土木工程专业英语翻译
土木工程专业英语词汇(整理版)
第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语Specialty English3 水利工程Hydraulic Engineering4 土木工程Civil Engineering5 地下工程Underground Engineering6 岩土工程Geotechnical Engineering7 道路工程Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程Tunnel Engineering10 工程力学Engineering Mechanics11 交通工程Traffic Engineering12 港口工程Port Engineering13 安全性safety17木结构timber structure18 砌体结构masonry structure19 混凝土结构concrete structure20 钢结构steelstructure21 钢-混凝土复合结构steel and concrete composite structure22 素混凝土plain concrete23 钢筋混凝土reinforced concrete24 钢筋rebar25 预应力混凝土pre-stressed concrete26 静定结构statically determinate structure27 超静定结构statically indeterminate structure28 桁架结构truss structure29 空间网架结构spatial grid structure30 近海工程offshore engineering31 静力学statics32运动学kinematics33 动力学dynamics34 简支梁simply supported beam35 固定支座fixed bearing36弹性力学elasticity37 塑性力学plasticity38 弹塑性力学elaso-plasticity39 断裂力学fracture Mechanics40 土力学soil mechanics41 水力学hydraulics42 流体力学fluid mechanics43 固体力学solid mechanics44 集中力concentrated force45 压力pressure46 静水压力hydrostatic pressure47 均布压力uniform pressure48 体力body force49 重力gravity50 线荷载line load51 弯矩bending moment52 torque 扭矩53 应力stress54 应变stain55 正应力normal stress56 剪应力shearing stress57 主应力principal stress58 变形deformation59 内力internal force60 偏移量挠度deflection61 settlement 沉降62 屈曲失稳buckle63 轴力axial force64 允许应力allowable stress65 疲劳分析fatigue analysis66 梁beam67 壳shell68 板plate69 桥bridge70 桩pile71 主动土压力active earth pressure72 被动土压力passive earth pressure73 承载力load-bearing capacity74 水位water Height75 位移displacement76 结构力学structural mechanics77 材料力学material mechanics78 经纬仪altometer79 水准仪level80 学科discipline81 子学科sub-discipline82 期刊journal ,periodical83文献literature84 ISSN International Standard Serial Number 国际标准刊号85 ISBN International Standard Book Number 国际标准书号86 卷volume87 期number 88 专着monograph89 会议论文集Proceeding90 学位论文thesis, dissertation91 专利patent92 档案档案室archive93 国际学术会议conference94 导师advisor95 学位论文答辩defense of thesis96 博士研究生doctorate student97 研究生postgraduate98 EI Engineering Index 工程索引99 SCI Science Citation Index 科学引文索引100ISTP Index to Science and Technology Proceedings 科学技术会议论文集索引101 题目title102 摘要abstract103 全文full-text104 参考文献reference105 联络单位、所属单位affiliation106 主题词Subject107 关键字keyword108 ASCE American Society of Civil Engineers 美国土木工程师协会109 FHWA Federal Highway Administration 联邦公路总署110 ISO International Standard Organization111 解析方法analytical method112 数值方法numerical method113 计算computation114 说明书instruction115 规范Specification, Code第二部分:岩土工程专业词汇1.geotechnical?engineering岩土工程?2.foundation?engineering基础工程3.soil,?earth土4.soil?mechanics土力学cyclic?loading周期荷载unloading卸载reloading再加载viscoelasticfoundation粘弹性地基?viscous?damping粘滞阻尼shearmodulus剪切模量?5.soil?dynamics土动力学6.stress?path应力路径?7.numerical geotechanics 数值岩土力学二. 土的分类 1.residual soil残积土 groundwater level地下水位 2.groundwater 地下水 groundwater table地下水位 3.clay minerals粘土矿物 4.secondary minerals次生矿物 ndslides滑坡 6.bore hole columnar section钻孔柱状图 7.engineering geologic investigation工程地质勘察 8.boulder 漂石 9.cobble卵石 10.gravel砂石 11.gravelly sand砾砂 12.coarse sand粗砂 13.medium sand中砂 14.fine sand细砂 15.silty sand粉土 16.clayey soil粘性土 17.clay粘土 18.silty clay粉质粘土 19.silt粉土 20.sandy silt砂质粉土 21.clayey silt粘质粉土 22.saturated soil饱和土 23.unsaturated soil非饱和土 24.fill (soil)填土 25.overconsolidated soil超固结土 26.normally consolidated soil正常固结土 27.underconsolidated soil欠固结土 28.zonal soil区域性土 29.soft clay软粘土 30.expansive (swelling) soil膨胀土 31.peat泥炭 32.loess黄土 33.frozen soil冻土 24.degree of saturation饱和度 25.dry unit weight干重度26.moist unit weight湿重度45.ISSMGE=International Society for Soil Mechanics and Geote chnical Engineering 国际土力学与岩土工程学会四. 渗透性和渗流1.Darcy’s law 达西定律2.piping管涌3.flowing soil流土4.sand boiling砂沸5.flow net流网6.seepage渗透(流)7.leakage渗流8.seepage pressure渗透压力9.permeability渗透性10.seepage force渗透力11.hydraulic gradient水力梯度 12.coefficient of permeability渗透系数五. 地基应力和变形1.soft soil软土2.(negative) skin friction of driven pile打入桩(负)摩阻力3.effective stress有效应力4.total stress总应力5.field vane shear strength十字板抗剪强度6.low activity低活性7.sensitivity灵敏度8.triaxial test三轴试验9.foundation design基础设计 10.recompaction再压缩11.bearing capacity承载力 12.soil mass土体13.contact stress (pressure)接触应力(压力)14.concentrated load集中荷载 15.a semi-infinite elastic solid半无限弹性体 16.homogeneous均质 17.isotropic各向同性 18.strip footing条基 19.square spread footing方形独立基础20.underlying soil (stratum ,strata)下卧层(土)21.dead load =sustained load恒载持续荷载 22.live load活载 23.short –term transient load短期瞬时荷载24.long-term transient load长期荷载 25.reduced load折算荷载 26.settlement沉降 27.deformation变形 28.casing套管 29.dike=dyke堤(防) 30.clay fraction粘粒粒组 31.physical properties物理性质 32.subgrade路基 33.well-graded soil级配良好土 34.poorly-graded soil级配不良土 35.normal stresses正应力 36.shear stresses剪应力 37.principal plane主平面38.major (intermediate, minor) principal stress最大(中、最小)主应力 39.Mohr-Coulomb failure condition摩尔-库仑破坏条件 40.FEM=finite element method有限元法41.limit equilibrium method极限平衡法42.pore water pressure孔隙水压力43.preconsolidation pressure先期固结压力44.modulus of compressibility压缩模量45.coefficent of compressibility压缩系数pression index压缩指数 47.swelling index回弹指数 48.geostatic stress自重应力 49.additional stress附加应力 50.total stress总应力 51.final settlement最终沉降 52.slip line滑动线六. 基坑开挖与降水 1 excavation开挖(挖方) 2 dewatering (基坑)降水 3 failure of foundation基坑失稳4 bracing of foundation pit基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall挡土墙7 pore-pressure distribution孔压分布8 dewatering method降低地下水位法9 well point system井点系统(轻型) 10 deep well point深井点 11 vacuum well point 真空井点 12 braced cuts支撑围护 13 braced excavation支撑开挖 14 braced sheeting支撑挡板七. 深基础--deep foundation 1.pile foundation桩基础1)cast –in-place灌注桩 diving casting cast-in-place pile沉管灌注桩 bored pile钻孔桩 special-shaped cast-in-place pile机控异型灌注桩 piles set into rock嵌岩灌注桩 rammed bulb pile夯扩桩2)belled pier foundation钻孔墩基础 drilled-pier foundation钻孔扩底墩 under-reamed bored pier3)precast concrete pile预制混凝土桩4)steel pile钢桩 steel pipe pile钢管桩 steel sheet pile钢板桩5)prestressed concrete pile预应力混凝土桩 prestressed concrete pipe pile预应力混凝土管桩 2.caisson foundation沉井(箱) 3.diaphragm wall地下连续墙截水墙 4.friction pile摩擦桩 5.end-bearing pile端承桩 6.shaft竖井;桩身 7.wave equation analysis波动方程分析 8.pile caps承台(桩帽) 9.bearing capacity of single pile单桩承载力 teral pile load test单桩横向载荷试验 11.ultimate lateral resistance of single pile单桩横向极限承载力 12.static load test of pile单桩竖向静荷载试验 13.vertical allowable load capacity单桩竖向容许承载力 14.low pile cap低桩承台 15.high-rise pile cap高桩承台 16.vertical ultimate uplift resistance of single pile单桩抗拔极限承载力 17.silent piling静力压桩 18.uplift pile抗拔桩 19.anti-slide pile抗滑桩20.pile groups群桩 21.efficiency factor of pile groups群桩效率系数(η)22.efficiency of pile groups群桩效应 23.dynamic pile testing桩基动测技术24.final set最后贯入度 25.dynamic load test of pile桩动荷载试验26.pile integrity test桩的完整性试验 27.pile head=butt桩头 28.pile tip=pile point=pile toe桩端(头) 29.pile spacing桩距30.pile plan桩位布置图 31.arrangement of piles =pile layout桩的布置32.group action群桩作用 33.end bearing=tip resistance桩端阻 34.skin(side) friction=shaft resistance桩侧阻35.pile cushion桩垫 36.pile driving(by vibration) (振动)打桩 37.pile pulling test拔桩试验 38.pile shoe桩靴 39.pile noise 打桩噪音 40.pile rig打桩机九. 固结consolidation1.Terzzaghi’s consolidation theory太沙基固结理论2.Barraon’s consolidation theory巴隆固结理论3.Biot’s consolidation theory比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil超固结土6.excess pore water pressure超孔压力7.multi-dimensional consolidation多维固结8.one-dimensional consolidation一维固结9.primary consolidation主固结10.secondary consolidation次固结11.degree of consolidation固结度 12.consolidation test固结试验 13.consolidation curve固结曲线 14.time factor Tv时间因子15.coefficient of consolidation固结系数16.preconsolidation pressure前期固结压力17.principle of effective stress有效应力原理18.consolidation under K0 condition K0固结十. 抗剪强度shear strength 1.undrained shear strength不排水抗剪强度2.residual strength残余强度3.long-term strength长期强度4.peak strength峰值强度5.shear strain rate剪切应变速率6.dilatation剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength抗剪强度总应力法 9.Mohr-Coulomb theory莫尔-库仑理论 10.angle of internal friction内摩擦角 11.cohesion粘聚力 12.failure criterion破坏准则 13.vane strength十字板抗剪强度14.unconfined compression无侧限抗压强度15.effective stress failure envelop有效应力破坏包线16.effective stress strength parameter有效应力强度参数十一. 本构模型--constitutive model1.elastic model弹性模型2.nonlinear elastic model非线性弹性模型3.elastoplastic model弹塑性模型4.viscoelastic model粘弹性模型5.boundary surface model边界面模型6.Duncan-Chang model邓肯-张模型7.rigid plastic model刚塑性模型8.cap model盖帽模型9.work softening加工软化 10.work hardening加工硬化 11.Cambridge model剑桥模型 12.ideal elastoplastic model理想弹塑性模型 13.Mohr-Coulomb yield criterion莫尔-库仑屈服准则14.yield surface屈服面15.elastic half-space foundation model弹性半空间地基模型 16.elastic modulus弹性模量 17.Winkler foundation model文克尔地基模型十二. 地基承载力--bearing capacity of foundation soil1.punching shear failure冲剪破坏2.general shear failure整体剪切破化3.local shear failure局部剪切破坏4.state of limit equilibrium极限平衡状态5.critical edge pressure临塑荷载6.stability of foundation soil地基稳定性7.ultimate bearing capacity of foundation soil地基极限承载力 8.allowable bearing capacity of foundation soil地基容许承载力十三. 土压力--earth pressure1.active earth pressure主动土压力2.passive earth pressure被动土压力3.earth pressure at rest静止土压力4.Coulomb’s earth pressure theory库仑土压力理论5.Rankine’s earth pressure theory朗金土压力理论十四. 土坡稳定分析--slope stability analysis1.angle of repose休止角2.Bishop method毕肖普法3.safety factor of slope边坡稳定安全系数4.Fellenius method of slices费纽伦斯条分法5.Swedish circle method瑞典圆弧滑动法6.slices method条分法十五. 挡土墙--retaining wall1.stability of retaining wall挡土墙稳定性2.foundation wall基础墙3.counter retaining wall扶壁式挡土墙4.cantilever retaining wall悬臂式挡土墙5.cantilever sheet pile wall悬臂式板桩墙6.gravity retaining wall重力式挡土墙7.anchored plate retaining wall锚定板挡土墙8.anchored sheet pile wall锚定板板桩墙十六. 板桩结构物--sheet pile structure 1.steel sheet pile钢板桩 2.reinforced concrete sheet pile钢筋混凝土板桩 3.steel piles 钢桩 4.wooden sheet pile木板桩 5.timber piles木桩十七. 浅基础--shallow foundation 1.box foundation箱型基础 2.mat(raft) foundation片筏基础 3.strip foundation条形基础 4.spread footing扩展基础 pensated foundation补偿性基础 6.bearing stratum持力层 7.rigid foundation刚性基础 8.flexible foundation柔性基础9.embedded depth of foundation基础埋置深度 foundation pressure基底附加应力11.structure-foundation-soil interaction analysis上部结构-基础-地基共同作用分析十八. 土的动力性质--dynamic properties of soils1.dynamic strength of soils动强度2.wave velocity method波速法3.material damping材料阻尼4.geometric damping几何阻尼5.damping ratio阻尼比6.initial liquefaction初始液化7.natural period of soil site地基固有周期8.dynamic shear modulus of soils动剪切模量 9.dynamic ma二十. 地基基础抗震 1.earthquake engineering地震工程 2.soil dynamics土动力学 3.duration of earthquake地震持续时间 4.earthquake response spectrum地震反应谱 5.earthquake intensity地震烈度 6.earthquake magnitude震级 7.seismic predominant period地震卓越周期 8.maximum acceleration of earthquake地震最大加速度二十一. 室内土工实验 1.high pressure consolidation test高压固结试验 2.consolidation under K0 condition K0固结试验 3.falling head permeability变水头试验4.constant head permeability常水头渗透试验5.unconsolidated-undrained triaxial test不固结不排水试验(UU)6.consolidated undrained triaxial test固结不排水试验(CU)7.consolidated drained triaxial test固结排水试验(CD)paction test击实试验9.consolidated quick direct shear test固结快剪试验10.quick direct shear test快剪试验11.consolidated drained direct shear test慢剪试验12.sieve analysis筛分析 13.geotechnical model test土工模型试验 14.centrifugalmodel test离心模型试验15.direct shear apparatus直剪仪 16.direct shear test直剪试验 17.direct simple shear test直接单剪试验18.dynamic triaxial test三轴试验 19.dynamic simple shear动单剪 20.free(resonance)vibration column test自(共)振柱试验二十二. 原位测试1.standard penetration test (SPT)标准贯入试验 2.surface wave test (SWT)表面波试验 3.dynamic penetration test(DPT)动力触探试验 4.static cone penetration (SPT) 静力触探试验 5.plate loading test静力荷载试验 teral load test of pile 单桩横向载荷试验 7.static load test of pile 单桩竖向荷载试验 8.cross-hole test 跨孔试验 9.screw plate test螺旋板载荷试验 10.pressuremeter test旁压试验 11.light sounding轻便触探试验 12.deep settlement measurement深层沉降观测 13.vane shear test十字板剪切试验 14.field permeability test 现场渗透试验 15.in-situ pore water pressure measurement 原位孔隙水压量测 16.in-situ soil test原位试验。
土木工程专业英语(带翻译)
State-of-the-art report of bridge health monitoring AbstractThe damage diagnosis and healthmonitoring of bridge structures are active areas of research in recent years. Comparing with the aerospace engineering and mechanical engineering, civil engineering has the specialities of its own in practice. For example, because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at low amplitudes, the dynamic responses of bridge structure are substantially affected by the nonstructural components, unforeseen environmental conditions, and changes in these components can easily to be confused with structural damage.All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. This paper firstly presents the definition of structural healthmonitoring system and its components. Then, the focus of the discussion is placed on the following sections:①the laboratory and field testing research on the damage assessment;②analytical developments of damage detectionmethods, including (a) signature analysis and pattern recognition approaches, (b) model updating and system identification approaches, (c) neural networks approaches; and③sensors and their optimum placements. The predominance and shortcomings of each method are compared and analyzed. Recent examples of implementation of structural health monitoring and damage identification are summarized in this paper. The key problem of bridge healthmonitoring is damage automatic detection and diagnosis, and it is the most difficult problem. Lastly, research and development needs are addressed.1 IntroductionDue to a wide variety of unforeseen conditions and circumstance, it will never be possible or practical to design and build a structure that has a zero percent probability of failure. Structural aging, environmental conditions, and reuse are examples of circumstances that could affect the reliability and thelife of a structure. There are needs of periodic inspections to detect deterioration resulting from normal operation and environmental attack or inspections following extreme events, such as strong-motion earthquakes or hurricanes. To quantify these system performance measures requires some means to monitor and evaluate the integrity of civil structureswhile in service. Since the Aloha Boeing 737 accident that occurred on April 28, 1988, such interest has fostered research in the areas of structural health monitoring and non-destructive damage detection in recent years.According to Housner, et al. (1997), structural healthmonitoring is defined as“the use ofin-situ,non-destructive sensing and analysis of structural characteristics, including the structural response, for detecting changes that may indicate damage or degradation”[1]. This definition also identifies the weakness. While researchers have attempted the integration of NDEwith healthmonitoring, the focus has been on data collection, not evaluation. What is needed is an efficient method to collect data from a structure in-service and process the data to evaluate key performance measures, such as serviceability, reliability, and durability. So, the definition byHousner, et al.