“百年器象﹣﹣清华大学科学博物馆筹备展”上展出了一件清华校友捐赠的历史文物“Husun型六分仪”(图①),它见证了中国人民解放军海军的发展历程.六分仪是测量天体高度的手提式光学仪器,它的主要原理是几何光学中的反射定律.观测者手持六分仪(图②)按照一定的观测步骤(图③显示的是其中第6步)读出六分仪圆弧标尺上的刻度,再经过一定计算得出观测点的地理坐标.请大家证明在使用六分仪测量时用到的一个重要结论(两次反射原理).已知:在图④所示的“六分仪原理图”中,所观测星体记为S,两个反射镜面位于A,B 两处,B处的镜面所在直线FBC自动与0°刻度线AE保持平行(即BC∥AE),并与A 处的镜面所在直线NA交于点C,SA所在直线与水平线MB交于点D六分仪上刻度线AC 与0°刻度线的夹角∠EAC=ω,观测角为∠SDM.(请注意小贴士中的信息)求证:∠SDM=2ω.请在答题卡上完成对此结论的以下填空及后续证明过程(后续证明无需标注理由).证明:∵BC∥AE,∴∠C=∠EAC(两直线平行内错角相等).∵∠EAC=ω,∴∠C=ω(等量代换).∵∠SAN=∠CAD(对顶角相等),又∵∠BAC=∠SAN=α(小贴士已知),∴∠BAD=∠BAC+∠CAD=2α.∵∠FBA是△ABC的外角,∴∠FBA=∠BAC+∠C(三角形的一个外角等于和它不相邻的两个内角的和).即β=α+ω.补全证明过程:(请在答题卡上完成)【分析】根据平行线的性质,三角形的外角的性质一一判断即可.【解答】证明:∵BC∥AE,∴∠C=∠EAC(两直线平行内错角相等).∵∠EAC=ω,∴∠C=ω(等量代换).∵∠SAN=∠CAD(对顶角相等),又∵∠BAC=∠SAN=α(小贴士已知),∴∠BAD=∠BAC+∠CAD=2α.∵∠FBA是△ABC的外角,∴∠FBA=∠BAC+∠C(三角形的一个外角等于和它不相邻的两个内角的和).即β=α+ω.故答案为:两直线平行内错角相等,等量代换,对顶角相等,ABC,三角形的一个外角等于和它不相邻的两个内角的和.【点评】本题考查三角形的外角的性质,坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.(6分)已知:△ABC,点M是平面上一点,射线BM与直线AC交于点D,射线CM 与直线AB交于点E.过点A作AF∥CE,AF与BC所在的直线交于点F.。

北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)

北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)

北京市西城区2019 — 2020学年度第一学期期末试卷高三数学本试卷共5页.共150分。

考试时长120分钟。

考生务必将答案答在答题卡上•在试 卷上作答无效。

第I 卷(选择题共40分)-S 选择题:本大题共8小题■每小题5分.共40分•在每小题列出的四个选项中,选出 符合题目要求的一项.1. 设集合Λ = {x ∖r<a}. B = {—3,0∙l ∙5}・若集合A∩B 有且仅有2个元索.则实数α 的取值范围为(A) (-3,+∞)(B) (0> 1](C) [l ∙+α□)2. 若复数Z = 注.则在复平面内N 对应的点位于I-TI(A)第一象限 (B)第二象限(C)第三象限3. 在厶ABC 中.若 α=6, A=60o, 3 = 75°,则 C =(A) 4(B) 2√2(C) 2√3(D) 2^4. 设且兀y≠0,则下列不等式中一定成立的是(A)丄>丄(B)InlJrl >ln∣y 丨(C) 2-工<2-,CD) j ∙2>^25. 已知直线T Jry Jr2=0与圆τ ÷j∕2+2jc~2y jra = 0有公共点,则实数"的取值范围为(A) ( — 8. θ](B) [θ∙+oo)(C) [0, 2)(D) (—8, 2)2020. I(D) Eb 5)(D)第四象限6・设三个向b. c互不共线•则∙+b+c=(Γ是^以Iah ∖b∖, ICl为边长的三角形存在"的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件7.紫砂壶是中国特冇的手工制造陶土工艺品,其制作始于明朝正徳年间.紫砂壶的壶型众多•经典的有西施壶.掇球壶、石瓢壶.潘壶等•其中.石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的)・下图给出了一个石瓢壶的相关数据(单位cm),那么该壶的容量约为(A)IOO cm5(B)200 cm3(C)300 cm3(D)400 cn√&已知函数∕Q)=√TTΓ+4 若存在区间O M].使得函数/Q)在区间DZ 上的值域为[α + l,6 + l],则实数〃的取值范围为(A) (-l,+oo) (B) (一 1. 0] (C) (一 +,+8) (D)( —斗,0]4 4第JI 卷(非选择题共110分)二、填空题:本大题共6小题■每小题5分,共3。

2019-2020学年北京市首都师大附中七年级(下)期末数学试卷 解析版

2019-2020学年北京市首都师大附中七年级(下)期末数学试卷  解析版

2019-2020学年北京市首都师大附中七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所列出的四个选项中,只有一项是最符合题目要求的)1.(3分)3的算术平方根是()A.±B.C.﹣D.92.(3分)点(﹣7,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上3.(3分)下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6 4.(3分)如图,直线a,b被直线c所截,下列条件能判定直线a与b平行的是()A.∠1=∠3B.∠3=∠4C.∠2=∠3D.∠1+∠4=180°5.(3分)下列图形中,线段PQ的长表示点P到直线MN的距离是()A.B.C.D.6.(3分)若a>b,则()A.a>﹣b B.a<﹣b C.﹣2a>﹣2b D.﹣2a<﹣2b 7.(3分)若是关于x、y的方程组的一个解,则的a+b值为()A.0B.﹣1C.1D.﹣28.(3分)一个正数的两个不同的平方根是a+3和2a﹣6,则这个正数是()A.1B.4C.9D.169.(3分)下列命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行;②内错角相等;③在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;④相等的角是对顶角.其中,真命题有()A.1个B.2个C.3个D.4个10.(3分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是()A.①③B.②④C.②③D.①④二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)端午节期间,质监部门要对市场上粽子质量情况进行调查,适合采用的调查方式是.(填“全面调查”或“抽样调查”)12.(3分)将3写成两个无理数的和,则这两个无理数为.13.(3分)因式分解:a3﹣9a=.14.(3分)计算:()0×4﹣2×24=.15.(3分)如图所示,小迪将两个完全相同的三角板拼在一起,沿着三角板的斜边,画出线段AB,CD.则我们可以判定AB∥CD的依据是.16.(3分)两条直线相交所成的四个角中,有两个角分别是(2x﹣10)°和(110﹣x)°,则x=.17.(3分)已知点P(2,﹣3)与Q(x,y)在同一条平行y轴的直线上,PQ=5,则点Q 的坐标为.18.(3分)化简÷(1﹣)的结果为.19.(3分)若关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,则实数a满足的条件是.20.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对36进行如下操作:36[]=6[]=2[]=1,这样对36进行3次操作后就会变为1,类似地,对81只需要进行次上述操作后会变为1;在只需要进行2次操作后就会变为1的所有正整数中,最大的是.三、解答题(本大题共8小题,共40分)21.(4分)计算:|﹣3|+﹣(﹣1)2019+.22.(4分)解不等式组:,并将解集在数轴上表示出来.23.(4分)解方程:+1=.24.(4分)在平面直角坐标系中,A(﹣4,0),B(2,4),BC∥y轴,与x轴相交于点C,BD∥x轴,与y轴相交于点D.(1)如图,直接写出①C点坐标,②D点坐标;(2)在图中,平移三角形ABD,使点B的对应点为原点O,点A、D的对应点分别为点A'、D',请画出图形,并解答下列问题:①AD与A'D'的关系是:,②四边形AA'OD的面积为平方单位.25.(6分)白色污染(Whitepollution)是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区40户居民,记录了这些家庭2018年某个月丢弃塑料袋的数量(单位:个)29 39 35 39 39 27 33 35 31 31 32 32 34 31 33 39 38 4038 4231 31 38 31 39 27 33 35 40 38 29 39 35 33 39 39 38 4237 32请根据上述数据,解答以下问题:(1)小彬按“组距为5”列出了如下的频数分布表(每组数据含最小值不含最大值),请将表中空缺的部分补充完整,并补全频数直方图;分组划记频数A:25~30正正14B:30~35C:35~40D:40~445合计/40(2)根据(1)中的直方图可以看出,这40户居民家这个月丢弃塑料袋的个数在组的家庭最多;(填分组序号)(3)根据频数分布表,小彬又画出了如图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中,并求出C组对应的扇形圆心角的度数;(4)若该小区共有1000户居民家庭,请你估计每月丢弃的塑料袋数量不小于30个的家庭个数.26.(5分)为了防治“新型冠状病毒”,某中学拟向厂家购买消毒剂和红外线测温枪,积极做好师生测温和教室消毒工作.(1)若原价购买一瓶消毒剂和一支测温枪需400元,一支测温枪的价格比一瓶消毒剂价格的6倍还贵15元,求每瓶消毒剂和每支测温枪的原价.(2)由于采购量大,厂家推出两种优惠套餐.套餐一:一次性购买10支测温枪和110瓶消毒剂,套餐二:一次性购买20支测温枪和100瓶消毒剂.设优惠后每支测温枪a元,每瓶消毒剂b元,已知a>b>0,你知道哪个套餐总价更低吗?请通过运算加以说明.27.(6分)问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠P AB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.28.(7分)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(﹣2,﹣5)的限变点的坐标是(﹣2,5),点(1,3)的限变点的坐标是(1,3).(1)①点(,﹣1)的限变点的坐标是;②如图1,在点A(﹣2,1)、B(2,1)中有一个点是直线y=2上某一个点的限变点,这个点是;(填“A”或“B”)(2)如图2,已知点C(﹣2,﹣2),点D(2,2),若点P在射线OC和OD上,其限变点Q的纵坐标b的取值范围是b′≥m或b′≤n,其中m>n,令s=m﹣n,直接写出s的值.(3)如图3,若点P在线段EF上,点E(﹣2,﹣5),点F(k,k﹣3),其限变点Q的纵坐标b′的取值范围是﹣2≤b′≤5,直接写出k的取值范围.2019-2020学年北京市首都师大附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所列出的四个选项中,只有一项是最符合题目要求的)1.(3分)3的算术平方根是()A.±B.C.﹣D.9【分析】利用算术平方根定义计算即可求出值.【解答】解:3的算术平方根是,故选:B.2.(3分)点(﹣7,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上【分析】根据x轴上点的纵坐标都为0,可知点(﹣7,0)在x轴上,由横坐标为负,可知点在x轴负半轴上.【解答】解:∵点(﹣7,0)的纵坐标为0,且横坐标﹣7<0,∴此点在x轴的负半轴上,故选:B.3.(3分)下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a2+a2=2a2,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)3=a8,故D错误.故选:C.4.(3分)如图,直线a,b被直线c所截,下列条件能判定直线a与b平行的是()A.∠1=∠3B.∠3=∠4C.∠2=∠3D.∠1+∠4=180°【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解答】解:由∠1=∠3,可得直线a与b平行,故A符合题意;由∠3=∠4,不能判定直线a与b平行,故B不合题意;由∠3=∠2,不能判定直线a与b平行,故C不合题意;由∠1+∠4=180°,不能判定直线a与b平行,故D不合题意;故选:A.5.(3分)下列图形中,线段PQ的长表示点P到直线MN的距离是()A.B.C.D.【分析】利用点到直线的距离的定义分析可知.【解答】解:利用点到直线的距离的定义可知:线段PQ的长表示点P到直线MN的距离的是A图.故选:A.6.(3分)若a>b,则()A.a>﹣b B.a<﹣b C.﹣2a>﹣2b D.﹣2a<﹣2b 【分析】由于a、b的取值范围不确定,故可考虑利用特例来说明,若能直接利用不等式性质的就用不等式性质.【解答】解:由于a、b的取值范围不确定,故可考虑利用特例来说明,A、例如a=0,b=﹣1,a<﹣b,故A选项错误,B、例如a=1,b=0,a>﹣b,故B选项错误,C、利用不等式性质3,同乘以﹣2,不等号改变,则有﹣2a<﹣2b,故C选项错误,D、利用不等式性质3,同乘以﹣2,不等号改变,则有﹣2a<﹣2b,故D选项正确,故选:D.7.(3分)若是关于x、y的方程组的一个解,则的a+b值为()A.0B.﹣1C.1D.﹣2【分析】把x与y的值代入方程组求出a与b的值,进而求出a+b的值即可.【解答】解:把代入方程组得:,①+②得:a+b=﹣1,故选:B.8.(3分)一个正数的两个不同的平方根是a+3和2a﹣6,则这个正数是()A.1B.4C.9D.16【分析】根据一个正数的平方根互为相反数可得出a的值,代入后即可得出这个正数.【解答】解:由题意得a+3+2a﹣6=0,解得:a=1,则这个正数为:(a+3)2=16.故选:D.9.(3分)下列命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行;②内错角相等;③在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;④相等的角是对顶角.其中,真命题有()A.1个B.2个C.3个D.4个【分析】利用平行线的传递性对①进行判断;根据平行线的性质对②进行判断;根据平行线的判定方法对③进行判断;根据对顶角的定义对④进行判断.【解答】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以①为真命题;两直线平行,内错角相等,所以②为假命题;在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,所以③为真命题;相等的角不一定为对顶角,所以④为假命题.故选:B.10.(3分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是()A.①③B.②④C.②③D.①④【分析】根据图中的信息可以求得这5期的集训共有多少天和小明5次测试的平均成绩,根据图中的信心和题意,说明自己的观点即可.【解答】解:①这5期的集训共有:5+7+10+14+20=56(天),故正确;②小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,故正确;④从测试成绩看,两人的最好的平均成绩是小明在第三期,小聪在第四期出现,建议集训时间定为10∽14天.故错误;故选:A.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)端午节期间,质监部门要对市场上粽子质量情况进行调查,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【分析】根据全面调查与抽样调查的意义进行解答.【解答】解:∵市场上的粽子数量较大,∴适合采用抽样调查.故答案为:抽样调查.12.(3分)将3写成两个无理数的和,则这两个无理数为3+π,﹣π.【分析】本题答案不唯一,符合题意即可.【解答】解:∵3=3+π﹣π,∴这两个无理数为3+π,﹣π,故答案为:3+π,﹣π.13.(3分)因式分解:a3﹣9a=a(a+3)(a﹣3).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).14.(3分)计算:()0×4﹣2×24=1.【分析】根据负整数幂的意义以及零指数幂的意义即可求出答案.【解答】解:原式=1××42=1故答案为:115.(3分)如图所示,小迪将两个完全相同的三角板拼在一起,沿着三角板的斜边,画出线段AB,CD.则我们可以判定AB∥CD的依据是内错角相等,两直线平行.【分析】根据内错角相等,两直线平行即可判断.【解答】解:由题意:∠BAD=∠ADC=30°,∴AB∥CD(内错角相等两直线平行),故答案为内错角相等两直线平行.16.(3分)两条直线相交所成的四个角中,有两个角分别是(2x﹣10)°和(110﹣x)°,则x=40或80.【分析】根据两条直线交叉相交,形成4个角,对顶角相等,在同一条直线的两个角的和是180°解答即可.【解答】解:两条直线相交所成的四个角中,对顶角相等,邻补角互补,根据题意可得:(2x﹣10)°=(110﹣x)°或(2x﹣10)°+(110﹣x)°=180°,解得:x=40或x=80,故答案为:40或8017.(3分)已知点P(2,﹣3)与Q(x,y)在同一条平行y轴的直线上,PQ=5,则点Q 的坐标为(2,2)或(2,﹣8).【分析】根据平行于y轴的直线上所有点的横坐标相同得到x=2,再利用PQ=5得到|y ﹣(﹣3)|=5,然后去绝对值求出y的值,从而得到点Q的坐标.【解答】解:∵点P(2,﹣3)与Q(x,y)在同一条平行y轴的直线上,∴x=2,∵PQ=5,∴|y﹣(﹣3)|=5,解得y=2或﹣8,∴点Q的坐标为(2,2)或(2,﹣8).故答案为(2,2)或(2,﹣8).18.(3分)化简÷(1﹣)的结果为.【分析】先将被除式分子、分母因式分解,计算括号内分式的减法,再将除法转化为乘法,最后约分即可得.【解答】解:原式=÷(﹣)=•=,故答案为:.19.(3分)若关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,则实数a满足的条件是﹣4<a≤﹣3.【分析】根据关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,即可求出实数a满足的条件.【解答】解:∵关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,∴实数a满足的条件是﹣4<a≤﹣3.故答案为﹣4<a≤﹣3.20.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对36进行如下操作:36[]=6[]=2[]=1,这样对36进行3次操作后就会变为1,类似地,对81只需要进行3次上述操作后会变为1;在只需要进行2次操作后就会变为1的所有正整数中,最大的是15.【分析】根据规律依次求出即可;要想确定只需进行2次操作后变为1的所有正整数,关键是确定一次操作后数的大小不能大于等于4,二次操作时根号内的数必须小于16,而正整数15却好满足这一条件,即最大的正整数为15.【解答】解:81[]=9[]=3[]=1,故对81只需要进行3次上述操作后会变为1;②最大的是15,[]=3,[]=1,而[]=4,[]=2,[]=1,即在只需要进行2次操作后就会变为1的所有正整数中,最大的是15.故答案为:3;15.三、解答题(本大题共8小题,共40分)21.(4分)计算:|﹣3|+﹣(﹣1)2019+.【分析】先去绝对值符号、计算算术平方根、乘方和立方根,再计算加减可得.【解答】解:原式=3﹣+3+1﹣3=4﹣.22.(4分)解不等式组:,并将解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:,解①式,得x≥﹣1,解②式,得<2,∴原不等式组的解集为:﹣1≤x<2,将解集表示在数轴上为:.23.(4分)解方程:+1=.【分析】直接找出公分母进而去分母解方程即可.【解答】解:方程两边同乘(x﹣2)得:x﹣3+x﹣2=﹣3解得:x=1,检验:当x=1时,x﹣2≠0,故x=1是此方程的解.24.(4分)在平面直角坐标系中,A(﹣4,0),B(2,4),BC∥y轴,与x轴相交于点C,BD∥x轴,与y轴相交于点D.(1)如图,直接写出①C点坐标(2,0),②D点坐标(0,4);(2)在图中,平移三角形ABD,使点B的对应点为原点O,点A、D的对应点分别为点A'、D',请画出图形,并解答下列问题:①AD与A'D'的关系是:平行且相等,②四边形AA'OD的面积为16平方单位.【分析】(1)直接利用平面直角坐标系得出各点坐标即可;(2)①利用平移的性质得出AD与A'D'的关系;②分割平行四边形利用三角形面积求法得出答案.【解答】解:(1)①C点坐标为:(2,0);②D点坐标为:(0,4);故答案为:(2,0),(0,4);(2)如图所示:△A′D′O即为所求;①AD与A'D'的关系是:平行且相等;②四边形AA'OD的面积为:×4×4+×4×4=16.故答案为:平行且相等;16.25.(6分)白色污染(Whitepollution)是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区40户居民,记录了这些家庭2018年某个月丢弃塑料袋的数量(单位:个)29 39 35 39 39 27 33 35 31 31 32 32 34 31 33 39 38 4038 4231 31 38 31 39 27 33 35 40 38 29 39 35 33 39 39 38 4237 32请根据上述数据,解答以下问题:(1)小彬按“组距为5”列出了如下的频数分布表(每组数据含最小值不含最大值),请将表中空缺的部分补充完整,并补全频数直方图;分组划记频数30B:30~35正正14C:35~40正正正18D:40~454合计/40(2)根据(1)中的直方图可以看出,这40户居民家这个月丢弃塑料袋的个数在C组的家庭最多;(填分组序号)(3)根据频数分布表,小彬又画出了如图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中,并求出C组对应的扇形圆心角的度数;(4)若该小区共有1000户居民家庭,请你估计每月丢弃的塑料袋数量不小于30个的家庭个数.【分析】(1)根据题干中数据可得,由频数分布表中数据可补全直方图;(2)根据(1)中的直方图即可得到结论;(3)根据题意列式计算即可得到答案;(4)根据题意列式计算即可得到结论.【解答】解:(1)补全频数分布直方图如图所示:分组划记频数A:25~30435C:35~正正正18404D:40~45合计/40(2)根据(1)中的直方图可以看出,这40户居民家这个月丢弃塑料袋的个数在C组的家庭最多,故答案为:C;(3)如图,360°×45%=162°,答:C组对应的扇形圆心角的度数为162°;(4)×100%=90%,1000×90%=900(个)答:丢弃的塑料袋数量不小于30个的家庭个数为900个.26.(5分)为了防治“新型冠状病毒”,某中学拟向厂家购买消毒剂和红外线测温枪,积极做好师生测温和教室消毒工作.(1)若原价购买一瓶消毒剂和一支测温枪需400元,一支测温枪的价格比一瓶消毒剂价格的6倍还贵15元,求每瓶消毒剂和每支测温枪的原价.(2)由于采购量大,厂家推出两种优惠套餐.套餐一:一次性购买10支测温枪和110瓶消毒剂,套餐二:一次性购买20支测温枪和100瓶消毒剂.设优惠后每支测温枪a元,每瓶消毒剂b元,已知a>b>0,你知道哪个套餐总价更低吗?请通过运算加以说明.【分析】(1)设每瓶消毒剂的原价为x元,每支测温枪的原价为y元,根据“原价购买一瓶消毒剂和一支测温枪需400元,一支测温枪的价格比一瓶消毒剂价格的6倍还贵15元”,即可得出关于x,y的二元一次方程,解之即可得出结论;(2)利用总价=单价×数量,可分别用含a,b的代数式表示出A,B两优惠套餐的总价,做差后即可得出结论.【解答】解:(1)设每瓶消毒剂的原价为x元,每支测温枪的原价为y元,依题意,得:,解得:.答:每瓶消毒剂的原价为55元,每支测温枪的原价为345元.(2)套餐A的总价为(10a+110b)元;套餐B的总价为(20a+100b)元,(20a+100b)﹣(10a+110b)=10a﹣10b=10(a﹣b),又∵a>b>0,∴a﹣b>0,∴10(a﹣b)>0,∴(20a+100b)﹣(10a+110b)>0,∴套餐A的总价更低.27.(6分)问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为110度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠P AB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【解答】(1)解:过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠P AB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=α+β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)如图所示,当P在BD延长线上时,∠CP A=α﹣β;如图所示,当P在DB延长线上时,∠CP A=β﹣α.28.(7分)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(﹣2,﹣5)的限变点的坐标是(﹣2,5),点(1,3)的限变点的坐标是(1,3).(1)①点(,﹣1)的限变点的坐标是(,1);②如图1,在点A(﹣2,1)、B(2,1)中有一个点是直线y=2上某一个点的限变点,这个点是B;(填“A”或“B”)(2)如图2,已知点C(﹣2,﹣2),点D(2,2),若点P在射线OC和OD上,其限变点Q的纵坐标b的取值范围是b′≥m或b′≤n,其中m>n,令s=m﹣n,直接写出s的值.(3)如图3,若点P在线段EF上,点E(﹣2,﹣5),点F(k,k﹣3),其限变点Q的纵坐标b′的取值范围是﹣2≤b′≤5,直接写出k的取值范围.【分析】(1)①利用限变点的定义直接解答即可;②先利用逆推原理求出限变点A(﹣2,1)、B(2,1)对应的原来点坐标,然后把原来点坐标代入到y=2,满足解析式的就是答案;(2)先OC,OD的关系式,再求出点P的限变点Q满足的关系式,然后根据图象求出m,n的值,从而求出S即可;(3)先求出线段的关系式,再求出点P的限变点所满足的关系式,根据图象求解即可.【解答】(1)①∵a=<2,∴b′=|b|=|﹣1|=1,∴坐标为(,1).故答案为(,1).②s=3.∵对于限变点来说,横坐标保持不变,∴限变点A(﹣2,1)对应的原来点的坐标为:(﹣2,1)或(﹣2,﹣1),限变点B(2,1]对应的原来点的坐标为:(2.2),∵(2,2)满足y=2,∴这个点是B,故答案为:B;(2)∵点C的坐标为(﹣2,﹣2),∴OC的关系式为:y=x(x≤0),∵点D的坐标为(2,﹣2),∴OD的关系式为:y=﹣x(x≥0),∴点P满足的关系式为:y=,当x≥2时:b'=一x﹣1,当0<x<2时:b'=﹣x﹣1,当x≤0时,b=|x|=﹣x,图象如图1所示,通过图象可以得出:当x≥2时,b'≤﹣3,n=﹣3,当x<2时,b'≥0,∴m=0,∴s=m﹣n=0﹣(﹣3)=3;(3)设线段E的关系式为:y=ax+c(a≠0,﹣2≤x≤k,k>﹣2),把E(﹣2,﹣5),F(k,k﹣3)代入,得,解得,∴线段EP的关系式为y=x一3(﹣2≤x≤k,k>﹣2),∴线段E上的点P的限变点Q的纵坐标满足的关系式b'=,图象如图2所示:当x=2时,b'取最小值,b'=2﹣4=﹣2,当b'=5时,x﹣4=5或﹣x+3=5,解得:x=9或x=﹣2,当b'=1时,x﹣4=1,解得:x=5,∵﹣2≤b'<5,∴由图象可知,k的取值范围时:5≤k≤9.。

