角的压轴题

合集下载

二次函数与角有关的问题整理

二次函数与角有关的问题整理

二次函数与角有关的问题整理二次函数与角有关的问题整理二次函数背景下与角有关的存在性问题是各地中考和模拟考试的热点问题。

这种类型的题目综合性较强,更重要的是涉及方程与函数思想、数形结合思想、分类讨论等重要的思想方法,对学生分析、解决问题的能力具有较高的要求。

为此,我们将与角有关的压轴题常见的题型及解法做一整理。

首先,我们将这些题大致分成两大类:相等角问题和半角或倍角问题。

相等角问题又分为三种:第一种是将等角问题转化成等腰三角形或平行线问题。

例如,在例1中,抛物线y=-x2+3x+4与坐标轴交于点A、B、C,CP⊥y轴交抛物线与点P,点M为A、C间抛物线上一点(包括端点),求满足∠MPO=∠POA的点M的坐标。

我们可以发现符合条件的点M有两个,一个在OP上方,一个在OP下方。

当M在OP上方时,由∠MPO=∠POA可知PM//OA,则M与C点重合。

当M在OP下方时,这两角组成的三角形是等腰三角形。

设PM与x轴交于点D,坐标为D(n,0),由两点间距离公式可表示出OD2、PD2长,根据OD2=PD2列方程即可求出D点坐标,再求出PD直线表达式与抛物线表达式联立,进而求出M点坐标。

第二种是将等角问题转化成等角所在三角形相似或等角对应的三角函数(通常是正切值)相等问题。

这类问题有两种情况:一种是所求角的一边与坐标轴平行(重合);例如,在例2中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.1)求抛物线的解析式及点D的坐标;2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标。

通过已知条件易得抛物线表达式为y=x2-2x-6及各定点坐标。

第二问中的F有两种情况:x轴上方一个,x轴下方一个。

在Rt⊿BDE中,可知tan∠EDB=2,则tan∠FAB=2.过F作x轴垂线,构造∠FAB所在直角三角形,接着通过设F点坐标,表示FH和AH长,根据XXX∠FAB=AH/FH,列方程求解即可。

2023年九年级数学中考专题:二次函数综合压轴题(角度问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(角度问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(角度问题)1.如图,抛物线2y ax2x c=++(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当:COD COBS S=1:3时,求点F的坐标;(3)如图2,点E的坐标为(0,﹣32),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请求出点P的坐标;若不存在,请说明理由.2.如图,在二次函数2221y x mx m=-+++(m是常数,且0m>)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求OBC∠的度数;(2)若ACO CBD∠=∠,求m的值;(3)若在第四象限内二次函数2221y x mx m=-+++(m是常数,且0m>)的图像上,始终存在一点P ,使得75ACP ∠=︒,请结合函数的图像,直接写出m 的取值范围. 3.如图1,直线y =2x +2交x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线232y ax x c =++与x 轴的另一交点为B .(1)求该抛物线的函数表达式;(2)如图2,点D 是抛物线在第一象限内的一点,连接OD ,将线段OD 绕O 逆时针旋转90°得到线段OM ,过点M 作MN ∠x 轴交直线AC 于点N .求线段MN 的最大值及此时点D 的坐标;(3)在(2)的条件下,若点E 是点A 关于y 轴的对称点,连接DE ,试探究在抛物线上是否存在点P ,使得∠PED =45°?若存在,求出点P 的坐标;若不存在,请说明理由. 4.如图,抛物线22y ax bx =++与x 轴相交于A 、B 两点,与y 轴相交于点C ,已知B 点的坐标为()4,0,抛物线的对称轴为直线32x =,点D 是BC 上方抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当BCD △的面积为74时,求点D 的坐标; (3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE 中的某个角等于ABC ∠的2倍?若存在,请直接写出点D 的横坐标...;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线211322y x x =-++与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,D 为线段AB 上一点.(1)求A ,B ,C 三点的坐标;(2)过点D 作x 轴的垂线与抛物线交于点E ,与直线BC 相交于点F ,求出点E 到直线BC 距离d 的最大值;(3)连接CD ,作点B 关于CD 的对称点B ',连接AB ',B D '.在点D 的运动过程中,ADB ∠'能否等于45°?若能,请直接写出此时点B '的坐标,若不存在请说明理由.6.如图1,二次函数2y x bx c =++的图像与x 轴交于点A (﹣2,0),B (4,0),抛物线的顶点为C ,作射线AC ,BC .动点P 从点A 出发,以每秒1个单位长度的速度沿射线AC 做匀速运动,动点Q 从B 出发,以每秒2个单位长度的速度沿射线BC 运动.(1)填空:b =_____,c =_____,C 的坐标为_____.(2)点P ,Q 运动过程中,∠CPQ 可能为等腰三角形吗?说明理由.(3)如图2,连接PO ,QO ,当∠POQ =30°时,直接写出t 的值.7.如图,抛物线2y ax bx c =++经过()1,0A -,()3,0B 且与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)若点P 是x 轴的正半轴上一点,1tan 3APC ∠=,求点P 的坐标; (3)当点P 是抛物线上第一象限上的点,1tan 3APC ∠=,直接写出点P 的坐标为______. 8.如图,抛物线24y ax bx =+-与x 轴交于点A (-2,0)、B (4,0),与y 轴交于点C ,过点C 作x 轴的平行线交抛物线于点D ,连接AC ,作直线BC .(1)求抛物线24y ax bx =+-的表达式; (2)如图2,点E (x ,0)是线段OB 上的点,过点E 作与x 轴垂直的直线与直线BC 交于点F ,与抛物线交于点G .∠线段FG 的长是否存在最大值?若存在,求出这个最大值:若不存在,说明理由; ∠连接CG ,当∠DCG =∠ACO 时,求点G 的坐标;(3)若点P 是直线BC 下方的抛物线上的一点,点Q 在y 轴上,点M 在线段BC 上,当以C ,P ,Q ,M 为顶点的四边形是菱形时,直接写出菱形的边长.9.如图1,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴交于A (1,0),与y 轴交于C (0,-3).(1)求抛物线的解析式;(2)在抛物线上是否存在这样的点P ,使得∠ACP=∠ABC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图2,点D 为线段BC 上一点,过点D 作y 轴的平行线交抛物线于点E ,连结BE .当∠DBE =90°时,求BEC S ∆.10.如图,在平面直角坐标系xOy 中,抛物线y =ax 2-2x +c 与x 轴交于点A 和点B (1,0),与y 轴相交于点C (0,3).(1)求抛物线的解析式和顶点D 的坐标;(2)找出图中与∠DAB 相等的一个角,并证明;(3)若点P 是第二象限内抛物线上的一点,当点P 到直线AC 的距离最大时,求点P 的坐标.11.如图所示:二次函数26y ax bx =+-的图象与x 轴交于()2,0A -,()3,0B 两点,与y 轴交于点C ,连接AC ,BC .(1)求二次函数表达式及直线BC 的函数表达式;(2)如图1,若点M 为抛物线上线段BC 右侧的一动点,连接CM ,BM .求四边形ACMB 面积最大时点M 的坐标;(3)如图2,该抛物线上是否存在点P ,使得ACO BCP ∠=∠?若存在,请求出所有点P 的坐标;若不存在,请说明理由.12.已知如图,二次函数23y x bx =++的图像与x 轴相交于点A 、B 两点,与y 轴相交于点C ,连接AC 、BC ,tan 1ABC ∠=,抛物线的顶点为D .(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点E ,当AE CE +取得最小值时,E 点坐标为________;此时AE 与BC 的位置关系是________,tan ACE ∠=________;(3)抛物线对称轴右侧的函数图像上是否存在点M ,满足ACB BAM ∠=∠,若存在求M 点的横坐标;若不存在,请说明理由;(4)若抛物线上一动点Q ,当BAQ ACO ∠=∠时,直接写出Q 点坐标________. 13.如图,在平面直角坐标系中,抛物线212y x bx c =++与x 轴交于B ,C 两点(C 在B的左侧),与y 轴交于点A ,已知()0,4A -,2OA OB =.(1)求抛物线的表达式;(2)若点Q 是线段AC 下方抛物线上一点,过点Q 作QD 垂直AC 交AC 于点D ,求DQ 的最大值及此时点Q 的坐标;(3)点E 是线段AB 上一点,且14AOE AOC S S =△△;将抛物线212y x bx c =++沿射线AB 的方向平移,当抛物线恰好经过点E 时,停止运动,已知点M 是平移后抛物线对称轴上的动点,N 是平面直角坐标系中一点,直接写出所有使得以点A ,B ,M ,N 为顶点的四边形是菱形的点N 的坐标,并把求其中一个点N 的坐标的过程写出来.14.如图,抛物线()()22369=++-+y mx m x m 与x 轴交于点A 、B ,与y 轴交于点C ,已知()3,0B .(1)m 的值是________;(2)P (异于点A )为抛物线上一点,若PBC ABC S S =△△,求点P 的坐标:(3)Q 为抛物线上一点,若45ACQ ∠=︒,请直接写出点Q 的坐标.15.如图,在平面直角坐标系中,抛物线22y ax bx =++与x 轴交于1,0A ,()4,0B 两点,与y 轴交于点C .直线l :2y kx =+过点C .(1)求抛物线的解析式;(2)当直线l 经过点B 时,取线段BC 的中点M ,作直线l 的平行线,恰好与抛物线有一个交点P 时,判断以点P ,O ,M ,B 为顶点的四边形是什么特殊的平行四边形,并说明理由;(3)在直线l 上是否存在唯一一点Q ,使得90AQB ∠=︒?若存在,请求出此时l 的解析式;若不存在,请说明理由.16.我们不妨约定,过坐标平面内任意两点(例如A ,B 两点)作x 轴的垂线,两个垂足之间的距离叫做这两点在x 轴上的“足距”,记作AB .根据该约定,完成下列各题:(1)若点1(,6)A x ,2(,4)B x -.当点A 、B 在函数2y x =的图象上时,AB =______;当点A ,B 在函数24y x=-的图像上时,AB =______; (2)若反比例函数()11k y k x -=≠的图象上有两点()1,A x k ,()22,B x k k -,当AB k =时,求正整数k 的值. (3)在(2)条件下抛物线223y kx x =+-与x 轴交于1A ,1B 两点,与y 轴交于点C .如图,点D 是该抛物线的顶点,点(,)P m n 是第一象限内该抛物线上的一个点,分别连接1A D 、1A C 、1A P ,当1112PA B CA D ∠=∠时,求m 的值.17.在平面直角坐标系xOy 中,二次函数y =ax 2+bx 的图象与x 轴交于O 、A 两点,其顶点B 的坐标为(2,﹣6).(1)求a 、b 的值;(2)如图1,点C 是该二次函数图象的对称轴上的一个动点,连接BO 、CO ,当∠OBC 是以BC 为腰的等腰三角形时,求点C 的坐标;(3)如图2,P 是该二次函数图象上的位于第一象限内的一个动点,连接OP ,与对称轴交于点M ,点Q 在OP 上,满足OQ PQ =21,设点P 的横坐标为n ; ∠请用含n 的代数式表示点Q 的坐标(,);∠连接BQ ,OB ,当∠OBQ 的面积为15时,求点P 的坐标;∠当∠POA =2∠OBM 时,直接写出点P 的横坐标.18.如图1,直线4y x =-+与x 轴、y 轴分别交于点A 与点B ,抛物线212y x bx c =-++经过点A 、B ,在线段OA 上有一动点(),0D m ,点D 不与O 、A 重合,过点D 作x 轴的垂线交直线AB 于点C ,交抛物线于点E .(1)求抛物线的函数表达式;(2)当点C 是DE 的中点时,求m 的值;(3)在(2)的条件下,将线段OD 绕点O 逆时针旋转得到OD ',旋转角为()090αα︒<<︒,连接'D A 、'D B ,直接写出''12D A D B +的最小值.参考答案:1.(1)223y x x =-++;(2)F (35,125); (3)存在,P (13,329)或(﹣73,﹣649).2.(1)A (-1,0);B (2m +1,0);C (0,2m +1);45OBC ∠=︒(2)1m =(3)0m <<3.(1)213222y x x =-++ (2)最大值为3;()2,3D(3)存在,11P ⎛ ⎝⎭,()20,2P4.(1)213 2.22y x x (2)79,28D 或121,.28(3)点D 的横坐标为2或2911.5.(1)A (-2,0),B (3,0),C (0,3);(2)点E 到直线BC 的距离d ;(3)在点D 的运动过程中,∠ADB '能等于45°,此时点B ′的坐标为(0,-或(-,3).6.;(1, (2)不可能,理由见解析(3)t 的值为:17.(1)2=23y x x --(2)点P 的坐标为()9,0(3)点P 的坐标为()4,58.(1)2142y x x =-- (2)∠当2x =时,FG 有最大值,FG 的最大值=2;∠G (3,-52)或(1,-4.5). (3)2或49.(1)2=+43y x x --(2)存在点P ,使得∠ACP=∠ABC ,点P 的坐标为7524,⎛⎫- ⎪⎝⎭(3)3△BEC S =10.(1)y =﹣x 2﹣2x +3,顶点D 的坐标为(﹣1,4)(2)∠ACB ,证明见解析(3)点P 坐标为(32-,154)11.(1)26y x x =--,26y x =-(2)点M 的坐标为321,24⎛⎫- ⎪⎝⎭ (3)存在,(2,-4)或(8,50)12.(1)y =x 2-4x +3;(2)(2,1);AE ∠BC ,12; (3)存在,M 点的横坐标为52或72; (4)Q 点的坐标为(103,79)或(83,59-) .13.(1)2142y x x =+-(2)DQ ()2,4Q -(3)N 点坐标为(2,或(2,-或()2,0-或52,2⎛⎫- ⎪⎝⎭,见解析14.(1)1-(2)()2,1P ,⎝⎭P ,⎝⎭P (3)75,24⎛⎫- ⎪⎝⎭Q15.(1)215222y x x =-+;(2)菱形;(3)存在,122y x =-+或2y x =+或2y x =+. 16.(1)5;10;(2)1;(3)74m =17.(1)a =32,b =﹣6;(2)点C 的坐标为(2,6--2,6-+2,83-);(3)∠23n ,n 2﹣4n ;∠P (5,152);∠点P 的横坐标为92.18.(1)2142y x x =-++;(2)2;(3。