(1997)should be modified and the structural health monitoring may be defined as“the use ofin-situ,nondestructive sensing and analysis of structural characteristics, including the structural response, for the purpose of identifying if damage has occurred, determining the location of damage, estimatingthe severityof damage and evaluatingthe consequences of damage on the structures”(Fig.1). In general, a structural health monitoring system has the potential to provide both damage detection and condition assessment of a structure.Assessing the structural conditionwithout removingthe individual structural components is known as nondestructive evaluation (NDE) or nondestructive inspection. NDE techniques include those involving acoustics, dye penetrating,eddy current, emission spectroscopy, fiber-optic sensors, fiber-scope, hardness testing, isotope, leak testing, optics, magnetic particles, magnetic perturbation, X-ray, noise measurements, pattern recognition, pulse-echo, ra-diography, and visual inspection, etc. Mostof thesetechniques have been used successfullyto detect location of certain elements, cracks orweld defects, corrosion/erosion, and so on. The FederalHighwayAdministration(FHWA, USA)was sponsoring a large program of research and development in new technologies for the nondestructive evaluation of highway bridges. One of the two main objectives of the program is to develop newtools and techniques to solve specific problems. The other is to develop technologies for the quantitative assessment of the condition of bridges in support of bridge management and to investigate howbest to incorporate quantitative condition information into bridge management systems. They hoped to develop technologies to quickly, efficiently, and quantitatively measure global bridge parameters, such as flexibility and load-carrying capacity. Obviously, a combination of several NDE techniques may be used to help assess the condition of the system. They are very important to obtain the data-base for the bridge evaluation.But it is beyond the scope of this review report to get into details of local NDE.Health monitoring techniques may be classified as global and local. Global attempts to simultaneously assess the condition of the whole structure whereas local methods focus NDE tools on specific structural components. Clearly, two approaches are complementaryto eachother. All such available informationmaybe combined and analyzed by experts to assess the damage or safety state of the structure.Structural health monitoring research can be categorized into the following four levels: (I) detecting the existence of damage, (II) findingthe location of damage, (III) estimatingthe extentof damage, and (IV) predictingthe remaining fatigue life. The performance of tasks of Level (III) requires refined structural models and analyses, local physical examination, and/or traditional NDE techniques. To performtasks ofLevel (IV) requires material constitutive information on a local level, materials aging studies, damage mechanics, and high-performance computing. With improved instrumentation and understanding of dynamics of complex structures, health monitoring and damage assessment of civil engineering structures has become more practical in systematic inspection andevaluation of these structures during the past two decades.Most structural health monitoringmethods under current investigation focus on using dynamic responses to detect and locate damage because they are global methods that can provide rapid inspection of large structural systems.These dynamics-based methods can be divided into fourgroups:①spatial-domain methods,②modal-domain methods,③time-domain methods, and④frequency- domain methods. Spatial-domain methods use changes of mass, damping, and stiffness matrices to detect and locate damage. Modal-domain methods use changes of natural frequencies, modal damping ratios, andmode shapesto detect damage. In the frequency domain method, modal quantities such as natural frequencies, damping ratio, and model shapes are identified.The reverse dynamic systemof spectral analysis and the generalized frequency response function estimated fromthe nonlinear auto-regressive moving average (NARMA) model were applied in nonlinear system identification. In time domainmethod, systemparameterswere determined fromthe observational data sampled in time. It is necessaryto identifythe time variation of systemdynamic characteristics fromtime domain approach if the properties of structural system changewith time under the external loading condition. Moreover, one can use model-independent methods or model-referenced methods to perform damage detection using dynamic responses presented in any of the four domains. Literature shows that model independent methods can detect the existence of damage without much computational efforts, butthey are not accurate in locating damage. On the otherhand, model-referencedmethods are generally more accurate in locating damage and require fewer sensors than model-independent techniques, but they require appropriate structural models and significant computational efforts. Although time-domain methods use original time-domain datameasured using conventional vibrationmeasurement equipment, theyrequire certain structural information and massive computation and are case sensitive. Furthermore, frequency- and modal-domain methods use transformed data,which contain errors and noise due totransformation.Moreover, themodeling and updatingofmass and stiffnessmatrices in spatial-domain methods are problematic and difficult to be accurate. There are strong developmenttrends that two or three methods are combined together to detect and assess structural damages.For example, several researchers combined data of static and modal tests to assess damages. The combination could remove the weakness of each method and check each other. It suits the complexity of damage detection.Structural health monitoring is also an active area of research in aerospace engineering, but there are significant differences among the aerospace engineering, mechanical engineering, and civil engineering in practice. For example,because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at lowamplitudes, the dynamic responses of bridge structure are substantially affected by the non-structural components, and changes in these components can easily to be confused with structural damage. Moreover,the level of modeling uncertainties in reinforced concrete bridges can be much greater than the single beam or a space truss. All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. Recent examples of research and implementation of structural health monitoring and damage assessment are summarized in the following sections.2 Laboratory and field testing researchIn general, there are two kinds of bridge testing methods, static testing and dynamic testing. The dynamic testing includes ambient vibration testing and forced vibration testing. In ambient vibration testing, the input excitation is not under the control. The loading could be either micro-tremors, wind, waves, vehicle or pedestrian traffic or any other service loading. The increasing popularity of this method is probably due to the convenience of measuring the vibrationresponse while the bridge is under in-service and also due to the increasing availability of robust data acquisition and storage systems. Since the input is unknown, certain assumptions have to be made. Forced vibration testing involves application of input excitation of known force level at known frequencies. The excitation manners include electro-hydraulic vibrators, forcehammers, vehicle impact, etc. The static testing in the laboratory may be conducted by actuators, and by standard vehicles in the field-testing.we can distinguish that①the models in the laboratory are mainly beams, columns, truss and/or frame structures, and the location and severity of damage in the models are determined in advance;②the testing has demonstrated lots of performances of damage structures;③the field-testing and damage assessmentof real bridges are more complicated than the models in the laboratory;④the correlation between the damage indicator and damage type,location, and extentwill still be improved.3 Analytical developmentThe bridge damage diagnosis and health monitoring are both concerned with two fundamental criteria of the bridges, namely, the physical condition and the structural function. In terms of mechanics or dynamics, these fundamental criteria can be treated as mathematical models, such as response models, modal models and physical models.Instead of taking measurements directly to assess bridge condition, the bridge damage diagnosis and monitoring systemevaluate these conditions indirectly by using mathematical models. The damage diagnosis and health monitoring are active areas of research in recentyears. For example, numerous papers on these topics appear in the proceedings of Inter-national Modal Analysis Conferences (IMAC) each year, in the proceedings of International Workshop on Structural HealthMonitoring (once of two year, at Standford University), in the proceedings of European Conference on Smart materials and Structures and European Conference on Structural Damage AssessmentUsing Advanced Signal Processing Procedures, in the proceedings ofWorld Conferences of Earthquake Engineering, and in the proceedings of International Workshop on Structural Control, etc.. There are several review papers to be referenced, for examples,Housner, et al. (1997)provided an extensive summary of the state of the art in control and health monitoring of civil engineering structures[1].Salawu (1997)discussed and reviewed the use of natural frequency as a diagnostic parameter in structural assessment procedures using vibrationmonitoring.Doebling, Farrar, et al. (1998)presented a through review of the damage detection methods by examining changes in dynamic properties.Zou, TongandSteven (2000)summarized the methods of vibration-based damage and health monitoring for composite structures, especially in delamination modeling techniques and delamination detection.4 Sensors and optimum placementOne of the problems facing structural health monitoring is that very little is known about the actual stress and strains in a structure under external excitations. For example, the standard earthquake recordings are made ofmotions of the floors of the structure and no recordings are made of the actual stresses and strains in structural members. There is a need for special sensors to determine the actual performance of structural members. Structural health monitoring requires integrated sensor functionality to measure changes in external environmental conditions, signal processing functionality to acquire, process, and combine multi-sensor and multi-measured information. Individual sensors and instrumented sensor systems are then required to provide such multiplexed information.FuandMoosa (2000)proposed probabilistic advancing cross-diagnosis method to diagnosis-decision making for structural health monitoring. It was experimented in the laboratory respectively using a coherent laser radar system and a CCD high-resolution camera. Results showed that this method was promising for field application. Another new idea is thatneural networktechniques are used to place sensors. For example,WordenandBurrows (2001)used the neural network and methods of combinatorial optimization to locate and classify faults.The static and dynamic data are collected from all kinds of sensorswhich are installed on the measured structures.And these datawill be processed and usable informationwill be extracted. So the sensitivity, accuracy, and locations,etc. of sensors are very important for the damage detections. The more information are obtained, the damage identification will be conducted more easily, but the price should be considered. That’s why the sensors are determinedin an optimal ornearoptimal distribution. In aword, the theory and validation ofoptimumsensor locationswill still being developed.5 Examples of health monitoring implementationIn order for the technology to advance sufficiently to become an operational system for the maintenance and safety of civil structures, it is of paramount importance that new analytical developments are ultimately verified with appropriate data obtained frommonitoring systems, which have been implemented on civil structures, such as bridges.Mufti (2001)summarized the applications of SHM of Canadian bridge engineering, including fibre-reinforced polymers sensors, remote monitoring, intelligent processing, practical applications in bridge engineering, and technology utilization. Further study and applications are still being conducted now.FujinoandAbe(2001)introduced the research and development of SHMsystems at the Bridge and Structural Lab of the University of Tokyo. They also presented the ambient vibration based approaches forLaser DopplerVibrometer (LDV) and the applications in the long-span suspension bridges.The extraction of the measured data is very hard work because it is hard to separate changes in vibration signature duo to damage form changes, normal usage, changes in boundary conditions, or the release of the connection joints.Newbridges offer opportunities for developing complete structural health monitoring systems for bridge inspection and condition evaluation from“cradle to grave”of the bridges. Existing bridges provide challenges for applying state-of-the-art in structural health monitoring technologies to determine the current conditions of the structural element,connections and systems, to formulate model for estimating the rate of degradation, and to predict the existing and the future capacities of the structural components and systems. Advanced health monitoring systems may lead to better understanding of structural behavior and significant improvements of design, as well as the reduction of the structural inspection requirements. Great benefits due to the introduction of SHM are being accepted by owners, managers, bridge engineers,etc..6 Research and development needsMost damage detection theories and practices are formulated based on the following assumption: that failure or deterioration would primarily affect the stiffness and therefore affect the modal characteristics of the dynamic response of the structure. This is seldom true in practice, because①Traditional modal parameters (natural frequency, damping ratio and mode shapes, etc.) are not sensitive enough to identify and locate damage. The estimation methods usually assume that structures are linear and proportional damping systems.②Most currently used damage indices depend on the severity of the damage, which is impractical in the field. Most civil engineering structures, such as highway bridges, have redundancy in design and large in size with low natural frequencies. Any damage index should consider these factors.③Scaledmodelingtechniques are used in currentbridge damage detection. Asingle beam/girder models cannot simulate the true behavior of a real bridge. Similitude laws for dynamic simulation and testing should be considered.④Manymethods usually use the undamaged structural modal parameters as the baseline comparedwith the damaged information. This will result in the need of a large data storage capacity for complex structures. But in practice,there are majority of existing structures for which baseline modal responses are not available. Only one developed method(StubbsandKim (1996)), which tried to quantify damagewithout using a baseline, may be a solution to this difficulty. There is a lot of researchwork to do in this direction.⑤Seldommethods have the ability to distinguish the type of damages on bridge structures. To establish the direct relationship between the various damage patterns and the changes of vibrational signatures is not a simple work.Health monitoring requires clearly defined performance criteria, a set of corresponding condition indicators and global and local damage and deterioration indices, which should help diagnose reasons for changes in condition indicators. It is implausible to expect that damage can be reliably detected or tracked byusing a single damage index. We note that many additional localized damage indiceswhich relate to highly localized properties ofmaterials or the circumstances may indicate a susceptibility of deterioration such as the presence of corrosive environments around reinforcing steel in concrete, should be also integrated into the health monitoring systems.There is now a considerable research and development effort in academia, industry, and management department regarding global healthmonitoring for civil engineering structures. Several commercial structural monitoring systems currently exist, but further development is needed in commercialization of the technology. We must realize that damage detection and health monitoring for bridge structures by means of vibration signature analysis is a very difficult task. Itcontains several necessary steps, including defining indicators on variations of structural physical condition, dynamic testing to extract such indication parameters, defining the type of damages and remaining capacity or life of the structure, relating the parameters to the defined damage/aging. Unfortunately, to date, no one has accomplished the above steps. There is a lot of work to do in future.桥梁健康监测应用与研究现状摘要桥梁损伤诊断与健康监测是近年来国际上的研究热点,在实践方面,土木工程和航空航天工程、机械工程有明显的差别,比如桥梁结构以及其他大多数土木结构,尺寸大、质量重,具有较低的自然频率和振动水平,桥梁结构的动力响应极容易受到不可预见的环境状态、非结构构件等的影响,这些变化往往被误解为结构的损伤,这使得桥梁这类复杂结构的损伤评估具有极大的挑战性.本文首先给出了结构健康监测系统的定义和基本构成,然后集中回顾和分析了如下几个方面的问题:①损伤评估的室内实验和现场测试;②损伤检测方法的发展,包括:(a)动力指纹分析和模式识别方法, (b)模型修正和系统识别方法, (c)神经网络方法;③传感器及其优化布置等,并比较和分析了各自方法的优点和不足.文中还总结了健康监测和损伤识别在桥梁工程中的应用,指出桥梁健康监测的关键问题在于损伤的自动检测和诊断,这也是困难的问题;最后展望了桥梁健康监测系统的研究和发展方向.关键词:健康监测系统;损伤检测;状态评估;模型修正;系统识别;传感器优化布置;神经网络方法;桥梁结构1概述由于不可预见的各种条件和情况下,设计和建造一个结构将永远不可能或无实践操作性,它有一个失败的概率百分之零。
土木工程专业英语单词
1 Civil engineering 土木工程。
2 Slopes and fills 边坡和路堤3 waterfront 河流湖泊4 settlement 沉降5 stability 稳定性坚固,耐久性 5 hydraulic 水利的,液压的7 runoff 流量,流放8 behavior 性能性质9sanitize 使清洁,除掉有害物10 dump 垃圾堆11 waste 废弃物12 hazardous 危险的14 major 专业科目15 cultivable 可耕的,可培养的16 remedy 补救,修理17 roadway 路面道路18 hurricane 飓风19asphalt 沥青20 concrete 混凝土21 combustible 易燃的22 slurry 泥浆1 execution 施工,实施,执行2 specific 特殊的,专门的具体的3 dynamic 动力的,冲击的4characteristic 特有的,特性性能5 intensity 强度,密度6 sump 排水坑7 carbon 碳纤维8 novel 新的,异常的9 excavation 挖掘,开挖10landscape 风景,美化11 fill 填土12 ancillary 辅助的,附属的13 foundation 基础14 excavator 挖掘机15 proceed 继续进行,开始16 interlock 使连接,使结合17 construction 建造,施工18 Surveyor 测量员19 dewater 排水20 placement and curing 浇筑与养护21superstructure 上部结构22duration 持续时间23 destroy 破坏,毁坏24 initially 最初,开始1 jurisdiction 权限,管辖权2 bar 法庭律师的职业3 curriculum 课程学习计划4 statistic 统计学5 persuasive 有说服力的6 recruit 补充,招收7 science Orient 注重科学的8 specialize 专门研究。
土木工程专业英语(Civil Engineering)课件-翻译
It is this kind of steel that the construction worksite
needs most urgently.