北京市西城区2017-2018学年七年级下期末数学试卷含答案

北京市西城区2017-2018学年七年级下期末数学试卷含答案

西城区2017-2018学年度第二学期期末试卷七年级数学2018.7试卷满分:100分,考试时间:100分钟一、选择题(本题30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1. 8的立方根等于().A.-2B.2C.-4D.42.已知a<b,下列不等式中,正确的是().A. a+4>b+4B.a-3>b-3C. 12a<12b D. -2a<-2 b3.下列计算中,正确的是()A.m2+m4 =m6B. m2·m4=m8C.(3m) 2=3m2D. 2m4÷m2=2 m24.如图,直线a//b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=600,那么∠2等于().A. 300B. 400C. 500D. 6005.如果点P(5, y)在第四象限,那么y的取值范围是().A.y≤0B.y≥0C.y<0D.y>06.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是().A.方案一B.方案二C.方案三D.方案四7.下列运算中,正确的是().A. (a+b)2=a2+b2B.(a-12)2=a2-a+14C. (a-b) 2=a2+2ab-b2D.(2a+b) 2=2a2+2ab+b28.下列命题中,是假命题的是()A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.同旁内角互补,两直线平行C.两条直线被第三条直线所截,同位角相等D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行9.某品牌电脑的成本为2400元,售价为2 800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,则下列不等式中能正确表示该商店的促销方式的是().A. 2 800x≥2400x5%B.2800x一2400≥2400 x 5%C. 2 800 10x ⨯≥2400 x 5%D. 2 800 10x ⨯一2400≥2400 x 5% 10 10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80% , 15%和 5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20000户居民6月份的用电量(单位:kw ・ h),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据统计数据,下面有四个推断:①抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平②在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于500 ③月用电量小于160 kw ・h 的该市居民家庭按第一档电价交费,月用电量不小于310 kw ・h 的该市居民家庭按第三档电价交费④该市居民家庭月用电量的中间水平(50%的用户)为110 kw ・h其中合理的是( ).A.①②③B.①②④C.①③④D.②③④二、填空题(本题共18分,第11-16题每小题2分,第17,18题每小题3分)11.不等式组12x x -⎧⎨⎩的解集是 . 12.如图,点A,B,C,D,E 在直线l 上,点P 在直线l 外,PC ⊥l 于点C ,在线段PA,PB,PC ,PD,PE 中,最短的一条线段是 ,理由是13.右图中的四边形均为长方形,根据图形,写出一个正确的等式:14.如图,在Rt ∆ABC 中,∠C=900 ,AD 平分∠ CAB 交BC 于点D, BE 上AD 于点E .若∠CAB=500,则∠DBE=15.如图,AB//CD, CE 交AB 于点F, ∠C=550, ∠AEC=150 则∠A=16.七巧板又称智慧板,是中国民间流传的智力玩具,它由七块板组成(如图1),用这七块板可拼出许多图形(1 600种以上).例如:三角形、平行四边形以及不规则的多边形,它还可以拼出各种人物、动物、建筑等.请你用七巧板中标号为①②③的三块板(如图2)经过平移、旋转拼出下列图形(相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格顶点上):(1)拼成长方形,在图3中画出示意图;(2)拼成等腰直角三角形,在图4中画出示意图.17.如图,在平面直角坐标系xOy 中,平行四边形ABCD 的四个顶点 A,B,C, D 是整点(横、纵坐标都是整数),则平行四边形ABCD 的面积是18.若一个整数能表示成a 2+b 2 (a,b 是整数)的形式,则称这个数为“完美数”.例如,因为5=22+12,所以5是一个“完美数”.(1)请你再写一个大于10且小于20的“完美数” _;(2)已知M 是一个“完美数”,且M =x 2+4xy+5y 2-12y+ k(x,y 是两个任意整数,k 是常数),则k 的值为三、解答题(本题共17分,第19题5分,第20,21题每小题6分) 19.计算:035(523)23(3)π+-+-解:20.解不等式:2231132x x++-,并把解集表示在数轴上.21.先化简,再求值:(ab+2)(ab-2)+(a2b2 +4ab) ÷ab,其中a=10, b =1 5四、解答题(本题共27分,第24题6分,其余每小题7分)22.在平面直角坐标系xOy中,∆ABC的三个顶点分别是A(-2,0) ,B(0,3) ,C(3,0).(1)在所给的图中,画出这个平面直角坐标系;(2)点A经过平移后对应点为D(3,-3),将△ABC作同样的平移得到△DEF,画出平移后的△DEF;(3)在(2)的条件下,点M在直线CD上,若CM=2DM,直接写出点M的坐标.解:(3)点M的坐标为23.如图,点O在直线AB上,OC⊥OD, ∠EDO与∠1互余.(1)求证:ED// AB;(2) OF平分∠COD交DE于点F,若∠OFD=700,补全图形,并求∠1的度数.(1)证明:(2)解:24.某地需要将一段长为180米的河道进行整修,整修任务由A,B 两个工程队先、后接力完成.已知A 工程队每天整修12米,B 工程队每天整修8米,共用时20天.问A,B 两个工程队整修河道分别工作了多少天?(1)以下是甲同学的做法:设A 工程队整修河道工作了x 天,B 工程队整修河道工作了y 天. 根据题意,得方程组:解得x y =⎧⎨=⎩请将甲同学的上述做法补充完整;(2)乙同学说:本题还有另外一种解法,他列出了不完整的方程组如下: 128x y x y +=⎧⎪⎨+=⎪⎩①在乙同学的做法中,x 表示 ,8y 表示 ; ②请将乙同学所列方程组补充完整.25.阅读下列材料:2017年,我国全年水资源总量为28675亿m 3..2016年,我国全年水资源总量为32466.4亿 m 3. 2015年,我国全年水资源总量为27 962. 6亿 m 3,全年平均降水量为660. 8 mm.我国水资源的消费结构包含工业用水、农业用水、生态用水、生活用水四类.2017年全国用水总量为6 040亿 m 3,其中工业用水占用水总量的22%,农业用水占用水总量的62%,生态用水占用水总量的2%,生活用水844.5亿 m 3.根据上述材料,解答下列问题:(1)根据材料画适当的统计图,直观地表示2015一2017年我国全年水资源总量情况;(2) 2017年全国生活用水占用水总量的 %,并补全扇形统计图(3) 2012一2017年全国生活用水情况统计如下图所示,根据统计图中提供的信息①请你估计2018年全国生活用水量为亿m3,你的预估理由是;②谈谈节约用水如何从我做起?五、解答题(本题共8分)26.如图,在直角三角形ABC中,∠ACB=90".(1)如图1,点M在线段CB上,在线段BC的延长线上取一点N,使得∠NAC = ∠MAC.过点B作BD⊥AM,交AM延长线于点D,过点N作NE//BD,交AB于点E,交AM于点F.判断∠ENB与∠NAC之间的数量关系,写出你的结论,并加以证明;(2)如图2,点M在线段CB的延长线上,在线段BC的延长线上取一点N,使得∠NAC=∠MAC.过点B作BD⊥AM于点D,过点N作NE// BD,交BA延长线于点E,交MA延长线于点F.①依题意补全图形;②若∠CAB=450,求证:∠NEA=∠NAE.。

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年七年级(下)期末数学试卷(含解析) (15)