初二数学全等三角形压轴题

初二数学全等三角形压轴题

人教版数学八年级上册第十二章全等三角形压轴题训练1.已知,是等腰直角三角形,,点在轴负半轴上,直角顶点在轴上,点在轴左侧.如图,若的坐标是,点的坐标是,求点的坐标;如图,若点的坐标为,与轴交于点,求线段的长;如图,若轴恰好平分,与轴交于点,过点作轴于点,则、、间有怎样的数量关系?并说明理由.2.如图,在平面直角坐标系中,直线分别交轴、轴于、两点,且,满足,且,是常数.直线平分,交轴于点.若的中点为,连接交于,求证:;如图,过点作,垂足为,猜想与间的数量关系,并证明你的猜想;如图,在轴上有一个动点在点的右侧,连接,并作等腰,其中,连接并延长交轴于点,当点在运动时,的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.3.如图,点,分别在直线,上,,顶点在点右侧的两边分别交线段于,直线于,,,交直线于点.若平分,求证:;已知的平分线与的平分线交于点请把图形补完整,并证明:.4.解答下列问题:如图,,射线在这个角的内部,点、分别在的边、上,且,于点,于点求证:如图,点、分别在的边、上,点、都在内部的射线上,、分别是、的外角已知,且求证:如图,在中,,点在边上,,点、在线段上,若的面积为,求与的面积之和.5.在平面直角坐标系中,直线与两坐标轴分别交于点与点,以为边作直角三角形,并且.如图,若点在第三象限,请构造全等,求出点的坐标;若点不在第三象限,请直接写出所有满足条件的点的坐标;在的条件下,过点作交轴于点,求证:.6.已知,点在上以的速度由点向点运动,同时点在上由点向点运动.它们运动的时间为.如图,,,若点的运动速度与点的运动速度相等,当时,与是否全等,请说明理由,并判断此时线段和线段的位置关系;如图,将图中的“,”为改“”,其他条件不变.设点的运动速度为,是否存在实数,使得与全等?若存在,求出相应的、的值;若不存在,请说明理由.7.如图,点,将一个的角尺的直角顶点放在点处,角尺的两边分别交轴、轴正半轴于,即,求证:平分;作的平分线交于点,过点作轴于,求的值;把角尺绕点旋转时,的值是否会发生变化?若发生变化请说明理由;若不变请求出这个值.8.画,并画的平分线.图图图将一块足够大的三角尺的直角顶点落在射线的任意一点上,并使三角尺的一条直角边与垂直,垂足为点,另一条直角边与交于点如图证明:;把三角尺绕点旋转,三角尺的两条直角边分别交、于点、如图,与相等吗?请直接写出结论:_____填,,;若点在的反向延长线上,其他条件不变如图,与相等吗?若相等请进行证明,若不相等请说明理由.9.如图,,点是的中点,直线于点,点在直线上,直线点以每秒个单位长度的速度,从点沿路径向终点运动,运动时间设为秒.如图,当时,作直线于点,此时与全等吗请说明理由.如图,当点在上时,作于点,于点.是否存在或与全等的时刻若存在,求出的值若不存在,请说明理由.连接,当时,求的长.10.如图,已知在四边形中,,点、分别是边、上的点,连接、、,.直接写出、、三者之间的数量关系____________________;若,猜想线段、、三者之间有怎样的数量关系?并加以证明;如图,若点、分别是、延长线上的点,且,其它条件不变时,猜想线段、、三者之间有怎样的数量关系?并加以证明.11.如图:在四边形中,,,,,分别是,上的点,且探究图中线段,,之间的数量关系。

最新九年级数学中考复习:旋转综合压轴题(角度问题)含答案

最新九年级数学中考复习:旋转综合压轴题(角度问题)含答案

2023年九年级数学中考复习:旋转综合压轴题(角度问题)1.如图① ,在①ABC 中,AB =AC =4,①BAC =90°,AD ①BC ,垂足为D .(1)S △ABD = .(直接写出结果)(2)如图①,将①ABD 绕点D 按顺时针方向旋转得到①A′B′D ,设旋转角为α (α<90°),在旋转过程中: 探究一:四边形APDQ 的面积是否随旋转而变化?说明理由; 探究二:当α=________时,四边形APDQ 是正方形.2.如图,在等腰Rt ABC 和等腰Rt CDE 中,90ACB DCE ∠=∠=︒.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的关系是_________;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由; (3)拓展延伸:把CDE △绕点C 在平面内转动一周,若10AC BC ==,5CE CD ==,AE 、BD 交于点P 时,连接CP ,直接写出BCP 最大面积_________.3.如图1,在Rt △ABC 中,①A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,请判断线段PM 与PN 的数量关系和位置关系,并说明理由;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =3,AB =7,请直接写出△PMN 面积的最大值.4.如图1,①ABC 为等腰直角三角形,①BAC =90°,AB =AC ,点D 在AB 边上,点E 在AC 边上,AD =AE ,连接DE ,取BC 边的中点O ,连接DO 并延长到点F ,使OF =OD ,连接CF . (1)请判断①CEF 的形状,并说明理由;(2)将(1)中①ADE 绕点A 旋转,连接CE ,(1)中的结论是否仍然成立,若成立,请仅就图2所示情况给出证明,若不成立,请说明理由;(3)若AB =6,AD =4,将①ADE 由图1位置绕点A 旋转,当点B ,E ,D 三点共线时,请直接写出①CEF 的面积.5.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是AB 外一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE ,BC 与DE 交于点F ,且AB BD ⊥.(1)如图1,若CB =6CE =,求DE 的长;(2)如图2,若点H 、G 分别为线段CF 、AE 的中点,连接HG ,求证:12HG BF =;(3)如图3,在(2)的条件下,若CE =4CF =,将BDF 绕点F 顺时针旋转角3(060)αα︒<≤︒,得到B D F '',连接B G ',取B G '中点Q ,连接BQ ,当线段BQ 最小时,请直接写出BQB '的面积.6.如图1,矩形ABCD 中,15,20AB BC ==,将矩形ABCD 绕着点A 顺时针旋转,得到矩形BEFG .(1)当点E 落在BD 上时,则线段DE 的长度等于________; (2)如图2,当点E 落在AC 上时,求BCE 的面积;(3)如图3,连接AE CE AG CG 、、、,判断线段AE 与CG 的位置关系且说明理由,并求22CE AG +的值;(4)在旋转过程中,请直接写出BCE ABG S S +△△的最大值.7.在平面直角坐标系中,O 为原点,点(4,0)A -,点(0,3),B ABO 绕点B 顺时针旋转,得A BO ''△,点A O 、旋转后的对应点为A O ''、,记旋转角为α.(1)如图①,90α=︒,边OA 上的一点M 旋转后的对应点为N ,当1OM =时,点N 的坐标为_____; (2)90α=︒,边OA 上的一点M 旋转后的对应点为N ,当O M BN '+取得最小值时,在图①中画出点M 的位置,并求出点N 的坐标.(3)如图①,P 为AB 上一点,且:2:1PA PB =,连接PO PA ''、,在ABO 绕点B 顺时针旋转一周的过程中,PO A ''的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.8.如图1,①ABC 和①DEC 均为等腰三角形,且①ACB =①DCE =90°,连接BE ,AD ,两条线段所在的直线交于点P .(1)线段BE 与AD 有何数量关系和位置关系,请说明理由. (2)若已知BC =12,DC =5,①DEC 绕点C 顺时针旋转, ①如图2,当点D 恰好落在BC 的延长线上时,求AP 的长;①在旋转一周的过程中,设①P AB 的面积为S ,求S 的最值.9.如图,在菱形ABCD 中,2AB =,60BAD ∠=,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F .()1如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:13MN AC =; ()2如图2,将EDF 以点D 为旋转中心旋转,其两边'DE 、'DF 分别与直线AB 、BC 相交于点G 、P ,连接GP ,当DGP 的面积等于10.如图1,一副直角三角板满足AB=BC ,AC=DE ,①ABC=①DEF=90°,①EDF=30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中, (1)如图2,当1CEEA=时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC=30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.11.如图1,在①ABC中,①BAC=90°,AB=AC,点D在边AC上,CD①DE,且CD=DE,连接BE,取BE的中点F,连接DF.(1)请直接写出①ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中①ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;①如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.12.已知点E是正方形ABCD的边AB上一点,AB=BE=2.以BE为边向右侧作正方形BEFG,将正方形BEFG绕点B顺时针旋转α度(0≤α≤90°),连结AE,CG(如图).(1)求证:①ABE①①CBG.(2)当点E在BD上时,求CG的长.(3)当90∠时,正方形BEFG停止旋转,求在旋转过程中线段AE扫过的面积.(参考数据:AEB=︒sin28︒≈,sin62︒≈tan28︒≈tan62︒≈)13.如图,矩形ABCD 中,5,6,==AB BC BCG 为等边三角形.点E ,F 分别为,AD BC 边上的动点,且EF AB ∥,P 为EF 上一动点,连接BP ,将线段BP 绕点B 顺时针旋转60︒至BM ,连接,,,PA PC PM GM .(1)求证:=GM PC ;(2)当,,PB PC PE 三条线段的和最小时,求PF 的长;(3)若点E 以每秒2个单位的速度由A 点向D 点运动,点P 以每秒1个单位的速度由E 点向F 点运动.E ,P 两点同时出发,点E 到达点D 时停止,点P 到达点F 时停止,设点P 的运动时间为t 秒. ①求t 为何值时,AEP △与CFP 相似; ①求BMP 的面积S 的最小值.14.如图1,在Rt ABC 中,90,5∠=︒==C AC BC ,点D 是边BC 上的一点,且BD =,过点D 做BC 边的垂线,交AB 边于点E ,将BDE 绕点B 顺时针方向旋转,记旋转角为()0360αα︒≤<︒.(1)【问题发现】当0α=︒时,AECD的值为________,直线,AE CD 相交形成的较小角的度数为________; (2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明; (3)【问题解决】当BDE 旋转至A ,D ,E 三点在同一条直线上时,请直接写出ACD △的面积.15.在中Rt ABC △中.90ABC ∠=︒,AB BC =,点E 在射线CB 上运动.连接AE ,将线段AE 绕点E 顺时针旋转90°得到EF ,连接CF .(1)如图1,点E在点B的左侧运动;①当2BE=,BC=EAB∠=_________°;①猜想线段CA,CF与CE之间的数量关系为_________.(2)如图2,点E在线段CB上运动时,第(1)间中线段CA,CF与CE之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.=,以A,E,C,F为顶点的四边形面积为y,请直接写出(3)点E在射线CB上运动,BC=,设BE xy与x之间的函数关系式(不用写出x的取值范围).16.如图,在①ABC中,AB=,①A=45°,AC=C作直线平行AB,将①ABC绕点A顺时针旋转得到①AB C''(点B,C的对应点分别为B',C'),射线AB',AC'分别交直线l于点P、Q.(1)如图1,求BC的长;(2)如图2,当点C为PQ中点时,求tan①APQ;(3)如图3,当点P,Q分别在线段AB',AC'上时,试探究四边形PQC B''的面积是否存在最大值.若存在,求出其最大值;若不存在,请说明理由.17.已知Rt△ABC中,AC=BC,①C=90°,D为AB边的中点,①EDF=90°,①EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)如图1,当①EDF 绕D 点旋转到DE ①AC 于E 时,易证S △DEF +S △CEF 与S △ABC 的数量关系为__________;(2)如图2,当①EDF 绕D 点旋转到DE 和AC 不垂直时,上述结论是否成立?若成立,请给予证明; (3)如图3,这种情况下,请猜想S △DEF 、S △CEF 、S △ABC 的数量关系,不需证明.18.面直角坐标系中,O 为原点,点(12,0)A ,点(0,5)B ,线段AB 的中点为点C .将ABO 绕着点B 逆时针旋转,点O 对应点为1O ,点A 的对应点为1A .(1)如图①,当点1O 恰好落在AB 上时, ①此时1CO 的长为__________;①点P 是线段OA 上的动点,旋转后的对应点为1P ,连接11,BP PO ,试求11BP PO +最小时点P 的坐标; (2)如图①,连接11,CA CO ,则在旋转过程中,11CAO △的面积是否存在最大值?若存在,直接写出最大值,若不存在,说明理由.19.如图,在Rt ABC 中,90C ∠=︒,5AB =,3sin 5A =.点P 从点A 出发,以每秒4个单位长度的速度向终点B 匀速运动,过点P 作PD AB ⊥交折线AC ,CB 于点D ,连结BD ,将DBP 绕点D 逆时针旋转90︒得到DEF .设点P 的运动时间为t (秒).(1)用含t 的代数式表示线段PD 的长. (2)当点E 落在AB 边上时,求AD 的长. (3)当点F 在ABC 内部时,求t 的取值范围.(4)当线段DP 将ABC 的面积分成1:2 的两部分时,直接写出t 的值.20.如图1,在Rt ABC △中,90B ∠=︒,AB BC =,AO 是BC 边上的中线,点D 是AO 上一点,DE EO ⊥,E 是垂足,DEO 可绕着点O 旋转,点F 是点E 关于点O 的对称点,连接AD 和CF .(1)问题发现:如图2,当1ADDO=时,则下列结论正确的是_______.(填序号)①BE CF =;①点F 是OC 的中点:①AO 是BAC ∠的角平分线;①AD .(2)数学思考:将图2中DEO 绕点O 旋转,如图3,则AD 和CF 具有怎样的数量关系?请给出证明过程;(3)拓展应用:在图1中,若ADx DO=,将DEO 绕着点O 旋转. ①则AD =_______CF ;①若4AB =,1x =,在DEO 旋转过程中,如图4,当点D 落在AB 上时,连结BE ,EC ,求四边形ABEC 的面积.答案21.(1)4(2)四边形APDQ 的面积不会随旋转而变化,理由见详解;当45α=︒时,四边形APDQ 是正方形.22.(1)AE BD =,AE BD ⊥; (2)结论仍成立23.(1)PM =PN ,PM ①PN . (2)△PMN 是等腰直角三角形. (3)S △PMN 最大=25224.(1) ①CEF 是等腰直角三角形;(2)成立,(3)18-18+25.(1)(3)8 26.(1)10;(2)42;(3) AE ①CG 221250CE AG =+;(4)30027.(1)(-3,4);(2)N (-3,92);(3)最大值为283,最小值为8328.(1)BE =AD ,BE 与AD 互相垂直,(2)①AP =8413;①最小47,最大72 29.(2)顺时针或逆时针旋转60.30.探究一:(1)EP=EQ ;证明见解析;(2)1:2,(3)EP :EQ=1:m ,①0<(1)当50cm 2;当75cm 2.(2)50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.31.(1)①ADF =45°,AD (2)①成立,;①1≤S △ADF ≤4.32.(3)3145S π=33.(3)①73;①34.,45︒;(2)无变化(3)121235.(1)①30;①AC +CF CE ;(2)CA -CF;(3)当点E 在点B 左侧运动时,y =21322x +;当点E 在点B 右侧运动时,y 32+.36.(3)存在;21-37.(1)S △DEF +S △CEF =12S △ABC(2)上述结论S △DEF +S △CEF =12S △ABC 成立(3)S △DEF -S △CEF =12S △ABC38.(1)①1.5 ①20,07⎛⎫ ⎪⎝⎭ (2)存在最大值,最大值为6939.(1)3t (2)258 (3)355374t ≤≤40.(1)①①①(2)AD =,①465。