建筑工地最急需的正是这种钢。
111/137
It is these drawbacks which need to be eliminated and which have led to the search for new methods of construction.
它们主要用于大型水坝,在大坝中他们能减少水泥硬化时 释放出的热量。
94/137
95/137
限定性定语从句有时在翻译时可压缩成宾语、谓 语、表语和同位语。
Soft-rock tunnel has its main characteristic as the tunnel process which need no explosives.
42/137
43/137
44/137
45/137
46/137
47/137
48/137
49/137
50/137
51/137
52/137
英语中有大量从动词派生的名词和具有动作意味的名
词,这类名词在英译汉时常能转译成动词。
In spite of the growth of other kinds of transport,
34/137
35/137
36/137
37/137
1.句子的结构: c.英语复合句结构→汉语不同的复合结构。
This place is really beautiful, and many people
土木工程专业英语(带翻译)
State-of-the-art report of bridge health monitoring AbstractThe damage diagnosis and healthmonitoring of bridge structures are active areas of research in recent years. Comparing with the aerospace engineering and mechanical engineering, civil engineering has the specialities of its own in practice. For example, because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at low amplitudes, the dynamic responses of bridge structure are substantially affected by the nonstructural components, unforeseen environmental conditions, and changes in these components can easily to be confused with structural damage.All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. This paper firstly presents the definition of structural healthmonitoring system and its components. Then, the focus of the discussion is placed on the following sections:①the laboratory and field testing research on the damage assessment;②analytical developments of damage detectionmethods, including (a) signature analysis and pattern recognition approaches, (b) model updating and system identification approaches, (c) neural networks approaches; and③sensors and their optimum placements. The predominance and shortcomings of each method are compared and analyzed. Recent examples of implementation of structural health monitoring and damage identification are summarized in this paper. The key problem of bridge healthmonitoring is damage automatic detection and diagnosis, and it is the most difficult problem. Lastly, research and development needs are addressed.1 IntroductionDue to a wide variety of unforeseen conditions and circumstance, it will never be possible or practical to design and build a structure that has a zero percent probability of failure. Structural aging, environmental conditions, and reuse are examples of circumstances that could affect the reliability and the life of a structure. There are needs of periodic inspections to detect deterioration resulting from normal operation and environmental attack or inspections following extreme events, such as strong-motion earthquakes or hurricanes. To quantify these system performance measures requires some means to monitor and evaluate the integrity of civil structureswhile in service. Since the Aloha Boeing 737 accident that occurred on April28, 1988, such interest has fostered research in the areas of structural health monitoring and non-destructive damage detection in recent years.According to Housner, et al. (1997), structural healthmonitoring is defined as“the use ofin-situ,non-destructive sensing and analysis of structural characteristics, including the structural response, for detecting changes that may indicate damage or degradation”[1]. This definition also identifies the weakness. While researchers have attempted the integration of NDEwith healthmonitoring, the focus has been on data collection, not evaluation. What is needed is an efficient method to collect data from a structure in-service and process the data to evaluate key performance measures, such as serviceability, reliability, and durability. So, the definition byHousner, et al.(1997)should be modified and the structural health monitoring may be defined as“the use ofin-situ,nondestructive sensing and analysis of structural characteristics, including the structural response, for the purpose of identifying if damage has occurred, determining the location of damage, estimatingthe severityof damage and evaluatingthe consequences of damage on the structures”(Fig.1). In general, a structural health monitoring system has the potential to provide both damage detection and condition assessment of a structure.Assessing the structural conditionwithout removingthe individual structural components is known as nondestructive evaluation (NDE) or nondestructive inspection. NDE techniques include those involving acoustics, dye penetrating,eddy current, emission spectroscopy, fiber-optic sensors, fiber-scope, hardness testing, isotope, leak testing, optics, magnetic particles, magnetic perturbation, X-ray, noise measurements, pattern recognition, pulse-echo, ra-diography, and visual inspection, etc. Mostof these techniques have been used successfullyto detect location of certain elements, cracks orweld defects, corrosion/erosion, and so on. The FederalHighwayAdministration(FHWA, USA)was sponsoring a large program of research and development in new technologies for the nondestructive evaluation of highway bridges. One of the two main objectives of the program is to develop newtools and techniques to solve specific problems. The other is to develop technologies for the quantitative assessment of the condition of bridges in support of bridge management and to investigate howbest to incorporate quantitative condition information into bridge management systems. They hoped to develop technologies to quickly, efficiently, and quantitatively measure global bridge parameters, such as flexibility and load-carrying capacity. Obviously, a combination of several NDEtechniques may be used to help assess the condition of the system. They are very important to obtain the data-base for the bridge evaluation.But it is beyond the scope of this review report to get into details of local NDE.Health monitoring techniques may be classified as global and local. Global attempts to simultaneously assess the condition of the whole structure whereas local methods focus NDE tools on specific structural components. Clearly, two approaches are complementaryto eachother. All such available informationmaybe combined and analyzed by experts to assess the damage or safety state of the structure.Structural health monitoring research can be categorized into the following four levels: (I) detecting the existence of damage, (II) findingthe location of damage, (III) estimatingthe extentof damage, and (IV) predictingthe remaining fatigue life. The performance of tasks of Level (III) requires refined structural models and analyses, local physical examination, and/or traditional NDE techniques. To performtasks ofLevel (IV) requires material constitutive information on a local level, materials aging studies, damage mechanics, and high-performance computing. With improved instrumentation and understanding of dynamics of complex structures, health monitoring and damage assessment of civil engineering structures has become more practical in systematic inspection and evaluation of these structures during the past two decades.Most structural health monitoringmethods under current investigation focus on using dynamic responses to detect and locate damage because they are global methods that can provide rapid inspection of large structural systems.These dynamics-based methods can be divided into fourgroups:①spatial-domain methods,②modal-domain methods,③time-domain methods, and④frequency- domain methods. Spatial-domain methods use changes of mass, damping, and stiffness matrices to detect and locate damage. Modal-domain methods use changes of natural frequencies, modal damping ratios, andmode shapesto detect damage. In the frequency domain method, modal quantities such as natural frequencies, damping ratio, and model shapes are identified.The reverse dynamic systemof spectral analysis and the generalized frequency response function estimated fromthe nonlinear auto-regressive moving average (NARMA) model were applied in nonlinear system identification. In time domainmethod, systemparameterswere determined fromthe observational data sampled in time. It is necessaryto identifythe time variation of systemdynamic characteristics fromtime domain approach if the properties of structural systemchangewith time under the external loading condition. Moreover, one can use model-independent methods or model-referenced methods to perform damage detection using dynamic responses presented in any of the four domains. Literature shows that model independent methods can detect the existence of damage without much computational efforts, butthey are not accurate in locating damage. On the otherhand, model-referencedmethods are generally more accurate in locating damage and require fewer sensors than model-independent techniques, but they require appropriate structural models and significant computational efforts. Although time-domain methods use original time-domain datameasured using conventional vibrationmeasurement equipment, theyrequire certain structural information and massive computation and are case sensitive. Furthermore, frequency- and modal-domain methods use transformed data,which contain errors and noise due totransformation.Moreover, themodeling and updatingofmass and stiffnessmatrices in spatial-domain methods are problematic and difficult to be accurate. There are strong developmenttrends that two or three methods are combined together to detect and assess structural damages.For example, several researchers combined data of static and modal tests to assess damages. The combination could remove the weakness of each method and check each other. It suits the complexity of damage detection.Structural health monitoring is also an active area of research in aerospace engineering, but there are significant differences among the aerospace engineering, mechanical engineering, and civil engineering in practice. For example,because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at lowamplitudes, the dynamic responses of bridge structure are substantially affected by the non-structural components, and changes in these components can easily to be confused with structural damage. Moreover,the level of modeling uncertainties in reinforced concrete bridges can be much greater than the single beam or a space truss. All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. Recent examples of research and implementation of structural health monitoring and damage assessment are summarized in the following sections.2 Laboratory and field testing researchIn general, there are two kinds of bridge testing methods, static testing and dynamic testing. The dynamic testing includes ambient vibration testing and forcedvibration testing. In ambient vibration testing, the input excitation is not under the control. The loading could be either micro-tremors, wind, waves, vehicle or pedestrian traffic or any other service loading. The increasing popularity of this method is probably due to the convenience of measuring the vibrationresponse while the bridge is under in-service and also due to the increasing availability of robust data acquisition and storage systems. Since the input is unknown, certain assumptions have to be made. Forced vibration testing involves application of input excitation of known force level at known frequencies. The excitation manners include electro-hydraulic vibrators, force hammers, vehicle impact, etc. The static testing in the laboratory may be conducted by actuators, and by standard vehicles in the field-testing.we can distinguish that①the models in the laboratory are mainly beams, columns, truss and/or frame structures, and the location and severity of damage in the models are determined in advance;②the testing has demonstrated lots of performances of damage structures;③the field-testing and damage assessmentof real bridges are more complicated than the models in the laboratory;④the correlation between the damage indicator and damage type,location, and extentwill still be improved.3Analytical developmentThe bridge damage diagnosis and health monitoring are both concerned with two fundamental criteria of the bridges, namely, the physical condition and the structural function. In terms of mechanics or dynamics, these fundamental criteria can be treated as mathematical models, such as response models, modal models and physical models.Instead of taking measurements directly to assess bridge condition, the bridge damage diagnosis and monitoring systemevaluate these conditions indirectly by using mathematical models. The damage diagnosis and health monitoring are active areas of research in recentyears. For example, numerous papers on these topics appear in the proceedings of Inter-national Modal Analysis Conferences (IMAC) each year, in the proceedings of International Workshop on Structural HealthMonitoring (once of two year, at Standford University), in the proceedings of European Conference on Smart materials and Structures and European Conference on Structural Damage AssessmentUsing Advanced Signal Processing Procedures, in the proceedings ofWorld Conferences of Earthquake Engineering, and in the proceedings of International Workshop on Structural Control, etc.. There are several review papers to be referenced, for examples,Housner, et al. (1997)provided an extensive summary ofthe state of the art in control and health monitoring of civil engineering structures[1].Salawu (1997)discussed and reviewed the use of natural frequency as a diagnostic parameter in structural assessment procedures using vibration monitoring.Doebling, Farrar, et al. (1998)presented a through review of the damage detection methods by examining changes in dynamic properties.Zou, TongandSteven (2000)summarized the methods of vibration-based damage and health monitoring for composite structures, especially in delamination modeling techniques and delamination detection.4Sensors and optimum placementOne of the problems facing structural health monitoring is that very little is known about the actual stress and strains in a structure under external excitations. For example, the standard earthquake recordings are made ofmotions of the floors of the structure and no recordings are made of the actual stresses and strains in structural members. There is a need for special sensors to determine the actual performance of structural members. Structural health monitoring requires integrated sensor functionality to measure changes in external environmental conditions, signal processing functionality to acquire, process, and combine multi-sensor and multi-measured information. Individual sensors and instrumented sensor systems are then required to provide such multiplexed information.FuandMoosa (2000)proposed probabilistic advancing cross-diagnosis method to diagnosis-decision making for structural health monitoring. It was experimented in the laboratory respectively using a coherent laser radar system and a CCD high-resolution camera. Results showed that this method was promising for field application. Another new idea is thatneural networktechniques are used to place sensors. For example,WordenandBurrows (2001)used the neural network and methods of combinatorial optimization to locate and classify faults.The static and dynamic data are collected from all kinds of sensorswhich are installed on the measured structures.And these datawill be processed and usable informationwill be extracted. So the sensitivity, accuracy, and locations,etc. of sensors are very important for the damage detections. The more information are obtained, the damage identification will be conducted more easily, but the price should be considered. That’s why the sensors are determined in an optimal ornearoptimal distribution. In aword, the theory and validation ofoptimumsensor locationswill still being developed.5 Examples of health monitoring implementationIn order for the technology to advance sufficiently to become an operational system for the maintenance and safety of civil structures, it is of paramount importance that new analytical developments are ultimately verified with appropriate data obtained frommonitoring systems, which have been implemented on civil structures, such as bridges.Mufti (2001)summarized the applications of SHM of Canadian bridge engineering, including fibre-reinforced polymers sensors, remote monitoring, intelligent processing, practical applications in bridge engineering, and technology utilization. Further study and applications are still being conducted now.FujinoandAbe(2001)introduced the research and development of SHMsystems at the Bridge and Structural Lab of the University of Tokyo. They also presented the ambient vibration based approaches forLaser DopplerVibrometer (LDV) and the applications in the long-span suspension bridges.The extraction of the measured data is very hard work because it is hard to separate changes in vibration signature duo to damage form changes, normal usage, changes in boundary conditions, or the release of the connection joints.Newbridges offer opportunities for developing complete structural health monitoring systems for bridge inspection and co ndition evaluation from“cradle to grave”of the bridges. Existing bridges provide challenges for applying state-of-the-art in structural health monitoring technologies to determine the current conditions of the structural element,connections and systems, to formulate model for estimating the rate of degradation, and to predict the existing and the future capacities of the structural components and systems. Advanced health monitoring systems may lead to better understanding of structural behavior and significant improvements of design, as well as the reduction of the structural inspection requirements. Great benefits due to the introduction of SHM are being accepted by owners, managers, bridge engineers, etc..6 Research and development needsMost damage detection theories and practices are formulated based on the following assumption: that failure or deterioration would primarily affect the stiffness and therefore affect the modal characteristics of the dynamic response of the structure. This is seldom true in practice, because①Traditional modal parameters (natural frequency, damping ratio and mode shapes, etc.) are not sensitive enough to identifyand locate damage. The estimation methods usually assume that structures are linear and proportional damping systems.②Most currently used damage indices depend on the severity of the damage, which is impractical in the field. Most civil engineering structures, such as highway bridges, have redundancy in design and large in size with low natural frequencies. Any damage index should consider these factors.③Scaledmodelingtechniques are used in currentbridge damage detection. Asingle beam/girder models cannot simulate the true behavior of a real bridge. Similitude laws for dynamic simulation and testing should be considered.④Manymethods usually use the undamaged structural modal parameters as the baseline comparedwith the damaged information. This will result in the need of a large data storage capacity for complex structures. But in practice,there are majority of existing structures for which baseline modal responses are not available. Only one developed method(StubbsandKim (1996)), which tried to quantify damagewithout using a baseline, may be a solution to this difficulty. There is a lot of researchwork to do in this direction.⑤Seldommethods have the ability to distinguish the type of damages on bridge structures. To establish the direct relationship between the various damage patterns and the changes of vibrational signatures is not a simple work.Health monitoring requires clearly defined performance criteria, a set of corresponding condition indicators and global and local damage and deterioration indices, which should help diagnose reasons for changes in condition indicators. It is implausible to expect that damage can be reliably detected or tracked by using a single damage index. We note that many additional localized damage indiceswhich relate to highly localized properties ofmaterials or the circumstances may indicate a susceptibility of deterioration such as the presence of corrosive environments around reinforcing steel in concrete, should be also integrated into the health monitoring systems.There is now a considerable research and development effort in academia, industry, and management department regarding global healthmonitoring for civil engineering structures. Several commercial structural monitoring systems currently exist, but further development is needed in commercialization of the technology. We must realize that damage detection and health monitoring for bridge structures by means of vibration signature analysis is a very difficult task. Itcontains several necessary steps, including defining indicators on variations of structural physical condition, dynamic testing to extract such indication parameters,defining the type of damages and remaining capacity or life of the structure, relating the parameters to the defined damage/aging. Unfortunately, to date, no one has accomplished the above steps. There is a lot of work to do in future.桥梁健康监测应用与研究现状摘要桥梁损伤诊断与健康监测是近年来国际上的研究热点,在实践方面,土木工程和航空航天工程、机械工程有明显的差别,比如桥梁结构以及其他大多数土木结构,尺寸大、质量重,具有较低的自然频率和振动水平,桥梁结构的动力响应极容易受到不可预见的环境状态、非结构构件等的影响,这些变化往往被误解为结构的损伤,这使得桥梁这类复杂结构的损伤评估具有极大的挑战性.本文首先给出了结构健康监测系统的定义和基本构成,然后集中回顾和分析了如下几个方面的问题:①损伤评估的室内实验和现场测试;②损伤检测方法的发展,包括:(a)动力指纹分析和模式识别方法, (b)模型修正和系统识别方法, (c)神经网络方法;③传感器及其优化布置等,并比较和分析了各自方法的优点和不足.文中还总结了健康监测和损伤识别在桥梁工程中的应用,指出桥梁健康监测的关键问题在于损伤的自动检测和诊断,这也是困难的问题;最后展望了桥梁健康监测系统的研究和发展方向.关键词:健康监测系统;损伤检测;状态评估;模型修正;系统识别;传感器优化布置;神经网络方法;桥梁结构1概述由于不可预见的各种条件和情况下,设计和建造一个结构将永远不可能或无实践操作性,它有一个失败的概率百分之零。
土木工程专业英语翻译(词汇篇)
Chapter 3
Words and Phases
carbon dioxide: 二氧化碳(CO2) calcium oxide: 氧化钙(CaO) tricalcium silicate: 硅酸三钙 dicalcium silicate: 硅酸二钙 tricalcium aluminate: 铝酸三钙 tetracalcium aluminoferrite: 铁铝酸四钙 shrinkage: 收缩 calcium hydroxide: 氢氧化钙 calcium silicate hydrate: 水化硅酸钙 sulfate: 硫酸盐 Chapter 3
Chapter 4
Words and Phases
impurities: 有害杂质 mica: 云母 silt: 淤泥 organic substance: 有机物 sulphide: 硫化物 sulphate: 硫酸盐 chloride: 氯化物
Chapter 4
Words and Phases
Words and Phases
pottery陶瓷 steel 钢材 wood 木材 wetting angle 润湿角 hydrophilic property亲水性 hydrophobic property憎水性 water-absorbing quality 吸水性 water absorption吸水率 water percentage 含水率
Chapter 2
Words and Phases
dolomite ground slaked lime 白云石消石 灰粉 over-burnt lime 过火石灰 under-burnt lime 欠火石灰 crystallization 结晶 carbonization 碳化 soundness 体积安定性 water retentivity保水性 shrinkage 收缩 Chapter 2
土木工程专业英语(苏小卒版)翻译.