北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a53.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.408.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm210.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.三、解答题(共55分)16.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE∥BC(已知),所以∠3=∠EHC().因为∠3=∠B(已知),所以∠B=∠EHC().所以AB∥EH().所以∠2+=180°().因为∠1=∠4(),所以∠1+∠2=180°(等量代换).17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)早餐店到小颖家的距离是千米,她早餐花了分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.2018-2019学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:A.【点评】本题主要考查了轴对称图形的定义,正确理解定义是解题关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a5【分析】根据单项式乘单项式的法则,合并同类项的法则,同底数幂的除法的法则,积的乘方和幂的乘方的法则计算即可.【解答】解:A、a2+a2=2a2,不符合题意;B、(2a)3=9a3,不符合题意;C、a9÷a3=a6,不符合题意;D、(﹣2a)2•a3=4a5,符合题意;故选:D.【点评】本题考查了单项式乘单项式,合并同类项,同底数幂的除法,积的乘方和幂的乘方,熟练掌握计算法则是解题的关键.3.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别根据面积公式进行计算,根据图1的面积=图2的面积列式,即可得到平方差公式.【解答】解:图1阴影面积=a2﹣b2,图2拼剪后的阴影面积=(a+b)(a﹣b),∴得到的公式为:a2﹣b2=(a+b)(a﹣b),即(a+b)(a﹣b)=a2﹣b2,故选:B.【点评】本题考查了平方差公式的几何背景,利用图形的面积和作为相等关系列出等式即可验证平方差公式.5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°【分析】利用平行线的性质求出∠EDF,再利用三角形内角和定理求出∠DEF即可.【解答】解:∵∠CBD=90°,∴∠ABD=90°﹣∠ABC=70°,∵EF∥AB,∴∠DFE=∠ABD=70°,∴∠DEF=180°﹣∠D﹣∠DFE=50°,∴∠1=∠DEF=50°,故选:C.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.【解答】解:A、掷一枚质地均匀的硬币,硬币落下后朝上的是正面的概率为;符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任意抽出一张的花色是红桃的概率为,不符合题意;C、不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球的概率为,不符合题意;D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;故选:A.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.40【分析】根据角平分线的性质得到GM=CG=4,根据三角形的面积公式计算即可.【解答】解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.【点评】本题考查的是三角形的面积,角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角三角形时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角三角形时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm2【分析】由七巧板的制作过程可知,这只小猫的头部是用正方形的四分之一拼成的,所以面积是正方形面积的四分之一.【解答】解:如图:小猫的头部的图形是abc,在右图中三角形h的一半与b全等,而由图中a+c+h的一半正好是正方形的四分之一,即阴影部分的面积是×12×12cm2=36cm2,故选:C.【点评】本题考查了正方形的性质,也考查了列代数式的内容,难度较大,还考查了学生的观察图形的能力.10.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.【分析】分别判断点P在各条线段上面积的变化情形即可判断.【解答】解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.【点评】本题考查动点问题函数图象,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为 5.19×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00519用科学记数法表示应为5.19×10﹣3.故答案为:5.19×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.【分析】直接利用轴对称图形的性质得出符合题意的位置,进而得出答案.【解答】解:如图所示:选取白色的小正方形中1,2,3的位置3个涂黑,能使整个黑色部分构成一个轴对称图形,故使整个黑色部分构成一个轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【分析】先根据折叠的性质得到折痕都垂直于过点P的直线,根据根据平行线的判定方法求解.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=153.【分析】根据数字的变化规律取符合条件的数按规律计算即可求出一个固定数字.【解答】解:例如:33=27,23+73=351,33+53+13=153.故答案为153.【点评】本题考查了数字的变化类、有理数的混合运算,解决本题的关键是理解题意进行计算.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是①②④.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.【分析】由“SAS ”可证△BDE ≌△ADF ,可得BE =AF ,DE =DF ,S △BDE =S △ADF ,即可求解.【解答】解:∵∠BAC =90°,AB =AC .点D 为BC 的中点,∴AD =BD =CD ,∠∠BAD =∠CAD =∠B =∠C =45°,AD ⊥BC ,∵∠MDN =90°=∠ADB ,∴∠BDE =∠ADF ,且BD =AD ,∠B =∠DAF =45°,∴△BDE ≌△ADF (SAS )∴BE =AF ,DE =DF ,S △BDE =S △ADF ,∴S △BDE +S △ADE =S △ADF +S △ADE ,∴四边形AEDF 的面积=S △ABD =S △ABC ,故①④符合题意,∵DE =DF ,∠EDF =90°,∴△DEF 是等腰直角三角形,故②符合题意,当点F 在AC 中点时,可得EF =BC =AD ,DF +CF =AC ,∵AD ≠AC ,故③不合题意,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,证明△BDE ≌△ADF 是本题的关键.三、解答题(共55分)16.(6分)如图,已知DE ∥BC ,∠3=∠B ,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE ∥BC (已知),所以∠3=∠EHC ( 两直线平行,内错角相等 ).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换).所以AB∥EH(同位角相等,两直线平行).所以∠2+∠4=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【分析】根据平行线的性质得出∠3=∠EHC,求出∠B=∠EHC,根据平行线的判定得出AB∥EH,根据平行线的性质得出∠2+∠4=180°,即可得出答案.【解答】解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换),故答案为:两直线平行,内错角相等,等量代换,同位角相等,两直线平行,∠4,两直线平行,同旁内角互补,对顶角相等.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=[2x2+2xy]÷2x=x+y,当x=﹣1,y=时,原式=﹣1+=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC=DC,BC=EC,根据∠ACB=∠DCE即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:如图,先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE 的长度就是A、B间的距离.证明:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB.∴量出DE的长,就是A、B两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△DEC是解题的关键.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)360°﹣10°﹣30°﹣80°﹣120°=120°,答:不获奖的扇形区域圆心角度数是120°;=,(2)P(获得双肩背包)答:获得双肩背包的概率是;=,(3)P(获奖)答:他获奖的概率是.【点评】本题考查了概率,正确运用概率公式是解题的关键.20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是所用的时间,因变量是离家的距离;(2)早餐店到小颖家的距离是 1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?【分析】根据函数图象的横坐标,可得时间的变化,根据函数图象的纵坐标,可得距离的变化.【解答】解:(1)在上述变化过程中,自变量是小颖所用的时间x,因变量是离家的距离;故答案为:所用的时间;离家的距离;(2)早餐店到小颖家的距离是1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在选书和买书;(4)小颖从图书大厦回家的过程中,她的平均速度是2÷(80﹣55)=0.08(千米/分钟)=80米/分钟.【点评】此题主要考查了函数图象与实际问题,根据已知图象获取正确信息是解题关键.解题时注意:速度=距离÷时间.21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)=4×7﹣×2×7﹣×2×5﹣×4×2=28﹣7﹣5﹣4=12.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】解:(1)∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS);(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②如图2,当D在线段BC上时,同理可证:△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ABD+∠ADC=180°,∴∠ADC+∠AEC=180°,∴∠DCE+∠DAE=180°,∴α+β=180°;如图1或3,当点D在线段BC延长线或反向延长线上时,α=β.【点评】本题是三角形综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

北京市西城区2014—2015学年度第一学期期末考试七年级数学试卷(含详细解答)

北京市西城区2014—2015学年度第一学期期末考试七年级数学试卷(含详细解答)

北京市西城区2014— 2015学年度第一学期期末考试七年级数学试卷2015.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在1, 0,1-,2-这四个数中,最小的数是( )A. 2-B. 1-C. 0D.2.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约为13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为A . 13.1×106B .1.31×107C .1.31×108D .0.131×1083.下列计算正确的是( )A. 235a b ab +=B. 325a a a +=C. 2222a a a --=-D. 22271422a b a b a b -= 4.已知关于x 的方程225x m +=的解是2x =-,则m 的值为( ). A. 12 B. 12- C. 92 D. 92- 5.若21(2)02x y -++=,则2015()xy 的值为( ) A. B. 1- C. 2015- D. 20156.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )A B CD7.如图,将一个直角三角板AOB 的顶点O 放在直线CD 上,若∠AOC =35°,则∠BOD 等于A .155°B .145°C .65°D . 55°8.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x 支,则可列得的一元一次方程为( )A .0.8 1.20.92(60)87x x ⨯+⨯-=B .0.8 1.20.92(60)87x x ⨯+⨯+=C .0.920.8 1.2(60)87x x ⨯+⨯+=D . 0.920.8 1.2(60)87x x ⨯+⨯-=9.如图,四个有理数在数轴上的对应点M ,P ,N , Q ,M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是A .点MB .点NC .点PD .点Q10了一个“D 二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分)11.4-的倒数是 .12. “m 与n 的平方差”用式子表示为 .13.若∠A =45°30′,则∠A 的补角等于 .14.已知多项式22x y +的值是3,则多项式224x y ++的值是 .15.写出一个只含有字母x ,y16.如图,已知线段AB =10cm ,C 是线段AB 的中点,E 是线段BC 的中点,则DE 的长是 cm .17.如图,把一个圆平均分为若干份,然后把它们全部剪开,拼成一个近似的平行四边形.若这个平行四边形的周长比圆的周长增加了4cm ,则这个圆的半径是 cm ,拼成的平行四边形的面积是 cm 2.18.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52× = ×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b ≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是.三、计算题(本题共16分,每小题4分)19. 3011(10)(12)-+--- 20.51(3)()(1)64-⨯-÷- 解: 解:21.21[1(10.5)][10(3)]3--⨯⨯-+- 22.312138()(2)(8)595⨯--⨯-+-⨯ 解: 解:。

2023-2024学年北京市西城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的绝对值是.()A.3B.C.D.2.特色产业激发乡村发展新活力.据报道,截至2023年10月9日,全国已建设180个优势特色乡村产业集群,全产业链产值超过4600000000000元,辐射带动1000多万户农民.数字4600000000000用科学记数法表示为.()A. B. C. D.3.下图是某个几何体的展开图,则这个几何体是。

()A.三棱柱B.圆柱C.四棱柱D.圆锥4.下列各式计算中正确的是.()A. B.C. D.5.如果一个角等于它的余角的2倍,那么这个角的度数是.()A. B. C. D.6.有理数a,b在数轴上的对应点的位置如图所示,下列结论正确的是()A. B. C. D.7.下列解方程的变形过程正确的是()A.方程,移项得B.方程,系数化为1得C.方程,去括号得D.方程,去分母得8.如图,某乡镇的五户居民依次居住在同一条笔直的小道边的A处,B处,C处,D处,E处,且这五户居民的人数依次有1人,2人,3人,3人,2人.乡村扶贫改造期间,该乡镇打算在这条小道上新建一个便民服务点M,使得所有居民到便民服务点的距离之和每户所有居民均需要计算最小,则便民服务点M应建在.()A.A处B.B处C.C处D.D处二、填空题:本题共8小题,每小题2分,共16分。

9.如果向东走5米记作米,那么向西走10米可记作__________米.10.比较大小:__________11.如图所示的网格是正方形网格,则__________填“>”“<”“=”12.如果单项式与单项式的和仍是单项式,那么m的值是__________,n的值是__________.13.若是关于x的方程的解,则a的值为__________.14.若代数式的值为2,则代数式的值为__________.15.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设有x间客房,可列方程为:__________.16.“幻方”最早记载于春秋时期的《大戴礼》中,现将1,2,3,4,5,7,8,9这八个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.若按同样的要求重新填数如图2所示,则的值是__________,的值是__________.三、计算题:本大题共2小题,共20分。

2022-2023学年北京市西城区七年级(下)期末数学试卷(含解析)

2022-2023学年北京市西城区七年级(下)期末数学试卷(含解析)

2022-2023学年北京市西城区七年级(下)期末数学试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共8小题,共16.0分。

在每小题列出的选项中,选出符合题目的一项)1. 实数3.1415,32,−57,9中,无理数是( )A. 3.1415B. 32C. −57D. 92. 若m<n,则下列各式中正确的是( )A. m−n>0B. m−9>n−9C. m+n<2nD. −m4<−n43.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O,∠DOE=37°,∠COB的大小是( )A. 53°B. 143°C. 117°D. 127°4. 下列命题中,是假命题的是( )A. 如果两个角相等,那么它们是对顶角B. 同旁内角互补,两直线平行C. 如果a=b,b=c,那么a=cD. 负数没有平方根5. 在平面直角坐标系中,点A(1,5),B(m−2,m+1),若直线AB与y轴垂直,则m的值为( )A. 0B. 3C. 4D. 76. 以下抽样调查中,选取的样本具有代表性的是( )A. 了解某公园的平均日客流量,选择在周末进行调查B. 了解某校七年级学生的身高,对该校七年级某班男生进行调查C. 了解某小区居民坚持进行垃圾分类的情况,对小区活动中心的老年人进行调查D. 了解某校学生每天体育锻炼的时长,从该校所有班级中各随机选取5人进行调查7. 以某公园西门O为原点建立平面直角坐标系,东门A和景点B的坐标分别是(6,0)和(4,4).如图1,甲的游览路线是:O→B→A,其折线段的路程总长记为l1,如图2,景点C和D分别在线段OB,BA上,乙的游览路线是:O→C→D→A,其折线段的路程总长记为l2,如图3,景点E 和G分别在线段OB,BA上,景点F在线段OA上,丙的游览路线是:O→E→F→G→A,其折线段的路程总长记为l3.下列l1,l2,l3的大小关系正确的是( )A. l1=l2=l3B. l1<l2且l2=l3C. l2<l1<l3D. l1>l2且l1=l38. 有8张形状、大小完全相同的小长方形卡片,将它们按如图所示的方式(不重叠)放置在大长方形ABCD中,根据图中标出的数据,1张小长方形卡片的面积是( )A. 72B. 68C. 64D. 60第II卷(非选择题)二、填空题(本大题共8小题,共16.0分)9. 若{x=3y=−2是方程ax+y=10的解,则a的值为______ .10. 在平面直角坐标系中,已知点P在第四象限,且点P到两坐标轴的距离相等,写出一个符合条件的点P的坐标:______ .11. 若一个数的平方等于9,则这个数是______ .6412.如图,在三角形ABC中,∠C=90°,点B到直线AC的距离是线段______ 的长,BC<BA的依据是______ .13. 点M ,N ,P ,Q 在数轴上的位置如图所示,这四个点中有一个点表示实数 5−1,这个点是______ .14. 解方程组{3x +4y =16①5x −6y =33②,小红的思路是:用①×5−②×3消去未知数x ,请你写出一种用加减消元法消去未知数y 的思路:用______ 消去未知数y .15. 如图,四边形纸片ABCD ,AD //BC ,折叠纸片ABCD ,使点D落在AB 上的点D 1处,点C 落在点C 1处,折痕为EF .若∠EFC =102°,则∠AED 1= ______ °.16. 小明沿街心公园的环形跑道从起点出发按逆时针方向跑步,他用软件记录了跑步的轨迹,他每跑1km 软件会在运动轨迹上标注相应的路程,前5km 的记录如图所示.已知该环形跑道一圈的周长大于1km .(1)小明恰好跑3圈时,路程是否超过了5km ?答:______ (填“是”或“否”);(2)小明共跑了14km 且恰好回到起点,那么他共跑了______ 圈.三、解答题(本大题共10小题,共78.0分。

2019-2020学年北京市东城区七年级下学期期末数学试卷 (解析版)

2019-2020学年北京市东城区七年级下学期期末数学试卷 (解析版)