2023-2024学年人教版七年级上册数学期末动角问题压轴题专题训练(含简单答案)

2023-2024学年人教版七年级上册数学期末动角问题压轴题专题训练(含简单答案)

2023-2024学年人教版七年级上册数学期末动角问题压轴题专题训练(1)若,则__________.(2)当线段在线段上运动时,试判断线段请求出线段的长度;如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图2,已知(1)若,则 ;10cm AC =EF =cm CD AB EF EF 10cm AC =EF =cm(2)当线段在线段上运动时,试判断线段的长度是否会发生变化,如果不变,请求出线段的长度;如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图2,已知在内部转动,分别平分和.类比以上发现的线段的规律,若,,求的度数.3.如图甲,已知线段,线段在线段上运动(不与端点、重合),E 、F 分别是、的中点.(1)观察发现:若,则______cm .(2)拓展探究:当线段在线段上运动时,试判断的长度是否发生变化?如果不变,求出的长度,如果变化,请说明理由.(3)迁移应用:对于角,也有和线段类似的规律:如图乙,在同一平面内,已知在内部转动,,分别平分和①若,,求;②请你猜想,和会有怎样的数量关系,直接写出你的结论.CD AB EF EF COD ∠AOB ∠OE OF 、AOC ∠BOD ∠80EOF ∠=︒35COD ∠=︒AOB ∠20cm AB =4cm CD =CD AB A B AC BD 6cm AC =EF =CD AB EF EF COD ∠AOB ∠OE OF AOC ∠BOD∠130AOB ∠=︒20COD ∠=︒EOF ∠EOF ∠AOB ∠COD ∠(1)当时,则线段 ,线段 .(2)用含的代数式表示运动过程中的长.(3)在运动过程中,若的中点为,问的长是否变化?与点的位置是否无关?(4)知识迁移:如图2,已知,过角的内部任一点画射线,若2t =AB =cm CD =cm t AB AB E EC B 120AOD ∠=︒B OB(1)如图1,为直线上的一点,,,直接写出图中一对垂角;(2)如果一个锐角的垂角等于这个角的余角的3倍,求这个角的度数;(3)如图2,为直线上的一点,若,,且射线绕以每秒的速度顺时针旋转,射线绕点以每秒的速度顺时针旋转,两条射线、同时运动,运动时间为秒,试求当为何值时,和互为垂角?6.如图①,已知线段在线段上运动,线段,,点、分别是、的中点.解答下列问题:(1)若,求的长;(2)当线段在线段上运动时,试判断的长度是否发生变化?如果不变请求出的长度,如果变化,请说明理由;(3)通过类比,我们发现角的很多规律和线段一样,如图②已知在内部转O AB =90AOC ︒∠90EOD ∠=︒O AB =90AOC ︒∠30BOD ∠=︒OC O 9︒OD O 6︒OC OD t ()030t <<t AOC ∠BOD ∠CD AB 10cm AB =2cm CD =E F AC BD 3cm AC =EF CD AB EF EF COD ∠AOB ∠动,和分别平分和,则与、有何数量关系,请直接写出答案.7.如图①,已知线段,线段在线段上运动(点A 不超过点M ,点B 不超过点N ),点C 和点D 分别是,的中点.(1)若,,求的长度;(2)若,线段运动时,试判断线段的长度是否发生变化?如果不变,请求出的长度,如果变化,请说明理由;(3)知识迁移:我们发现角的很多规律和线段一样,如图②,已知在内部转动,射线和射线分别平分和.当转动时,是否发生变化?,和三个角有怎样的数量关系,请说明理由.8.已知,为内部的一条射线,.OE OF AOC ∠BOD ∠EOF ∠AOB ∠COD ∠24cm MN =AB MN AM BN 8cm AM =2cm AB =CD 2cm AB a =AB CD CD AOB ∠MON ∠OC OD AOM ∠BON ∠AOB ∠COD ∠AOB ∠COD ∠MON ∠150AOB ∠=︒OC AOB ∠60BOC ∠=︒(1)运动开始前,如图1,∠AOM = °,∠DON = °;(2)旋转过程中,当t 为何值时,射线OB 平分∠AON ?(3)旋转过程中,是否存在某一时刻使得∠MON =35°?若存在,请求出t 的值;若不存AOC BOD∠∠参考答案:。

七上期末复习压轴题---角的旋转难题专练(无答案)

七上期末复习压轴题---角的旋转难题专练(无答案)

七上期末复习压轴题---角的旋转难题专练一、解答题1.将如图,O为直线AD上的一点,射线OA表示O点的正北方向,射线OC表示O点的北偏东m∘方向,射线OE表示O点的南偏东n∘的方向,射线OF平分∠AOE,且2m+2n=180.(1)如图①,∠COE=______ ∘,∠COF和∠DOE之间的数量关系为______________(2)若将∠COE绕点O旋转至图②的位置,请写出∠COF和∠DOE之间有何数量关系⋅并说明理由;(3)若将∠COE绕点O旋转至图③的位置,射线OF仍然平分∠AOE时,请写出∠COF和∠DOE之间有何数量关系并说明理由。

2.26、如图,∠AOB=90°.∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)若∠BOC=60°,其他条件不变,则∠MON=______;(3)若∠AOB=α,其他条件不变,求∠MON的度数;(4)从上面的结果能看出什么规律?3.如图1,点A、O、B在同一直线上,射线OD、OE分别平分∠AOC、∠BOC.(1)求∠DOE的度数;(2)如图2,在∠AOD内引一条射线OF,使∠COF=90∘,其他不变,设∠DOF=α(0∘<α<90∘)①求∠AOF的度数(用含α的代数式表示).②若∠BOD=2∠AOF,求∠DOF的度数.4.如图①,已知射线OC、OD在∠AOB的内部(OC在OD右侧),∠AOB=120°,∠COD=60°.(1)如果射线OE平分∠BOC,∠DOE=10°,如图②,则∠BOC=____;(2)如果射线OD、ON分别平分∠BOM、∠DOC,如图③,求∠AOC+∠DOM的度数;(3)在(2)的条件下,当∠DOM=5∠MON时,求∠BOC的度数.5.已知:∠AOD=160∘,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20∘,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10∘,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.6.如图,∠AOB=20∘,∠AOE=110∘,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5∘和每秒3∘的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30∘?7.在数轴上A,B两点对应的数分别是6,−6,点C在数轴上,EC⊥CD,(1)如图1,C与O重合,D点在的正半轴,若CF平分∠ACE,则∠AOF=___________(2)如图2,将(1)中的∠DCE沿的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=_____________②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与(1)中的∠DCE重合,将∠DCE沿的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α−β|=20°,请直接写出t的值为_______________8.如图,两条直线AB与CD相交于点O,且,射线OM从OB开始绕点O逆时针方向旋转,速度为15∘/s,射线ON同时从OD开始绕点O顺时针方向旋转,速度为12∘/s.运动时间为t秒(0<t<12,本题出现的角均小于平角)(1)图中一定有_____个直角;当t=2时,_____,_____;(2)若OE平分,OF平分,当为直角时,请求出t的值.(3)当射线OM在内部,且是定值时,求t的取值范围,并求出这个定值.9.将如图,O为直线AD上的一点,射线OA表示O点的正北方向,射线OC表示O点的北偏东m∘方向,射线OE表示O点的南偏东n∘的方向,射线OF平分∠AOE,且2m+2n=180.(1)如图①,∠COE=______ ∘,∠COF和∠DOE之间的数量关系为______________。

2023年九年级中考数学复习:几何探究压轴题(角度问题)(附答案)

2023年九年级中考数学复习:几何探究压轴题(角度问题)(附答案)