第一单元Fundamentally, engineering is an end-product-oriented discipline that is innovative, cost-conscious and mindful of human factors. It is concerned with the creation of new entities, devices or methods of solution: a new process, a new material, an improved power source, a more efficient arrangement of tasks to accomplish a desired goal or a new structure. Engineering is also more often than not concerned with obtaining economical solutions. And, finally, human safety is always a key consideration.从根本上,工程是一个以最终产品为导向的行业,它具有创新、成本意识,同时也注意到人为因素。
它与创建新的实体、设备或解决方案有关:新工艺、新材料、一个改进的动力来源、任务的一项更有效地安排,用以完成所需的目标或创建一个新的结构。
工程是也不仅仅关心获得经济的解决方案。
最终,人类安全才是一个最重要的考虑因素。
Engineering is concerned with the use of abstract scientific ways of thinking and of defining real world problems. The use of idealizations and development of procedures for establishing bounds within which behavior can be ascertained are part of the process.工程关心的是,使用抽象的科学方法思考和定义现实世界的问题。
土木工程专业英语
土木工程专业英语
土木工程专业英语 abandon v.放弃
abbreviation n.缩写
abrasion n.擦伤,磨损
abundance a.丰富,充裕,大量 access road 入口
accessibility n.可大性,可接近性 acid corrode 酸性腐蚀
acre n.英亩
acronym n.简称,只取首字母的缩写词 adapter n.适配器,转换接头,附件admeasurement contract 计价合同 admixture n.掺和剂
adverse a.不利的
aerodynamic a.空气动力的
aggregate n.骨料,集料
reactive aggregate 活性骨料
agitation n.拌和
air conditioning 空气调节
air-entrained concrete 加气混凝土 akin a.类似的,同样的(常跟to连用) alcove n.凹室,壁龛
alkaline a.碱性(的) high-alkai a.高碱性的
allocate v.分配,分派,配给 allowable stress 允许应力
allowable stress approach 允许应力法 allowance n.留量,容差,补助alkali-aggregate reaction 碱-骨料反应 alternative n.比较方案 a.交替的,变更的,比较的
aluminum(aluminium) n.铝
aluminium alloy 铝合金
amalgam n.混合物,软的混合物 amenity n.舒适,适宜,愉快 analogous a。
土木工程专业英语翻译
Lesson One Civil Engineering1Civil engineering, the oldest of the engineering specialties, is the planning, design, construction and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities.1土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。
此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。
2Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition. civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities.2土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。
土木工程专业英语(带翻译)
土木工程专业英语(带翻译)State-of-the-art report of bridge health monitoringAbstractThe damage diagnosis and healthmonitoring of bridge structures are active areas of research in recent years. Comparing with the aerospace engineering and mechanical engineering, civil engineering has the specialities of its own in practice. For example, because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at low amplitudes, the dynamic responses of bridge structure are substantially affected by the nonstructural components, unforeseen environmental conditions, and changes in these components can easily to be confused with structural damage.All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. This paper firstly presents the definition of structural healthmonitoring system and its components. Then, the focus of the discussion is placed on the following sections:①the laboratory and field testing research on the damage assessment;②analytical developments of damage detectionmethods, including (a) signature analysis and pattern recognition approaches, (b) model updating and system identification approaches, (c) neural networks approaches; and③sensors and their optimum placements. The predominance and shortcomings of each method are compared and analyzed. Recent examples of implementation of structural health monitoring and damage identification are summarized in this paper. The key problem of bridge healthmonitoring is damage automatic detection and diagnosis, and it is the most difficult problem. Lastly, research and development needs are addressed.1 IntroductionDue to a wide variety of unforeseen conditions and circumstance, it will never be possible or practical to design and build a structure that has a zero percent probability of failure. Structural aging, environmental conditions, and reuse are examples of circumstances that could affect the reliability and the life of a structure. There are needs of periodic inspections to detect deterioration resulting from normal operation and environmental attack or inspections following extreme events, such as strong-motion earthquakes or hurricanes. To quantify these system performance measures requires some means to monitor and evaluate the integrity of civil structureswhile in service. Since the Aloha Boeing 737 accident that occurred on April28, 1988, such interest has fostered research in the areas of structural health monitoring and non-destructive damage detection in recent years.According to Housner, et al. (1997), structural healthmonitoring isdefined as“the use ofin-situ,non-destructive sensing and analysis ofstructural characteristics, including the structural response, for detecting changes that may indicate damage or degradation”[1]. This definition also identifies the weakness. While researchers have attempted the integration of NDEwith healthmonitoring, the focus has been on data collection, not evaluation. What is needed is an efficient method to collect data from a structure in-service and process the data to evaluate key performance measures, such as serviceability, reliability, and durability. So, the definition byHousner, et al.(1997)should be modified and the structural health monitoring may be defined as“the use ofin-situ,nondestructive sensing and analysis of structural characteristics, including the structural response, for the purpose of identifying if damage has occurred, determining the location of damage, estimatingthe severityof damage and evaluatingthe consequences of damage onthe structures”(Fig.1). In general, a structural health monitoring system has the potential to provide both damage detection and condition assessment of a structure.Assessing the structural conditionwithout removingthe individualstructural components is known as nondestructive evaluation (NDE) or nondestructive inspection. NDE techniques include those involving acoustics, dye penetrating,eddy current, emission spectroscopy, fiber-optic sensors,fiber-scope, hardness testing, isotope, leak testing, optics, magnetic particles, magnetic perturbation, X-ray, noise measurements, pattern recognition, pulse-echo, ra-diography, and visual inspection, etc. Mostofthese techniques have been used successfullyto detect location of certainelements, cracks orweld defects, corrosion/erosion, and so on. The FederalHighwayAdministration(FHWA, USA)was sponsoring a large program of research and development in new technologies for the nondestructive evaluation of highway bridges. One of the two main objectives of the program is todevelop newtools and techniques to solve specific problems. The other is to develop technologies for the quantitative assessment of the condition ofbridges in support of bridge management and to investigate howbest to incorporate quantitative condition information into bridge management systems. They hoped to develop technologies to quickly, efficiently, and quantitativelymeasure global bridge parameters, such as flexibility and load-carrying capacity. Obviously, a combination of several NDEtechniques may be used to help assess the condition of the system. They are very important to obtain the data-base for the bridge evaluation.But it is beyond the scope of this review report to get into details of local NDE.Health monitoring techniques may be classified as global and local. Global attempts to simultaneously assess the condition of the whole structure whereas local methods focus NDE tools on specific structural components. Clearly, two approaches are complementaryto eachother. All such available informationmaybe combined and analyzed by experts to assess the damage or safety state of the structure.Structural health monitoring research can be categorized into thefollowing four levels: (I) detecting the existence of damage, (II) findingthe location of damage, (III) estimatingthe extentof damage, and (IV)predictingthe remaining fatigue life. The performance of tasks of Level (III) requires refined structural models and analyses, local physical examination, and/or traditional NDE techniques. To performtasks ofLevel (IV) requires material constitutive information on a local level, materials aging studies, damage mechanics, and high-performance computing. With improved instrumentation and understanding of dynamics of complex structures, health monitoring and damage assessment of civil engineering structures has become more practical in systematic inspection and evaluation of these structures during the past two decades.Most structural health monitoringmethods under current investigation focus on using dynamic responses to detect and locate damage because they are global methods that can provide rapid inspection of large structural systems.These dynamics-based methods can be divided into fourgroups:①spatial-domain methods,②modal-domain methods,③time-domain methods, and④frequency- domain methods. Spatial-domain methods use changes of mass, damping, and stiffness matrices to detect and locate damage. Modal-domain methods use changes of natural frequencies, modal damping ratios, andmode shapesto detect damage. In the frequency domain method, modal quantities such as natural frequencies, damping ratio, and model shapes are identified.The reverse dynamic systemof spectral analysis and the generalized frequency response function estimated fromthe nonlinear auto-regressive moving average (NARMA) model were applied in nonlinear system identification. In time domainmethod, systemparameterswere determined fromthe observational data sampled in time. It is necessarytoidentifythe time variation of systemdynamic characteristics fromtime domain approach if the properties of structural systemchangewith time under the external loading condition. Moreover, one can use model-independent methods or model-referenced methods to perform damage detection using dynamic responses presented in any of the four domains. Literature shows that model independent methods can detect the existence of damage without much computational efforts, butthey are not accurate inlocating damage. On the otherhand, model-referencedmethods are generally more accurate in locating damage and require fewer sensors than model-independent techniques, but they require appropriate structural models and significant computational efforts. Although time-domain methods use original time-domain datameasured using conventional vibrationmeasurement equipment, theyrequire certain structural information and massive computation and are case sensitive. Furthermore, frequency- and modal-domain methods use transformed data,which contain errors and noise due totransformation.Moreover, themodeling and updatingofmass and stiffnessmatrices in spatial-domain methods are problematic and difficult to be accurate. There are strong developmenttrends that two or three methods are combined together to detect and assess structural damages.For example, several researchers combined data of static and modal tests to assess damages. The combination could remove the weakness of each method and check each other. It suits the complexity of damage detection.Structural health monitoring is also an active area of research in aerospace engineering, but there are significant differences among the aerospace engineering, mechanical engineering, and civil engineering in practice. For example,because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at lowamplitudes, the dynamic responses of bridge structure are substantially affected by the non-structural components, and changes in these components can easily to be confused with structural damage.Moreover,the level of modeling uncertainties in reinforced concrete bridges can be much greater than the single beam or a space truss. All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. Recent examples of research and implementation of structural health monitoring and damage assessment are summarized in the following sections.2 Laboratory and field testing researchIn general, there are two kinds of bridge testing methods, static testing and dynamic testing. The dynamic testing includes ambient vibration testingand forcedvibration testing. In ambient vibration testing, the input excitation isnot under the control. The loading could be either micro-tremors, wind, waves, vehicle or pedestrian traffic or any other service loading. The increasing popularity of this method is probably due to the convenience of measuring the vibrationresponse while the bridge is under in-service and also due to theincreasing availability of robust data acquisition and storage systems. Since the input is unknown, certain assumptions have to be made. Forced vibration testing involves application of input excitation of known force level at known frequencies. The excitation manners include electro-hydraulic vibrators, force hammers, vehicle impact, etc. The static testing in the laboratory may be conducted by actuators, and by standard vehicles in the field-testing.we ca n distinguish that①the models in the laboratory are mainly beams, columns, truss and/or frame structures, and the location and severity of damage in the models are determined in advance;②the testing has demonstrated lots of performances of damage structure s;③the field-testing and damage assessmentof real bridges are more complicated than the models in the laboratory;④the correlation between the damage indicator and damagetype,location, and extentwill still be improved.3 Analytical developmentThe bridge damage diagnosis and health monitoring are both concerned with two fundamental criteria of the bridges, namely, the physical condition andthe structural function. In terms of mechanics or dynamics, these fundamental criteria can be treated as mathematical models, such as response models, modal models and physical models.Instead of taking measurements directly to assess bridge condition, the bridge damage diagnosis and monitoring systemevaluate these conditions indirectly by using mathematical models. The damage diagnosis and health monitoring are active areas of research in recentyears. For example, numerous papers on these topics appear in the proceedings of Inter-national Modal Analysis Conferences (IMAC) each year, in the proceedings ofInternational Workshop on Structural HealthMonitoring (once of two year, at Standford University), in the proceedings of European Conference on Smart materials and Structures and European Conference on Structural DamageAssessmentUsing Advanced Signal Processing Procedures, in the proceedings ofWorld Conferences of Earthquake Engineering, and in the proceedings of International Workshop on Structural Control, etc.. There are several review papers to be referenced, for examples,Housner, et al. (1997)provided an extensive summary of感谢您的阅读,祝您生活愉快。