2019-2020学年北京市东城区七年级第二学期期末数学试卷一、选择题(共10小题).1.4的算术平方根为()A.﹣2B.2C.±2D.2.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.3.如图,要把河中的水引到水池A中,应在河岸B(AB⊥CD于点B)处开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.垂线段最短B.点到直线的距离C.两点确定一条直线D.两点之间线段最短4.下列调查中,适宜采用全面调查方式的是()A.调查某中学七年级三班学生视力情况B.调查我市居民对“垃圾分类”有关内容的了解程度C.调查某批次汽车的抗撞击能力D.了解一批手机电池的使用寿命5.如图,直线a∥b,将三角板的直角顶点放在直线b上,如果∠1=40°,则∠2的度数是()A.30°B.40°C.45°D.50°6.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)7.如果关于x的不等式3x﹣a≤﹣1的解集如图所示,则a的值是()A.a=﹣1B.a=﹣2C.a≤﹣1D.a≤﹣28.用加减法解方程组时,(1)×2﹣(2)得()A.3x=﹣1B.﹣2x=13C.17x=﹣1D.3x=179.我们定义一个关于实数a,b的新运算,规定:a*b=4a﹣3b.例如:5*6=4×5﹣3×6,若m满足m*2<0,则m的取值范围是()A.m<B.m>C.m<D.m>10.党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少.如图的统计图分别反映了2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%).根据统计图提供的信息,下列推断不正确的是()A.2012﹣2019年,全国农村贫困人口逐年递减B.2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年C.2012﹣2019年,全国农村贫困人口数累计减少9348万D.2019年,全国各省份的农村贫困发生率都不可能超过0.6%二、填空题(本题共18分,11-17题每题2分,18题4分)11.写出一个大于2的无理数.12.如图的框图表示解不等式2﹣3x>4﹣x的流程,其中“系数化为1”这一步骤的依据是.13.在平面直角坐标系中,已知点M(1﹣a,a+2)在第二象限,则a的取值范围是.14.如果是二元一次方程mx﹣y=4的解,那么m的值.15.若一个正数的平方根分别是a+1和2a﹣7,则a的值是.16.如图,直线AB,CD相交于O,若∠EOC:∠EOD=4:5,OA平分∠EOC,则∠BOE =.17.《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”设甲原有x文钱,乙原有y文钱,可列方程组为.18.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的橫、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′,则a=,m=,n=.若正方形ABCD 内部的一个点F经过上述操作后得到的对应点F′与点F重合,则点F的坐标为.三、解答题(本题共33分,19-22题每题5分,23题6分,24题7分)19.计算:++|1﹣|﹣.20.解方程组:.21.解不等式组:,并把解集在数轴上表示出来.22.如图,已知点A(﹣3,3),点B(﹣4,1),点C(﹣2,2).(1)求△ABC的面积.(2)将△ABC平移,使得点A与点D(2,4)重合,得到△DEF,点B,C的对应点分别是点E,F,画出平移后的△DEF,并写出点E和点F的坐标.23.完成下面推理填空:如图,E、F分别在AB和CD上,∠1=∠D,∠2与∠C互余,AF⊥CE于G.求证:AB∥CD.证明:∵AF⊥CE∴∠CGF=90°()∵∠1=∠D(已知)∴∥()∴∠4=∠CGF=90°()∵∠2+∠3+∠4=180°(平角的定义)∴∠2+∠3=90°.∵∠2与∠C互余(已知),∴∠2+∠C=90°(互余的定义)∴∠C=∠3(同角的余角相等)∴AB∥CD()24.在防控新冠病毒疫情期间,某校对初中六、七、八、九四个年级,围绕着“你最喜欢的居家体育活动项目是什么?(只写一项)”的问题,对该校学生进行了随机抽样调查.过程如下,请补充完整.收集数据A.平板支撑B.跳绳C.仰卧起坐D.开合跳E.其他通过调查得到的一组数据如下:DCCADABADBBEDDEDBCCEECBDEEDDEDBBCCDCEDDABDDCDDEDCE整理、描述数据抽样调查50名初中学生最喜欢的居家体育活动项目人数统计表活动项目划记频数A.平板支撑4B.跳绳C.仰卧起坐正正10D.开合跳E.其他正正10总计50根据以上信息,回答下列问题:(1)补全统计表和条形统计图(图1).(2)计算:本次抽样调查中,最喜欢开合跳活动的人占被调查总人数的百分比.(3)如图2是根据该校初中各年级学生人数占初中学生总人数的百分比绘制的扇形统计图,若该校九年级共有200名学生,请你估计该校初中学生中最喜欢跳绳活动的人数约为多少?四、解答题(本题共19分,25题6分,26题7分,27题6分)25.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.彤彤是这样做的:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,Q且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).26.列方程(组)或不等式解决问题每年的4月23日是世界读书日.某校为响应“全民阅读”的号召,计划购入A,B两种规格的书柜用于放置图书.经市场调查发现,若购买A种书柜3个、B种书柜2个,共需资金1020元;若购买A种书柜5个、B种书柜3个,共需资金1620元.(1)A、B两种规格书柜的单价分别是多少?(2)若该校计划购买这两种规格的书柜共20个,学校至多有4350元的资金,问B种书柜最多可以买多少个?27.对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y﹣t)称为将点P进行“t型平移”,点P'称为将点P 进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t 型平移”.例如,将点P(x,y)平移到P'(x+1,y﹣1)称为将点P进行“l型平移”,将点P(x,y)平移到P'(x﹣1,y+1)称为将点P进行“﹣l型平移”.已知点A(2,1)和点B(4,1).(1)将点A(2,1)进行“l型平移”后的对应点A'的坐标为.(2)①将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.(3)已知点C(6,1),D(8,﹣1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B',当t的取值范围是时,B'M的最小值保持不变.参考答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.4的算术平方根为()A.﹣2B.2C.±2D.【分析】依据算术平方根的定义求解即可.解:∵22=4,∴4的算术平方根是2,故选:B.2.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,将题中所示的图案通过平移后可以得到的图案是B.解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选:B.3.如图,要把河中的水引到水池A中,应在河岸B(AB⊥CD于点B)处开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.垂线段最短B.点到直线的距离C.两点确定一条直线D.两点之间线段最短【分析】根据垂线段最短得出即可.解:要把河中的水引到水池A中,应在河岸B(AB⊥CD于点B)处开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是垂线段最短,故选:A.4.下列调查中,适宜采用全面调查方式的是()A.调查某中学七年级三班学生视力情况B.调查我市居民对“垃圾分类”有关内容的了解程度C.调查某批次汽车的抗撞击能力D.了解一批手机电池的使用寿命【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、调查某中学七年级三班学生视力情况,人数不多,应采用全面调查,故此选项符合题意;B、调查我市居民对“垃圾分类”有关内容的了解程度,人数中众多,应采用抽样调查,故此选项不合题意;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项不合题意;D、了解一批手机电池的使用寿命,具有破坏性,应采用抽样调查,故此选项不合题意;故选:A.5.如图,直线a∥b,将三角板的直角顶点放在直线b上,如果∠1=40°,则∠2的度数是()A.30°B.40°C.45°D.50°【分析】根据平行线的性质和直角三角形的性质,可以得到∠2的度数,本题得以解决.解:∵直线a∥b,∴∠1=∠3,∵∠1=40°,∴∠3=40°,∵三角板的直角顶点放在直线b上,∴∠3+∠2=90°,∴∠2=50°,故选:D.6.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.解:如图,棋子“炮”的坐标为(3,﹣2).故选:C.7.如果关于x的不等式3x﹣a≤﹣1的解集如图所示,则a的值是()A.a=﹣1B.a=﹣2C.a≤﹣1D.a≤﹣2【分析】解不等式得出x≤,结合数轴知x≤﹣1,据此得出=﹣1,解之可得答案.解:∵3x﹣a≤﹣1,∴3x≤a﹣1,则x≤,由数轴知x≤﹣1,∴=﹣1,解得a=﹣2,故选:B.8.用加减法解方程组时,(1)×2﹣(2)得()A.3x=﹣1B.﹣2x=13C.17x=﹣1D.3x=17【分析】此题考查的是加减消元法,消元时两方程相减,要注意是方程的左边减去左边、方程的右边减去右边.解:(1)×2﹣(2),得2(5x+y)﹣(7x+2y)=2×4﹣(﹣9),去括号,得10x+2y﹣7x﹣2y=2×4+9,化简,得3x=17.故选:D.9.我们定义一个关于实数a,b的新运算,规定:a*b=4a﹣3b.例如:5*6=4×5﹣3×6,若m满足m*2<0,则m的取值范围是()A.m<B.m>C.m<D.m>【分析】根据新运算列出关于m的不等式,解之可得.解:∵m*2<0,∴4m﹣3×2<0,则4m<6,∴m<,故选:A.10.党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少.如图的统计图分别反映了2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%).根据统计图提供的信息,下列推断不正确的是()A.2012﹣2019年,全国农村贫困人口逐年递减B.2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年C.2012﹣2019年,全国农村贫困人口数累计减少9348万D.2019年,全国各省份的农村贫困发生率都不可能超过0.6%【分析】观察统计图可得,2012﹣2019年,全国农村贫困人口逐年递减,可判断A;2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,可判断B;2012﹣2019年,全国农村贫困人口数累计减少9899﹣551=9348万,可判断C;2019年,全国各省份的农村贫困发生率都可能超过0.6%,可判断D.解:观察统计图可知:A.2012﹣2019年,全国农村贫困人口逐年递减,正确;B.2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,正确;C.2012﹣2019年,全国农村贫困人口数累计减少9899﹣551=9348万,正确;D.2019年,全国各省份的农村贫困发生率都可能超过0.6%,错误.故选:D.二、填空题(本题共18分,11-17题每题2分,18题4分)11.写出一个大于2的无理数如(答案不唯一).【分析】首先2可以写成,由于开方开不尽的数是无理数,由此即可求解.解:大于2的无理数有:须使被开方数大于4即可,如(答案不唯一).12.如图的框图表示解不等式2﹣3x>4﹣x的流程,其中“系数化为1”这一步骤的依据是不等式的基本性质3:不等式两边都乘以或除以同一个负数,不等号的方向改变.【分析】根据不等式的基本性质3求解可得.解:“系数化为1”这一步骤的依据是不等式的基本性质3:不等式两边都乘以或除以同一个负数,不等号的方向改变,故答案为:不等式的基本性质3:不等式两边都乘以或除以同一个负数,不等号的方向改变.13.在平面直角坐标系中,已知点M(1﹣a,a+2)在第二象限,则a的取值范围是a>1.【分析】点在第二象限内,那么横坐标小于0,纵坐标大于0.解:∵点M(1﹣a,a+2)在第二象限,∴,解得:a>1,故答案为a>1.14.如果是二元一次方程mx﹣y=4的解,那么m的值3.【分析】把x与y的值代入方程计算即可求出m的值.解:把代入方程mx﹣y=4得:2m﹣2=4,移项合并得:2m=6,解得:m=3,则m的值为3.故答案为:3.15.若一个正数的平方根分别是a+1和2a﹣7,则a的值是2.【分析】根据一个正数的平方根互为相反数,可得a+1和2a﹣7的关系,根据互为相反数的和为0,可得a的值.解:根据题意知a+1+2a﹣7=0,解得:a=2,故答案为:2.16.如图,直线AB,CD相交于O,若∠EOC:∠EOD=4:5,OA平分∠EOC,则∠BOE =140°.【分析】直接利用平角的定义得出:∠COE=80°,∠EOD=100°,进而结合角平分线的定义得出∠AOC=∠BOD,进而得出答案.解:∵∠EOC:∠EOD=4:5,∴设∠EOC=4x,∠EOD=5x,故4x+5x=180°,解得:x=20°,可得:∠COE=80°,∠EOD=100°,∵OA平分∠EOC,∴∠COA=∠AOE=40°,∴∠BOE=180°﹣∠AOE=140°.故答案为:140°17.《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”设甲原有x文钱,乙原有y文钱,可列方程组为.【分析】设甲原有x文钱,乙原有y文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的=48文钱,据此列方程组可得.解:设甲原有x文钱,乙原有y文钱,根据题意,得:,故答案为:.18.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的橫、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′,则a=,m=,n=2.若正方形ABCD 内部的一个点F经过上述操作后得到的对应点F′与点F重合,则点F的坐标为(1,4).【分析】首先根据点A到A′,B到B′的点的坐标可得方程组;,解可得a、m、n的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.解:由点A到A′,可得方程组;由B到B′,可得方程组,解得,设F点的坐标为(x,y),点F′点F重合得到方程组,解得,即F(1,4),故答案为,,2,(1,4).三、解答题(本题共33分,19-22题每题5分,23题6分,24题7分)19.计算:++|1﹣|﹣.【分析】原式利用平方根、立方根性质,绝对值的代数意义化简,计算即可求出值.解:原式=7﹣3+﹣1﹣=3.20.解方程组:.【分析】此题用代入法较简单.解:,由②,得y=3x﹣2,代入①,得4x﹣3(3x﹣2)=5,x=.代入②,得y=﹣1.所以方程组的解为.21.解不等式组:,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.解:∵解不等式①得:x≥﹣2,解不等式②得:x<4,∴不等式组的解集是﹣2≤x<4,在数轴上表示为:.22.如图,已知点A(﹣3,3),点B(﹣4,1),点C(﹣2,2).(1)求△ABC的面积.(2)将△ABC平移,使得点A与点D(2,4)重合,得到△DEF,点B,C的对应点分别是点E,F,画出平移后的△DEF,并写出点E和点F的坐标.【分析】(1)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(2)利用平移的性质得出对应点位置进而得出答案.解:(1)△ABC的面积为:2×2﹣×1×2﹣×1×1﹣×1×2=4﹣1﹣﹣1=1.5;(2)如图所示:△DEF即为所求,E(1,2),F(3,3).23.完成下面推理填空:如图,E、F分别在AB和CD上,∠1=∠D,∠2与∠C互余,AF⊥CE于G.求证:AB∥CD.证明:∵AF⊥CE∴∠CGF=90°(垂直定义)∵∠1=∠D(已知)∴AF∥DE(同位角相等,两直线平行)∴∠4=∠CGF=90°(两直线平行,同位角相等)∵∠2+∠3+∠4=180°(平角的定义)∴∠2+∠3=90°.∵∠2与∠C互余(已知),∴∠2+∠C=90°(互余的定义)∴∠C=∠3(同角的余角相等)∴AB∥CD(内错角相等,两直线平行)【分析】根据平行线的判定与性质即可完成推理填空.【解答】证明:∵AF⊥CE,∴∠CGF=90°(垂直定义),∵∠1=∠D(已知),∴AF∥DE(同位角相等,两直线平行),∴∠4=∠CGF=90°(两直线平行,同位角相等),∵∠2+∠3+∠4=180°(平角的定义),∴∠2+∠3=90°.∵∠2与∠C互余(已知),∴∠2+∠C=90°(互余的定义),∴∠C=∠3(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直定义;AF,DE,同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.24.在防控新冠病毒疫情期间,某校对初中六、七、八、九四个年级,围绕着“你最喜欢的居家体育活动项目是什么?(只写一项)”的问题,对该校学生进行了随机抽样调查.过程如下,请补充完整.收集数据A.平板支撑B.跳绳C.仰卧起坐D.开合跳E.其他通过调查得到的一组数据如下:DCCADABADBBEDDEDBCCEECBDEEDDEDBBCCDCEDDABDDCDDEDCE整理、描述数据抽样调查50名初中学生最喜欢的居家体育活动项目人数统计表活动项目划记频数A.平板支撑4B.跳绳8C.仰卧起坐正正10D.开合跳18E.其他正正10总计50根据以上信息,回答下列问题:(1)补全统计表和条形统计图(图1).(2)计算:本次抽样调查中,最喜欢开合跳活动的人占被调查总人数的百分比.(3)如图2是根据该校初中各年级学生人数占初中学生总人数的百分比绘制的扇形统计图,若该校九年级共有200名学生,请你估计该校初中学生中最喜欢跳绳活动的人数约为多少?【分析】(1)根据题目中调查得到的数据,可以将B.跳绳和D.开合跳对应的划记和频数写出来,然后即可将统计表和条形统计图补充完整;(2)根据统计表中的数据,可以计算出本次抽样调查中,最喜欢开合跳活动的人占被调查总人数的百分比;(3)根据题目中的数据,可以计算出该校初中学生中最喜欢跳绳活动的人数约为多少人.解:(1)由调查得到的数据可得,B.跳绳对应的划记是,频数是8,D.开合跳对应的划记是,频数是18,补全的统计表和条形统计图如下图所示:活动项目划记频数A.平板支撑4B.跳绳8C.仰卧起坐正正10D.开合跳18E.其他正正10总计50(2)18÷50×100%=36%,即本次抽样调查中,最喜欢开合跳活动的人占被调查总人数的百分比是36%;(3)200÷(1﹣30%﹣24%﹣26%)×=320(人),即该校初中学生中最喜欢跳绳活动的人数约为320人.四、解答题(本题共19分,25题6分,26题7分,27题6分)25.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.彤彤是这样做的:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,Q且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).【分析】(1)如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考彤彤思考问题的方法即可求∠BED的度数;(2)如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考彤彤思考问题的方法即可求出∠BED的度数.解:(1)如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;(2)如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣+.答:∠BED的度数为180°﹣+.26.列方程(组)或不等式解决问题每年的4月23日是世界读书日.某校为响应“全民阅读”的号召,计划购入A,B两种规格的书柜用于放置图书.经市场调查发现,若购买A种书柜3个、B种书柜2个,共需资金1020元;若购买A种书柜5个、B种书柜3个,共需资金1620元.(1)A、B两种规格书柜的单价分别是多少?(2)若该校计划购买这两种规格的书柜共20个,学校至多有4350元的资金,问B种书柜最多可以买多少个?【分析】(1)设A种书柜的单价是x元,B种书柜的单价是y元,根据“购买A种书柜3个、B种书柜2个,共需资金1020元;购买A种书柜5个、B种书柜3个,共需资金1620元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种书柜可以买m个,则B种书柜可以买(20﹣m)个,根据学校至多有4350元的资金,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可求解.解:(1)设A种书柜的单价是x元,B种书柜的单价是y元,依题意得,解得.答:A种书柜的单价熟练掌握180元,B种书柜的单价是240元.(2)设A种书柜可以买m个,则B种书柜可以买(20﹣m)个,依题意得180m+240(20﹣m)≤4350,解得:m≥7.5,则20﹣m≤12.5.∵m为整数,∴B种书柜最多可以买12个.27.对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y﹣t)称为将点P进行“t型平移”,点P'称为将点P 进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t 型平移”.例如,将点P(x,y)平移到P'(x+1,y﹣1)称为将点P进行“l型平移”,将点P(x,y)平移到P'(x﹣1,y+1)称为将点P进行“﹣l型平移”.已知点A(2,1)和点B(4,1).(1)将点A(2,1)进行“l型平移”后的对应点A'的坐标为(3,0).(2)①将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是P1..②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是﹣4≤t≤﹣2或t=1.(3)已知点C(6,1),D(8,﹣1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B',当t的取值范围是1≤t≤1时,B'M的最小值保持不变.【分析】(1)根据“l型平移”的定义解决问题即可.(2)①画出线段A1B1即可判断.②根据定义求出t最大值,最小值即可判断.(3)如图2中,观察图象可知,当B′在线段B′B″上时,B'M的最小值保持不变,最小值为.解:(1)将点A(2,1)进行“l型平移”后的对应点A'的坐标为(3,0),故答案为(3,0).(2)①如图1中,观察图象可知,将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是P1.故答案为P1.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是﹣4≤t≤﹣2或t=1.故答案为﹣4≤t≤﹣2或t=1.(3)如图2中,观察图象可知,当B′在线段B′B″上时,B'M的最小值保持不变,最小值为,此时1≤t≤3.故答案为1≤t≤3。