2023年九年级中考数学复习:几何探究压轴题(角度问题)1.已知:正方形ABCD ,以A 为旋转中心,旋转AD 至AP ,连接BP DP 、.(1)若将AD 顺时针旋转30︒至AP ,如图1所示,求BPD ∠的度数? (2)若将AD 顺时针旋转α度()090α︒<<︒至AP ,求BPD ∠的度数?(3)若将AD 逆时针旋转α度()0180α︒<<︒至AP ,请分别求出090α︒<<︒、90α=︒、90180α︒<<︒三种情况下的BPD ∠的度数(图2、图3、图4).2.如图1所示,将一个长为6宽为4的长方形ABEF ,裁成一个边长为4的正方形ABCD 和一个长为4、宽为2的长方形CEFD 如图2.现将小长方形CEFD 绕点C 顺时针旋转至CE F D ''',旋转角为a .(1)当点D 恰好落在EF 边上时,求旋转角a 的值;(2)如图3,G 为BC 中点,且0°<a <90°,求证:GD E D ''=;(3)小军是一个爱动手研究数学问题的孩子,他发现在小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△存在两次全等,请你帮助小军直接写出当DCD '与CBD '△全等时,旋转角a 的值.3.图1是边长分别为a 和()b a b >的两个等边三角形纸片ABC 和CDE 叠放在一起(C 与C '重合)的图形.(1)操作:固定ABC ,将CDE 绕点C 按顺时针方向旋转20°,连结AD ,BE ,如图2,则ECA ∠=___ ___度,并直接写出线段BE 与AD 的数量关系____ .(2)操作:若将图1中的CDE ,绕点C 按顺时针方向旋转120°,使点B 、C 、D 在同一条直线上,连结AD 、BE ,如图3.①线段BE 与AD 之间是否仍存在(1)中的结论?若是,请证明;若不是,请直接写出BE 与AD 之间的数量关系;②求APB ∠的度数.(3)若将图1中的CDE ,绕点C 按逆时针方向旋转一个角()0360αα<<︒,当α等于多少度时,BCD △的面积最大?请直接写出答案.4.我们定义:如图1,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB ',把AC 绕点A 逆时针旋转β得到AC ′,连接B 'C ',当a +β=180°时,我们称△AB 'C '是△ABC 的“旋补三角形”,△AB 'C 边B 'C '上的中线AD 叫做△ABC 的“旋补中线”.(1)[特例感知]在图2,图3中,△AB 'C ′是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形,且BC =6时,则AD 长为 . ②如图3,当∠BAC =90°,且BC =7时,则AD 长为 .(2)[猜想论证]在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.(如果你没有找到证明思路,可以考虑延长AD 或延长B 'A ,…)(3)[拓展应用]如图4,在四边形ABCD 中,∠BCD =150°,AB =12,CD =6,以CD 为边在四边形ABCD 内部作等边△PCD ,连接AP ,BP .若△P AD 是△PBC 的“旋补三角形”,请直接写出△PBC 的“旋补中线”长及四边形ABCD 的边AD 长.5.如图,已知正方形ABCD ,点E 为AB 上的一点,EF AB ⊥,交BD 于点F .(1)如图1,直按写出DFAE的值____ ___; (2)将△EBF 绕点B 顺时针旋转到如图2所示的位置,连接AE 、DF ,猜想DF 与AE 的数量关系,并证明你的结论;(3)如图3,当BE =BA 时,其他条件不变,△EBF 绕点B 顺时针旋转,设旋转角为(0360)αα︒<<︒,当α为何值时EA =ED ?请在图3或备用图中画出图形并求出α的值.6.如图,已知正方形ABCD ,将AD 绕点A 逆时针方向旋转(090)n n ︒<<到AP 的位置,分别过点C D 、作,CE BP DF BP ⊥⊥,垂足分别为点E 、F .(1)求证:CE EF =;(2)联结CF ,如果13DP CF =,求ABP ∠的正切值;(3)联结AF ,如果AF AB =,求n 的值.7.把两个等腰直角△ABC 和△ADE 按如图1所示的位置摆放,将△ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角α(0°<α<360°).(Ⅰ)当DE ⊥AC 时,旋转角α= 度,AD 与BC 的位置关系是 ,AE 与BC 的位置关系是 ;(Ⅱ)当点D 在线段BE 上时,求∠BEC 的度数; (Ⅲ)当旋转角α= 时,△ABD 的面积最大.8.已知:在Rt ABC 中,90ABC ∠=︒,30BAC ∠=︒,将ABC 绕点A 顺时针旋转一定的角度α得到AED △,点B 、C 的对应点分别是E 、D .(1)如图1,若60α=︒时,连接BE ,求证:AB BE =; (2)如图2,当点E 恰好在AC 上时,求CDE ∠的度数;(3)如图3,点B 、C 的坐标分别是()0,0,()0,2,点Q 是线段AC 上的一个动点,点M 是线段AO 上的一个动点,是否存在这样的点Q 、M 使得CQM 为等腰三角形且AQM 为直角三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由.9.把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中,将它绕点C 顺时针旋转a 角,旋转后的矩形记为矩形EDCF .在旋转过程中,(1)如图①,当点E 在射线CB 上时,E 点坐标为;(2)当△CBD 是等边三角形时,旋转角a 的度数是(a 为锐角时); (3)如图②,设EF 与BC 交于点G ,当EG=CG 时,求点G 的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF 的对称中心H 是否在以C 为顶点,且经过点A 的抛物线上.10.如图,ABC 是等边三角形,点D 是BC 边的中点,以D 为顶点作一个120︒的角,角的两边分别交直线AB AC 、于M 、N 两点,以点D 为中心旋转MDN ∠(MDN ∠的度数不变)(1)如图①,若DM AB ⊥,求证:BM CN BD +=;(2)如图②,若DM 与AB 不垂直,且点M 在边AB 上,点N 在边AC 上时,(1)中的结论是否成立?并说明理由;(3)如图③,若DM 与AB 不垂直,且点M 在边AB 上,点N 在边AC 的延长线上时,(1)中的结论是否成立?若不成立,写出BM CN BD 、、之间的数量关系,并说明理由.11.如图1,在Rt ABC △中,90,ACB AC BC ∠==,点D 为AB 边上的一点,将BCD △绕点C 逆时针旋转90得到ACE △,易得BCD ACE ≌,连接BE .(1)求BCE ACD ∠∠+的度数.(2)当5,BC BD ==BE CE 、的长.(3)如图2,在(2)的条件下,取AD 中点F ,连接CF 交BE 于H ,试探究线段BE CF 、的数量关系和位置关系,并说明理由.12.如图①,ABC 和ADE 是有公共顶点的等腰直角三角形,90BAC DAE ∠=∠=︒,点P 为射线,BD CE 的交点.(1)如图②,将ADE 绕点A 旋转,当C 、D 、E 在同一条直线上时,连接BD 、BE ,求证:BD CE =且BD CE ⊥.(2)若8,4AB AD ==,把ADE 绕点A 旋转, ①当90EAC ∠=︒时,求PB 的长;②旋转过程中线段BP 长的最小值是_____ __.13.如图1,ABC 中,90,30,ACB B AD ∠=︒∠=︒是角平分线,点E 、F 分别在边AC 、BC 上,45,CEF CF CD ∠=︒<、将CEF △绕点C 按逆时针方向旋转,使得EF 所在直线交线段AD 于点M ,交线段AB 于点N .(1)当旋转75°时,如图2,直线EF 与AD 的位置关系是____ __,ANM ∠=__ ____°; (2)在旋转一周过程中,试探究:当CE 旋转多少度时,AMN 中有两个角相等.14.菱形ABCD 的对角线AC ,BD 交于点O .(1)如图1,过菱形ABCD 的顶点A 作AE BC ⊥于点E ,交OB 于点H ,若6AB AC ==,求OH 的长; (2)如图2,过菱形ABCD 的顶点A 作AF AD ⊥,且AF AD =,线段AF 交OB 于点H ,交BC 于点E .当D ,C ,F 三点在同一直线上时,求证:2OH OA +=; (3)如图3,菱形ABCD 中,=45ABC ∠︒,点P 为直线AD 上的动点,连接BP ,将线段BP 绕点B 逆时针旋转60°得到线段BQ ,连接AQ ,当线段AQ 的长度最小时,直接写出BAQ ∠的度数.15.(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P 是等边三角形ABC 内一点,P A =1,PB PC =2.求∠BPC 的度数.为利用已知条件,不妨把△BPC 绕点C 顺时针旋转60°得AP C '△,连接PP '.利用这种变换可以求∠BPC 的度数,请写出推理过程; (2)类比迁移如图2,点P 是等腰Rt △ABC 内一点,∠ACB =90°,P A =2,PB PC =1.求∠APC 的度数.16.ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点.(1)如图1,EF 与AC 交于点G ,连接NG ,BE ,直接写出NG 与BE 的数量关系;(2)如图2,将AEF △绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30120α︒<<︒时,猜想∠DNM 的大小是否为定值,如果是定值,请写出∠DNM 的度数并证明,如果不是,请说明理由;(3)连接BN,在AEF△绕点A逆时针旋转过程中,请直接写出线段BN的最大值.17.如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.D、E分别是AB、AC边的中点,连接DE.现将△ADE绕A点逆时针旋转,连接BD,CE并延长交于点F.(1)如图2,点E正好落在AB边上,CF与AD交于点P.①求证:AE•AB=AD•AC;②求BF的长;(2)如图3,若AF恰好平分∠DAE,直接写出CE的长.18.如图①,在ABC中,∠ACB=90°,∠ABC=30°,AC=1,D为ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.(1)求证:BDA≌BFE;(2)当CD+DF+FE取得最小值时,求证:AD∥BF.(3)如图②,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.参考答案:1.(1)135︒(2)135︒(3)45︒,45︒,45︒2.(1)30°(3)135°,315°3.(1)40,BE =AD(2)①存在,②60°(3)当α=150°或330°时,BCD △的面积最大4.(1)①3;②3.5(2)AD =12BC ,(3)339=AD5.2(2)2DF AE =,(3)α的值为30°或150°,6.(2)23;(3)307.(Ⅰ)45;垂直;平行;(Ⅱ)90BEC ∠=︒;(Ⅲ)90︒或270︒8.(2)15°;(3)存在,23,03M ⎫⎪⎭或()423,0- 9.(1)E (4,13;(2)60°;(3)13(4,)3G ; (4)点H 不在此抛物线上.10.(2)成立,(3)不成立,BM CN BD -=,11.(1)180BCE ACD ∠+∠=︒(2)BE =CE =(3)2BE CF =;BE CF ⊥,12.(2)①PB =;②413.(1)垂直,60(2)当CE 旋转45°,90°,270°,315°时,△AMN 中有两个角相等14.(3)75︒15.(2)90°16.(1)2BE NG =(2)∠DNM 的大小是定值,为120°(3)17.(1)②18.(3)∠MPN 的值为定值,30°.。