土木工程英语专业词汇小集
土木工程专业词汇使用须知:请使用Ctrl+F进行搜索,方便查阅!土木(Civil),土木工程(Civil engineering),规划(planning),设计(design),施工(construction),结构(structures),土木工程师(Civil engineers),公共设施(public facilities),隧道(tunnels),大坝(dams),海港(harbors),电厂(power plants),给水(water),排水(sewage),公共交通(mass transit),管线(pipelines),工业的(industrial)、商业的(commercial),住宅的(residential),大型结构(large structures),专业(specialties),专业人员(specialists),电力管线(power lines),场地(site),测量(survey),绘(地形)图(map),岩土的(geotechnical),土工试验(soil experiments),环境的(environmental),地下水(groundwater ),交通(transportation ),结构的(structural),详细设计(detailed designs),设计图(plans),(设计)说明(specifications),施工管理(construction management),监督(supervise),协调(coordinate),材料(materials),人工(labor),费用(costs),估算(estimate)结构工程(structural engineering),设备基础(supports for equipment),滨海(offshore),项目(projects),特种结构(special structures ),发射塔(transmission towers),承受(resist),外力(forces ),自重(the own weight),风(wind),飓风(hurricane),温度(temperature),膨胀(expand),收缩(contract),地震(earthquake),砼(concrete),沥青(asphalt),砖(brick),水利工程(water resources engineering),防洪(prevent floods),供水(supply water ),灌溉(irrigation),维护(maintain ),运河(canals),水闸(locks),大型水电坝(huge hydroelectric dams),水围堰(water impoundments ),岩土工程(Geotechnical engineering),岩土特性分析(analyze the properties of soils and rocks),沉降(settlement),估计(evaluate),加强(strengthen),坡体(slopes),填土(fills),稳定(stability),结构抗震(protect structures against earthquakes),环境工程(environmental engineering),处理(treatment),指定倾倒场(special dump sites),清洁垃圾填埋(sanitary landfills),交通工程(transportation engineering),城市规划师(urban planners),管道工程(Pipeline engineering),安装(installation),强度(strength),压力(pressure)运输工程(transportation engineering),城市规划师(urban planners),管道工程(Pipeline engineering),安装(installation),强度(strength),压力(pressure),施工工程(construction engineering),业主(owners),小区与城市规划(Community and urban planning),开发(develop),摄像(Photogrametry),工程管理(engineering management),工程教学(engineering teaching),咨询(consultants)。
(完整版)土木工程专业英语翻译
(1)Concrete and reinforced concrete are used as building materials in every country. In many, including Canada and the United States, reinforced concrete is a dominant structural material in engineered construction.(1)混凝土和钢筋混凝土在每个国家都被用作建筑材料。
在许多国家,包括加拿大和美国,钢筋混凝土是一种主要的工程结构材料。
(2)The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction.(2) 钢筋混凝土建筑的广泛存在是由于钢筋和制造混凝土的材料,包括石子,沙,水泥等,可以通过多种途径方便的得到,同时兴建混凝土建筑时所需要的技术也相对简单。
(3)Concrete and reinforced concrete are used in bridges, building of all sorts, underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.(3)混凝土和钢筋混凝土被应用于桥梁,各种形式的建筑,地下结构,蓄水池,电视塔,海上石油平台,以及工业建筑,大坝,甚至船舶等。
土木工程 专业外语词汇大全中英翻译
土木工程专业外语词汇大全中英翻译1. 综合类大地工程geotechnical engineering1. 综合类反分析法back analysis method1. 综合类基础工程foundation engineering1. 综合类临界状态土力学critical state soil mechanics1. 综合类数值岩土力学numerical geomechanics1. 综合类土soil, earth1. 综合类土动力学soil dynamics1. 综合类土力学soil mechanics1. 综合类岩土工程geotechnical engineering1. 综合类应力路径stress path1. 综合类应力路径法stress path method2. 工程地质及勘察变质岩metamorphic rock2. 工程地质及勘察标准冻深standard frost penetration2. 工程地质及勘察冰川沉积glacial deposit2. 工程地质及勘察冰积层(台)glacial deposit2. 工程地质及勘察残积土eluvial soil, residual soil2. 工程地质及勘察层理beding2. 工程地质及勘察长石feldspar2. 工程地质及勘察沉积岩sedimentary rock2. 工程地质及勘察承压水confined water2. 工程地质及勘察次生矿物secondary mineral2. 工程地质及勘察地质年代geological age2. 工程地质及勘察地质图geological map2. 工程地质及勘察地下水groundwater2. 工程地质及勘察断层fault2. 工程地质及勘察断裂构造fracture structure2. 工程地质及勘察工程地质勘察engineering geological exploration 2. 工程地质及勘察海积层(台)marine deposit2. 工程地质及勘察海相沉积marine deposit2. 工程地质及勘察花岗岩granite2. 工程地质及勘察滑坡landslide2. 工程地质及勘察化石fossil2. 工程地质及勘察化学沉积岩chemical sedimentary rock2. 工程地质及勘察阶地terrace2. 工程地质及勘察节理joint2. 工程地质及勘察解理cleavage2. 工程地质及勘察喀斯特karst2. 工程地质及勘察矿物硬度hardness of minerals2. 工程地质及勘察砾岩conglomerate2. 工程地质及勘察流滑flow slide2. 工程地质及勘察陆相沉积continental sedimentation2. 工程地质及勘察泥石流mud flow, debris flow2. 工程地质及勘察年粘土矿物clay minerals2. 工程地质及勘察凝灰岩tuff2. 工程地质及勘察牛轭湖ox-bow lake2. 工程地质及勘察浅成岩hypabyssal rock2. 工程地质及勘察潜水ground water2. 工程地质及勘察侵入岩intrusive rock2. 工程地质及勘察取土器geotome2. 工程地质及勘察砂岩sandstone2. 工程地质及勘察砂嘴spit, sand spit2. 工程地质及勘察山岩压力rock pressure2. 工程地质及勘察深成岩plutionic rock2. 工程地质及勘察石灰岩limestone2. 工程地质及勘察石英quartz2. 工程地质及勘察松散堆积物rickle2. 工程地质及勘察围限地下水(台)confined ground water 2. 工程地质及勘察泻湖lagoon2. 工程地质及勘察岩爆rock burst2. 工程地质及勘察岩层产状attitude of rock2. 工程地质及勘察岩浆岩magmatic rock, igneous rock2. 工程地质及勘察岩脉dike, dgke2. 工程地质及勘察岩石风化程度degree of rock weathering 2. 工程地质及勘察岩石构造structure of rock2. 工程地质及勘察岩石结构texture of rock2. 工程地质及勘察岩体rock mass2. 工程地质及勘察页岩shale2. 工程地质及勘察原生矿物primary mineral2. 工程地质及勘察云母mica2. 工程地质及勘察造岩矿物rock-forming mineral2. 工程地质及勘察褶皱fold, folding2. 工程地质及勘察钻孔柱状图bore hole columnar section3. 土的分类饱和土saturated soil3. 土的分类超固结土overconsolidated soil3. 土的分类冲填土dredger fill3. 土的分类充重塑土3. 土的分类冻土frozen soil, tjaele3. 土的分类非饱和土unsaturated soil3. 土的分类分散性土dispersive soil3. 土的分类粉土silt, mo3. 土的分类粉质粘土silty clay3. 土的分类高岭石kaolinite3. 土的分类过压密土(台)overconsolidated soil3. 土的分类红粘土red clay, adamic earth3. 土的分类黄土loess, huangtu(China)3. 土的分类蒙脱石montmorillonite3. 土的分类泥炭peat, bog muck3. 土的分类年粘土clay3. 土的分类年粘性土cohesive soil, clayey soil3. 土的分类膨胀土expansive soil, swelling soil3. 土的分类欠固结粘土underconsolidated soil3. 土的分类区域性土zonal soil3. 土的分类人工填土fill, artificial soil3. 土的分类软粘土soft clay, mildclay, mickle3. 土的分类砂土sand3. 土的分类湿陷性黄土collapsible loess, slumping loess3. 土的分类素填土plain fill3. 土的分类塑性图plasticity chart3. 土的分类碎石土stone, break stone, broken stone, channery, chat, crushed stone, deritus 3. 土的分类未压密土(台)underconsolidated clay3. 土的分类无粘性土cohesionless soil, frictional soil, non-cohesive soil3. 土的分类岩石rock3. 土的分类伊利土illite3. 土的分类有机质土organic soil3. 土的分类淤泥muck, gyttja, mire, slush3. 土的分类淤泥质土mucky soil3. 土的分类原状土undisturbed soil3. 土的分类杂填土miscellaneous fill3. 土的分类正常固结土normally consolidated soil3. 土的分类正常压密土(台)normally consolidated soil3. 土的分类自重湿陷性黄土self weight collapse loess4. 土的物理性质阿太堡界限Atterberg limits4. 土的物理性质饱和度degree of saturation4. 土的物理性质饱和密度saturated density4. 土的物理性质饱和重度saturated unit weight4. 土的物理性质比重specific gravity4. 土的物理性质稠度consistency4. 土的物理性质不均匀系数coefficient of uniformity, uniformity coefficient4. 土的物理性质触变thixotropy4. 土的物理性质单粒结构single-grained structure4. 土的物理性质蜂窝结构honeycomb structure4. 土的物理性质干重度dry unit weight4. 土的物理性质干密度dry density4. 土的物理性质塑性指数plasticity index4. 土的物理性质含水量water content, moisture content4. 土的物理性质活性指数4. 土的物理性质级配gradation, grading4. 土的物理性质结合水bound water, combined water, held water4. 土的物理性质界限含水量Atterberg limits4. 土的物理性质颗粒级配particle size distribution of soils, mechanical composition of soil 4. 土的物理性质可塑性plasticity4. 土的物理性质孔隙比void ratio4. 土的物理性质孔隙率porosity4. 土的物理性质粒度granularity, grainness, grainage4. 土的物理性质粒组fraction, size fraction4. 土的物理性质毛细管水capillary water4. 土的物理性质密度density4. 土的物理性质密实度compactionness4. 土的物理性质年粘性土的灵敏度sensitivity of cohesive soil4. 土的物理性质平均粒径mean diameter, average grain diameter4. 土的物理性质曲率系数coefficient of curvature4. 土的物理性质三相图block diagram, skeletal diagram, three phase diagram4. 土的物理性质三相土tri-phase soil4. 土的物理性质湿陷起始应力initial collapse pressure4. 土的物理性质湿陷系数coefficient of collapsibility4. 土的物理性质缩限shrinkage limit4. 土的物理性质土的构造soil texture4. 土的物理性质土的结构soil structure4. 土的物理性质土粒相对密度specific density of solid particles4. 土的物理性质土中气air in soil4. 土的物理性质土中水water in soil4. 土的物理性质团粒aggregate, cumularpharolith4. 土的物理性质限定粒径constrained diameter4. 土的物理性质相对密度relative density, density index4. 土的物理性质相对压密度relative compaction, compacting factor, percent compaction, coefficient of compaction4. 土的物理性质絮状结构flocculent structure4. 土的物理性质压密系数coefficient of consolidation4. 土的物理性质压缩性compressibility4. 土的物理性质液限liquid limit4. 土的物理性质液性指数liquidity index4. 土的物理性质游离水(台)free water4. 土的物理性质有效粒径effective diameter, effective grain size, effective size4. 土的物理性质有效密度effective density4. 土的物理性质有效重度effective unit weight4. 土的物理性质重力密度unit weight4. 土的物理性质自由水free water, gravitational water, groundwater, phreatic water4. 土的物理性质组构fabric4. 土的物理性质最大干密度maximum dry density4. 土的物理性质最优含水量optimum water content5. 渗透性和渗流达西定律Darcy s law5. 渗透性和渗流管涌piping5. 渗透性和渗流浸润线phreatic line5. 渗透性和渗流临界水力梯度critical hydraulic gradient5. 渗透性和渗流流函数flow function5. 渗透性和渗流流土flowing soil5. 渗透性和渗流流网flow net5. 渗透性和渗流砂沸sand boiling5. 渗透性和渗流渗流seepage5. 渗透性和渗流渗流量seepage discharge5. 渗透性和渗流渗流速度seepage velocity5. 渗透性和渗流渗透力seepage force5. 渗透性和渗流渗透破坏seepage failure5. 渗透性和渗流渗透系数coefficient of permeability5. 渗透性和渗流渗透性permeability5. 渗透性和渗流势函数potential function5. 渗透性和渗流水力梯度hydraulic gradient6. 地基应力和变形变形deformation6. 地基应力和变形变形模量modulus of deformation6. 地基应力和变形泊松比Poisson s ratio6. 地基应力和变形布西涅斯克解Boussinnesq s solution6. 地基应力和变形残余变形residual deformation6. 地基应力和变形残余孔隙水压力residual pore water pressure6. 地基应力和变形超静孔隙水压力excess pore water pressure6. 地基应力和变形沉降settlement6. 地基应力和变形沉降比settlement ratio6. 地基应力和变形次固结沉降secondary consolidation settlement6. 地基应力和变形次固结系数coefficient of secondary consolidation6. 地基应力和变形地基沉降的弹性力学公式elastic formula for settlement calculation 6. 地基应力和变形分层总和法layerwise summation method6. 地基应力和变形负孔隙水压力negative pore water pressure6. 地基应力和变形附加应力superimposed stress6. 地基应力和变形割线模量secant modulus6. 地基应力和变形固结沉降consolidation settlement6. 地基应力和变形规范沉降计算法settlement calculation by specification6. 地基应力和变形回弹变形rebound deformation6. 地基应力和变形回弹模量modulus of resilience6. 地基应力和变形回弹系数coefficient of resilience6. 地基应力和变形回弹指数swelling index6. 地基应力和变形建筑物的地基变形允许值allowable settlement of building6. 地基应力和变形剪胀dilatation6. 地基应力和变形角点法corner-points method6. 地基应力和变形孔隙气压力pore air pressure6. 地基应力和变形孔隙水压力pore water pressure6. 地基应力和变形孔隙压力系数Apore pressure parameter A6. 地基应力和变形孔隙压力系数Bpore pressure parameter B6. 地基应力和变形明德林解Mindlin s solution6. 地基应力和变形纽马克感应图Newmark chart6. 地基应力和变形切线模量tangent modulus6. 地基应力和变形蠕变creep6. 地基应力和变形三向变形条件下的固结沉降three-dimensional consolidation settlement 6. 地基应力和变形瞬时沉降immediate settlement6. 地基应力和变形塑性变形plastic deformation6. 地基应力和变形谈弹性变形elastic deformation6. 地基应力和变形谈弹性模量elastic modulus6. 地基应力和变形谈弹性平衡状态state of elastic equilibrium6. 地基应力和变形体积变形模量volumetric deformation modulus6. 地基应力和变形先期固结压力preconsolidation pressure6. 地基应力和变形压缩层6. 地基应力和变形压缩模量modulus of compressibility6. 地基应力和变形压缩系数coefficient of compressibility6. 地基应力和变形压缩性compressibility6. 地基应力和变形压缩指数compression index6. 地基应力和变形有效应力effective stress6. 地基应力和变形自重应力self-weight stress6. 地基应力和变形总应力total stress approach of shear strength6. 地基应力和变形最终沉降final settlement7. 固结巴隆固结理论Barron s consolidation theory7. 固结比奥固结理论Biot s consolidation theory7. 固结超固结比over-consolidation ratio7. 固结超静孔隙水压力excess pore water pressure7. 固结次固结secondary consolidation7. 固结次压缩(台)secondary consolidatin7. 固结单向度压密(台)one-dimensional consolidation7. 固结多维固结multi-dimensional consolidation7. 固结固结consolidation7. 固结固结度degree of consolidation7. 固结固结理论theory of consolidation7. 固结固结曲线consolidation curve7. 固结固结速率rate of consolidation7. 固结固结系数coefficient of consolidation7. 固结固结压力consolidation pressure7. 固结回弹曲线rebound curve7. 固结井径比drain spacing ratio7. 固结井阻well resistance7. 固结曼代尔-克雷尔效应Mandel-Cryer effect7. 固结潜变(台)creep7. 固结砂井sand drain7. 固结砂井地基平均固结度average degree of consolidation of sand-drained ground7. 固结时间对数拟合法logrithm of time fitting method7. 固结时间因子time factor7. 固结太沙基固结理论Terzaghi s consolidation theory7. 固结太沙基-伦杜列克扩散方程Terzaghi-Rendulic diffusion equation7. 固结先期固结压力preconsolidation pressure7. 固结压密(台)consolidation7. 固结压密度(台)degree of consolidation7. 固结压缩曲线cpmpression curve7. 固结一维固结one dimensional consolidation7. 固结有效应力原理principle of effective stress7. 固结预压密压力(台)preconsolidation pressure7. 固结原始压缩曲线virgin compression curve7. 固结再压缩曲线recompression curve7. 固结主固结primary consolidation7. 固结主压密(台)primary consolidation7. 固结准固结压力pseudo-consolidation pressure7. 固结K0固结consolidation under K0 condition8. 抗剪强度安息角(台)angle of repose8. 抗剪强度不排水抗剪强度undrained shear strength8. 抗剪强度残余内摩擦角residual angle of internal friction8. 抗剪强度残余强度residual strength8. 抗剪强度长期强度long-term strength8. 抗剪强度单轴抗拉强度uniaxial tension test8. 抗剪强度动强度dynamic strength of soils8. 抗剪强度峰值强度peak strength8. 抗剪强度伏斯列夫参数Hvorslev parameter8. 抗剪强度剪切应变速率shear strain rate8. 抗剪强度抗剪强度shear strength8. 抗剪强度抗剪强度参数shear strength parameter8. 抗剪强度抗剪强度有效应力法effective stress approach of shear strength 8. 抗剪强度抗剪强度总应力法total stress approach of shear strength8. 抗剪强度库仑方程Coulomb s equation8. 抗剪强度摩尔包线Mohr s envelope8. 抗剪强度摩尔-库仑理论Mohr-Coulomb theory8. 抗剪强度内摩擦角angle of internal friction8. 抗剪强度年粘聚力cohesion8. 抗剪强度破裂角angle of rupture8. 抗剪强度破坏准则failure criterion8. 抗剪强度十字板抗剪强度vane strength8. 抗剪强度无侧限抗压强度unconfined compression strength8. 抗剪强度有效内摩擦角effective angle of internal friction8. 抗剪强度有效粘聚力effective cohesion intercept8. 抗剪强度有效应力破坏包线effective stress failure envelope8. 抗剪强度有效应力强度参数effective stress strength parameter8. 