2019-2020学年北京市东城区七年级下学期期末考试数学试卷及答案解析

2019-2020学年北京市东城区七年级下学期期末考试数学试卷及答案解析

2019-2020学年北京市东城区七年级下学期期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分) 1.如果a >b ,下列不等式一定成立的是( ) A .﹣3a >﹣3bB .5﹣a >5﹣bC .|a |>|b |D .a3+c >b 3+c2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( ) A .7.6×108克B .7.6×10﹣7克 C .7.6×10﹣8克 D .7.6×10﹣9克3.下列运算中,正确的是( ) A .6a ﹣5a =1B .a 2•a 3=a 5C .a 6÷a 3=a 2D .(a 2)3=a 54.在新冠肺炎防控期间,要了解某学校以下情况,其中适合用普查的有( ) ①了解学校口罩、洗手液、消毒片的储备情况; ②了解全体师生在寒假期间的离锡情况; ③了解全体师生入校时的体温情况;④了解全体师生对“七步洗手法”的运用情况. A .1个B .2个C .3个D .45.已知x ﹣5是多项式2x 2+8x +a 的一个因式,则a 可为( ) A .65B .﹣65C .90D .﹣906.某服装店店主统计一段时间内某品牌男衬衫39号,40号,41号,42号,43号的销售情况如下表所示. 男衬衫号码 39号 40号 41号 42号 43号 销售数量/件3122195他决定进货时,增加41号衬衫的进货数量,影响该店主决策的统计量是( ) A .平均数B .中位数C .众数D .方差7.下列命题中:①若√a 3=−√b 3,则√a =−√b ;②在同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ;③若ab =0,则P (a ,b )表示原点;④√81的算术平方根是9.是真命题的有( ) A .1 个B .2 个C .3 个D .4 个8.二元一次方程2x +5y =25的正整数解个数是( ) A .1个 B .2个 C .3个 D .4个二.填空题(共8小题,满分24分,每小题3分)9.分解因式:n2﹣4m2=.10.如图,写出一个能判定EC∥AB的条件是.11.已知m﹣n=1,则m2﹣n2﹣2n的值为.12.把命题“对顶角相等”改写成“如果…那么…”的形式:.13.某中学为了了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了如表:类别频数(人数)频率文学m0.42艺术220.11科普66n其他合计1(1)上表中m=.n=.(2)在这次抽样调查中,哪类读物最受学生欢迎?哪类读物受欢迎程度最少?(3)若学校计划购买3000册图书,你对购书计划能提出什么好的建议吗?14.如图,两个正方形的边长分别为a、b,如果a+b=7,ab=10,则阴影部分的面积为.15.把一些书分给几个学生,如果每人分3本,那么余8本:如果每人分5本,那么恰有一人分不到3本,则这些书有本,学生有人.16.某公园划船项目收费标准如下:船型两人船(限乘两四人船(限乘四六人船(限乘六八人船(限乘八人)人) 人) 人) 每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为 元.三.解答题(共9小题,满分52分) 17.(5分)(π﹣3.14)0+(12)﹣1﹣|√8−3|18.(5分)解不等式组:{3(x −2)≤8−(x +6)x+12<2x−13+1,并把解集在数轴上表示出来.19.(5分)解方程组:{3x −y =3①x 2+y 3=2②20.(5分)化简:2x 2+(﹣2x +3y )(﹣2x ﹣3y )﹣(x ﹣3y )2,其中x =﹣2,y =﹣1. 21.(5分)(1)如图1,AB ∥CD ,∠A =33°,∠C =40°,求∠APC 的度数.(提示:作PE ∥AB ).(2)如图2,AB ∥DC ,当点P 在线段BD 上运动时,∠BAP =∠α,∠DCP =∠β,求∠CP A 与∠α、∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P 在射线DM 上运动,请你直接写出∠CP A 与∠α、∠β之间的数量关系.22.(5分)已知关于x 的二元一次方程组{2x −y =3k −22x +y =1−k (k 为常数).(1)求这个二元一次方程组的解(用k 的代数式表示). (2)若方程组的解满足x +y >5,求k 的取值范围.23.(6分)学校准备在各班设立图书角以丰富同学们的课余文化生话.为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了名学生;(2)请把折线统计图补充完整;(3)在统计图②中,求出“体育”部分所对应的圆心角的度数;(4)若该校有学生2400人,估计喜欢“科普”书籍的有多少人?24.(8分)小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示m,P之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,一共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示s,t之间的关系,并写出所有s,t可能的取值.25.(8分)在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由.2019-2020学年北京市东城区七年级下学期期末考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分) 1.如果a >b ,下列不等式一定成立的是( ) A .﹣3a >﹣3bB .5﹣a >5﹣bC .|a |>|b |D .a3+c >b3+c【解答】解:A 、∵a >b ,∴﹣3a <﹣3b ,故本选项不符合题意; B 、∵a >b , ∴﹣a <﹣b ,∴5﹣a <5﹣b ,故本选项不符合题意; C 、a >b ,假如a 1,b =﹣3, 但是|a |<|b |,故本选项不符合题意; D 、∵a >b , ∴a 3>b3,∴a3+c >b 3+c ,故本选项符合题意; 故选:D .2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( ) A .7.6×108克B .7.6×10﹣7克C .7.6×10﹣8克 D .7.6×10﹣9克【解答】解:0.00 000 0076克=7.6×10﹣8克,故选:C .3.下列运算中,正确的是( ) A .6a ﹣5a =1B .a 2•a 3=a 5C .a 6÷a 3=a 2D .(a 2)3=a 5【解答】解:A 、6a ﹣5a =a ,故此选项错误; B 、a 2•a 3=a 5,正确;C 、a 6÷a 3=a 3,故此选项错误;D 、(a 2)3=a 6,故此选项错误; 故选:B .4.在新冠肺炎防控期间,要了解某学校以下情况,其中适合用普查的有( ) ①了解学校口罩、洗手液、消毒片的储备情况; ②了解全体师生在寒假期间的离锡情况; ③了解全体师生入校时的体温情况;④了解全体师生对“七步洗手法”的运用情况. A .1个B .2个C .3个D .4【解答】解:①了解学校口罩、洗手液、消毒片的储备情况适合普查; ②了解全体师生在寒假期间的离锡情况适合普查; ③了解全体师生入校时的体温情况适合普查;④了解全体师生对“七步洗手法”的运用情况适合抽样调查. 故选:C .5.已知x ﹣5是多项式2x 2+8x +a 的一个因式,则a 可为( ) A .65B .﹣65C .90D .﹣90【解答】解:设多项式的另一个因式为2x +b . 则(x ﹣5)(2x +b )=2x 2+(b ﹣10)x ﹣5b =2x 2+8x +a . 所以b ﹣10=8,解得b =18. 所以a =﹣5b =﹣5×18=﹣90. 故选:D .6.某服装店店主统计一段时间内某品牌男衬衫39号,40号,41号,42号,43号的销售情况如下表所示. 男衬衫号码 39号 40号 41号 42号 43号 销售数量/件3122195他决定进货时,增加41号衬衫的进货数量,影响该店主决策的统计量是( ) A .平均数B .中位数C .众数D .方差【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选:C .7.下列命题中:①若√a 3=−√b 3,则√a =−√b ;②在同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ;③若ab =0,则P (a ,b )表示原点;④√81的算术平方根是9.是真命题的有( ) A .1 个B .2 个C .3 个D .4 个【解答】解:①若√a 3=−√b 3,但不能得出√a =−√b ,错误; ②在同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ,正确; ③若ab =0,则P (a ,b )表示原点或坐标轴,错误; ④√81的算术平方根是3,错误; 故选:A .8.二元一次方程2x +5y =25的正整数解个数是( ) A .1个B .2个C .3个D .4个【解答】解:∵2x +5y =25, ∴y =25−2x5, 当x =5时,y =3; 当x =10时,y =1; 故选:B .二.填空题(共8小题,满分24分,每小题3分) 9.分解因式:n 2﹣4m 2= (n ﹣2m )(n +2m ) .【解答】解:n 2﹣4m 2=n 2﹣(2m )2=(n ﹣2m )(n +2m ). 故答案为:(n ﹣2m )(n +2m ).10.如图,写出一个能判定EC ∥AB 的条件是 ∠A =∠ACE (答案不唯一) .【解答】解:∵∠A =∠ACE ,∴EC ∥AB (内错角相等,两直线平行). 故答案为:∠A =∠ACE (答案不唯一). 11.已知m ﹣n =1,则m 2﹣n 2﹣2n 的值为 1 . 【解答】解:∵m ﹣n =1, ∴m 2﹣n 2﹣2n=(m +n )(m ﹣n )﹣2n =(m +n )﹣2n =m +n ﹣2n=m﹣n=1.故答案为:1.12.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.13.某中学为了了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了如表:类别频数(人数)频率文学m0.42艺术220.11科普66n其他合计1(1)上表中m=84.n=0.33.(2)在这次抽样调查中,哪类读物最受学生欢迎?哪类读物受欢迎程度最少?(3)若学校计划购买3000册图书,你对购书计划能提出什么好的建议吗?【解答】解:(1)22÷0.11=200人,m=200×0.42=84(人),n=66÷200=0.33,故答案为:84,0.33;(2)“其它”的频数为:200﹣84﹣22﹣66=28(人),频率为:28÷200=0.14,因为“文学”占比最高,因此“文学”读物最受学生欢迎,“艺术”读物占比最小,仅为11%,因此“艺术”读物受欢迎程度最小,(3)“文学”读物:3000×0.42=1260本,“艺术”读物:3000×0.11=330本,“科普”读物:3000×0.33=990本,“其它”读物:3000×0.14=280本,因此,在购书时,“文学”类的读物购买1260本,“艺术”类的读物购买330本,“科普”类的读物购买990本,“其它”类读物购买280本.14.如图,两个正方形的边长分别为a 、b ,如果a +b =7,ab =10,则阴影部分的面积为 9.5 .【解答】解:根据题意得:当a +b =7,ab =10时,S 阴影=12a 2−12b (a ﹣b )=12a 2−12ab +12b 2=12[(a +b )2﹣2ab ]−12ab =9.5. 故答案为:9.515.把一些书分给几个学生,如果每人分3本,那么余8本:如果每人分5本,那么恰有一人分不到3本,则这些书有 26 本,学生有 6 人. 【解答】解:设学生有x 人,则这些书有(3x +8)本, 依题意,得:{3x +8≥5(x −1)3x +8<5(x −1)+3,解得:5<x ≤132. 又∵x 为正整数, ∴x =6, ∴3x +8=26. 故答案为:26;6.16.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人) 六人船(限乘六人) 八人船(限乘八人) 每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为 380 元.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元, 当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,∴租船费用150×2+90=390元当租1艘四人船,1艘6人船,1艘8人船,100+130+150=380元而810>490>390>380,∴当租1艘四人船,1艘6人船,1艘8人船费用最低是380元,故答案为:380.三.解答题(共9小题,满分52分)17.(5分)(π﹣3.14)0+(12)﹣1﹣|√8−3| 【解答】解:(π﹣3.14)0+(12)﹣1﹣|√8−3| =1+2﹣3+2√2=2√218.(5分)解不等式组:{3(x −2)≤8−(x +6)x+12<2x−13+1,并把解集在数轴上表示出来.【解答】解:{3(x −2)≤8−(x +6)①x+12<2x−13+1②, 解不等式①,得:x ≤2,解不等式②,得:x >﹣1,将不等式解集表示在数轴上如下:所以不等式组的解集为﹣1<x ≤2.19.(5分)解方程组:{3x −y =3①x 2+y 3=2②【解答】解:由②得3x +2y =12 ③由③﹣①得,3y =9,解得:y =3,把y =3代入①得,x =2.所以这个方程组的解是{x =2y =3. 20.(5分)化简:2x 2+(﹣2x +3y )(﹣2x ﹣3y )﹣(x ﹣3y )2,其中x =﹣2,y =﹣1.【解答】解:原式=2x 2+4x 2﹣9y 2﹣x 2+6xy ﹣9y 2=5x 2+6xy ﹣18y 2当x =﹣2,y =﹣1时,原式=5×4+6×2﹣18×1=14.21.(5分)(1)如图1,AB ∥CD ,∠A =33°,∠C =40°,求∠APC 的度数.(提示:作PE ∥AB ).(2)如图2,AB ∥DC ,当点P 在线段BD 上运动时,∠BAP =∠α,∠DCP =∠β,求∠CP A 与∠α、∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P 在射线DM 上运动,请你直接写出∠CP A 与∠α、∠β之间的数量关系.【解答】解:(1)如图1,过P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠A =∠APE ,∠C =∠CPE ,∵∠A =33°,∠C =40°,∴∠APE =33°,∠CPE =40°,∴∠APC =∠APE +∠CPE =33°+40°=73°;(2)∠APC =∠α+∠β,理由是:如图2,过P 作PE ∥AB ,交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠APE =∠P AB =∠α,∠CPE =∠PCD =∠β,∴∠APC =∠APE +∠CPE =∠α+∠β;(3)如图3,过P 作PE ∥AB ,交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠P AB =∠APE =∠α,∠PCD =∠CPE =∠β,∵∠APC =∠APE ﹣∠CPE ,∴∠APC =∠α﹣∠β.22.(5分)已知关于x 的二元一次方程组{2x −y =3k −22x +y =1−k(k 为常数). (1)求这个二元一次方程组的解(用k 的代数式表示).(2)若方程组的解满足x +y >5,求k 的取值范围.【解答】解:(1)①+②得4x =2k ﹣1,∴x =2k−14, 代入①得y =3−4k 2,所以方程组的解为{x =2k−14y =3−4k 2; (2)方程组的解满足x +y >5,所以2k−14+3−2k 2>5, ∴k <−52.23.(6分)学校准备在各班设立图书角以丰富同学们的课余文化生话.为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了 300 名学生;(2)请把折线统计图补充完整;(3)在统计图②中,求出“体育”部分所对应的圆心角的度数;(4)若该校有学生2400人,估计喜欢“科普”书籍的有多少人?【解答】解:(1)这次调查一共调查学生90÷30%=300(名),故答案为:300;(2)喜欢“艺术”书籍的人数为300×20%=60(名),其它人数为300×10%=30(名), 补全图形如下:(3)喜欢“体育”书籍部分所对应的圆心角的度数为360°×40300=48°;(4)估计喜欢“科普”书籍的有2400×80300=640(人).24.(8分)小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示m,P之间的关系:3p+1=m;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,一共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示s,t之间的关系,并写出所有s,t可能的取值.【解答】解:(1)用等式表示m,P之间的关系为:3p+1=m;(2)设六边形有x个,则正方形有(x+4)个,依题意有5x+1+3(x+4)+1=110,解得x=12.故正方形有16个,六边形有12个;(3)根据题意得3t+s=50,根据题意得t≥s,且s,t均为整数,因此s=2,t=16;s=5,t=15;s=8,t=14;s=11,t=13.故答案为:3p+1=m.25.(8分)在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=115°;若∠B=40°,则∠AFD=110°;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由.【解答】解:(1)①若∠BAC=100°,∠C=30°,则∠B=180°﹣100°﹣30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴∠BAG=12∠BAC=50°,∠FDG=12∠EDB=15°,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°﹣40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴∠BAG=12∠BAC,∠FDG=12∠EDB,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=∠B+12(∠BAC+∠C)=40°+12×140°=40°+70°=110°;故答案为:115°;110°;②∠AFD=90°+12∠B;理由如下:由①得:∠EDB=∠C,∠BAG=12∠BAC,∠FDG=12∠EDB,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=∠B+12(∠BAC+∠C)=∠B+12(180°﹣∠B)=90°+12∠B;(2)如图2所示:∠AFD=90°−12∠B;理由如下:由(1)得:∠EDB=∠C,∠BAG=12∠BAC,∠BDH=12∠EDB=12∠C,∵∠AHF=∠B+∠BDH,∴∠AFD=180°﹣∠BAG﹣∠AHF=180°−12∠BAC﹣∠B﹣∠BDH=180°−12∠BAC﹣∠B−12∠C=180°﹣∠B−12(∠BAC+∠C)=180°﹣∠B−12(180°﹣∠B)=180°﹣∠B﹣90°+12∠B=90°−12∠B.。

2023-2024学年北京市西城区七年级(下)期末数学试卷及答案解析

2023-2024学年北京市西城区七年级(下)期末数学试卷及答案解析

2023-2024学年北京市西城区七年级(下)期末数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个。

1.(2分)下列各组图形或图案中,能将其中一个图形或图案通过平移得到另一个图形或图案的是()A.B.C.D.2.(2分)在平面直角坐标系中,下列各点在第二象限的是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,﹣2)3.(2分)下列调查中,适合采用全面调查的是()A.对乘坐飞机的旅客进行安检B.调查某批次汽车的抗撞击能力C.调查某市居民垃圾分类的情况D.调查市场上冷冻食品的质量情况4.(2分)若a<b,则下列不等式不一定成立的是()A.a﹣1<b﹣1B.﹣2a>﹣2b C.a+b<2b D.a2<b25.(2分)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.(2分)由可以得到用x表示y的式子是()A.B.C.D.7.(2分)下列命题:①经过直线外一点,有且只有一条直线与这条直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线被第三条直线所截,内错角相等;④所有实数都可以用数轴上的点表示.其中真命题的个数是()A.1B.2C.3D.48.(2分)如图是某个一元一次不等式的解集在数轴上的表示,若该不等式恰有两个非负整数解,则a的取值范围是()A.2≤a<3B.1<a≤2C.1≤a<2D.0≤a≤1二、填空题(共16分,每题2分)9.(2分)在实数,,3.14159,中,是无理数的是.10.(2分)的算术平方根是.11.(2分)已知二元一次方程x+2y=7,请写出该方程的一组整数解.12.(2分)把命题“对顶角相等”改写成“如果…那么…”的形式:.13.(2分)一个样本容量为63的样本,最大值是172,最小值是149,取组距为3,则这个样本可以分成____组.14.(2分)平面直角坐标系中,点M(3,1),N(a,a+3),若直线MN与y轴平行,则点N的坐标是.15.(2分)如图,点A,B,C在同一条直线上,AD⊥AE,且AD∥BF,∠CBF=α,则∠CAE=(用含α的代数式表示).16.(2分)关于x,y的二元一次方程kx﹣y=1,且当x=2时,y=5.(1)k的值是;(2)当x<2时,对于每一个x的值,关于x的不等式x+n>kx﹣1总成立,则n的取值范围是.三、解答题(共68分,第17题8分,第18题11分,第19-21题,每题9分,第22题5分,第23题9分,第24题8分)17.(8分)(1)计算:;(2)求等式中x的值:(x﹣1)2=16.18.(11分)(1)解方程组;(2)解不等式组,并写出它的整数解.19.(9分)(1)如图1,点P是∠ABC的边BC上一点.按照要求回答下列问题:①过点P分别画出射线BC的垂线PE和射线BA的垂线PF,F是垂足;②线段PF PB(填“<”“>”“=”)的理由是.(2)如图2,点E,F分别在AB,BC上,点D,G在AC上,EG,FD的延长线交于点H.若∠CDF =∠A,∠BDF+∠BEG=180°.求证:∠BDF=∠H.请将下面的证明过程补充完整:证明:∵∠CDF=∠A,∴AB∥HF()(填推理的依据).∴∠BDF=∠ABD()(填推理的依据).∵∠BDF+∠BEG=180°,∴∠ABD+∠BEG=180°,∴∥EH.∴∠BDF=∠H()(填推理的依据).20.(9分)在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别是A(﹣1,4),B(﹣4,﹣1),C(1,0).(1)画出三角形ABC,并求它的面积;(2)将三角形ABC平移到三角形A1B1C1,其中点A,B,C的对应点分别是A1,B1,C1.已知点A1的坐标是(3,2),①点B1的坐标是,点C1的坐标是;②写出一种将三角形ABC平移到三角形A1B1C1的方法:.21.(9分)某商店决定购进甲、乙两种文创产品.若购进甲种文创产品7件,乙种文创产品3件,则费用是285元;若购进甲种文创产品2件,乙种文创产品6件,则费用是210元.(1)求购进的甲、乙两种文创产品每件的费用各是多少元?(2)若该商店决定购进这两种文创产品共200件,考虑市场需求和资金周转,用于购买这200件文创产品的总费用不少于5350元,且不超过5368元,求该商店共有几种购进这两种文创产品的方案.22.(5分)在今年第29个世界读书日来临之际,某校数学活动小组为了解七年级学生每天阅读时长的情况设计了一份调查问卷,同时随机邀请七年级的一些学生完成问卷调查,获得了这些学生平均每天阅读时长的数据,并对这些数据进行了整理,绘制成频数分布表、频数分布直方图.下面给出了部分信息.a.平均每天阅读时长频数分布表、频数分布直方图分别如图所示.成绩频数0≤x<30m30≤x<602060≤x<90n90≤x<1207120≤x≤1503b.其中60≤x<90这一组的平均每天阅读时长是:60,60,70,70,73,75,75,75,80,83,84,84,84,85,89.根据以上信息,回答下列问题:(1)表中m=,n=,参与问卷调查的学生共有人;(2)补全频数分布直方图;(3)为了鼓励学生养成阅读习惯,语文老师建议对七年级平均每天阅读时长在75分钟及以上的学生授予“阅读达人”称号.已知七年级共有990名学生,请估计该年级共有多少名学生获得“阅读达人”称号.23.(9分)如图,直线AB∥CD,直线EF与直线AB,CD分别交于点E,F,∠AEF的平分线交CD于点P.(1)求证:∠FEP=∠FPE;(2)点G是射线PF上一个动点(点G不与点P,F重合),∠FEG的平分线交直线CD于点H,过点H作HN∥PE交直线AB于点N,①当点G在线段PF上时,依题意补全图形,用等式表示∠EHN和∠EGF之间的数量关系,并证明;②当点G在线段PF的延长线上时,直接写出用等式表示的∠EHN和∠EGF之间的数量关系.24.(8分)在平面直角坐标系xOy中,已知点M(a,b)(点M不与原点O重合),将点Q(x+ka,y+kb)(k>0)称为点P(x,y)关于点M的“k倍平移点”.(1)已知点P的坐标是(4,3),①若点M(2,﹣2),则点P关于点M的“2倍平移点”Q的坐标是;②点N(﹣3,﹣2),T(1,﹣2),点M在线段NT上,过点R(r,0)作直线l⊥x轴,若直线l上存在点P关于点M的“2倍平移点”,求r的取值范围.(2)点A(﹣1,﹣1),B(1,﹣1),E(5,7),F(8,4),以AB为边在直线AB的上方作正方形ABCD,点M在正方形ABCD的边上,且a>0,b>0,对于正方形ABCD的边上任意一点P,若线段EF上都不存在点P关于点M的“k倍平移点”,直接写出k的取值范围.四、选做题(共10分,第1题4分,第2题6分)25.将非负实数x“四舍五入”到个位的值记为[x],当n为非负整数时,①若,则[x]=n;②若[x]=n,则.如,[0]=[0.49]=0,[0.64]=[1.49]=1,[2]=2.(1)[π]=;(2)若,则满足条件的实数t的值是.26.在平面直角坐标系xOy中,给定n个不同的点P1(x1,y1),P2(x2,y2),…,P n(x n,y n),若x1,x2,…,x n,y1,y2,…,y n中共有t个不同的数,则称t为这n个不同的点的特征值.图形F上任意n 个不同的点P1(x1,y1),P2(x2,y2),…,P n(x n,y n)中,特征值最小的一组点的特征值称为图形F 的n阶特征值.(1)点A1(﹣1,1),A2(3,﹣1),A3(2,3)的特征值是;(2)已知正方形ABCD的四个顶点分别为A(a,0),B(a+2,0),C(a+2,2),D(a,2),①直接写出正方形ABCD的4阶特征值的最小值;②若正方形ABCD的5阶特征值的最小值是3,直接写出a的取值范围.2023-2024学年北京市西城区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个。