角旋转问题初一压轴题

角旋转问题初一压轴题

角旋转问题初一压轴题
角旋转问题是数学中一个常见的问题,通常涉及到图形旋转后角度的测量和计算。

这类问题可以作为初一的压轴题,因为它需要学生具备一定的几何知识和空间思维能力。

以下是一个角旋转问题的示例:
题目:一个直角三角形ABC,其中∠ACB = 90°,AC = 4,BC = 3。

现在将△ABC绕点C逆时针旋转90°得到△A'B'C'。

求旋转后点A所对应的位置A'的坐标。

解题思路:
1. 确定点A的坐标:由于△ABC是一个直角三角形,且∠ACB = 90°,AC = 4,BC = 3,我们可以使用勾股定理计算出AB的长度。

然后,我们可以使用直角三角形的性质确定点A的坐标。

2. 确定旋转中心和旋转角度:题目中指出△ABC是绕点C逆时针旋转90°得到△A'B'C'。

因此,旋转中心是点C,旋转角度是90°。

3. 确定点A'的坐标:旋转后,点A会移动到点A'的位置。

由于旋转中心是点C,我们可以使用坐标变换的原理来确定点A'的坐标。

具体来说,我们可
以将点A的坐标减去旋转中心的坐标,然后加上旋转后旋转中心的坐标,得到点A'的坐标。

这个问题需要学生具备一定的几何知识和空间思维能力,以理解图形旋转的概念和性质,并能够运用坐标变换的原理来解决问题。

通过解决这类问题,学生可以加深对图形旋转的理解,提高他们的几何思维能力和问题解决能力。

2021年中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量有关的压轴题(附答案

2021年中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量有关的压轴题(附答案

2021中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量关系相关的压轴题(附答案)方法提炼:1.将角的度量关系转化为边的数量,利用边的数量关系求解问题的答案。2.利用角的度量关系,寻找问题中的特殊角,结合三角函数求解。3.利用角的度量关系,构建图形的全等、相似,利用图形的全等、相似的性质求解典例引领:例:如图,抛物线y=ax2+3x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=4.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S:S△CDF=4:3时,求点D的坐标.△COF(3)如图2,点E的坐标为(0,﹣2),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.14.解:(1)∵OB=OC=4,∴B(4,0),C(0,4),把B(4,0),C(0,4)代入y=ax2+3x+c,得,解得∴抛物线的函数解析式为y=﹣x2+3x+4;(2)如图1,设直线BC解析式为y=kx+b,则,解得∴直线BC解析式为y=﹣x+4,令点D、F的横坐标分别为x D,x F,∵S△COF:S△CDF=4:3,∴S△COF=S△COD,即OC•x F=×OC•x D,∴x D=x F,设点D横坐标为7t,点F横坐标为4t,∵点F在直线BC上,∴F(4t,4﹣4t),设直线OF解析式为y=k′x,则4﹣4t=4tk′,∴k′==,∴直线OF解析式为y=x,∵点D在直线OF上,∴D(7t,7﹣7t),将D(7t,7﹣7t)代入y=﹣x2+3x+4中,得7﹣7t=﹣(7t)2+3×7t+4,解得:t1=,t2=,∴D的坐标为(1,6)或(3,4);(3)①当∠PEB=2∠OBE,且点P在x轴上方时,如图2,作BE的垂直平分线交OB于F,连接EF,在∠BEO内部作射线EP交x轴于G,交抛物线于P,使∠PEB=∠EFO,过点G作GH⊥BE于H,则BF=EF,设BF=EF=m,∴OF=OB﹣BF=4﹣m在Rt△OEF中,∠EOF=90°,∵OE2+OF2=EF2∴22+(4﹣m)2=m2,解得:m=,∴BF=EF=,OF=4﹣=,∴tan∠OBE===,tan∠OFE===,∵BF=EF∴∠BEF=∠OBE∵∠OFE=∠BEF+∠OBE∴∠OFE=2∠OBE∵∠PEB=2∠OBE∴∠PEB=∠OFE∴tan∠PEB==tan∠OFE=,设GH=4a,则EH=3a,∴BE===2,BH=2﹣3a∵=tan∠∠OBE=,∴=,解得:a=,∴GH=,BH=∴BG==∴OG=OB﹣BG=4﹣=∴G(,0),设直线EG解析式为y=k″x+b″,则,解得∴直线EG解析式为y=x﹣2,联立方程组,解得:(舍去),,∴P(,),②当∠PEB=2∠OBE,且点P在x轴下方时,如图3,过点E作EF⊥y轴,作点B关于直线EF 的对称点G,连接BG交EF于F,射线EG交抛物线于点P,∵E(0,﹣2),∴直线EF为:y=﹣2∵B(4,0),∴G(4,﹣4)∴直线EG解析式为y=﹣x﹣2,解方程组,得,(不符合题意,舍去),∴P(,);③当∠PBE=2∠OBE,且点P在x轴上方时,如图4,在y轴正半轴上截取OF=OE=2,作射线BF交抛物线于P,在△BOE和△BOF中,∴△BOE≌△BOF(SAS)∴∠PBO=∠OBE∴∠PBE=2∠OBE易求得直线PF解析式为y=﹣x+2,联立方程组,解得(不符合题意,舍去),,∴P(﹣,);④当∠PBE=2∠OBE,且点P在x轴下方时,如图5,过点E作EF⊥BE交直线BP于F,过F 作FG⊥y轴于G,由①知:tan∠PBE==,BE=2∴EF=∵∠EGF=∠BOE=∠BEF=90°∴∠BEO+∠FEG=∠BEO+OBE=90°∴∠FEG=∠OBE∴△EFG∽△BEO∴==,即==∴FG=,EG=∴OG=OE+EG=2+=∴F(,﹣)易求得直线BF解析式为y=x﹣22,联立方程组,解得(舍去),∴∴P(﹣,﹣);综上所述,符合条件的点P的坐标为:(,)、(,)、(﹣,)、(﹣,﹣).跟踪训练:1.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点.(1)求该抛物线的解析式;(2)点P是抛物线上一点,且位于第一象限,当△ABP的面积为3时,求出点P的坐标;(3)过B作BC⊥OA于C,连接OB,点G是抛物线上一点,当∠BAG+∠OBC=∠BAO时,请直接写出此时点G的坐标.2.如图,抛物线y=ax2+bx+与x轴交于点A(﹣5,0),B(1,0),顶点为D,与y轴交于点C.(1)求抛物线的表达式及D点坐标;(2)在直线AC上方的抛物线上是否存在点E,使得∠ECA=2∠CAB,如果存在这样的点E,求出△ACE面积,如果不存在,请说明理由.3.如图1,抛物线y=﹣+bx+c经过原点(0,0),A(12,0)两点.(1)求b的值;(2)如图2,点P是第一象限内抛物线y=﹣+bx+c上一点,连接PO,若tan∠POA=,求点P的坐标;(3)如图3,在(2)的条件下,过点P的直线y=﹣x+m与x轴交于点F,作CF=OF,连接OC交抛物线于点Q,点B在线段OF上,连接CP、CB、PB,PB交CF于点E,若∠PBA=2∠PCB,∠BEF=2∠BCF,求点Q的坐标.4.如图,抛物线y=﹣+bx+c交x轴于点A、B(A在B左侧),交y轴于点C,直线y=﹣x+6经过点B、C.(1)求抛物线解析式;(2)点P为第一象限抛物线上一点,连接P A交BC于点D,设点P的横坐标为t,的值为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点E为线段OB上一点,连接CE,过点O作CE的垂线交BC于点G,连接PG并延长交OB于点F,若∠OGC=∠BGF,F为BE中点,求t的值.5.抛物线y=ax2+c经过点(0,﹣1),交x轴于A(﹣1,0),B两点,点P是第一象限内抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图1已知直线l的解析式为y=x﹣2,过点P作直线l的垂线,垂足为H,当PH=时,求点P的坐标;(3)如图2,当∠APB=45°时,求点P的坐标.6.已知抛物线y=x2﹣mx﹣m﹣1与x轴交于A、B两点,点A在点B的左边,与y轴交于点C(0,﹣3).(1)求点A、B的坐标;(2)点D是抛物线上一点,且∠ACO+∠BCD=45°,求点D的坐标;(3)将抛物线向上平移m个单位,交线段BC于点M,N,若∠MON=45°,求m的值.7.如图,在平面直角坐标系xOy中,已知点A(﹣1,0),D(﹣3,0),C(﹣4,3),四边形ABCD是平行四边形.现将▱ABCD沿x轴方向平移n个单位,得到▱A1B1C1D1,抛物线M经过点A1,C1,D1.(1)若抛物线M的对称轴为直线x=4,求抛物线M的解析式;(2)抛物线M的顶点为E,若以A,E,C1为顶点的三角形的面积等于▱ABCD的面积的一半,求n的值;(3)在(2)的条件下,在y轴上是否存在点P,使得∠C1P A=∠C1EA?若存在,请直接写出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A、B,交y轴于点C,A、B两点横坐标为﹣1和3,C点纵坐标为﹣4.(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求D点坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,求出点Q的坐标,不存在说明理由.9.抛物线y=﹣x2+bx+c与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C.直线y=﹣2x+6经过B、C两点,连接AC.(1)求抛物线的解析式:(2)点P是第一象限抛物线上一点,P点横坐标为t,连接PC、PB,设△PBC的面积为S,求S与t之间的函数关系式(直接写出自变量t的取值范围):(3)在(2)问的条件下,当S=3且t<2时,连接PB,在抛物线上是否存在一点Q,使∠PBQ=∠ACB?若存在求出Q点坐标,若不存在,说明理由.10.如图,在平面直角坐标系中,抛物线与x轴交于A、B两点,与y轴交于C点,B点与C点是直线y=x﹣3与x轴、y轴的交点.D为线段AB上一点.(1)求抛物线的解析式及A点坐标.(2)若点D在线段OB上,过D点作x轴的垂线与抛物线交于点E,求出点E到直线BC的距离的最大值.(3)D为线段AB上一点,连接CD,作点B关于CD的对称点B′,连接AB′、B′D①当点B′落坐标轴上时,求点D的坐标.②在点D的运动过程中,△AB′D的内角能否等于45°,若能,求此时点B′的坐标;若不能,请说明理由.11.如图,在平面直角坐标系中,抛物线y=ax2+x+c交x轴于点A、点B,交y轴于点C.直线y=﹣x+2经过于点C、点B,(1)求抛物线的解析式;(2)点D为第一象限抛物线上一动点,过点D作y轴的平行线交线段BC于点E,交x轴于点Q,当DE=5EQ时,求点D的坐标;(3)在(2)的条件下,点M为第二象限抛物线上一动点,连接DM,DM交线段OC于点H,点F在线段OB上,连接HF、DF、DC、DB,当HF=,∠CDB=2∠MDF时,求点M的坐标.12.已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣1,0)、B两点,与y轴交于点C,且过点P(5,12).(1)求抛物线的解析式.(2)如图,点Q为线段CP上一动点,过点Q作QF⊥x轴于点F,交抛物线于点D,连接CD,PD,若S△QDC:S△QDP=2:3,求直线PD的解析式.(3)过点B的直线交抛物线于M,是否存在点M使∠ABM=∠PCO,若存在,求出点M的坐标.若不存在,说明理由.13.如图1,抛物线C1:y=x2+(m﹣2)x﹣2m(m>0)与x轴交于点A、B(A在B的左侧),与y轴交于点C,连接AC、BC,S△ABC=3.(1)求m的值;(2)如图2,将射线BC绕点B顺时针方向旋转交抛物线C1第二象限的图象于点D,连接DC.当x轴恰好三等分△DBC的面积时,求此时点D的横坐标;(3)将抛物线C1向右平移,使新抛物线C2经过原点,如图3,C2的对称轴l交抛物线C2于E,交直线y=4于F,直线y=4交C2于点G、H(G在H的左侧),点M、N分别从点G、H同时出发,以1个单位长度/秒向点F运动.设点M运动时间为t(秒),点M、N到达F时,运动停止,点W在l上,WF=,连MW、NE.当∠MWF=3∠FEN时,求t的值.参考答案1.解:(1)将点A、B的坐标代入抛物线表达式并解得:a=﹣1,b=4,故抛物线的表达式为:y=﹣x2+4x…①;(2)过点P作直线m交x轴于点M,过点P作PH⊥AB于点H,过点A作AN⊥直线m,在AB下方作直线n距离直线AB的长度为PH,△ABP的面积S=AB×PH=×3×PH=3,解得:PH==AN,直线AB的倾斜角为45°,故直线m、n所在直线的k值为:﹣1,则AM=AH=2,故点M(6,0),则直线m的表达式为:y=﹣x+6…②,同理直线n的表达式为:y=﹣x+2…③,联立②①并解得:x=2或3,联立③①并解得:x=(舍去);综上,点P的坐标为:(3,3)或(2,4)或(,);(3)∵BC=AC=3,故∠BAO=45°=∠BAG+∠OBC,①当点G在AB上方时,如图2(左侧图),设抛物线对称轴交x轴于点M,连接BM,OC=OM=1,故∠CBM=∠OBC,则∠CAB=45°=∠CBM+∠MBA=∠OBC+∠ABM,而45°=∠BAG+∠OBC,故∠ABM=∠GAB,则AG∥BM,直线BM表达式中的k值为:3,故直线AG的表达式为:y=﹣3x+b,将点A的坐标代入上式并解得:直线AG的表达式为:y=﹣3x+12…④;联立①④并解得:x=3或4(舍去4);②当点G在AB下方时,如图2(右侧图),∠BAG+∠OBC=∠BAO=45°,而∠BAG+∠GAC=45°,∴∠OBC=∠GAC,而tan∠OBC===tan∠GAC,则直线AG的表达式为:y=﹣x+b′,将点A坐标代入上式并解得:直线AG的表达式为:y=﹣x2+…⑤,联立⑤①并解得:x=或4(舍去4).综上,点P的坐标为:(3,3)或(,).2.解:(1)∵抛物线y=ax2+bx+与x轴交于点A(﹣5,0),B(1,0),∴,∴∴抛物线的表达式为:y=﹣x2﹣2x+,∴顶点D(﹣2,)(2)如图,过点C作CM∥AB,过点E作EF⊥CM,设点E(m,﹣m2﹣2m+)∵y=﹣x2﹣2x+交y轴交于点C,∴点C(0,),∴OC=,∵CM∥AB,∴∠MCA=∠CAB,∵∠ECA=2∠CAB=∠ECF+∠MCA,∴∠ECF=∠CAB,且∠AOC=∠EFC=90°,∴△CEF∽△ACO,∴,∴=∴m=0(不合题意),m=﹣3,∴点E(﹣3,4),∴S△AEC=×(+4)×3+×4×2﹣×5×=.3.解:(1)∵抛物线y=﹣+bx+c经过原点(0,0),A(12,0)两点.