抗剪强度有效应力原理principle of effective stress8. 抗剪强度真内摩擦角true angle internal friction8. 抗剪强度真粘聚力true cohesion8. 抗剪强度总应力破坏包线total stress failure envelope8. 抗剪强度总应力强度参数total stress strength parameter9. 本构模型本构模型constitutive model9. 本构模型边界面模型boundary surface model9. 本构模型层向各向同性体模型cross anisotropic model9. 本构模型超弹性模型hyperelastic model9. 本构模型德鲁克-普拉格准则Drucker-Prager criterion9. 本构模型邓肯-张模型Duncan-Chang model9. 本构模型动剪切强度9. 本构模型非线性弹性模量nonlinear elastic model9. 本构模型盖帽模型cap model9. 本构模型刚塑性模型rigid plastic model9. 本构模型割线模量secant modulus9. 本构模型广义冯·米赛斯屈服准则extended von Mises yield criterion 9. 本构模型广义特雷斯卡屈服准则extended tresca yield criterion9. 本构模型加工软化work softening9. 本构模型加工硬化work hardening9. 本构模型加工硬化定律strain harding law9. 本构模型剑桥模型Cambridge model9. 本构模型柯西弹性模型Cauchy elastic model9. 本构模型拉特-邓肯模型Lade-Duncan model9. 本构模型拉特屈服准则Lade yield criterion9. 本构模型理想弹塑性模型ideal elastoplastic model9. 本构模型临界状态弹塑性模型critical state elastoplastic model9. 本构模型流变学模型rheological model9. 本构模型流动规则flow rule9. 本构模型摩尔-库仑屈服准则Mohr-Coulomb yield criterion9. 本构模型内蕴时间塑性模型endochronic plastic model9. 本构模型内蕴时间塑性理论endochronic theory9. 本构模型年粘弹性模型viscoelastic model9. 本构模型切线模量tangent modulus9. 本构模型清华弹塑性模型Tsinghua elastoplastic model9. 本构模型屈服面yield surface9. 本构模型沈珠江三重屈服面模型Shen Zhujiang three yield surface method 9. 本构模型双参数地基模型9. 本构模型双剪应力屈服模型twin shear stress yield criterion9. 本构模型双曲线模型hyperbolic model9. 本构模型松岗元-中井屈服准则Matsuoka-Nakai yield criterion9. 本构模型塑性形变理论9. 本构模型谈弹塑性模量矩阵elastoplastic modulus matrix9. 本构模型谈弹塑性模型elastoplastic modulus9. 本构模型谈弹塑性增量理论incremental elastoplastic theory9. 本构模型谈弹性半空间地基模型elastic half-space foundation model9. 本构模型谈弹性变形elastic deformation9. 本构模型谈弹性模量elastic modulus9. 本构模型谈弹性模型elastic model9. 本构模型魏汝龙-Khosla-Wu模型Wei Rulong-Khosla-Wu model9. 本构模型文克尔地基模型Winkler foundation model9. 本构模型修正剑桥模型modified cambridge model9. 本构模型准弹性模型hypoelastic model10. 地基承载力冲剪破坏punching shear failure10. 地基承载力次层(台)substratum10. 地基承载力地基subgrade, ground, foundation soil10. 地基承载力地基承载力bearing capacity of foundation soil10. 地基承载力地基极限承载力ultimate bearing capacity of foundation soil10. 地基承载力地基允许承载力allowable bearing capacity of foundation soil10. 地基承载力地基稳定性stability of foundation soil10. 地基承载力汉森地基承载力公式Hansen s ultimate bearing capacity formula10. 地基承载力极限平衡状态state of limit equilibrium10. 地基承载力加州承载比(美国)California Bearing Ratio10. 地基承载力局部剪切破坏local shear failure10. 地基承载力临塑荷载critical edge pressure10. 地基承载力梅耶霍夫极限承载力公式Meyerhof s ultimate bearing capacity formula 10. 地基承载力普朗特承载力理论Prandel bearing capacity theory10. 地基承载力斯肯普顿极限承载力公式Skempton s ultimate bearing capacity formula 10. 地基承载力太沙基承载力理论Terzaghi bearing capacity theory10. 地基承载力魏锡克极限承载力公式V esic s ultimate bearing capacity formula10. 地基承载力整体剪切破坏general shear failure11. 土压力被动土压力passive earth pressure11. 土压力被动土压力系数coefficient of passive earth pressure11. 土压力极限平衡状态state of limit equilibrium11. 土压力静止土压力earth pressue at rest11. 土压力静止土压力系数coefficient of earth pressur at rest11. 土压力库仑土压力理论Coulomb s earth pressure theory11. 土压力库尔曼图解法Culmannn construction11. 土压力朗肯土压力理论Rankine s earth pressure theory11. 土压力朗肯状态Rankine state11. 土压力谈弹性平衡状态state of elastic equilibrium11. 土压力土压力earth pressure11. 土压力主动土压力active earth pressure11. 土压力主动土压力系数coefficient of active earth pressure12. 土坡稳定分析安息角(台)angle of repose12. 土坡稳定分析毕肖普法Bishop method12. 土坡稳定分析边坡稳定安全系数safety factor of slope12. 土坡稳定分析不平衡推理传递法unbalanced thrust transmission method12. 土坡稳定分析费伦纽斯条分法Fellenius method of slices12. 土坡稳定分析库尔曼法Culmann method12. 土坡稳定分析摩擦圆法friction circle method12. 土坡稳定分析摩根斯坦-普拉斯法Morgenstern-Price method12. 土坡稳定分析铅直边坡的临界高度critical height of vertical slope12. 土坡稳定分析瑞典圆弧滑动法Swedish circle method12. 土坡稳定分析斯宾赛法Spencer method12. 土坡稳定分析泰勒法Taylor method12. 土坡稳定分析条分法slice method12. 土坡稳定分析土坡slope12. 土坡稳定分析土坡稳定分析slope stability analysis12. 土坡稳定分析土坡稳定极限分析法limit analysis method of slope stability 12. 土坡稳定分析土坡稳定极限平衡法limit equilibrium method of slope stability 12. 土坡稳定分析休止角angle of repose12. 土坡稳定分析扬布普遍条分法Janbu general slice method12. 土坡稳定分析圆弧分析法circular arc analysis13. 土的动力性质比阻尼容量specific gravity capacity13. 土的动力性质波的弥散特性dispersion of waves13. 土的动力性质波速法wave velocity method13. 土的动力性质材料阻尼material damping13. 土的动力性质初始液化initial liquefaction13. 土的动力性质地基固有周期natural period of soil site13. 土的动力性质动剪切模量dynamic shear modulus of soils13. 土的动力性质动力布西涅斯克解dynamic solution of Boussinesq13. 土的动力性质动力放大因素dynamic magnification factor13. 土的动力性质动力性质dynamic properties of soils13. 土的动力性质动强度dynamic strength of soils13. 土的动力性质骨架波akeleton waves in soils13. 土的动力性质几何阻尼geometric damping13. 土的动力性质抗液化强度liquefaction stress13. 土的动力性质孔隙流体波fluid wave in soil13. 土的动力性质损耗角loss angle13. 土的动力性质往返活动性reciprocating activity13. 土的动力性质无量纲频率dimensionless frequency13. 土的动力性质液化liquefaction13. 土的动力性质液化势评价evaluation of liquefaction potential13. 土的动力性质液化应力比stress ratio of liquefaction13. 土的动力性质应力波stress waves in soils13. 土的动力性质振陷dynamic settlement13. 土的动力性质阻尼damping of soil13. 土的动力性质阻尼比damping ratio14. 挡土墙挡土墙retaining wall14. 挡土墙挡土墙排水设施14. 挡土墙挡土墙稳定性stability of retaining wall14. 挡土墙垛式挡土墙14. 挡土墙扶垛式挡土墙counterfort retaining wall14. 挡土墙后垛墙(台)counterfort retaining wall14. 挡土墙基础墙foundation wall14. 挡土墙加筋土挡墙reinforced earth bulkhead14. 挡土墙锚定板挡土墙anchored plate retaining wall14. 挡土墙锚定式板桩墙anchored sheet pile wall14. 挡土墙锚杆式挡土墙anchor rod retaining wall14. 挡土墙悬壁式板桩墙cantilever sheet pile wall14. 挡土墙悬壁式挡土墙cantilever sheet pile wall14. 挡土墙重力式挡土墙gravity retaining wall15. 板桩结构物板桩sheet pile15. 板桩结构物板桩结构sheet pile structure15. 板桩结构物钢板桩steel sheet pile15. 板桩结构物钢筋混凝土板桩reinforced concrete sheet pile15. 板桩结构物钢桩steel pile15. 板桩结构物灌注桩cast-in-place pile15. 板桩结构物拉杆tie rod15. 板桩结构物锚定式板桩墙anchored sheet pile wall15. 板桩结构物锚固技术anchoring15. 板桩结构物锚座Anchorage15. 板桩结构物木板桩wooden sheet pile15. 板桩结构物木桩timber piles15. 板桩结构物悬壁式板桩墙cantilever sheet pile wall16. 基坑开挖与降水板桩围护sheet pile-braced cuts16. 基坑开挖与降水电渗法electro-osmotic drainage16. 基坑开挖与降水管涌piping16. 基坑开挖与降水基底隆起heave of base16. 基坑开挖与降水基坑降水dewatering16. 基坑开挖与降水基坑失稳instability (failure) of foundation pit16. 基坑开挖与降水基坑围护bracing of foundation pit16. 基坑开挖与降水减压井relief well16. 基坑开挖与降水降低地下水位法dewatering method16. 基坑开挖与降水井点系统well point system16. 基坑开挖与降水喷射井点eductor well point16. 基坑开挖与降水铅直边坡的临界高度critical height of vertical slope 16. 基坑开挖与降水砂沸sand boiling16. 基坑开挖与降水深井点deep well point16. 基坑开挖与降水真空井点vacuum well point16. 基坑开挖与降水支撑围护braced cuts17. 浅基础杯形基础17. 浅基础补偿性基础compensated foundation17. 浅基础持力层bearing stratum17. 浅基础次层(台)substratum17. 浅基础单独基础individual footing17. 浅基础倒梁法inverted beam method17. 浅基础刚性角pressure distribution angle of masonary foundation 17. 浅基础刚性基础rigid foundation17. 浅基础高杯口基础17. 浅基础基础埋置深度embeded depth of foundation17. 浅基础基床系数coefficient of subgrade reaction17. 浅基础基底附加应力net foundation pressure17. 浅基础交叉条形基础cross strip footing17. 浅基础接触压力contact pressure17. 浅基础静定分析法(浅基础)static analysis (shallow foundation)17. 浅基础壳体基础shell foundation17. 浅基础扩展基础spread footing17. 浅基础片筏基础mat foundation17. 浅基础浅基础shallow foundation17. 浅基础墙下条形基础17. 浅基础热摩奇金法Zemochkin s method17. 浅基础柔性基础flexible foundation17. 浅基础上部结构-基础-土共同作用分析structure- foundation-soil interactionanalysis 17. 浅基础谈弹性地基梁(板)分析analysis of beams and slabs on elastic foundation 17. 浅基础条形基础strip footing17. 浅基础下卧层substratum17. 浅基础箱形基础box foundation17. 浅基础柱下条形基础18. 深基础贝诺托灌注桩Benoto cast-in-place pile18. 深基础波动方程分析Wave equation analysis18. 深基础场铸桩(台)cast-in-place pile18. 深基础沉管灌注桩diving casting cast-in-place pile18. 深基础沉井基础open-end caisson foundation18. 深基础沉箱基础box caisson foundation18. 深基础成孔灌注同步桩synchronous pile18. 深基础承台pile caps18. 深基础充盈系数fullness coefficient18. 深基础单桩承载力bearing capacity of single pile18. 深基础单桩横向极限承载力ultimate lateral resistance of single pile18. 深基础单桩竖向抗拔极限承载力vertical ultimate uplift resistance of single pile18. 深基础单桩竖向抗压容许承载力vertical ultimate carrying capacity of single pile18. 深基础单桩竖向抗压极限承载力vertical allowable load capacity of single pile18. 深基础低桩承台low pile cap18. 深基础地下连续墙diaphgram wall18. 深基础点承桩(台)end-bearing pile18. 深基础动力打桩公式dynamic pile driving formula18. 深基础端承桩end-bearing pile18. 深基础法兰基灌注桩Franki pile18. 深基础负摩擦力negative skin friction of pile18. 深基础钢筋混凝土预制桩precast reinforced concrete piles18. 深基础钢桩steel pile18. 深基础高桩承台high-rise pile cap18. 深基础灌注桩cast-in-place pile18. 深基础横向载荷桩laterally loaded vertical piles18. 深基础护壁泥浆slurry coat method18. 深基础回转钻孔灌注桩rotatory boring cast-in-place pile18. 深基础机挖异形灌注桩18. 深基础静力压桩silent piling18. 深基础抗拔桩uplift pile18. 深基础抗滑桩anti-slide pile18. 深基础摩擦桩friction pile18. 深基础木桩timber piles18. 深基础嵌岩灌注桩piles set into rock18. 深基础群桩pile groups18. 深基础群桩效率系数efficiency factor of pile groups18. 深基础群桩效应efficiency of pile groups18. 深基础群桩竖向极限承载力vertical ultimate load capacity of pile groups 18. 深基础深基础deep foundation18. 深基础竖直群桩横向极限承载力18. 深基础无桩靴夯扩灌注桩rammed bulb ile18. 深基础旋转挤压灌注桩18. 深基础桩piles18. 深基础桩基动测技术dynamic pile test18. 深基础钻孔墩基础drilled-pier foundation18. 深基础钻孔扩底灌注桩under-reamed bored pile18. 深基础钻孔压注桩starsol enbesol pile18. 深基础最后贯入度final set19. 地基处理表层压密法surface compaction19. 地基处理超载预压surcharge preloading19. 地基处理袋装砂井sand wick19. 地基处理地工织物geofabric, geotextile19. 地基处理地基处理ground treatment, foundation treatment19. 地基处理电动化学灌浆electrochemical grouting19. 地基处理电渗法electro-osmotic drainage19. 地基处理顶升纠偏法19. 地基处理定喷directional jet grouting19. 地基处理冻土地基处理frozen foundation improvement19. 地基处理短桩处理treatment with short pile19. 地基处理堆载预压法preloading19. 地基处理粉体喷射深层搅拌法powder deep mixing method19. 地基处理复合地基composite foundation19. 地基处理干振成孔灌注桩vibratory bored pile19. 地基处理高压喷射注浆法jet grounting19. 地基处理灌浆材料injection material19. 地基处理灌浆法grouting19. 地基处理硅化法silicification19. 地基处理夯实桩compacting pile19. 地基处理化学灌浆chemical grouting19. 地基处理换填法cushion19. 地基处理灰土桩lime soil pile19. 地基处理基础加压纠偏法19. 地基处理挤密灌浆compaction grouting19. 地基处理挤密桩compaction pile, compacted column19. 地基处理挤淤法displacement method19. 地基处理加筋法reinforcement method19. 地基处理加筋土reinforced earth19. 地基处理碱液法soda solution grouting19. 地基处理浆液深层搅拌法grout deep mixing method19. 地基处理降低地下水位法dewatering method19. 地基处理纠偏技术19. 地基处理坑式托换pit underpinning19. 地基处理冷热处理法freezing and heating19. 地基处理锚固技术anchoring19. 地基处理锚杆静压桩托换anchor pile underpinning19. 地基处理排水固结法consolidation19. 地基处理膨胀土地基处理expansive foundation treatment19. 地基处理劈裂灌浆fracture grouting19. 地基处理浅层处理shallow treatment19. 地基处理强夯法dynamic compaction19. 地基处理人工地基artificial foundation19. 地基处理容许灌浆压力allowable grouting pressure19. 地基处理褥垫pillow19. 地基处理软土地基soft clay ground19. 地基处理砂井sand drain19. 地基处理砂井地基平均固结度average degree of consolidation of sand-drained ground 19. 地基处理砂桩sand column19. 地基处理山区地基处理foundation treatment in mountain area19. 地基处理深层搅拌法deep mixing method19. 地基处理渗入性灌浆seep-in grouting19. 地基处理湿陷性黄土地基处理collapsible loess treatment19. 地基处理石灰系深层搅拌法lime deep mixing method19. 地基处理石灰桩lime column, limepile19. 地基处理树根桩root pile19. 地基处理水泥土水泥掺合比cement mixing ratio19. 地基处理水泥系深层搅拌法cement deep mixing method19. 地基处理水平旋喷horizontal jet grouting19. 地基处理塑料排水带plastic drain19. 地基处理碎石桩gravel pile, stone pillar19. 地基处理掏土纠偏法19. 地基处理天然地基natural foundation19. 地基处理土工聚合物Geopolymer19. 地基处理土工织物geofabric, geotextile19. 地基处理土桩earth pile19. 地基处理托换技术underpinning technique19. 地基处理外掺剂additive19. 地基处理旋喷jet grouting19. 地基处理药液灌浆chemical grouting19. 地基处理预浸水法presoaking19. 地基处理预压法preloading19. 地基处理真空预压vacuum preloading19. 地基处理振冲法vibroflotation method19. 地基处理振冲密实法vibro-compaction19. 地基处理振冲碎石桩vibro replacement stone column19. 地基处理振冲置换法vibro-replacement19. 地基处理振密、挤密法vibro-densification, compacting19. 地基处理置换率(复合地基)replacement ratio19. 地基处理重锤夯实法tamping19. 地基处理桩式托换pile underpinning19. 地基处理桩土应力比stress ratio20. 动力机器基础比阻尼容量specific gravity capacity20. 动力机器基础等效集总参数法constant strain rate consolidation test20. 动力机器基础地基固有周期natural period of soil site20. 动力机器基础动基床反力法dynamic subgrade reaction method20. 动力机器基础动力放大因素dynamic magnification factor20. 动力机器基础隔振isolation20. 动力机器基础基础振动foundation vibration20. 动力机器基础基础振动半空间理论elastic half-space theory of foundation vibr ation20. 动力机器基础基础振动容许振幅allowable amplitude of foundation vibration 20. 动力机器基础基础自振频率natural frequency of foundation20. 动力机器基础集总参数法lumped parameter method20. 动力机器基础吸收系数absorption coefficient20. 动力机器基础质量-弹簧-阻尼器系统mass-spring-dushpot system21. 地基基础抗震地基固有周期natural period of soil site21. 地基基础抗震地震earthquake, seism, temblor21. 地基基础抗震地震持续时间duration of earthquake21. 地基基础抗震地震等效均匀剪应力equivalent even shear stress of earthquake 21. 地基基础抗震地震反应谱earthquake response spectrum21. 地基基础抗震地震烈度earthquake intensity21. 地基基础抗震地震震级earthquake magnitude21. 地基基础抗震地震卓越周期seismic predominant period21. 地基基础抗震地震最大加速度maximum acceleration of earthquake21. 地基基础抗震动力放大因数dynamic magnification factor21. 地基基础抗震对数递减率logrithmic decrement21. 地基基础抗震刚性系数coefficient of rigidity21. 地基基础抗震吸收系数absorption coefficient22. 室内土工试验比重试验specific gravity test22. 室内土工试验变水头渗透试验falling head permeability test22. 室内土工试验不固结不排水试验unconsolidated-undrained triaxial test22. 室内土工试验常规固结试验routine consolidation test22. 室内土工试验常水头渗透试验constant head permeability test22. 室内土工试验单剪仪simple shear apparatus22. 室内土工试验单轴拉伸试验uniaxial tensile test22. 室内土工试验等速加荷固结试验constant loading rate consolidatin test22. 室内土工试验等梯度固结试验constant gradient consolidation test22. 室内土工试验等应变速率固结试验equivalent lumped parameter method22. 室内土工试验反复直剪强度试验repeated direct shear test22. 室内土工试验反压饱和法back pressure saturation method22. 室内土工试验高压固结试验high pressure consolidation test22. 室内土工试验各向不等压固结不排水试验consoidated anisotropically undrained test 22. 室内土工试验各向不等压固结排水试验consolidated anisotropically drained test 22. 室内土工试验共振柱试验resonant column test22. 室内土工试验固结不排水试验consolidated undrained triaxial test22. 室内土工试验固结快剪试验consolidated quick direct shear test22. 室内土工试验固结排水试验consolidated drained triaxial test22. 室内土工试验固结试验consolidation test22. 室内土工试验含水量试验water content test22. 室内土工试验环剪试验ring shear test22. 室内土工试验黄土湿陷试验loess collapsibility test22. 室内土工试验击实试验22. 室内土工试验界限含水量试验Atterberg limits test22. 室内土工试验卡萨格兰德法Casagrande s method22. 室内土工试验颗粒分析试验grain size analysis test22. 室内土工试验孔隙水压力消散试验pore pressure dissipation test22. 室内土工试验快剪试验quick direct shear test22. 室内土工试验快速固结试验fast consolidation test22. 室内土工试验离心模型试验centrifugal model test22. 室内土工试验连续加荷固结试验continual loading test22. 室内土工试验慢剪试验consolidated drained direct shear test22. 室内土工试验毛细管上升高度试验capillary rise test22. 室内土工试验密度试验density test22. 室内土工试验扭剪仪torsion shear apparatus22. 室内土工试验膨胀率试验swelling rate test22. 室内土工试验平面应变仪plane strain apparatus22. 室内土工试验三轴伸长试验triaxial extension test22. 室内土工试验三轴压缩试验triaxial compression test22. 室内土工试验砂的相对密实度试验sand relative density test22. 室内土工试验筛分析sieve analysis。