2019—2020学年度第二学期期末考试七年级数学试题及答案

2019—2020学年度第二学期期末考试七年级数学试题及答案

七年级数学试题 第1页 共4页2019—2020学年度第二学期期末考试七年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3. 答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.四边形的内角和为A .180°B .360°C .540°D .720°2.下列图形中,可以由其中一个图形通过平移得到的是A. B .CD .3.下列由左到右的变形中,因式分解正确的是A .21(1)(1)x x x -=+-B .22(1)21x x x +=++C .221(2)1x x x x -+=-+D .2(1)(1)1x x x +-=-4.满足不等式10x +>的最小整数解是A .1-B .0C .1D .25.已知24x x k ++是一个完全平方式,则常数k 为A .2B .-2C .4D .-46.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒.现有18张白铁皮,设用x 张制作盒身、y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩7.已知01()2a =-,22b -=-,2(2)c -=-,则a 、b 、c 的大小关系为A .c b a <<B .a b c <<C .b a c <<D .b c a <<七年级数学试题 第2页 共4页8. 对于有理数x ,我们规定{}x 表示不小于x 的最小整数,如{}2.23=,{}22=,{}2.52-=-,若4310x +⎧⎫=⎨⎬⎩⎭,则x 的取值可以是A .10B .20C .30D .40二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9. 如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= ▲ °.10.命题“若a b =,则a b -=-”的逆命题是 ▲ . 11.太阳的半径约为700 000 000米,数据700 000 000用科学记数法表示为 ▲ . 12.计算:23()b b ÷= ▲ .13.如图,△ABC 中,∠1=∠2,∠BAC =60°,则∠APB = ▲ °.14.已知方程组123a b b c c a +=-⎧⎪+=⎨⎪+=⎩,则a b c ++= ▲ .15.计算:100920181(9)()3-⨯= ▲ .16.计算:2416(21)(21)(21)(21)1+++⋅⋅⋅++= ▲ .三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)分解因式:(1)23x x -;(2)2242a a -+. 18.(本题满分6分)解方程组:2351x y x y +=⎧⎨=-⎩19.(本题满分6分)化简并求值:2(2)(21)2n n n +--,其中13n =.20.(本题满分6分)利用数轴确定不等式组2413122x x ≥-⎧⎪⎨+<⎪⎩的解集.第9题图a b1c2第13题图ABP12七年级数学试题 第3页 共4页21.(本题满分6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作: (1)将△ABC 先向右平移2个单位,再向上平移4个单位,画出平移后的△A 1B 1C 1; (2)连接AA 1、BB 1,则线段AA 1、BB 1的位置关系为 ▲ 、数量关系为 ▲ ; (3)画出△ABC 的AB 边上的中线CD 以及BC 边上的高AE .22.(本题满分6分)已知:如图,是一个形如“5”字的图形,AC ∥DE ,AB ∥CD ,∠D +∠E =180°.求证:∠A =∠E . 证明:∵ ▲( 已知 ) ∴∠A +∠C =180° ( ▲ ) ∵AC ∥DE( ▲ )∴∠ ▲ =∠D ( ▲ ) 又∠D +∠E =180° ( 已知 ) ∴∠A =∠E( ▲ )23.(本题满分8分)已知关于x 、y 的二元一次方程组23,2 6.x y m x y -=⎧⎨-=⎩(1)若方程组的解满足4x y -=,求m 的值; (2)若方程组的解满足0x y +<,求m 的取值范围.24.(本题满分8分)一家公司加工蔬菜,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?ABC AB C EDF七年级数学试题 第4页 共4页25.(本题满分8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元. 小华:我有1元和5角的硬币共13枚,总币值小于8.5元. 小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元. 这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(本题满分12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去.请根据如下条件,证明定理. 【定理证明】已知:△ABC (如图①). 求证:∠A +∠B +∠C =180°. 【定理推论】如图②,在△ABC 中,有∠A +∠B +∠ACB =180°,点D 是BC 延长线上一点,由平角的定义可得∠ACD +∠ACB =180°,所以∠ACD = ▲ .从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠DBC =150°,则∠ACB = ▲ °; (2)若∠A =80°,则∠DBC +∠ECB = ▲ °. 【拓展延伸】如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠P =150°,则∠DBP +∠ECP = ▲ °;(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =50°,则∠A 和∠P的数量关系为 ▲ ; (3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .图④B ACDE P 图⑤B ACDE P O图⑥B ACD EP MN B A C D 图② 图③B A CD EA C 图①七年级数学试题 第5页 共4页七年级数学参考答案与评分细则一、选择题(每小题3分,共24分)1.B 2.C 3.A 4.B 5.C6.B7.D8.B二、填空题(每小题3分,共24分)9. 7010.若a b -=-,则a b = 11.8710⨯12.5b 13.120 14.2 15.1-16.322三、解答题 17.解:(1)23x x -=(3)x x -······································································ 3分(2)2242a a -+=22(1a -) ······························································ 6分18.解:23x y =-⎧⎨=⎩······················································································· 6分(x 、y 的值作对一个得3分)19.解:原式=32n - ················································································· 4分当13n =时,原式=1- ··········································································· 6分20.解: 2413122x x ≥-⎧⎪⎨+<⎪⎩①② 由①得2x ≥- ················································································ 1分 由②得1x < ·················································································· 2分 在数轴上表示不等式①、②的解集·························4分所以,不等式组的解集是21x -≤< ··············6分21.解:(1)如图 ·················································2分(2)AA 1∥BB 1、AA 1=BB 1·········································· 4分 (3)如图·················································6分ABC A 1B 1C 1D┐E七年级数学试题 第6页 共4页22.解: AB ∥CD ················································································································· 1分(两直线平行,同旁内角互补) ········································ 2分 (已知) ······································································ 3分∠C (两直线平行,内错角相等) ··········································· 5分(等角的补角相等) ······················································· 6分23.解:2326x y m x y -=⎧⎨-=⎩①②(1)方法一:由题得4x y -=③③-②得 2y =- ··········································································· 1分 把2y =-代人②得 2x = ·································································· 2分把22x y =⎧⎨=-⎩代入①解得 2m = ··············································································· 4分方法二:①+②得 3336x y m -=+即2x y m -=+ ··············································································· 2分 由③得 24m +=解得 2m = ··············································································································· 4分 (2)①-②得 36x y m +=- ··································································· 6分又0x y +< 所以360m -<解得2m < ···················································································· 8分24.解:设粗加工蔬菜为x 吨,精加工蔬菜为y 吨 ············································ 1分得15014155x y x y +=⎧⎪⎨+=⎪⎩ ············································································· 4分解得12030x y =⎧⎨=⎩················································································ 7分答:粗加工蔬菜为120吨,精加工蔬菜为30吨 ···································· 8分25.解:设小军身上有1元硬币x 枚,5角硬币y 枚得 130.59x y x y +=⎧⎨+=⎩解得 58x y =⎧⎨=⎩·················································································· 2分所以,小军身上有5角硬币8枚设小华身上有5角硬币m 枚七年级数学试题 第7页 共4页得 130.58.5m m -+<, 解得 9m >所以,小军身上有5角硬币至少10枚 ················································· 4分 设小峰身上有1元硬币a 枚,5角硬币b 枚 得 0.54a b +=82b a =- 所以,小峰身上有5角硬币不超过8枚(写出不超过6或不超过8的正整数解也可以) ··································· 6分 综上所述,可得小华身上5角硬币最多 ··············································· 8分26.【定理证明】证明:方法一:过点A 作直线MN ∥BC ,如图所示∴∠MAB =∠B ,∠NAC =∠C ∵∠MAB +∠BAC +∠NAC =180°∴∠BAC +∠B +∠C =180° ······························································ 3分 方法二:延长BC 到点D ,过点C 作CE ∥AB ,如图所示 ∴∠A =∠ACE ,∠B =∠ECD ∵∠ACB +∠ACE +∠ECD =180° ∴∠A +∠B +∠ACB =180° ······························································ 3分【定理推论】∠A +∠B ·················································································································· 4分 【初步运用】(1)70° ························································································ 5分 (2)260° ······················································································ 6分 【拓展延伸】(1)230° ······················································································ 7分 (2)∠P =∠A +100° ······································································· 9分 (3)证明:延长BP 交CN 于点Q ∵BM 平分∠DBP ,CN 平分∠ECP ∴2DBP MBP ∠=∠2ECP NCP ∠=∠∵DBP ECP A BPC ∠+∠=∠+∠A BPC ∠=∠∴222MBP NCP A BPC BPC ∠+∠=∠+∠=∠ ∴BPC MBP NCP ∠=∠+∠ ∵BPC PQC NCP ∠=∠+∠ ∴MBP PQC ∠=∠∴BM ∥CN ············································································································· 12分BACMNA CDEB AC DE PMNQ。

北京市西城区2019-2020学年第二学期七年级期末数学试卷答题卡

北京市西城区2019-2020学年第二学期七年级期末数学试卷答题卡

北京市西城区2019—2020学年度第二学期期末试卷 七年级数学附加题答案及评分参考 2020.7一、解答题(本题共13分,第1题6分,第2题7分)1.解:(1) <; ……………………………………………………………………………… 2分(2)∵这个三角形是等腰三角形,∴23n n +=或63n n +=.∴1n =或3n =. ……………………………………………………………… 4分 当1n =时,三条边的长分别为3,7,3,不能构成三角形;当3n =时,三条边的长分别为5,9,9,能构成三角形.所以三角形的三条边的长分别为5,9,9. ………………………………… 5分(3)7. …………………………………………………………………………… 6分2.解:(1)① 180°-2α;………………………………………………………………… 2分 ② 证明:如图1.∵EF ⊥BC 于点F ,∴∠EFC =90°.∴∠C +∠CEF =90°.∵∠A =90°,∴∠C +∠ABC =90°.∴∠CEF =∠ABC .∵∠AEF =180°-2α, ∴∠CEF =2α.∴∠ABC =2α.∵BD 平分∠ABC ,∴∠ABD =12∠ABC =α. ∴∠ABD =∠M .∴BD ∥ME . ……………………………………………………… 4分(2)2∠BNE =90°+∠BAC . …………………………………………………… 5分证明:如图2.∵BD 平分∠ABC ,EM 平分∠AEF ,设∠ABD =x ,∠AEM =y ,∴∠ABC =2x ,∠AEF =2y .∵∠ABD +∠BAD =180°-∠ADB ,∠NED +∠END =180°-∠NDE ,而∠ADB =∠NDE ,∴∠ABD +∠BAD =∠NED +∠END . ∴x +∠BAD =y +∠END ,即x -y =∠END -∠BAD .同理,∠ABC +∠BAC =∠FEC +∠EFC .∴2x +∠BAC =2y +∠EFC ,即2x -2y =∠EFC -∠BAC .图2∵EF⊥BC于点F,∴∠EFC=90°.∴2(x-y)=90°-∠BAC.∴2(∠END-∠BAD)=90°-∠BAC.即2(∠BNE-∠BAC)=90°-∠BAC.∴2∠BNE=90°+∠BAC.…………………………………………7分二、阅读探究题(本题7分)3.解:(1)①7;…………………………………………………………………………2分②3-或1;…………………………………………………………………4分(2)①答案不唯一,如(0,0),………………………………………………5分8;………………………………………………………………………6分②(2,1-).………………………………………………………………7分。

2019-2020学年北京市西城区初三期末数学试卷(含答案)

2019-2020学年北京市西城区初三期末数学试卷(含答案)