∴c=0,0=﹣×144+12b+c∴b=;(2)如图2,过点P作PE⊥OA于点E,∵c=0,b=,∴抛物线解析式为:y=﹣+x∵点P是第一象限内抛物线y=﹣+x上一点,∴设点P(m,﹣m2+m),(m>0)∵tan∠POA==,∴=,∴m=8,∴点P(8,4);(3)连接OP,∵直线y=﹣x+m过点P(8,4),∴m=,∴直线解析式为y=﹣x+,当y=0,x=,∴点F(,0),∵∠BEF=∠BCF+∠PBC,且∠BEF=2∠BCF,∴∠PBC=∠BCF,∵∠PBA=2∠PCB,∠BEF=2∠BCF,∴∠EFB=180°﹣2∠PCB﹣2∠PBC,∵OF=CF,∴∠COF=∠PCB+∠PBC=∠OCF,∵∠CPB=180°﹣∠BCP﹣∠PBC,∴∠CPB+∠COF=180°,∴点O,点B,点P,点C四点共圆,∴∠PBA=∠OCP,∠OCB=∠OPB,∠BCP=∠BOP,∵∠PBA=2∠PCB,∠PBA=∠OCP=∠OCB+∠BCP,∴∠OCB=∠BCP,∴∠BPO=∠POB,∴OB=PB,设点B(a,0)∴OB=BP=a,∴a=∴a=7∴点B(7,0)设过点O,点B,点P,点C四点的圆的圆心M(,y),∵MO=MP,∴()2+y2=(8﹣)2+(4﹣y)2,∴y=,∴M(,),设点C(a,n)∵MO=MC,OF=CF,∴(a﹣)2+(b﹣)2=()2+()2 ①,(a﹣)2+b2=()2 ②,∴由①②组成方程组可求b=a,设直线OC解析式为:y=kx,且过点C(a,b)∴b=ka,∴k=∴直线OC解析式为:y=x,∴x=﹣+x∴x1=0(不合题意舍去),x2=4,∴点Q(4,4)4.解:(1)直线y=﹣x+6经过点B、C,则点B、C的坐标分别为:(6,0)、(0,6),则c=6,将点A的坐标代入抛物线表达式并解得:b=2,故抛物线的表达式为:y=﹣x2+2x+6…①;(2)点P(t,﹣t2+2t+6),将点P、A的坐标代入一次函数表达式:y=kx+b并解得:直线AP的表达式为:y=﹣(t﹣6)x+(6﹣t),将上式与直线BC的表达式联立并解得:x=,故点D(,+6),则=,则d==﹣1=﹣t2+t(0<t<6);(3)设OE=a,则点E(a,0),设OG交CE于点H,∵∠ECO+∠COH=90°,∠COH+∠HOE=90°,∴∠HOE=∠OCH, tan∠OCH===tan∠HOE,则直线OH的表达式为:y=x…②,联立①②并解得:x=,故点G(,),则BG==,则CG=BC﹣BG=,∵OB=OC=6,故∠OCB=∠OBC=45°,而∠OGC=∠BGF,则△CGO∽△BGF,即:,即:,解得:BF=a,F为BE中点,则OE=EF=FB,故a=2,故点F(4,0),点G(,);将点F、G的坐标代入一次函数表达式并解得:直线FG的表达式为:y=3x﹣12…③,联立①③并解得:x=﹣1(舍去负值),故t=﹣1+.5.解:(1)∵抛物线y=ax2+c经过点(0,﹣1),A(﹣1,0),∴,∴,∴抛物线的解析式的解析式为y=x2﹣1;(2)过点P作y轴的平行线交直线l于点M,∵直线l的解析式为y=x﹣2,∴直线与y轴的夹角为45°,∴∠PMH=45°,∵PH⊥MH,PH=,∴PM=7,设P(a,a2﹣1),则M(a,a﹣2),∴PM=a2﹣1﹣a+2=7,∴a1=3,a2=﹣2(舍去),∴P(3,8);(3)如图2,在y轴上取点D(0,1),则△ABD为等腰直角三角形,∵AO=BO=1,∠ADB=90°,∴=,以点D为圆心、AD长为半径画圆,则点P在优弧AB上时总有∠APB=45°,连结PD,设P点坐标为(m,m2﹣1),∴PD==,∴m2+(m2﹣2)2=2,解得:,(舍去),m3=1(舍去),m4=﹣1(舍去),∴P(,1).6.解:(1)﹣m﹣1=﹣3,解得:m=2,故抛物线的表达式为:y=x2﹣2x﹣3…①,令y=0,解得:x=3或﹣1,故点A、B的坐标分别为:(﹣1,0)、(3,0);(2)①当点D在BC下方时,∵∠ACO+∠BCD=45°,则AC⊥CD,则直线CD的表达式为:y=x﹣3…②,联立①②并解得:x=0或,故点D(,﹣);②当点D(D′)在BC上方时,过点D作DE⊥BC交BC于点H,交CD′于点E,直线BC的表达式为:y=x﹣3…③则ED的表达式为:y=﹣x+…④,联立③④并解得:x=,故点H(,﹣),点E的坐标为:(,﹣),则直线CE的表达式为:y=3x﹣3…⑤,联立①⑤并解得:x=0或5(舍去0),故点D(D′)的坐标为:(5,12),综上,点D的坐标为:(,﹣)或(5,12);(3)如图2,抛物线平移后的图象为虚线部分,则抛物线的表达式为:y=x2﹣2x﹣3+m(m>0),设点M、N的坐标分别为:(x1,y1)、(x2、y2),则x1+x2=3,x1x2=m,x2=,∵∠MON=45°=∠OCM,∠ONM=∠ONM,∴△NOM∽△NCO,∴NO2=MN•CN,而NO2=(x22+y22),MN=(x2﹣x1),CN=x22,即(x22+y22)=2x2(x2﹣x1),即2x1x2=x22﹣y22,而y2=x2﹣3,故=+m,解得:m=(﹣1+)(不合题意的值已舍去).7.解:(1)四边形ABCD是平行四边形,则点B的坐标为:(﹣2,3),即点B在AD的中垂线上,过点A、D的二次函数表达式为:y=a(x+1)(x+3)=a(x2+4x+3),将点C的坐标代入上式并解得:a=1,则过A、C、D的抛物线为:y=x2+4x+3=(x+2)2﹣1,抛物线M的对称轴为直线x=4,相当于将上述抛物线向右平移了6个单位,故抛物线M的表达式为:y=(x﹣4)2﹣1;(2)将▱ABCD沿x轴方向平移n个单位,则点C1、E的坐标分别为:(n﹣4,3)、(n﹣2,﹣1),点A(﹣1,0),连接C1E交x轴于点M,将点C1、E的坐标代入一次函数表达式:y=kx+b并解得:直线C1、E的表达式为:y=﹣2x+(2n﹣5),则点M的坐标为:(,0),S△AEC1=×AM×(y C1﹣y E)=(+1)×4=S▱ABCD=×2×3=3,解得:n=3;(3)存在,理由:由(2)知点C(﹣1,3),点A(﹣1,0),则AC⊥x轴,故点A、C1、E作圆Q,则点Q在AC1的中垂线上,设点Q(m,),则此时,∠C1P A=∠C1EA,由QC1=QE得:(m+1)2+(3﹣)2=(m﹣1)2+(1+)2,解得:m=1,则点Q(1,),设点P(0,t),由QP=QE得:1+(﹣t)2=()2,解得:t=,故点P的坐标为:(0,).8.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣4,解得:a=,故抛物线的表达式为:y=x2﹣x﹣4;(2)过点D作y轴的平行线交BC于点N,由B、C的坐标可得直线BC的表达式为:y=x﹣4,设点D(x,x2﹣x﹣4),点N(x,x﹣4),S△BCD=×OB×ND=3×(x﹣4﹣x2+x+4)=﹣2x2+6x,∵﹣2<0,故S有最大值,此时,x=,点D(,﹣5);(3)存在,理由:直线BC的表达式为:y=x﹣4,抛物线的对称轴为:x=1,故点H(1,﹣),过点Q作QM⊥BC于点M,tan∠OCB==tanα,∠QBC=45°,设QM=3x,则HM=4x,MB=3x,BH=HM+MB=7x==,解得:x=,QH=5x=,则y Q=y H+=﹣,故点Q(1,).9.解:(1)直线y=﹣2x+6经过B、C两点,则点B、C的坐标为:(3,0),(0,6),将点B、C的坐标代入抛物线表达式并解得:b=1,c=6,故抛物线的表达式为:y=﹣x2+x+6…①;(2)过点P作y轴的平行线交BC于点H,设点P(t,﹣t2+t+6),则点H(t,﹣2t+6),S=×PH×OB=(﹣t2+t+6+2t﹣6)=﹣t2+t(0<t<3);(3)S=3,即:﹣t2+t=3,解得:t=1或2(舍去2),故点P(1,6),而点B(0,3),则直线PB的表达式为:y=﹣x+9,则点M(0,9),tan∠BMO=,过点A作AL⊥BC于点L,S△ABC=OC×AB=×BC×AL,即3×5=×AL×3,解得:AL=,sin∠ACB==,则∠ACB=45°=∠MBQ,设BQ交y轴于点H,过点H作HN⊥MB于点N,tan∠BMO=,∠MBQ=45°,设:HN=x,则BN=x,MN=3x,MB=4x=,解得:x=,HB=x=,则OH2=BH2﹣OB2=,则点H(0,),则BH的函数表达式为:y=﹣x+…②,联立①②并解得:x=﹣(不合题意值已舍去),则点Q(﹣,).10.解:(1)∵B点与C点是直线y=x﹣3与x轴、y轴的交点.∴B(3,0),C(0,﹣3),∴,解得:,∴抛物线的解析式为,令y=0,,解得x1=﹣2,x2=3,∴A(﹣2,0),(2)设E点到直线BC的距离为d,E点横坐标为m,F(m,m﹣3),∵B(3,0),C(0,﹣3),∴∠OBC=45°,如图1,过点E作EH⊥BC于点H,则△EFH为等腰直角三角形,∴EH=,EF=y F﹣y E=m﹣3﹣(,=(0≤m≤3),=,当时,EF的最大值为,∴d=EF==.即E到BC的最大距离为.(3)①点B′在以C为圆心,CB为半径的圆C上;(Ⅰ)当B′点落在x轴上时,D1(0,0);(Ⅱ)当B′点落在y轴上时,如图2,CB′=CB=3,∵∠OB′D=45°∴OD=OB'=3﹣3,∴;②分别画出图形进行讨论求解:(Ⅰ)∠B′DA=45°时,如图2,OB′=3﹣3,B′(0,3﹣3)(Ⅱ)如图3,连接CB′,∠B′DA=∠CBD=45°,∴DB′∥BC,可得四边形DB′CB是菱形,B′(﹣3,﹣3).(Ⅲ)∠B′AD=45°,如图4,连接CB′,过点B′分别作坐标轴的垂线,垂足为E、F,设线段FB'的长为m,B′E=AE=2﹣m,可得CF=5﹣m,在直角三角形CFB'中,m2+(5﹣m)2=(3)2,解得m=,故B′(),(Ⅳ)如图5,∠AB′D=45°,连接CB',过点B′作y轴的垂线,垂足为点F,由轴对称性质可得,∠CB′D=∠CBD=45°,所以当∠AB′D=45°时,点A在线段CB′上,∴,设线段FB′的长为2m,FC=3m,(2m)2+(3m)2=(3,解得:m=,B′(﹣,综合以上可得B′坐标为(0,)或或()或(﹣).11.解:(1)针对于直线y=﹣x+2,令x=0,则y=2,∴C(0,2),令y=0,则0=﹣x+2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=ax2+x+c中,得∴,∴抛物线的解析式为y=﹣x2+x+2;(2)如图1,由(1)知,抛物线的解析式为y=﹣x2+x+2,设点D坐标为(m,﹣m2+m+2),∵DE⊥x轴交BC于E,直线BC的解析式为y=﹣x+2,∴D(m,﹣m+2),∴DE=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,DQ=﹣m+2,∵DE=5EQ,∴﹣m2+m=5(﹣m+2),∴m=3或m=4(点B的横坐标,舍去),∴D(3,3);(3)如图2,由(2)知,D(3,3),由(1)知,B(4,0),C(0,2),∴DB=,DC=,BC=2,∴DC=DB,DB2+DC2=BC2,∴△BDC是等腰直角三角形,∴∠BDC=90°,∵BDC=2∠FDM=90°,∴∠FDM=45°,过点D作DP⊥y轴于P,则DQ=DP,OP=3,∴CP=1=BQ,∴△DPC≌△DQB(SAS),在CP的延长线取一点G,使PG=QF=n,∴OF=3﹣n,OG=3+n,∴△DPG≌△DQF(SAS),∴DG=DF,∠PDG=∠QDF,∴∠FDG=∠PDG+∠PDF=∠QDF+∠PDG=∠PDQ=90°∴∠GDM=90°﹣∠FDM=45°=∠GDM,∵DH=DH,∴△GDH≌△FDH(SAS),∴GH=FH=,∴OH=OG﹣GH=3+n﹣=n+,在Rt△HOF中,根据勾股定理得,(n+)2+(3﹣n)2=,∴n=1或n=(此时,OH=n+=2,所以点H与点C重合,舍去),∴H(0,),∵C(3,3),∴直线CH的解析式为y=x+①,∵抛物线的解析式为y=﹣x2+x+2②,联立①②解得,或(由于点M在第二象限,所以舍去),∴M(﹣,).12.解:(1)∵抛物线y=ax2+bx﹣3过点A(﹣1,0)、P(5,12)两点,∴,解得:,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,过点P作PN⊥y轴,QM⊥y轴,∵S△QDC:S△QDP=2:3,∴,∴,∵PN⊥y轴,QM⊥y轴,∴QM∥PN,∴△CQM∽△CPN,∴,∵PN=5,∴QM=2,∵QF⊥x轴于点F,交抛物线于点D,∴D点的横坐标为2,把x=2代入y=x2﹣2x﹣3=4﹣4﹣3=﹣3,∴D(2,﹣3),设直线PD的解析式为y=kx+b,∴,解得:,∴直线PD的解析式为y=5x﹣13; (3)如图2,过点P作PN⊥y轴,∵P(5,12),C(0,﹣3),∴CN=OC+ON=12+3=15,PN=5,∴,∵∠ABM=∠PCO,∴,如图2,若点M在x轴上方,∵OB=3,∴在y轴上取E(0,1),tan∠OBE=,设直线BE的解析式为y=mx+n,∴,解得:m=﹣,∴直线BE的解析式为y=﹣,∴,解得:x1=3,,∴M(﹣),如图3,当点M在x轴下方,同理取点D(0,﹣1),求得直线BD的解析式为y=x﹣1,∴,解得:,∴M(﹣,﹣),综合以上可得M点的坐标为(﹣或(﹣).13.解:(1)在y=x2+(m﹣2)x﹣2m(m>0)中,令x=0,得y=﹣2m,∴C(0,﹣2m),令y=0,得x2+(m﹣2)x﹣2m=0,解得:x1=2,x2=﹣m,∴A(﹣m,0),B(2,0),∴AB=2﹣(﹣m)=m+2,OC=2m∵S△ABC=3∴(m+2)•2m=3,解得:m1=1,m2=﹣3(不符合题意)∴m=1;∴抛物线C1:y=x2﹣x﹣2(2)如图2,设D(t,t2﹣t﹣2),CD交x轴于K,作DT⊥x轴于T,由(1)得:B(2,0),C(0,﹣2)∵当x轴恰好三等分△DBC的面积时,有S△BDK=S△BCD或S△BDK=S△BCD ∴=或=,①当=时,=∴DT=OC∴t2﹣t﹣2=×2,解得:t1=,t2=,∵点D在第二象限,∴t<0∴t=,②当=时,=2∴DT=2OC∴t2﹣t﹣2=2×2,解得:t1=3,t2=﹣2,∵t<0∴t=﹣2综上所述,当x轴恰好三等分△DBC的面积时,点D的横坐标为或﹣2;(3)如图3,取WE中点T,过点T作TR⊥EF交EN于点R,连接WR,WN,由题意知:抛物线C1:y=x2﹣x﹣2=﹣,将抛物线C1向右平移,使新抛物线C2经过原点,∴新抛物线C2解析式为y=(x﹣)2﹣=x2﹣3x,对称轴为:直线x=,顶点E(,﹣),∴F(,4),EF=在y=x2﹣3x中,令y=4,则4=x2﹣3x,解得:x1=﹣1,x2=4∴G(﹣1,4),H(4,4)∴GH=5∵GM=NH=t,WF=,∴MF=NF=﹣t,WE=﹣=5,WT=TE=WE=,∵∠EFM=∠EFN=90°,WF=NF∴△MWF≌△NWF(SAS)∴∠MWF=∠NWF∵∠MWF=3∠FEN∴∠NWF=3∠FEN∵∠NWF=∠FEN+∠ENW∴∠ENW=2∠FEN∵WT=ET,TR⊥EF∴RW=RE∴∠FEN=∠EWR∴∠NRW=2∠FEN∴∠ENW=∠NRW∴RW=WN∴RE=WN由勾股定理得:EN2=EF2+NF2=+,WN2=WF2+NF2=+,∵△ERT∽△ENF∴=,即ER=EN∴ER2=EN2=[+],∴[+]=+,解得:t1=(不符合题意,舍去),t2=,故t=(秒).。