土木工程专业英语词汇(整理版)
土木工程专业英语词汇(整理版 )第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程 Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17 木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土pre-stressed concrete26 静定结构 statically determinate structure27 超静定结构statically indeterminate structure28 桁架结构 truss structure29 空间网架结构spatial grid structure30 近海工程 offshore engineering31 静力学 statics32 运动学 kinematics33 动力学 dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36 弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics41 水力学 hydraulics42 流体力学 fluid mechanics43 固体力学 solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降 settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力active earth pressure72 被动土压力passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪 level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical83 文献 literature84 国际标准刊号ISSN International Standard Serial Number85国际标准书号 ISBN International Standard Book Number86卷 volume87期 number88专著 monograph89会议论文集 Proceeding90学位论文 thesis dissertation91专利 patent92档案档案室 archive93国际学术会议 conference94导师 advisor95学位论文答辩 defense of thesis96博士研究生 doctorate student97研究生 postgraduate98工程索引 EI Engineering Index99科学引文索引 SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings 101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会 ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基9.viscous damping 粘滞阻尼10.shear modulus 剪切模量11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会四.渗透性和渗流1.Darcy ’ s law达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage渗透(流)7.leakage 渗流8.seepage pressure渗透压力9.permeability 渗透性10.seepage force渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata) 下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降27.deformation 变形28.casing 套管29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses正应力36.shear stresses剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔 -库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave(基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12braced cuts 支撑围护13braced excavation 支撑开挖14braced sheeting 支撑挡板七.深基础 --deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi ’ s consolidation theory太沙基固结理论2.Barraon ’ s consolidation theory巴隆固结理论3.Biot ’ s consolidation theory比奥固结理论4.over consolidation ration (OCR) 超固结比5.overconsolidation soil 超固结土6.excess pore water pressure超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter有效应力强度参数十一 .本构模型 --constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二 .地基承载力 --bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三 .土压力 --earth pressure1.active earth pressure主动土压力2.passive earth pressure被动土压力3.earth pressure at rest静止土压力4.Coulomb ’ s earth pressure theory库仑土压力理论5.Rankine ’ s earthressurep theory 朗金土压力理论十四 .土坡稳定分析 --slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五 .挡土墙 --retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六 .板桩结构物 --sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七 .浅基础 --shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八 .土的动力性质 --dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十 .地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一 .室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验 (CU)7.consolidated drained triaxial test 固结排水试验 (CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自 (共 )振柱试验二十二 .原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test旁压试验11.light sounding 轻便触探试验12.deep settlement measurement深层沉降观测13.vane shear test十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement原位孔隙水压量测16.in-situ soil test 原位试验第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程 Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17 木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土pre-stressed concrete26 静定结构 statically determinate structure27 超静定结构statically indeterminate structure28 桁架结构 truss structure29 空间网架结构spatial grid structure30 近海工程 offshore engineering31 静力学 statics32 运动学 kinematics33 动力学 dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36 弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics41 水力学 hydraulics42 流体力学 fluid mechanics43 固体力学 solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降 settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力active earth pressure72 被动土压力passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪 level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical83文献 literature84国际标准刊号 ISSN International Standard Serial Number85国际标准书号 ISBN International Standard Book Number86卷 volume87期 number88专著 monograph89会议论文集 Proceeding90学位论文 thesis dissertation91专利 patent92档案档案室 archive93国际学术会议 conference94导师 advisor95学位论文答辩 defense of thesis96博士研究生 doctorate student97研究生 postgraduate98工程索引 EI Engineering Index99科学引文索引 SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings 101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会 ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基9.viscous damping 粘滞阻尼10.shear modulus 剪切模量11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会四.渗透性和渗流1.Darcy ’ s law达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage渗透(流)7.leakage 渗流8.seepage pressure渗透压力9.permeability 渗透性10.seepage force渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata) 下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降27.deformation 变形28.casing 套管29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses正应力36.shear stresses剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔 -库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave(基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12braced cuts 支撑围护13braced excavation 支撑开挖14braced sheeting 支撑挡板七.深基础 --deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi ’ s consolidation theory太沙基固结理论2.Barraon’ s consolidation theory巴隆固结理论3.Biot ’ s consolidation theory比奥固结理论4.over consolidation ration (OCR) 超固结比5.overconsolidation soil 超固结土6.excess pore water pressure超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter有效应力强度参数十一 .本构模型 --constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二 .地基承载力 --bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三 .土压力 --earth pressure1.active earth pressure主动土压力2.passive earth pressure被动土压力3.earth pressure at rest静止土压力4.Coulomb ’ s earth pressure theory库仑土压力理论5.Rankine ’ s earth pressure theory朗金土压力理论十四 .土坡稳定分析 --slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五 .挡土墙 --retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六 .板桩结构物 --sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七 .浅基础 --shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八 .土的动力性质 --dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十 .地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一 .室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验 (CU)7.consolidated drained triaxial test 固结排水试验 (CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自 (共 )振柱试验二十二 .原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test旁压试验11.light sounding 轻便触探试验12.deep settlement measurement深层沉降观测13.vane shear test十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement原位孔隙水压量测16.in-situ soil test 原位试验。
《土木工程专业英语》陈瑛_邵永波主编_全文经典翻译
Chapter 1 . Structural Mechanics结构力学1.1Classification and Behavior of Structural Systems and Elements系统结构和元素的分类和作用1.2Determinate and Indeterminate Structures静定和超静定结构1.3Structural Dynamics结构动力学Chapter 2. Structural Material土木工程材料2.1Materials for Concrete and Mix Proportion砼材料及配比2.2Properties of Concrete砼的性能2.3Steel Materials钢材料2.4Structural Steel Shapes型钢Chapter 3. Structural Design concepts结构设计3.1Load conditions and Load Paths负载条件和加载路径3.2Limit State Design极限状态设计Chapter 4. Concrete Structure钢筋混凝土结构4.1Flexural Behavior of Reinforced Concrete Beam钢筋混凝土梁的弯曲性能4.2Shear and Diagonal Tension in Reinforced Concrete Beam钢筋混凝土梁的剪切和斜拉4.3 Bond , Anchorage, and Development Length连接,锚固,基本锚固长度Chapter 1 . Structural Mechanics结构力学1.1 . Classification and Behavior of Structural Systems and Elements系统结构和元素的分类和作用Commonrigid elements include beams, columns or struts, arches, flat plates, singly curved plates, and shells having a variety of different curvatures. Flexible elements include cables (straight anddraped) and membranes(planar, singly curved, and doubly curved). In addition, there are a number ofother types of structures that are derived from these elements(e.g, frames, trsses, geodesic domes,nets, etc. )(figure 1.1)常见的刚性元件包括梁,柱,支撑,圆拱,平板,单向板弯曲面,具有不同的曲率的翘体。
土木工程专业英语词汇(整理版)
第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语Specialty English3 水利工程Hydraulic Engineering4 土木工程Civil Engineering5 地下工程Underground Engineering6 岩土工程Geotechnical Engineering7 道路工程Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程Tunnel Engineering10 工程力学Engineering Mechanics11 交通工程Traffic Engineering12 港口工程Port Engineering13 安全性safety17木结构timber structure18 砌体结构masonry structure19 混凝土结构concrete structure20 钢结构steelstructure21 钢-混凝土复合结构steel and concrete composite structure22 素混凝土plain concrete23 钢筋混凝土reinforced concrete24 钢筋rebar25 预应力混凝土pre-stressed concrete26 静定结构statically determinate structure27 超静定结构statically indeterminate structure 28 桁架结构truss structure29 空间网架结构spatial grid structure30 近海工程offshore engineering31 静力学statics32运动学kinematics33 动力学dynamics34 简支梁simply supported beam35 固定支座fixed bearing36弹性力学elasticity37 塑性力学plasticity38 弹塑性力学elaso-plasticity39 断裂力学fracture Mechanics40 土力学soil mechanics41 水力学hydraulics42 流体力学fluid mechanics43 固体力学solid mechanics44 集中力concentrated force45 压力pressure46 静水压力hydrostatic pressure47 均布压力uniform pressure48 体力body force49 重力gravity50 线荷载line load51 弯矩bending moment52 torque 扭矩53 应力stress54 应变stain55 正应力normal stress56 剪应力shearing stress57 主应力principal stress58 变形deformation59 内力internal force60 偏移量挠度deflection61 settlement 沉降62 屈曲失稳buckle63 轴力axial force64 允许应力allowable stress65 疲劳分析fatigue analysis66 梁beam67 壳shell68 板plate69 桥bridge70 桩pile71 主动土压力active earth pressure72 被动土压力passive earth pressure73 承载力load-bearing capacity74 水位water Height75 位移displacement76 结构力学structural mechanics77 材料力学material mechanics78 经纬仪altometer79 水准仪level80 学科discipline81 子学科sub-discipline82 期刊journal ,periodical83文献literature84 ISSN International Standard Serial Number 国际标准刊号85 ISBN International Standard Book Number 国际标准书号86 卷volume87 期number 88 专著monograph89 会议论文集Proceeding90 学位论文thesis, dissertation91 专利patent92 档案档案室archive93 国际学术会议conference94 导师advisor95 学位论文答辩defense of thesis96 博士研究生doctorate student97 研究生postgraduate98 EI Engineering Index 工程索引99 SCI Science Citation Index 科学引文索引100ISTP Index to Science and Technology Proceedings 科学技术会议论文集索引101 题目title102 摘要abstract103 全文full-text104 参考文献reference105 联络单位、所属单位affiliation106 主题词Subject107 关键字keyword108 ASCE American Society of Civil Engineers 美国土木工程师协会109 FHWA Federal Highway Administration 联邦公路总署110 ISO International Standard Organization111 解析方法analytical method112 数值方法numerical method113 计算computation114 说明书instruction第二部分:岩土工程专业词汇1.geotechnical engineering岩土工程2.foundation engineering基础工程3.soil, earth土4.soil mechanics土力学cyclic loading周期荷载unloading卸载reloading再加载viscoelastic foundation粘弹性地基viscous damping粘滞阻尼shear modulus剪切模量5.soil dynamics土动力学6.stress path应力路径7.numerical geotechanics 数值岩土力学二. 土的分类 1.residual soil残积土groundwater level地下水位 2.groundwater 地下水groundwater table地下水位 3.clay minerals粘土矿物 4.secondary minerals次生矿物 ndslides滑坡 6.bore hole columnar section钻孔柱状图7.engineering geologic investigation工程地质勘察8.boulder漂石9.cobble卵石10.gravel砂石11.gravelly sand砾砂12.coarse sand粗砂13.medium sand中砂14.fine sand细砂15.silty sand粉土16.clayey soil粘性土17.clay粘土18.silty clay粉质粘土19.silt粉土20.sandy silt 砂质粉土21.clayey silt粘质粉土22.saturated soil饱和土23.unsaturated soil非饱和土24.fill (soil)填土25.overconsolidated soil超固结土26.normally consolidated soil正常固结土27.underconsolidated soil欠固结土28.zonal soil区域性土29.soft clay软粘土30.expansive (swelling) soil膨胀土31.peat泥炭32.loess 黄土33.frozen soil冻土24.degree of saturation饱和度25.dry unit weight干重度26.moist unit weight湿重度45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会四. 渗透性和渗流1.Darcy’s law 达西定律2.piping管涌3.flowing soil流土4.sand boiling砂沸5.flow net流网6.seepage渗透(流)7.leakage渗流8.seepage pressure渗透压力9.permeability渗透性10.seepage force渗透力11.hydraulic gradient水力梯度12.coefficient of permeability渗透系数五. 地基应力和变形1.soft soil软土2.(negative) skin friction of driven pile打入桩(负)摩阻力3.effective stress有效应力4.total stress 总应力5.field vane shear strength十字板抗剪强度6.low activity低活性7.sensitivity灵敏度8.triaxial test三轴试验9.foundation design基础设计10.recompaction再压缩11.bearing capacity承载力12.soil mass土体13.contact stress (pressure)接触应力(压力)14.concentrated load集中荷载15.a semi-infinite elastic solid半无限弹性体16.homogeneous均质17.isotropic各向同性18.strip footing条基19.square spread footing方形独立基础20.underlying soil (stratum ,strata)下卧层(土)21.dead load =sustained load恒载持续荷载22.live load 活载23.short –term transient load短期瞬时荷载24.long-term transient load长期荷载25.reduced load折算荷载26.settlement沉降27.deformation变形28.casing套管29.dike=dyke堤(防)30.clay fraction粘粒粒组31.physical properties物理性质32.subgrade路基33.well-graded soil级配良好土34.poorly-graded soil级配不良土35.normal stresses正应力36.shear stresses剪应力37.principal plane主平面38.major (intermediate, minor) principal stress最大(中、最小)主应力39.Mohr-Coulomb failure condition摩尔-库仑破坏条件40.FEM=finite element method有限元法41.limit equilibrium method极限平衡法42.pore water pressure孔隙水压力43.preconsolidation pressure先期固结压力44.modulus of compressibility压缩模量45.coefficent of compressibility压缩系数pression index压缩指数47.swelling index回弹指数48.geostatic stress自重应力49.additional stress附加应力50.total stress总应力51.final settlement最终沉降52.slip line滑动线六. 