北京市西城区2019—2020学年度第一学期期末试卷九年级数学第1页(共8页)北京市西城区2019—2020学年度第一学期期末试卷九年级数学2020.1考生须知1.本试卷共8页,共三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校、班级、姓名和学号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束时,将本试卷、答题卡一并交回。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图,四边形ABCD 内接于⊙O ,若∠ADC =80°,则∠ABC 的度数是(A )40°(B )80°(C )100°(D )120°2.在平面直角坐标系中,将抛物线2=y x 向右平移2个单位长度,向上平移1个单位长度,得到抛物线(A )2=(2)1y x -+(B )2=(2)1y x --(C )2=(2)1y x ++(D )2=(2)1y x +-3.圆心角是90°,半径为20的扇形的弧长为(A )5π(B )10π(C )20π(D )25π4.如图,在△ABC 中,以C 为中心,将△ABC 顺时针旋转35°得到△DEC ,边ED ,AC 相交于点F ,若∠A =30°,则∠EFC 的度数为(A )60°(B )65°(C )72.5°(D )115°5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,若∠ABC =30°,OE =3,则OD 长为(A )3(B )6(C )23(D )2北京市西城区2019—2020学年度第一学期期末试卷九年级数学第2页(共8页)6.下列关于抛物线y =x 2+bx -2的说法正确的是(A )抛物线的开口方向向下(B )抛物线与y 轴交点的坐标为(0,2)(C )当b >0时,抛物线的对称轴在y 轴右侧(D )对于任意的实数b ,抛物线与x 轴总有两个公共点7.A (12-,y 1),B (1,y 2),C (4,y 3)三点都在二次函数2=(2)y x k --+的图象上,则y 1,y 2,y 3的大小关系为(A )y 1<y 2<y 3(B )y 1<y 3<y 2(C )y 3<y 1<y 2(D )y 3<y 2<y 18.如图,AB =5,O 是AB 的中点,P 是以点O 为圆心,AB 为直径的半圆上的一个动点(点P 与点A ,B 可以重合),连接PA ,过P 作PM ⊥AB 于点M .设AP =x ,AP AM y -=,则下列图象中,能表示y 与x 的函数关系的图象大致是(A )(B )(C )(D )二、填空题(本题共16分,每小题2分)9.函数y =ax 2+bx +c (0≤x ≤3)的图象如图所示,则该函数的最小值是.第9题图第10题图第11题图10.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,添加一个条件使得△ADE ∽△ACB ,添加的一个条件是.11.如图,△ABO 三个顶点的坐标分别为A (-2,4),B (-4,0),O (0,0),以原点O 为位似中心,画出一个三角形,使它与△ABO 的相似比为12.北京市西城区2019—2020学年度第一学期期末试卷九年级数学第3页(共8页)12.如图,A ,B 两点的坐标分别为A (3,0),B (0,将线段BA 绕点B 顺时针旋转得到线段BC .若点C 恰好落在x 轴的负半轴上,则旋转角为°.第12题图第13题图13.在“测量学校教学楼的高度”的数学活动中,小刚同学使用镜面反射法进行测量,如图所示.若11a =米,210a =米,h=1.5米,则这个学校教学楼的高度为米.14.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率π 3.14≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,…,割的越细,圆的内接正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66p R =,计算π632p R≈=;圆内接正十二边形的周长1224sin15p R =︒,计算π123.102p R≈=;请写出圆内接正二十四边形的周长24p =,计算π≈.(参考数据:sin150.258︒≈,sin7.50.130︒≈)北京市西城区2019—2020学年度第一学期期末试卷九年级数学第4页(共8页)15.在关于x 的二次函数2y ax bx c =++中,自变量x 可以取任意实数,下表是自变量x 与函数y 的几组对应值:x…12345678…2y ax bx c=++…-3.19-3.10-2.71-2.05-1.100.141.473.48…根据以上信息,关于x 的一元二次方程20ax bx c ++=的两个实数根中,其中的一个实数根约等于(结果保留小数点后一位小数).16.如图,矩形ABCD 中,AB =4,BC =6,E 是边BC 的中点,点P 在边AD 上,设DP =x ,若以点D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点,则所有满足条件的x 的取值范围是.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.计算3tan 304cos 452sin 60︒+︒-︒.18.已知二次函数2=43y x x -+.(1)写出该二次函数图象的对称轴及顶点坐标,再描点画图;(2)利用图象回答:当x 取什么值时,y <0.19.如图,在△ABC 中,AD 平分∠BAC ,E 是AD 上一点,且BE =BD .(1)求证:△ABE ∽△ACD ;(2)若BD =1,CD =2,求AE AD的值.20.如图,在正方形ABCD 中,点E 在边AB 上,将点E 绕点D 逆时针旋转得到点F ,若点F 恰好落在边BC 的延长线上,连接DE ,DF ,EF .(1)判断△DEF 的形状,并说明理由;(2)若EF =,则△DEF 的面积为.21.某校要组织“风华杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).(1)如果有4支球队参加比赛,那么共进行场比赛;北京市西城区2019—2020学年度第一学期期末试卷九年级数学第5页(共8页)(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?22.如图,AB 是⊙O 的直径,PB ,PC 是⊙O 的两条切线,切点分别为B ,C .连接PO 交⊙O 于点D ,交BC 于点E ,连接AC .(1)求证:OE =12AC ;(2)若⊙O 的半径为5,AC =6,求PB 的长.23.图1是一个倾斜角为α的斜坡的横截面,tan α=12.斜坡顶端B 与地面的距离BC 为3米.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A ,喷头A 喷出的水珠在空中走过的曲线可以看作抛物线的一部分.设喷出水珠的竖直高度为y (单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A 的水平距离为x (单位:米),y 与x 之间近似满足函数关系2y ax bx =+(a ,b 是常数,0a ≠),图2记录了x 与y 的相关数据.图1图2(1)求y 关于x 的函数关系式;(2)斜坡上有一棵高1.8米的树,它与喷头A 的水平距离为2米,通过计算判断从A 喷出的水珠能否越过这棵树.24.如图,四边形ABCD 内接于⊙O ,∠BAD =90°,AC 是对角线.点E 在BC 的延长线上,且∠CED =∠BAC .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)BA 与CD 的延长线交于点F ,若DE ∥AC ,AB =4,AD =2,求AF 的长.北京市西城区2019—2020学年度第一学期期末试卷九年级数学第6页(共8页)25.下面给出六个函数解析式:21=2y x,21y +,212y x x =--,2=231y x x --,2=21y x x -++,234y x x =---.小明根据学习二次函数的经验,分析了上面这些函数解析式的特点,研究了它们的图象和性质.下面是小明的分析和研究过程,请补充完整:(1)观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如y =,其中x 为自变量;(2)如图,在平面直角坐标系xOy 中,画出了函数2=21y x x -++的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面这些函数,下列四个结论:①函数图象关于y 轴对称②有些函数既有最大值,同时也有最小值③存在某个函数,当x >m (m 为正数)时,y 随x 的增大而增大,当x <-m 时,y 随x 的增大而减小④函数图象与 轴公共点的个数只可能是0个或2个或4个所有正确结论的序号是;(4)结合函数图象,解决问题:若关于x 的方程221x x x k -++=-+有一个实数根为3,则该方程其它的实数根为.北京市西城区2019—2020学年度第一学期期末试卷九年级数学第7页(共8页)26.在平面直角坐标系xOy 中,抛物线y =x 2–2m x –2m –2.(1)若该抛物线与直线y =2交于A ,B 两点,点B 在y 轴上.求该抛物线的表达式及点A 的坐标;(2)横坐标为整数的点称为横整点.①将(1)中的抛物线在A ,B 两点之间的部分记作G 1(不含A ,B 两点),直接写出G 1上的横整点的坐标;②抛物线y =x 2–2m x –2m –2与直线y =–x –2交于C ,D 两点,将抛物线在C ,D两点之间的部分记作G 2(不含C ,D 两点),若G 2上恰有两个横整点,结合函数的图象,求m 的取值范围.27.△ABC 是等边三角形,点P 在BC 的延长线上,以P 为中心,将线段PC 逆时针旋转n °(0<n <180)得线段PQ ,连接AP ,BQ .(1)如图1,若PC =AC ,画出当BQ ∥AP 时的图形,并写出此时n 的值;(2)M 为线段BQ 的中点,连接PM .写出一个n 的值,使得对于BC 延长线上任意一点P ,总有1=2MP AP ,并说明理由.图1备用图北京市西城区2019—2020学年度第一学期期末试卷九年级数学第8页(共8页)28.对于给定的△ABC ,我们给出如下定义:若点M 是边BC 上的一个定点,且以M 为圆心的半圆上的所有点都在△ABC 的内部或边上,则称这样的半圆为BC 边上的点M 关于△ABC 的内半圆,并将半径最大的内半圆称为点M 关于△ABC 的最大内半圆.若点M 是边BC 上的一个动点(M 不与B ,C 重合),则在所有的点M 关于△ABC 的最大内半圆中,将半径最大的内半圆称为BC 关于△ABC 的内半圆.(1)在Rt △ABC 中,∠BAC =90°,AB =AC =2,①如图1,点D 在边BC 上,且CD =1,直接写出点D 关于△ABC 的最大内半圆的半径长;②如图2,画出BC 关于△ABC 的内半圆,并直接写出它的半径长;图1图2(2)在平面直角坐标系xOy 中,点E 的坐标为(3,0),点P 在直线3=3y x 上运动(P 不与O 重合),将OE 关于△OEP 的内半圆半径记为R ,当34≤R ≤1时,求点P 的横坐标t 的取值范围.北京市西城区2019—2020学年度第一学期期末试卷九年级数学答案及评分参考2020.1一、选择题(本题共16分,每小题2分)15答案不唯一,如:5.9三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:3tan30°+4cos45°-2sin60°=342322⨯+-⨯=.····················································································5分18.解:(1)对称轴是直线x=2,顶点是(2,-1).2=43y x x-+的图象,如图.(2)当1<x<3时,y<0.·································································································5分19.(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD .∵BE =BD ,∴∠BED =∠BDE .∴∠AEB =∠ADC .∴△ABE ∽△ACD .(2)解:∵△ABE ∽△ACD ,∴AE BEAD CD =.∵BE =BD =1,CD =2,∴12AE AD =.···························································································5分20.(1)△DEF 是等腰直角三角形.证明:在正方形ABCD 中,DA =DC ,∠ADC =∠DAB =∠DCB =90°.∵F 落在边BC 的延长线上,∴∠DCF =∠DAB =90°.∵将点E 绕点D 逆时针旋转得到点F ,∴DE =DF .∴Rt △ADE ≌Rt △CDF .∴∠ADE =∠CDF .∵∠ADC =∠ADE +∠EDC =90°,∴∠CDF +∠EDC =90°,即∠EDF =90°.∴△DEF 是等腰直角三角形.(2)△DEF 的面积为8.···························································································5分21.解:(1)6;(2)设如果全校一共进行36场比赛,那么有x 支球队参加比赛.依题意,得(1)362x x -=.解得x 1=9,x 2=-8(不合题意,舍去).所以x =9.答:如果全校一共进行36场比赛,那么有9支球队参加比赛.···················5分22.证明:(1)∵PB ,PC 是⊙O 的两条切线,切点分别为B ,C .∴PB =PC ,∠BPO =∠CPO .∴PO ⊥BC ,BE =CE .∵OB =OA ,∴OE =12AC .(2)∵PB 是⊙O 的切线,∴∠OBP =90°.由(1)可得∠BEO =90°,OE =12AC =3.∴∠OBP =∠BEO =90°.∴tan BE PB BOE OE OB∠==在Rt △BEO 中,OE =3,OB =5,∴BE =4.∴PB=203.···················································································5分23.(1)解:在Rt △ABC 中,1tan 2α=,BC =3,∴AC =6.∴点B 的坐标为(6,3).∵B (6,3),E (4,4)在抛物线2y ax bx =+上,∴22663,44 4.a b a b ⎧+=⎪⎨+=⎪⎩解得1,42.a b ⎧=-⎪⎨⎪=⎩∴y 关于x 的函数关系式为2124y x x =-+.(2)当x =2时,212224y =-⨯+⨯=3>1+1.8,所以水珠能越过这棵树. (6)分24.解:(1)相切.证明:连接BD ,如图.∵四边形ABCD 内接于⊙O ,∠BAD =90°,∴BD 是⊙O 的直径,即点O 在BD 上.∴∠BCD =90°.∴∠CED +∠CDE =90°.∵∠CED =∠BAC .又∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,即∠BDE =90°.∴DE ⊥OD 于点D .∴DE 是⊙O 的切线.(2)如图,BD 与AC 交于点H .∵DE ∥AC ,∴∠BHC =∠BDE =90°.∴BD ⊥AC .∴AH =CH .∴BC =AB =4,CD =AD =2.∵∠FAD =∠FCB =90°,∠F =∠F ,∴△FAD ∽△FCB .∴AD AF CB CF =.∴CF =2AF .设AF =x ,则DF =CF -CD=2x -2.在Rt △ADF 中,222DF AD AF =+,∴222(22)2x x -=+.解得183x =,20x =(舍去).∴83AF =.······································································6分25.解:(1)①2y axb x c=++,(a ,b ,c 是常数,0a ≠).(2)图象如图1所示.图1图2(3)①③.(4)如图2,-1,0.·····························································································6分26.解:(1)∵抛物线y =x 2-2m x -2m -2与直线y =2交于A ,B 两点,点B 在y 轴上,∴点B 的坐标为(0,2).∴-2m -2=2.∴m =-2.∴抛物线的表达式为y =x 2+4x +2.∵A ,B 两点关于直线x =-2对称,∴点A 的坐标为(-4,2).(2)①y =x 2+4x +2的图象,如图1所示.G 1上的横整点分别是(-3,-1),(-2,-2),(-1,-1).②对于任意的实数m ,抛物线y =x 2-2m x -2m –2与直线y =-x -2总有一个公共点(-1,-1),不妨记为点C .当m ≤-1时,若G 2上恰有两个横整点,则横整点的横坐标为-3,-2,如图2.图1∴-2≤32m <-.当m >-1时,若G 2上恰有两个横整点,则横整点的横坐标为0,1,如图3.∴12m <≤1.图2图3综上,G 2恰有两个横整点,m 的取值范围是-2≤32m <-或12m <≤1.···························································································6分27.解:(1)如图.当BQ ∥AP 时,n =60.(2)n =120.证明:延长PM 至N ,使得MN =PM ,连接BN ,AN ,QN ,如图.∵M 为线段BQ 的中点,∴四边形BNQP 是平行四边形.∴BN ∥PQ ,BN=PQ .∴∠NBP =60°.∵△ABC 是等边三角形,∴AB=AC ,∠ABC =∠ACB =60°.∴∠ABN =∠ACP =120°.∵以P 为中心,将线段PC 逆时针旋转120°得到线段PQ ,∴PQ =PC .∴BN =PC .∴△ABN ≌△ACP .∴∠BAN =∠CAP ,AN=AP .∴∠NAP =∠BAC =60°.∴△ANP 是等边三角形.∴PN =AP .又MP=12PN ,∴MP =12AP .································································7分28.解:(1)①22.②BC 关于△ABC 的内半圆,如图1,BC 关于△ABC 的内半圆半径为1.(2)过点E 作EF ⊥OE ,与直线3=3y x 交于点F ,设点M 是OE 上的动点,i)当点P 在线段OF 上运动时(P 不与O 重合),OE 关于△OEP 的内半圆是以M 为圆心,分别与OP ,PE 相切的半圆,如图2.∴当34≤R ≤1时,t 的取值范围是32≤t ≤3.图1图2图3ii)当点P 在OF 的延长线上运动时,OE 关于△OEP 的内半圆是以M 为圆心,经过点E 且与OP 相切的半圆,如图3.∴当R =1时,t 的取值范围是t ≥3.iii)当点P 在OF 的反向延长上运动时(P 不与O 重合),OE 关于△OEP 的内半圆是以M 为圆心,经过点O 且与EP 相切的半圆,如图4.∴当34≤R <1时,t 的取值范围是t ≤95+-.图4综上,点P 在直线=3y x 上运动时(P 不与O 重合),当34≤R ≤1时,t 的取值范围是t ≤95+-或t ≥32.·································································································7分。

2019-2020学年北京市西城区七年级(上)期末数学试卷与答案解析

2019-2020学年北京市西城区七年级(上)期末数学试卷与答案解析

2019-2020学年北京市西城区七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)1.(3分)﹣4的倒数是()A.B.﹣C.4 D.﹣42.(3分)在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为()A.0.3369×10B.3.369×10C.3.369×10D.3369×103.(3分)下列计算正确的是()A.5a+6b=11ab B.9a﹣a=8C.a+3a=4a D.3ab+4ab=7ab4.(3分)如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短 B.两点确定一条直线C.两点之间,直线最短 D.直线比线段长5.(3分)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由x=﹣1,可得x=﹣D.由,可得2(x﹣1)=x﹣36.(3分)已知3a﹣a=1,则代数式6a﹣2a﹣5的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣77.(3分)有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab>0;③b+c<0;④b﹣a>0.上述结论中,所有正确结论的序号是()A.①② B.②③ C.②④ D.③④8.(3分)下列说法中正确的是()A.如果|x|=7,那么x一定是7B.﹣a表示的数一定是负数C.射线AB和射线BA是同一条射线D.一个锐角的补角比这个角的余角大90°9.(3分)下列图形中,可能是右面正方体的展开图的是()A.B.C.D.10.(3分)居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如图所示:根据上图提供的信息,下列推断中不合理的是()A.2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4% D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.(2分)如图所示的网格式正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)12.(2分)用四舍五入法将0.0586精确到千分位,所得到的近似数为.13.(2分)已知x=3是关于x的一元一次方程ax+b=0的解,请写出一组满足条件的a,b的值:a=,b=.14.(2分)若(x+1)+|y﹣2020|=0,则x=.15.(2分)《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.(3分)我们把称为二阶行列式,且=ad﹣bc如:=1×(﹣4)﹣3×2=﹣10.(1)计算:=;(2)若=6,则m的值为.17.(3分)已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使AD=BC,点E是线段CD的中点.(1)依题意补全图形;(2)若AB的长为30,则BE的长为.18.(3分)一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a,则商品包装盒的长为,图2中阴影部分的周长与图3中阴影部分的周长的差为(都用含a的式子表示).三、计算题(本题共16分,每小题8分)19.(8分)计算:(1)(﹣5)+12﹣(﹣8)﹣21(2)20.(8分)计算:(1)(2)四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分)21.(5分)先化简,再求值:6y+4(x﹣2xy)﹣2(3y﹣xy),其中x=﹣2,y=3.22.(5分)解方程:.23.(5分)解方程组:.24.(4分)24、已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补25.(5分)某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形变式数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为a(其中i,j=1,2,3,4),如图1中第2行第1列的数字a=0;对第i行使用公式A=8a+4a+2a+a进行计算,所得结果A表示所在年级,A表示所在班级,A表示学号的十位数字,A表示学号的个位数字.如图1中,第二行A=8×0+4×1+2×0+1=5,说明这个学生在5班.(1)图1代表的学生所在年级是年级,他的学号是;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案26.(6分)学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元.请直接写出学校购买篮球和足球的个数各是多少.27.(5分)点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为;(2)若线段BM的长为4.5,则线段AC的长为;(3)若线段AC的长为x,求线段BM的长(用含x的式子表示).一、填空题(本题6分)28.观察下列等式,探究其中的规律并解答问题:(1)第4个等式中,k=;(2)写出第5个等式:;(3)写出第n个等式:(其中n为正整数)二、解答题(本题共14分,每小题0分)29.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示)(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为.(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法(要求:画出各块拼板的轮廓).(3)随着七巧板的发展,出现了一些形式不同的七巧板,如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形;大正方形的中间去掉一个小正方形,请在图4中画出拼图的方法(要求:画出各块拼板的轮廓).30.对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB,OB的位置如图3所示,且∠BOM=30°,∠BOM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON 内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.2019-2020学年北京市西城区七年级(上)期末数学试卷试题解析一、选择题(本题共30分,每小题3分)1.【答案】B解:﹣4的倒数是﹣.故选:B.2.【答案】B解:将3369000用科学记数法表示为3.369×10,故选:B.3.【答案】D解:A.5a与6b不是同类项,所以不能合并,故本选项不合题意;B.9a﹣a=8a,故本选项不合题意;D.3ab+8ab=7ab,正确,故本选项符合题意.故选:D.4.【答案】A解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.5.【答案】B解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由x=﹣1,可得x=﹣6,不符合题意;D、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.6.【答案】A解:∵3a﹣a=1,∴原式=2(3a﹣a)﹣5=2﹣5=﹣3,故选:A.7.【答案】C解:∵﹣3<a<﹣2,∴|a|<3,∵a<8,b<0,∴选项②符合题意;∴b+c>0,∵b>a,∴选项④符合题意,故选:C.8.【答案】D解:A、∵|x|=7,∴x=±7,故本选项不符合题意.B、﹣a不是的数不一定是负数,本选项不符合题意.C、射线AB和射线BA不是同一条射线,本选项不符合题意.D、一个锐角的补角比这个角的余角大90°,正确,本选项符合题意,故选:D.9.【答案】C解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符和,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.10.【答案】D解:由统计图可知,2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变,故选项A合理;2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%,故选项C合理;故选:D.二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.【答案】见试题解答内容解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.12.【答案】见试题解答内容解:0.0586≈0.059(精确到千分位).故答案为0.059.13.【答案】见试题解答内容解:把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,则一组满足条件的a,b的值:a=4,b=﹣3.故答案为:1,﹣3(答案不唯一).14.【答案】见试题解答内容解:∵(x+1)+|y﹣2020|=0,∴x+1=0,y﹣2020=0,所以x=(﹣1)=1.故答案为:1.15.【答案】见试题解答内容解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.16.【答案】见试题解答内容解:(1)=2×7﹣(﹣3)×6=28∴﹣4m﹣2×4=6,∴m=﹣5.故答案为:28、﹣5.17.【答案】见试题解答内容解:(1)如图所示;(2)∵AB=30,BC=AB,∵AD=BC=10,∵点E是线段CD的中点,∴BE=BD﹣DE=5,故答案为:5.18.【答案】见试题解答内容解:根据摆放情况可得,包装盒的一个长等于两个宽,即长为2a,大纸箱的长为4a,宽为3a,图3中阴影部分的周长为:4a×8+2a=10a,故答案为:2a,2a.三、计算题(本题共16分,每小题8分)19.【答案】见试题解答内容解:(1)(﹣5)+12﹣(﹣8)﹣21=7+7﹣21=﹣6=(﹣4)÷(﹣)=20.【答案】见试题解答内容解:(1)=1×(﹣)﹣×(﹣)+×(﹣)=﹣1=(9+2﹣19)×(﹣4)=32四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分)21.【答案】见试题解答内容解:原式=6y+4x﹣8xy﹣6y+4xy=4x﹣6xy,当x=﹣2,y=3时,原式=﹣32+36=4.22.【答案】见试题解答内容解:去分母得:9x+6=15+10x﹣5,移项合并得:﹣x=4,解得:x=﹣4.23.【答案】见试题解答内容解:,①+②×3得:10x=30,把x=3代入②得:y=﹣2,则方程组的解为.24.【答案】见试题解答内容证明:∵O是直线AB上一点∴∠AOB=180°∴∠COD+∠COE=90°∵OD是∠AOC的平分线∴∠BOE=∠COE(理由:等式性质)∴∠AOE+∠COE=180°故答案为:90;COD;角平分线的定义;等式性质.25.【答案】见试题解答内容解:(1)A=8×0+4×1+2×4+1=7,A=3×0+4×0+2×1+2=2,A=8×1+4×0+2×6+0=8,故答案为7,28;26.【答案】见试题解答内容解:(1)设篮球的单价为x元,足球的单价为y元,依题意,得:,答:篮球的单价为80元,足球的单价为75元.依题意,得:0.8(80m+75n)=1760,∵m,n均为非负整数,答:学校购买篮球20个、足球8个或者篮球5个、足球24个.27.【答案】见试题解答内容解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=2.2×5×=×6∴OB=AB﹣OA=1,故答案为﹣1;∴OM=4.5﹣1=6.5(点M在原点右侧)∵M为线段OC的中点∴AC=7﹣5=2(点C在原点右侧)∴线段AC的长为5或16.(3)当AC=x,OC=5+x∴BM=OB+OM=1+(5+x)=x+OC=AC﹣OA=x﹣5∴BM=OM﹣OB=(x﹣5)﹣1=x﹣答:线段BM的长为:x+或x﹣.一、填空题(本题6分)28.【答案】见试题解答内容解:(1)由所给式子可知,k=7,故答案为7;故答案为4+6+7+8+9+10+11+12+13=9;故答案为n+(n+3)+(n+2)+…+(3n﹣3)+(3n﹣2)=(6n﹣1).二、解答题(本题共14分,每小题0分)29.【答案】见试题解答内容解:(1)七块拼板的总面积=(2)×2=4,故答案为8.(2)答案如图所示.(8)答案如图所示.30.【答案】(1)OB;(2)10≤x≤50;(3)20≤t≤32.5.解:(1)∵∠AOB在∠MON的外部,∴射线OA、OB组成的∠AOB的平分线在∠MON的外部,∵∠BOM=15°,∠AOM=10°,∴射线OA、OB组成的∠AOB的平分线在∠MON的内部,故答案为:OB;∵∠COM=x°,∠AOM=10°,∠MON=20°,∵射线OA与射线OC关于∠MON内含对称,∴10≤x≤50;∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,∴50﹣t≤≤70﹣t,若射线OF与射线OH关于∠MON内含对称,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.。