专题10 几何图形初步中动角问题压轴题真题分类(解析版)—七年级数学上册重难点题型必刷题(人教版)

专题10 几何图形初步中动角问题压轴题真题分类(解析版)—七年级数学上册重难点题型必刷题(人教版)

专题10几何图形初步中动角问题真题分类(解析版)专题简介:本份资料专攻《几何图形初步》这一章中动角问题的压轴题,所选题目源自各名校月考、期末试题中的压轴题真题,难度较大,具体分成单动角问题和双动角问题,适合于想挑战满分的学生考前刷题使用,也适合于培训机构的老师培训尖子生时使用。

题型一:单动角问题1.(雅礼)已知∠AOB=120°,∠COD=60°.(1)如图1,当∠COD在∠AOB的内部时,若∠AOD=98°,求∠BOC的度数;(2)如图2,当射线OC在∠AOB的内部,OD在∠AOB的外部时,试探索∠AOD与∠BOC的数量关系,并说明理由;(3)如图3,当∠COD在∠AOB的外部时,分别在∠AOC内部和∠BOD内部画射线OE,OF,使∠EOC=∠AOC,∠DOF=∠BOD,求∠EOF的度数.【解答】解:(1)∵∠AOB=120°,∠AOD=98°,∴∠BOD=∠AOB﹣∠AOD=120°﹣98°=22°,∵∠COD=60°,∴∠BOC=∠COD+∠BOD=60°+22°=82°;(2)∠AOD与∠BOC互补,理由:∵∠AOB+∠COD=120°+60°=180°,∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOB+∠COD=∠AOC+∠BOC+∠BOC+∠BOD=∠AOD+∠BOC=180°,∴∠AOD与∠BOC互补;(3)设∠BOC=n°,则∠AOC=∠AOB+∠BOC=120°+n°,∠BOD=∠COD+∠BOC=60°+n°,∵∠AOE=∠AOC,∴∠EOC=∠AOC=40°+n°.∵∠DOF=∠BOD,∴∠DOF=(60+n)=20°+n°,∴∠COF=∠COD﹣∠DOF=40°﹣n°,∴∠EOF=∠EOC+∠COF=40°+n°+40°﹣n°=80°.2.(长郡)已知∠AOB=100°,∠COD=40°,OE,OF分别平分∠AOD,∠BOD.(1)如图1,当OA ,OC 重合时,∠EOF =度;(2)若将∠COD 从图1的位置绕点O 顺时针旋转,旋转角∠AOC =α,满足0°<α<90°且α≠40°.①如图2,用等式表示∠BOF 与∠COE 之间的数量关系,并说明理由;②在∠COD 旋转过程中,请用等式表示∠BOE 与∠COF 之间的数量关系,并直接写出答案.【解答】解:(1)∵OA ,OC 重合,∴∠AOD =∠COD =40°,∠BOD =∠AOB +∠COD =100°+40°=140°,∵OE 平分∠AOD ,OF 平分∠BOD ,∴∠EOD =∠AOD =×40°=20°,∠DOF =∠BOD =×140°=70°,∴∠EOF =∠DOF ﹣∠EOD =70°﹣20°=50°;(2)①∠BOF +∠COE =90°;理由如下:∵OE 平分∠AOD ,OF 平分∠BOD ,∴∠EOD =∠AOE =∠AOD =(40°+α)=20°+α,∠BOF =∠BOD =(∠AOB +∠COD +α)=(100°+40°+α)=70°+α,∴∠COE =∠AOE ﹣∠AOC =20°+α﹣α=20°﹣α,∴∠BOF +∠COE =70°+α+20°﹣α=90°;②由①得:∠EOD =∠AOE =20°+α,∠DOF =∠BOF =70°+α,当∠AOC <40°时,如图2所示:∠COF =∠DOF ﹣∠COD =70°+α﹣40°=30°+α,∠BOE =∠BOD ﹣∠EOD =2(70°+α)﹣(20°+α)=120°+α,∴∠BOE ﹣∠COF =120°+α﹣(30°+α)=90°,当40°<∠AOC <90°时,如图3所示:∠COF =∠DOF +∠DOC =(360°﹣140°﹣α)+40°=150°﹣α,∠BOE =∠BOD ﹣∠DOE =140°+α﹣(20°+α)=120°+α,∴∠COF +∠BOE =150°﹣α+(120°+α)=270°;综上所述,∠BOE,∠COF,∠AOC之间的数量关系为∠BOE﹣∠COF=90°或∠COF+∠BOE=270°.3.(明德)如图①,已知线段MN=24cm,线段AB在线段MN上运动(点A不超过点M,点B不超过点N),点C和点D分别是AM,BN的中点.(1)若AM=8cm,AB=2cm,求CD的长度;(2)若AB=2acm,线段AB运动时,试判断线段CD的长度是否发生变化?如果不变,请求出CD的长度,如果变化,请说明理由.(3)知识迁移:我们发现角的很多规律和线段一样,如图②,已知∠AOB在∠MON内部转动,射线OC 和射线OD分别平分∠AOM和∠BON.当∠AOB转动时,∠COD是否发生变化?∠AOB,∠COD和∠MON 三个角有怎样的数量关系,请说明理由.【解答】解:(1)①∵MN=24cm,AB=2cm,AM=8cm,∴BN=MN﹣AB﹣AM=14(cm),∵点C和点D分别是AM,BN的中点,∴AC=AM=4cm,BD=BN=7cm.∴AC+BD=11(cm).∴CD=AC+AB+BD=11+2=13(cm).即CD的长为14cm.②不变,理由如下:∵点C和点D分别是AM,BN的中点,∴AC=AM,BD=BN,∴AC+BD=AM+BN=(AM+BN).又∵MN=24cm,AB=2acm,∴AM+BN=MN﹣AB=24﹣2a(cm).∴AC+BD=(AM+BN)=12﹣a(cm).∴CD=AC+AB+BD=12﹣a+2a=12+a(cm).(2)∠COD=(∠MON+AOB).理由如下:∵OC和OD分别平分∠AOM和∠BON,∴∠AOC =∠AOM ,∠BOD =∠BON .∴∠AOC +∠BOD =∠AOM +∠BON =(∠AOM +∠BON ).∴∠COD =∠AOC +∠BOD +∠AOB =(∠AOM +∠BON )+∠AOB =(∠MON ﹣∠AOB )+∠AOB =(∠MON +AOB ).4.(师大)若A 、O 、B 三点共线,∠BOC =50°,将一个三角板的直角顶点放在点O 处(注:∠DOE =90°,∠DEO =30°).(1)如图1,使三角板的短直角边OD 在射线OB 上,则∠COE =;(2)如图2,将三角板DOE 绕点O 逆时针方向旋转,若OE 恰好平分∠AOC ,则OD 所在射线是∠BOC 的;(3)如图3,将三角板DOE 绕点O 逆时针转动到使∠COD =∠AOE 时,求∠BOD 的度数;(4)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,OE 恰好与直线OC 重合,求t 的值.【解答】解:(1)∵∠DOE =90°,∠BOC =50°,∴∠COE =40°,故答案为40°;(2)∵OE 平分∠AOC ,∴∠AOE =∠COE ,∵∠COE +DOC =∠DOE =90°,∴∠AOE +∠DOB =90°,∴∠DOC =∠DOB ,∴DO 平分∠BOC ,∴DO 是∠BOC 的角平分线,故答案为:角平分线;(3)∵∠COD =∠AOE ,∠COD +∠DOE +∠AOE =130°,∴5∠COD =40°,∴∠COD =8°,∴∠BOD =58°;(4)当OE 与射线OC 的反向延长线重合时,5t +40=180,∴t =28,当OE 与射线OC 重合时,5t =360﹣40,∴t =64,综上所述:t 的值为28或64.5.(雅礼)如图1,点O 为直线AB 上一点,过点O 作射线OC ,使130BOC ∠=︒。

中考不得不会的压轴题之——平面直角坐标系下的角度相等问题

中考不得不会的压轴题之——平面直角坐标系下的角度相等问题

中考不得不会的压轴题之——平⾯直⾓坐标系下的⾓度相等问题中考题最后的压轴题中,经常出现与⾓度相关的问题。

与平⾯直⾓坐标系结合,将三⾓形全等、三⾓形相似、三⾓函数、圆及⼆次函数等知识有机的结合在⼀起,考察学⽣对知识综合、灵活应⽤的能⼒,同时考察学⽣解题⽅法的思路的灵活性,以及对数学学科思维的掌握情况。

平⾯直⾓坐标系下的⾓度相等问题,通常有以下⼏种解题思路:1、利⽤三⾓形全等解决2、利⽤三⾓形相似解决3、利⽤三⾓函数解决4、利⽤圆的知识解决下⾯分类举例说明:类型⼀、利⽤三⾓形全等解决⾓度相等问题例1、如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C,连接BC.(1)求抛物线的表达式;(2)点D(2,m)在第⼀象限的抛物线上,连接BD.在对称轴左侧的抛物线上是否存在⼀点P,满⾜∠PBC=∠DBC?如果存在,请求出点P的坐标;如果不存在,请说明理由.【解析】:(1)∵抛物线y=ax^2+bx+3(a≠0)与x轴交于点A(-1,0),B(3,0),带⼊两点坐标即可。

∴抛物线的表达式为y=-x^2+2x+3;(2) 设BP交轴y于点G,再根据点B、C、D的坐标,得到∠DCB=∠OBC=∠OCB=45°,进⽽判定△CGB≌△CDB,求得点G的坐标为(0,1),得到直线BP的解析式为y=- 1/3x+1,最后计算直线BP与抛物线的交点P的坐标即可.【解答】解:(1)抛物线的表达式为y=-x^2+2x+3;(过程略)(2)存在.如图,设BP交轴y于点G,∵点D(2,m)在第⼀象限的抛物线上,∴当x=2时,m=﹣2^2+2×2+3=3,∴点D的坐标为(2,3),把x=0代⼊y=﹣x^2+2x+3,得y=3,∴点C的坐标为(0,3),∴CD∥x轴,CD=2,∵点B(3,0),∴OB=OC=3,∴∠OBC=∠OCB=45°,∴∠DCB=∠OBC=∠OCB=45°,⼜∵∠PBC=∠DBC,BC=BC,∴△CGB≌△CDB(ASA),∴CG=CD=2,∴OG=OC﹣CG=1,∴点G的坐标为(0,1),设直线BP的解析式为y=kx+1,将B(3,0)代⼊,得3k+1=0,解得k=﹣1/3,∴直线BP的解析式为y=﹣1/3x+1,令﹣1/3x+1=﹣x^2+2x+3,解得x1=-2/3,x2=3,∵点P是抛物线对称轴x=1左侧的⼀点,即x<1,∴x=﹣2/3,把x=﹣2/3代⼊抛物线y=﹣x^2+2x+3中,解得y=11/9,∴当点P的坐标为(﹣2/3,11/9)时,满⾜∠PBC=∠DBC.【总结】出现⾓等的条件时,可以将两⾓构造在全等三⾓形中,利⽤全等的性质解决问题。

2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(含答案)

2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(含答案)

2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(1)求抛物线的解析式;(2)抛物线上是否存在点,使P存在,请说明理由.(1)求该抛物线的函数表达式;(2)在直线上是否存在点,使说明理由.(3)为第一象限内抛物线上的一个动点,且在直线,垂足为,以点为圆心,,且不经过点l C P PM l ⊥M M 2PAB PT S =V M e (4.如图,已知顶点为的抛物线与x 轴交于A ,B 两点,且.(1)求点B 的坐标;(2)求二次函数的解析式;(3)作直线,问抛物线上是否存在点M ,使得,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图,抛物线与x 轴交于A 、B 两点,,,与y 轴交于点C ,连接.()0,6C -()20y ax b a =+≠OC OB =()20y ax b a =+≠CB ()20y ax b a =+≠15MCB ∠=︒24y ax bx =+-()2,0A -()8,0B AC BC 、(1)求抛物线的解析式;(2)求证:;(3)点P 在抛物线上,且,求点P的坐标.6.如图,在平面直角坐标系中,已知抛物线与x 轴交于、两点,与y 轴交于点C ,连接.(1)求抛物线的解析式;(2)在对称轴上是否存在一点M ,使,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)若点P 是直线下方的抛物线上的一个动点,作于点D ,当的值最大时,求此时点P 的坐标及的最大值.∠=∠ACO ABC PCB ACO ∠=∠()230y ax bx a =+-≠()3,0A ()1,0B -AC MCA MAC ∠=∠AC PD AC ⊥PD PD(1)试求抛物线的解析式;(2)点P 是直线下方抛物线上一动点,当的面积最大时,求点P 的坐标;(3)若M 是抛物线上一点,且,请直接写出点M 的坐标.BC BCP V MCB ABC ∠=∠(1)求此抛物线的解析式;(2)点E 是AC 延长线上一点,的平分线CD 交⊙于点D ,连接BD ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P ,使得?如果存在,请求出点P 的坐标;如果不存在,请说明理由.9.综合与实践:如图,抛物线与x 轴交于点和点,与y 轴交于点C ,连接,点D 在抛物线上.(1)求抛物线的解析式;(2)小明探究点D 位置时发现:如图1,点D 在第一象限内的抛物线上,连接,,面积存在最大值,请帮助小明求出面积的最大值;(3)小明进一步探究点D 位置时发现:点D 在抛物线上移动,连接,存在BCE ∠O 'PDB CBD ∠=∠22y ax bx =++()1,0A -()4,0B BC BD CD BCD △BCD △CD(1)求抛物线的解析式.(2)如图1,过点D 作轴,垂足为M ,点P 在直线P 作,,求的最大值,以及此时点(3)将原抛物线沿射线方向平移个单位长度,在平移后的抛物线上存在点得,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过DM x ⊥PE AD ⊥PF DM ⊥2PE PF +CA 5245CAG ∠=︒(1)填空:___________,___________;(2)点为直线上方抛物线上一动点.①连接、,设直线交线段于点,求的最大值;②过点作于点,连接,是否存在点,使得中的,若存在,求出点的坐标;若不存在,请说明理由.(1)求抛物线的解析式;b =c =D AC BC CD BD AC E DE EBD DF AC ⊥F CD D CDF V 2DCF BAC ∠=∠D(1)求抛物线的解析式;(2)抛物线上是否存在点D ,使得?若存在,求出所有点不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 动点,EF 与直线OB 交于点G .设和的面积分别为值.DOB OBC ∠=∠BFG V BEG V S14.如图,在平面直角坐标系中,点为坐标原点,抛物线与轴交于、两点且点,,与轴的负半轴交于点,.(1)求此抛物线的解析式;(2)在(1)的条件下,连接,点为直线下方的抛物线上的一点,过点作交于点,交直线于点,若,求点的坐标.(3)在(1)的条件下,点为该抛物线的顶点,过点作轴的平行线交抛物线于另一点,过点作于点,该抛物线对称轴右侧的抛物线上有一点,连接交于点,当时,求的度数.15.已知抛物线与轴相交于点,,与轴相交于点.O 2y x bx c =++x A B (3B 0)y C OB OC =AC P BC P PQ AC ∥AB Q BC D PD DQ =P D C x R R RH AB ⊥H M DM RH Q 2MQ RQ =MQH ∠24y ax bx =++x ()1,0A ()4,0B y C参考答案:的值最大时,此时,。