基坑开挖与降水 1 excavation开挖(挖方) 2 dewatering(基坑)降水3 failure of foundation基坑失稳4 bracing of foundation pit基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall挡土墙7 pore-pressure distribution孔压分布8 dewatering method降低地下水位法9 well point system井点系统(轻型)10 deep well point深井点11 vacuum well point真空井点12 braced cuts支撑围护13 braced excavation支撑开挖14 braced sheeting支撑挡板七. 深基础--deep foundation 1.pile foundation桩基础1)cast –in-place灌注桩diving casting cast-in-place pile沉管灌注桩bored pile钻孔桩special-shaped cast-in-place pile机控异型灌注桩piles set into rock嵌岩灌注桩rammed bulb pile夯扩桩2)belled pier foundation钻孔墩基础drilled-pier foundation钻孔扩底墩under-reamed bored pier3)precast concrete pile预制混凝土桩4)steel pile钢桩steel pipe pile钢管桩steel sheet pile钢板桩5)prestressed concrete pile预应力混凝土桩prestressed concrete pipe pile预应力混凝土管桩2.caisson foundation 沉井(箱) 3.diaphragm wall地下连续墙截水墙4.friction pile摩擦桩5.end-bearing pile端承桩6.shaft竖井;桩身7.wave equation analysis波动方程分析8.pile caps承台(桩帽)9.bearing capacity of single pile单桩承载力teral pile load test单桩横向载荷试验11.ultimate lateral resistance of single pile单桩横向极限承载力12.static load test of pile单桩竖向静荷载试验13.vertical allowable load capacity单桩竖向容许承载力14.low pile cap低桩承台15.high-rise pile cap高桩承台16.vertical ultimate uplift resistance of single pile单桩抗拔极限承载力17.silent piling静力压桩18.uplift pile抗拔桩19.anti-slide pile抗滑桩20.pile groups群桩21.efficiency factor of pile groups群桩效率系数(η)22.efficiency of pile groups群桩效应23.dynamic pile testing桩基动测技术24.final set最后贯入度25.dynamic load test of pile桩动荷载试验26.pile integrity test桩的完整性试验27.pile head=butt桩头28.pile tip=pile point=pile toe桩端(头)29.pile spacing 桩距30.pile plan桩位布置图31.arrangement of piles =pile layout桩的布置32.group action群桩作用33.end bearing=tip resistance桩端阻34.skin(side) friction=shaft resistance桩侧阻35.pile cushion桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test拔桩试验38.pile shoe桩靴39.pile noise打桩噪音40.pile rig打桩机九. 固结consolidation1.Terzzaghi’s consolidation theory太沙基固结理论2.Barraon’s consolidation theory巴隆固结理论3.Biot’s consolidation theory比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil超固结土6.excess pore water pressure超孔压力7.multi-dimensional consolidation多维固结8.one-dimensional consolidation一维固结9.primary consolidation主固结10.secondary consolidation次固结11.degree of consolidation固结度12.consolidation test固结试验13.consolidation curve固结曲线14.time factor Tv 时间因子15.coefficient of consolidation固结系数16.preconsolidation pressure前期固结压力17.principle of effective stress有效应力原理18.consolidation under K0 condition K0固结十. 抗剪强度shear strength 1.undrained shear strength不排水抗剪强度2.residual strength残余强度3.long-term strength长期强度4.peak strength峰值强度5.shear strain rate剪切应变速率6.dilatation剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法8.total stress approach of shear strength抗剪强度总应力法9.Mohr-Coulomb theory莫尔-库仑理论10.angle of internal friction内摩擦角11.cohesion粘聚力12.failure criterion破坏准则13.vane strength十字板抗剪强度14.unconfined compression无侧限抗压强度15.effective stress failure envelop有效应力破坏包线16.effective stress strength parameter有效应力强度参数十一. 本构模型--constitutive model1.elastic model弹性模型2.nonlinear elastic model非线性弹性模型3.elastoplastic model弹塑性模型4.viscoelastic model粘弹性模型5.boundary surface model边界面模型6.Duncan-Chang model邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model盖帽模型9.work softening加工软化10.work hardening加工硬化11.Cambridge model剑桥模型12.ideal elastoplastic model理想弹塑性模型13.Mohr-Coulomb yield criterion莫尔-库仑屈服准则14.yield surface屈服面15.elastic half-space foundation model弹性半空间地基模型16.elastic modulus弹性模量17.Winkler foundation model文克尔地基模型十二. 地基承载力--bearing capacity of foundation soil 1.punching shear failure冲剪破坏2.general shear failure 整体剪切破化 3.local shear failure局部剪切破坏 4.state of limit equilibrium极限平衡状态5.critical edge pressure临塑荷载6.stability of foundation soil地基稳定性7.ultimate bearing capacity of foundation soil地基极限承载力8.allowable bearing capacity of foundation soil地基容许承载力十三. 土压力--earth pressure1.active earth pressure主动土压力2.passive earth pressure被动土压力3.earth pressure at rest静止土压力4.Coulomb’s earth pressure theory库仑土压力理论5.R ankine’s earth pressure theory朗金土压力理论十四. 土坡稳定分析--slope stability analysis1.angle of repose休止角2.Bishop method毕肖普法3.safety factor of slope边坡稳定安全系数4.Fellenius method of slices费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method条分法十五. 挡土墙--retaining wall1.stability of retaining wall挡土墙稳定性2.foundation wall基础墙3.counter retaining wall扶壁式挡土墙4.cantilever retaining wall悬臂式挡土墙5.cantilever sheet pile wall悬臂式板桩墙6.gravity retaining wall重力式挡土墙7.anchored plate retaining wall锚定板挡土墙8.anchored sheet pile wall锚定板板桩墙十六. 板桩结构物--sheet pile structure 1.steel sheet pile钢板桩 2.reinforced concrete sheet pile钢筋混凝土板桩3.steel piles钢桩4.wooden sheet pile木板桩5.timber piles木桩十七. 浅基础--shallow foundation 1.box foundation箱型基础 2.mat(raft) foundation片筏基础 3.strip foundation条形基础 4.spread footing扩展基础 pensated foundation补偿性基础6.bearing stratum持力层7.rigid foundation刚性基础8.flexible foundation柔性基础9.embedded depth of foundation基础埋置深度 foundation pressure基底附加应力11.structure-foundation-soil interaction analysis上部结构-基础-地基共同作用分析十八. 土的动力性质--dynamic properties of soils1.dynamic strength of soils动强度2.wave velocity method波速法3.material damping材料阻尼4.geometric damping几何阻尼5.damping ratio阻尼比6.initial liquefaction初始液化7.natural period of soil site地基固有周期8.dynamic shear modulus of soils动剪切模量9.dynamic ma二十. 地基基础抗震 1.earthquake engineering地震工程2.soil dynamics土动力学3.duration of earthquake地震持续时间 4.earthquake response spectrum地震反应谱5.earthquake intensity地震烈度6.earthquake magnitude 震级7.seismic predominant period地震卓越周期8.maximum acceleration of earthquake地震最大加速度二十一. 室内土工实验 1.high pressure consolidation test 高压固结试验 2.consolidation under K0 condition K0固结试验 3.falling head permeability变水头试验4.constant head permeability常水头渗透试验5.unconsolidated-undrained triaxial test不固结不排水试验(UU)6.consolidated undrained triaxial test固结不排水试验(CU)7.consolidated drained triaxial test固结排水试验(CD)paction test击实试验9.consolidated quick direct shear test固结快剪试验10.quick direct shear test快剪试验11.consolidated drained direct shear test慢剪试验12.sieve analysis筛分析13.geotechnical model test土工模型试验14.centrifugalmodel test离心模型试验15.direct shear apparatus直剪仪16.direct shear test直剪试验17.direct simple shear test直接单剪试验18.dynamic triaxial test三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test自(共)振柱试验二十二. 原位测试 1.standard penetration test (SPT)标准贯入试验 2.surface wave test (SWT)表面波试验3.dynamic penetration test(DPT)动力触探试验 4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验 teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test螺旋板载荷试验10.pressuremeter test旁压试验11.light sounding轻便触探试验12.deep settlement measurement深层沉降观测13.vane shear test十字板剪切试验14.field permeability test现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测16.in-situ soil test原位试验。
土木工程专业英语翻译
1.1 许多天然物质,如粘土、砂子和岩石,甚至树枝和树叶都已经被用作建筑材料。
Many naturally occurring substances, such as clay, sand, wood and rocks, even twigs and leaves have been used to construct buildings.1.2 砖块是由窑中烧制材料作成的块体,通常由粘土或页岩制成,但也可由炉渣制成。
A brick is a block made of kiln-fired material, usually clay or shale, but also maybe of lower quality mud.1.3 与水混合后,水泥便发生水化反应,并最终形成像石头一样的材料。
After mixing, the cement hydrates and eventually hardens into a stone-like material.1.4 金属可用作大型结构的框架,也可用来装饰建筑物外表。
Metal is used as structural framework for larger buildings such as skyscrapers, or as an external surface covering.1.5 明亮的窗户不但能使光线进入建筑物,而且也能将恶劣气候隔绝于建筑物之外。
Clear windows provided humans with the ability to both let light into rooms while at the same time keeping inclement weather outside.2.1 材料的抗拉强度是一种广延性质,因此它并不因试件尺寸的不同而改变。
Tensile strength is an intensive property and, consequently, does not depend on the side of the test specimen.2.2 屈服强度是材料从弹性变形到塑性变形转化时的应力。
(完整版)土木工程专业英语课文原文及对照翻译
Civil EngineeringCivil engineering, the oldest of the engineering specialties, is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities.土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。
此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。
Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities.土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。
土木工程专业英语带译文
13
Key characteristics Three physical characteristics give reinforced concrete itsehavior(性能)of reinforced concrete Materials Concrete is a mixture of of Coarse (stone or brick chips) and Fine (generally sand) aggregates with a binder material (usually Portland cement). When mixed with a small amount of water, the cement hydrates form microscopic opaque crystal lattices encapsulating and locking the aggregate into a rigid structure. 混凝土是粗粒(石块或砖块)和细粒(通常是沙粒)与粘结材料(通常是波特兰水泥) 的混合物。 当与少量水混合时,水泥水合物形成微观不透明晶格,将聚集体封装并锁定在 刚性结构中。
Reinforced concrete can be classified as precast or cast in-situ concrete. • 钢筋混凝土可以分为预制或现浇混凝土。
9
• Much of the focus on reinforcing concrete is placed on floor systems. Designing and implementing the most efficient floor system is a key to creating optimal building structures. Small changes in the design of a floor system can have significant impact on material costs, construction schedule, ultimate strength, operating costs, occupancy levels and end use of a building. • 大部分建筑注重加强混凝土的地板系统。 设计和实施最高效的地板系统是 创建最佳建筑结构的关键。 地板系统设计的微小变化会对建筑物的材料成本, 施工进度,最终强度,运营成本,入住率和最终用途产生重大影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)Concrete and reinforced concrete are used as building materials in every country. In many, including Canada and the United States, reinforced concrete is a dominant structural material in engineered construction.(1)混凝土和钢筋混凝土在每个国家都被用作建筑材料。
在许多国家,包括加拿大和美国,钢筋混凝土是一种主要的工程结构材料。
(2)The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction.(2) 钢筋混凝土建筑的广泛存在是由于钢筋和制造混凝土的材料,包括石子,沙,水泥等,可以通过多种途径方便的得到,同时兴建混凝土建筑时所需要的技术也相对简单。
(3)Concrete and reinforced concrete are used in bridges, building of all sorts, underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.(3)混凝土和钢筋混凝土被应用于桥梁,各种形式的建筑,地下结构,蓄水池,电视塔,海上石油平台,以及工业建筑,大坝,甚至船舶等。
(4)Reinforce concrete structures consist of a series of individual members that interact to support the loads placed on the structure. The floor of concrete buildings is often built of concrete joist-slab construction.(4)钢筋混凝土结构由一系列单独构件组成,这些构件通过相互作用共同抵抗施加在结构上的荷载。
混凝土建筑的楼层通常采用肋梁楼盖的形式。
(5)A series of parallel ribs or joists support the load from the top slab. The reactions supporting the joists apply load to the beams, which in turn are supported by the columns.(5)一系列的平行梁肋或次梁抵抗其上楼板传来的荷载,次梁的反力作为荷载施加在主粱上,主粱则支承在柱上。
(6)The slab transfers load laterally to the joists, and serves as the top flange of the joists, which act as T-shaped beams that transmit the load to the beams running at right angles to the joists.(6)楼板将荷载垂直传递给次梁,并且作为上翼缘和次梁一起形成T形截面梁,将荷载传递给与次梁正交的主粱。
(7)Some floors of have a slab-and-beam design in which the slab spans between beams, which in turn apply loads to the columns.(7)一些楼层被设计成梁板结构,即楼板直接支承在相邻的主粱上,主粱再将荷载传递到柱上。
(8)Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage or temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete.(8)混凝土的抗压能力很强但抗拉能力很弱。
因此,当荷载、受约束的收缩或温度变化所引起的拉应力超过其抗拉强度时,混凝土中的裂缝就会开展。
(9)The construction of a reinforced concrete member involves building a form or mould in the shape of the member being built. The form must be strong enough to support the weight and hydrostatic pressure of the wet concrete.(9)钢筋混凝土构件的制作需要一个与构件形状相同的模子,其必须具有足够的强度以抵抗湿混凝土的重量和流动压力。
(10)The reinforcement is placed in this form and held in place during the concretingoperation. After the concrete has hardened, the forms are removed.(10)在混凝土浇注的过程中,钢筋被放置在模子中的固定位置。
在混凝土硬化之后,模板才能被移除。
(11)一个结构到底是采用混凝土,钢材,砌体,还是木材进行建造,取决于材料是否容易获得和其他一些经济上的考虑。
通常,最先考虑的因素是结构的总造价。
(12)结构的总造价是材料费用,人工费,以及建造过程持续时间的函数。
(13)通常,结构的总造价受到施工时间长短的影响,这是因为承包商和业主必须为施工过程提供资金,而且这些资金一直要到建筑物可以使用后才能得到收益。
(14)兴建钢筋混凝土结构所需要的材料可以很容易的通过多种渠道获得,在施工过程中需要时可以随时制作,与此相反,兴建钢结构时所需要的材料必须向钢材加工厂预定并为此提前支付部分款项。
(15)设计者对设计和制作所采取的任何标准化的措施都可以减少建筑的总造价。
例如,可以在不同的楼层布置相同尺寸的柱以节省模板的费用,而不同楼层柱荷载的不同则可以通过改变柱混凝土强度等级或配筋率来考虑。
(16)The occupants of a building may be disturbed if their building oscillates in the wind or the floors vibrate an people walk by. Due to the greater stiffness and mass of a concrete structure, vibrations are seldom a problem.(17)在混凝土结构的施工过程中,新浇混凝土的重量由模板来承担,这些模板通常支承在下层楼板上。
另外,建筑材料经常堆放在楼板或屋面上。
(18)砂子,石子,水泥以及搅拌混凝土的设备可以很方便地通过多种方式获得,并且钢筋比型钢更容易运送到工地。
因此,一些偏远的地区经常使用钢筋混凝土。
(19)混凝土的抗拉强度比其抗压强度低得多,因此混凝土会开裂。
在结构中,这个问题通过使用钢筋来解决。
(20)与类似的钢结构相比,混凝土结构需要使用更多的材料,重量也更大。
因此,大跨度的结构通常使用钢材来建造。
(21)The limit states for reinforced concrete structures can be divided into five basic groups: durability, fire resistance, ultimate limit states, serviceability limit states, and special limit states.(21)混凝土结构的极限状态包括五个内容:耐久性,耐火性,承载力极限状态,正常使用极限状态,以及特殊极限状态。
(22)Durability means that the structure should withstand environmental exposure without excessive deterioration of the concrete or corrosion of the reinforcement. Fire resistance means the structure must have the resistance required by the applicable provincial building code.(22)耐久性是指结构能够暴露在环境中而不会发生混凝土材料性能的急剧退化或钢筋的锈蚀。
耐火性是指结构必须具有本地区建筑规范所要求的抗火能力。
(23)The ultimate limit states involve a structural collapse of part or all of the structure. Such a limit state should have a very low probability of occurrence since it may lead to loss of life and major financial losses.(23)承载力极限状态指结构局部倒塌或整体倒塌。
因为这种极限状态会造成生命和大量财产的损失,其发生的可能性必须被降到很低。
(24)The ultimate limit states include loss of equilibrium of a part or all of the structure, rupture of critical parts of the structure, progressive collapse, formation of a plastic mechanism, and instability.(24)承载力极限状态包括结构局部或整体失去平衡,结构关键部位的破坏,渐进式的倒塌,塑性机构形成,以及失稳。