北京市西城区2021-2022学年上学期初中七年级期末考试数学试卷

北京市西城区2021-2022学年上学期初中七年级期末考试数学试卷

北京市西城区2021-2022学年上学期初中七年级期末考试数学试卷本试卷共两部分,四道大题,26道小题,其中第一大题于第三大题为必做题,满分100分。

第四大题为选做题,满分10分,计入总分,但卷面总分不超过100分。

考试时间100分钟。

第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1. -5的绝对值是 A. 5B. -5C.15D. -152. 云南的澄江化石地世界自然遗产博物馆升级改造完工,馆内所收藏的约520000000年前的澄江生物群化石,展示了寒武纪时期的生物多样化场景.将520000000用科学记数法表示应为A.90.5210⨯B. 85210⨯C. 95.210⨯D. 75210⨯3. 如图,数轴上的点A 表示的数可能是A.-4110 B. -412 C. -3110D. -3124. 下列计算正确的是 A. 330y y --= B. 54mn nm mn -=C. 243a a a -=D. 22223a b ab a b +=5. 一个角的余角比它的补角的14多15,设这个角为α,下列关于α的方程中,正确的是A. ()190180154αα-=-+ B . ()190180154αα-=--C. ()118090154αα-=-+ D . ()118090154αα-=--6. 我国曾发行过一款如下图所示的国家重点保护野生动物(Ⅰ级)邮票小全张,设计者巧妙地将“野牦牛”和“黑颈鹤”这两枚不同规格的过桥票(无邮政铭记和面值的附票,在图中标记为①,②),与其他10枚尺寸相同的普通邮票组合在一起构成一个长方形,整个画面和谐统一,以下关于图中所示的三种规格邮票边长的数量关系的结论中,正确的是eA.2c d =B. 3e a =C. 4de ac ab +=D. 2de ac ab -= 7. 下列方程变形中,正确的是A. 方程3445x x +=-,移项得3454x x -=-B. 方程342x -=,系数化为1得342x ⎛⎫=⨯- ⎪⎝⎭C. 方程()3215x -+=,去括号得3225x --=D. 方程131123x x -+-=,去分母得()()311231x x --=+ 8. 用6个棱长为1的小正方体可以粘合形成不同形状的积木,将如图所示的两块积木摆放在桌面上,再从下列四块积木中选择一块,能搭成一个长、宽、高分别为3、2、3的长方体的是A.B.C.D.第二部分 非选择题二、填空题(共16分,每题2分) 9. 3830'=___°.10. 用四舍五入法把3.786精确到0.01,所得到的近似数为___. 11. 如果单项式4a x y 与35b x y 是同类项,那么a =___,b =___.12. 若11,63a b ==,则263a ab -的值为___. 13. 若5x =是关于x 的方程234x a +=的解,则a =___. 14. 有理数a ,b 在数轴上的对应点的位置如图所示,有以下结论:①0a b +>;②0a b ->:③1ba>;④30a b +<。

西城区七年级期末数学试卷

西城区七年级期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列选项中,不是有理数的是()A. 3.14B. -5C. 0D. √22. 下列运算中,正确的是()A. (-2) × (-3) = -6B. (-2) × 3 = 6C. (-2) × (-3) = 6D. (-2) × 3 = -63. 如果a < b,那么下列不等式中一定成立的是()A. a + 1 < b + 1B. a - 1 < b - 1C. a + 2 < b + 2D. a - 2 < b - 24. 下列函数中,是反比例函数的是()A. y = x + 2B. y = 2xC. y = 2/xD. y = x²5. 一个长方体的长、宽、高分别为4cm、3cm、2cm,则它的表面积是()B. 42cm²C. 44cm²D. 46cm²6. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 等边三角形7. 如果一个数的平方根是2,那么这个数是()A. 4B. -4C. 8D. -88. 下列各数中,绝对值最大的是()A. -3B. 2C. 0D. -29. 下列各数中,互为相反数的是()A. 3和-3B. 5和5C. -5和510. 如果一个数的倒数是1/3,那么这个数是()A. 3B. -3C. 1/3D. -1/3二、填空题(每题3分,共30分)11. -5 + 3 = ______12. (2/3) × (-4) = ______13. -3 - (-5) = ______14. 2x + 3 = 11,则x = ______15. y = 2x - 1,当x = 3时,y = ______16. (3/4) × (2/3) = ______17. 2x - 5 = 0,则x = ______18. |5 - 3| = ______19. 3的平方根是 ______20. 0的倒数是 ______三、解答题(每题10分,共40分)21. 简化下列各数:√36,√81,√100。

西城区七年级期末数学试卷

西城区七年级期末数学试卷

1. 下列各数中,正整数是()A. -3.5B. 0.001C. -2D. 52. 下列各数中,无理数是()A. √4B. √9C. √16D. √253. 下列各数中,能被3整除的数是()A. 12B. 15C. 18D. 204. 下列各数中,既是质数又是偶数的是()A. 2B. 3C. 5D. 75. 已知a+b=10,a-b=2,则a的值为()A. 6B. 7C. 8D. 96. 下列各图中,全等图形是()A. 图1和图2B. 图2和图3C. 图3和图4D. 图1和图47. 下列各式中,正确的三角函数值是()A. sin45°=1B. cos45°=√2/2C. tan45°=1D. cot45°=18. 下列各式中,正确的是()A. a²+b²=c²(c为斜边,a、b为直角边)B. a²+b²=c²(c为直角边,a、b为斜边)C. a²-c²=b²(c为斜边,a、b为直角边)D. a²-c²=b²(c为直角边,a、b为斜边)9. 下列各数中,负数是()A. -3.14B. 0C. 1.5D. -2.510. 下列各数中,整数是()A. 3.14B. 0.001C. -2.5D. 311. (2分)若a=5,b=-3,则a+b=__________,a-b=__________,ab=__________。

12. (3分)√(25+36)=__________。

13. (3分)若x²=9,则x=__________。

14. (3分)在△ABC中,∠A=60°,∠B=45°,则∠C=__________。

15. (3分)若tanθ=3,则θ=__________。

16. (3分)若a=√2,b=√3,则a²+b²=__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2019-2020学年下学期初中七年级期末考试数学试卷本试卷共三道大题,26道小题。

满分100分。

考试时间100分钟。

一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有一个。

1. -8的立方根是A. -4B. -2C. 2D. ±2 2. 将不等式的解集x >6表示在数轴上,下列图形中正确的是A B C D3. 点P (-5,4)所在的象限是 A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列各数中的无理数是 A.2B.9C.32 D. -65. 已知m >n ,下列结论中正确的是 A. m +2<n+2 B. m -2<n-2 C. -2m >-2nD.2m >2n 6. 下列各图中,线段CD 是△ABC 的高的是A. B.C. D.7. 如图,分别将木条a ,b 与木条c 钉在一起,若∠1=50°,∠2=80°,要使木条a 与b 平行,则木条a 需要顺时针转动的最小度数为A. 30°B. 50°C. 80°D. 130°8. 下列命题中正确的是A. 如果两个角相等,那么这两个角一定是对顶角B. 如果两个角互为补角,那么这两个角一定是邻补角C. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行D. 如果两条平行线被第三条直线所截,那么同旁内角相等9. 党的十八大以来,我国实施精准扶贫精准脱贫,全面打响了脱贫攻坚战,扶贫工作取得了决定性进展。

下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比。

2015~2019年年末全国农村贫困人口和贫困发生率统计图根据统计图提供的信息,下列推断中不.合理的是A. 与2018年相比,2019年年末全国农村贫困人口减少了1109万人B. 2015~2019年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万C. 2015~2019年年末,与上一年相比,全国农村贫困发生率逐年下降D. 2015~2019年年末,与上一年相比,全国农村贫困发生率下降均不少于1. 2%10. 已知关于x 的不等式2x-m <1-x 的正整数解是1,2,3,则m 的取值范围是A. 3<m ≤4B. 3≤m <4C. 8<m ≤11D. 8≤m <11二、填空题(本题共18分,第13,18题每小题3分,其余每小题2分)11. 计算:|2-3|=_________。

12. 小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是_________。

(填序号)13. 将一把直尺与一块含30°角的三角板按如图方式摆放。

若∠1=25°,则∠2=_________°,∠3=_________°。

14. 已知点A(m -1,2m +3)在y轴上,则点A的坐标为_________。

15. 若一个多边形的每个内角都是140°,则这个多边形的边数为_________。

16. 用一组a,b,c的值说明命题“若a>b,则ac>bc。

”是假命题,这组值可以是a=_________,b=_________,c=_________。

17. 如图,AD 是△ABC的中线,E是AD的中点,连接EB,EC,CF⊥BE于点F。

若BE=9,CF=8,则△ACE 的面积为________。

18. 如图,在平面直角坐标系xOy 中,点A ,B ,C 的坐标分别为(0,3),(3,3),(3,0)。

正方形OABC 从图中的位置出发,以每秒旋转90°的速度,绕点O 沿顺时针方向旋转。

同时,点P 从点O 出发,以每秒移动1个单位长度的速度,沿正方形的边,按照O→A→B→C→O →A …的路线循环运动。

第1秒时点P 的坐标为(1,0),第2秒时点P 的坐标为________,第2020秒时点P 的坐标为________。

三、解答题(本题共52分,第19~22题每小题6分,第23~26题每小题7分)19. 解不等式组⎪⎩⎪⎨⎧+<-+≤+.35251,643x x x x20. 小天学完平方根和开平方运算后,发现可以运用这些知识解形如x 2 =a (a 为常数)的这类方程。

(1)小天先尝试解了下面两个方程: ① x 2=1,解得x=1或x=-1;② x 2=-1,此方程无实数解。

方程①有两个解的依据是:正数有两个平方根,它们互为相反数; 方程②无实数解的依据是:_______________; (2)小天进一步探究了解方程③和④: ③ 3x 2=21; ④(x+2)2=9。

解:x 2=7。

解:x+2=3或x+2=-3。

x=7或x=- 7。

x=1或x=-5。

请你参考小天的方法,解下列两个方程: ⑤ 2x 2-72=0;⑥ (x-1)2=5。

21. 如图,在△ABC 中,点D ,E 在AB 边上,点F 在AC 边上,EF ∥DC ,点H 在BC 边上,且∠1+∠2=180°。

求证:∠A=∠BDH 。

请将下面的证明过程补充完整:证明:∵EF∥DC,∴∠2+∠_______=180°。

(理由:_______)∵∠1+∠2=180°,∴∠1=∠_______。

∴_______∥_______。

(理由:_______)∴∠A=∠BDH。

22. 在平面直角坐标系xOy 中,已知点A(0,1),B(4,2),C(2,-2)。

(1)在网格中画出这个平面直角坐标系;(2)连接CB,平移线段CB,使点C 移动到点A,得到线段AD。

①画出线段AD,并写出点D的坐标;②连接AC,DB,四边形ACBD的面积是_______。

23. 为弘扬传统文化,某校开展了“传承传统文化,阅读经典名著”活动,并举行了经典名著知识竞赛。

为了解七年级学生(七年级有8个班,共320名学生)的阅读效果,综合实践调查小组开展了一次调查研究。

收集数据(1)调查小组计划选取40名学生的竞赛成绩(百分制)作为样本,下面的抽样方法中,合理的是_________;(填字母)A. 抽取七年级1班、2班各20名学生的竞赛成绩组成样本B. 抽取各班竞赛成绩较好的共40名学生的竞赛成绩组成样本C. 从年级中按学号随机选取40名学生的竞赛成绩组成样本整理、描述数据抽样方法确定后,调查小组收集到了40名学生的竞赛成绩,其中竞赛成绩x 在80≤x≤100范围的具体成绩如下:90,92,81,82,95,86,88,89,86,93,97,100,80,81,86,89,82,85,98,90,97,100,84,87,92,96。

整理数据,得到如下频数分布表和频数分布直方图(不完整):(2)请补全以上频数分布表和频数分布直方图;应用数据(3)若竞赛成绩不低于90分的记为“优秀”,请你估计参加这次知识竞赛的全年级320名学生中,竞赛成绩为“优秀”的约有多少人?24. 某公园为了方便游客游览,设置了观光接驳车。

公园设计的其中一条观光路线上设有A,B,C,D四个站点(如图所示),相邻两个站点的距离都是5千米,游客只能在站点上、下车。

一辆接驳车在A,D之间往返行驶,一名游客在距离A 站点x 千米(5<x<10)的M 处徒步游览时,临时有事要赶回站点A,此时他正好遇到开往站点D 的接驳车,他决定走到站点B 等待刚才那辆车从站点D 开回。

已知接驳车行驶的平均速度为30千米/时,该游客步行的平均速度为6千米/时,游客上下车的时间忽略不计。

(1)接驳车在A,D 之间往返行驶一次所需时间为_______小时;(2)该游客从M 处走到站点B 所需时间为_______小时;(用含x 的式子表示)(3)如果该游客不晚于接驳车到达了站点B,那么当时他离站点A 的距离x 最多有多远?25. 对于平面直角坐标系xOy 中的任意一点P (x,y),给出如下定义:记a=x+y,b=-y,将点M(a,b)与N(b,a)称为点P的一对“相伴点”。

例如:点P(2,3)的一对“相伴点”是点(5,-3)与(-3,5)。

(1)点Q(4,-1)的一对“相伴点”的坐标是_________与_________;(2)若点A(8,y)的一对“相伴点”重合,则y 的值为_________;(3)若点B 的一个“相伴点”的坐标为(-1,7),求点B 的坐标;(4)如图,直线l经过点(0,-3)且平行于x 轴。

若点C 是直线l上的一个动点,点M 与N是点C的一对“相伴点”,在图中画出所有符合条件的点M,N 组成的图形。

26. 已知△ABC ,过点B 作DE ⊥BC 于点B ,过点C 作FH ∥DE 。

(1)BC 与FH 的位置关系是________;(2)如图1,点M 在直线DE 和FH 之间,连接BM ,CM 。

若∠ABM=41∠ABD ,∠ACM =41∠ACF ,∠BAC=72°,求∠BMC 的度数; (3)若∠ABE 和∠ACH 的平分线交于点N ,在图2中补全图形,用等式表示∠BNC 与∠BAC 的数量关系,并证明。

图1图2附加题 试卷满分:20分一、解答题(本题共13分,第1题6分,第2题7分) 1. 已知一个三角形的三条边的长分别为n+2,n+6,3n 。

(1)n+2_______n+6;(填 “>”,“=”或 “<”) (2)若这个三角形是等腰三角形,求它的三边的长;(3)若这个三角形的三条边都不相等,且n 为正整数,直接写出n 的最大值。

2. 在△ABC 中,BD 是△ABC 的角平分线,点E 在射线DC 上,EF ⊥BC 于点F ,EM 平分∠AEF 交直线AB 于点M 。

(1)如图1,点E 在线段DC 上,若∠A=90°,∠M =α。

① ∠AEF=________;(用含α的式子表示) ② 求证:BD ∥ME ;(2)如图2,点E 在DC 的延长线上,EM 交BD 的延长线于点N ,用等式表示∠BNE与∠BAC 的数量关系,并证明。

图1图2二、阅读探究题(本题7分)3. 在平面直角坐标系xOy中,横、纵坐标都是整数的点叫做整点。

给出如下定义:对于任意两个整点M (x1,y1),N(x2,y2),M与N的“直角距离”记为d MN,d MN =|x1-x2|+|y1-y2|。

例如,点M(1,5)与N(7,2)的“直角距离”d MN=|1-7|+|5-2|=9。

相关文档
最新文档