2023学年人教版数学八年级上册压轴题专题精选汇编(含30°角的直角三角形)解析版

2023学年人教版数学八年级上册压轴题专题精选汇编(含30°角的直角三角形)解析版

2023学年人教版数学八年级上册压轴题专题精选汇编含30°角的直角三角形考试时间:120分钟试卷满分:100分一、选择题(共10题;共20分)1.(2分)(2021八上·松桃期末)如图△ABC是等边三角形点E是AC的中点过点E作EF⊥AB于点F 延长BC交EF的反向延长线于点D 若EF=1 则DF的长为()A.2B.2.5C.3D.3.5【答案】C【完整解答】解:连接BE∵△ABC是等边三角形点E是AC的中点∴∠ABC=60° ∠ABE=∠CBE=30°∵EF⊥AB∴∠D=90°-∠ABC=30° 即∠D=∠CBE=30°∴BE=DE在Rt△BEF中EF=1∴BE=2EF=2∴BE=DE=2∴DF=EF+DE=3故答案为:C.【思路引导】连接BE 根据等边三角形的性质得∠ABC=60° ∠ABE=∠CBE=30° 易求∠D=30° 即得∠D=∠CBE 由等角对等边可得BE=DE 根据含30°角的直角三角形的性质可得BE=2EF=2 即得DE=2 从而得出DF=EF+DE=32.(2分)(2021八上·平阴期末)如图 △ABC 中 ∠C =90° AB =8 ∠B =30° 点P 是BC 边上的动点 则AP 长不可能是( )A .3.5B .4.2C .5.8D .7.3【答案】A 【完整解答】解:∵∠C=90° AB=8 ∠B=30°∴AC=12AB=12×8=4 ∵点P 是BC 边上的动点∴4<AP <8∴AP 的值不可能是3.5.故答案为:A .【思路引导】根据含30°角的直角三角形的性质可得AC=12AB=4 根据垂线段最短得出AP 的最小值 然后得出AP 的范围 即可判断.3.(2分)(2021八上·海丰期末)如图 OE 为AOB ∠的角平分线 30AOB ∠=︒ 6OB = 点P C 分别为射线OE OB 上的动点 则PC PB +的最小值是( )A .3B .4C .5D .6【答案】A 【完整解答】解:过点B 作BD ⊥OA 于D 交OE 于P 过P 作PC ⊥OB 于C 此时PC PB +的值最小∵OE 为AOB ∠的角平分线 PD ⊥OA PC ⊥OB∴PD=PC∴PC PB +=BD∵30AOB ∠=︒ 6OB = ∴132BD OB == 故答案为:A .【思路引导】根据角平分线的性质求出PD=PC 再求出PC PB +=BD 最后求出BD 的值即可。

中考数学解答题压轴题突破 重难点突破八 几何综合题 类型四:与角度有关的几何问题

中考数学解答题压轴题突破 重难点突破八 几何综合题 类型四:与角度有关的几何问题
2,CA=5,则AD的长度为 13;
(2)如图②,当点D在△ABC外部ห้องสมุดไป่ตู้,连接AE,F为AE的中点,连接FD并延 长到点G,连接EG,若EG=EB,求证:∠EGF=∠FDA;
(2)证明:延长GF到点H,使FH=FD,连接EH. ∵EF=AF,∠EFH=∠AFD,∴△EFH≌△AFD(SAS), ∴∠FDA=∠H,AD=EH. ∵AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS), ∴AD=BE.∵BE=EG,∴EH=EG,∴∠EGF=∠H,∴∠EGF=∠FDA.
(3)如图③,当点D在△ABC中线CF上时,在线段BF上取一点Q(不与点F重 合),连接DQ,将△FDQ沿DQ翻折得到△F′DQ,连接BF′,EF′,若CD =2,AC=3 2,当BF′最小时,求△DEF′的面积.
(3)解:连接BD,∵△ABC是等腰直角三角形,CF是中线,∴CF⊥AB,
∵AC=3 2,∴CF=BF=3,∵CD=2,∴DF=1,DE=2 2,
②判断∠DEC和∠EDC的数量关系,并说明理由; ②解:∠DEC+∠EDC=90°,理由:∵DB=DC,DA⊥BC, ∴∠BDA=12∠BDC=30°,∵△BAD≌△BEC,∴∠BCE=∠BDA=30°, 在等边三角形BCD中,∠BCD=60°,∴∠DCE=∠BCE+∠BCD=90°, ∴∠DEC+∠EDC=90°.
∴∠BDA=∠CDA=12∠BDC=30°,在△BDA中,DB=DA, 180°-∠BDA
∴∠BAD= 2 =75°,在△DAC中,DA=DC, 180°-∠ADC
∴∠DAC= 2 =75°, ∴∠BAC=∠BAD+∠DAC=75°+75°=150°;
②当点A在线段DF上时, ∵以点B为旋转中心,把BA顺时针方向旋转60°至BE,∴BA=BE, ∠ABE=60°,在等边三角形BDC中,BD=BC,∠DBC=60°, ∴∠DBC=∠ABE,∠DBC-∠ABC=∠ABE-∠ABC,即∠DBA=∠EBC, ∴△DBA≌△CBE,∴DA=CE,在Rt△DFC中,∠DFC=90°,∴DF<DC, ∵DA<DF,DA=CE,∴CE<DC, 由②可知△DCE为直角三角形,∴∠DEC≠45°.

学生版七年级上册期末重难点压轴题:角度的计算

学生版七年级上册期末重难点压轴题:角度的计算

七年级上册期末重难点压轴题:角度的计算学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图,点O是钟面的中心,射线OC正好落在3:00时针的位置.当时钟从2:00走到3:00,则经过___________分钟,时针,分针,与OC所在的三条射线中,其中一条射线是另外两条射线所夹角的角平分线.2.上午9点钟的时候,时针和分针成直角,则下一次时针和分针成直角的时间是_____.3.如图是时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于_____________°.二、解答题4.定义:过角的顶点在角的内部作一条射线,得到三个角,若这三个角中有一个角是另外一个角的两倍,则称这条射线为这个角的“二倍角线”.(1)如图1,.AOB=120°,射线OC为.AOB的“二倍角线”,则.AOC=.(2)如图2,射线OB为.COD的“二倍角线”,且.DOB=2.BO C.射线OM、ON分别为.AOC、.BOD的平分线,问AOD BOCMON∠+∠∠的值是否为定值?若是,求出其值;若不是,请说明理由;(3)如图3.已知.AOB=120°,射线OC、OD为.AOB的“二倍角线”,且.COB=2.AO C..AOD=2.BOD,将.COD绕点O以10°/秒的速度顺时针转动,运动时间为t秒(0≤t≤14),射线OM、ON分别为.AOC、.BOD的平分线.OB、OM、ON三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t所有可能的值.5.如果两个角的差的绝对值等于60°,就称这两个角互为“伙伴角”,其中一个角叫做另一个角的“伙伴角”(本题所有的角都指大于0°小于180°的角),例如∠1=80°,∠2=20°,|∠1﹣∠2|=60°,则∠1和∠2互为“伙伴角”,即∠1是∠2的“伙伴角”,∠2也是∠1的“伙伴角”.(1)如图1,O为直线AB上一点,∠AOC=∠EOD=90°,∠AOE=60°,则∠AOE的“伙伴角”是;(2)如图2,O为直线AB上一点,∠AOC=30°,将∠BOC绕着点O以每秒1°的速度逆时针旋转得∠DOE,同时射线OP从射线OA的位置出发绕点O以每秒4°的速度逆时针旋转,当射线OP与射线OB重合时旋转同时停止,若设旋转时间为t秒;①当t为何值时,OD为∠AOC的角平分线;②当t为何值时,∠POD与∠POE互为“伙伴角”.6.已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.8.已知:158,,,AOD OB OM ON ∠=︒是AOD ∠内的射线.(1)如图1,若OM 平分,AOB ON ∠平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,MON ∠=_______度. (2)OC 也是AOD ∠内的射线,如图2,若17,BOC OM ∠=︒平分,AOC ON ∠平分BOD ∠,当BOC ∠绕点O 在AOD ∠内旋转时,求MON ∠的大小.(3)在(2)的条件下,若11AOB ∠=︒,当BOC ∠在AOD ∠内绕O 点以每秒1︒的速度逆时针旋转t 秒,如图3,且:3:4AOM DON ∠∠=,求t 的值.10.已知∠AOB ,过顶点O 作射线OP ,若∠BOP =12∠AOP ,则称射线OP 为∠AOB 的“好线”,因此∠AOB 的“好线”有两条,如图1,射线OP 1,OP 2都是∠AOB 的“好线”.(1)已知射线OP 是∠AOB 的“好线”,且∠BOP =30°,求∠AOB 的度数.(2)如图2,O 是直线MN 上的一点,OB ,OA 分别是∠MOP 和∠PON 的平分线,已知∠MOB =30°,请通过计算说明射线OP 是∠AOB 的一条“好线”.(3)如图3,已知∠MON =120°,∠NOB =40°.射线OP 和OA 分别从OM 和OB 同时出发,绕点O 按顺时针方向旋转,OP 的速度为每秒12°,OA 的速度为每秒4°,当射线OP 旋转到ON 上时,两条射线同时停止.在旋转过程中,射线OP 能否成为∠AOB 的“好线”.若不能,请说明理由;若能,请求出符合条件的所有的旋转时间.11.已知OC 是AOB ∠内部的一条射线,M N 、分别为,OA OC 上的点,线段, OM ON 同时分别以30/s, 10/s ︒︒的速度绕点O 逆时针旋转,设旋转时间为t 秒.(1)如图①,若120AOB ∠=︒,当OM ON 、逆时针旋转到OM ON ''、处, ①若, OM ON 旋转时间t 为2时,则BON COM ''∠+∠=______; ②若OM '平分,AOC ON '∠平分,BOC M ON ''∠∠=_____;(2)如图②,若4AOB BOC OM ON ∠=∠,,分别在,AOC BOC ∠∠内部旋转时,请猜想COM ∠与BON ∠的数量关系,并说明理由.(3)若80AOC OM ON ∠=︒,,在旋转的过程中,当20MON ∠=︒时,求t 的值.12.如图,已知AOB ∠是锐角,过点O 作射线OD ,2COD AOD ∠=∠.(1)当2BOD AOC ∠=∠,且射线OD 在AOC ∠的内部时,找出图中另一对成2倍关系的角,并说明理由; (2)当射线OD 在AOC ∠的外部时,探索AOB ∠,BOC ∠,BOD ∠之间的等量关系; (3)若COD BOC ∠>∠,求BOC ∠的取值范围.13.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余; ①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?14.如果两个锐角的和等于90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,0为直线AB 上一点,OC 丄AB 于点O ,OE⊥OD 于点O ,请写出图中所有互为垂角的角有_____________; (2)如果有一个角的互为垂角等于这个角的补角的45,求这个角的度数.15.已知150AOB ∠=︒,射线OP 从OB 出发,绕O 逆时针以1°/秒的速度旋转,射线OQ 从OA 出发,绕O 顺时针以3°/秒的速度旋转,两射线同时出发,运动时间为t 秒()060t <≤ (1)当12t =秒时,求POQ ∠; (2)当OP OQ ⊥,求t 的值;(3)射线OP ,OQ ,OB ,其中一条射线是其他两条射线所形成的角的平分线,求t 的值.16.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC =60°.将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角尺绕点O 顺时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠BOC .求∠CON 的度数;(2)将图1中的三角尺绕点O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第几秒时,直线ON 恰好平分锐角∠AOC ?(3)将图1中的三角板绕点O 顺时针旋转至图3,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.17.已知AOB ∠,过顶点O 作射线OP ,若12BOP AOP ∠=∠,则称射线OP 为AOB ∠的“好线”,因此AOB ∠的“好线”有两条,如图1,射线12,OP OP 都是AOB ∠的“好线”.(1)已知射线OP 是AOB ∠的“好线”,且30BOP ∠=︒.求AOB ∠的度数.(2)如图2,O 是直线MN 上的一点,,OB OA 分别是MOP ∠和PON ∠的平分线,已知30MOB ∠=︒,请通过计算说明射线OP 是AOB ∠的一条“好线”.(3)如图3,已知120MON ∠=︒,40NOB ∠=︒.射线OP 和OA 分别从OM 和OB 同时出发,绕点O 按顺时针方向旋转,OP 的速度为每秒12︒,OA 的速度为每秒4︒,当射线OP 旋转到ON 上时,两条射线同时停止.在旋转过程中,射线OP 能否成为AOB ∠的“好线”.若不能,请说明理由:若能,请求出符合条件的所有的旋转时间.18.已知点O 为直线AB 上一点,90COD ∠=︒,射线OE 平分AOD ∠.(1)如图.所示,若20COE ∠=︒,则BOD ∠=_________.(2)若将COD ∠绕点O 旋转至图.的位置,试判断BOD ∠和COE ∠的数量关系,并说明理由.(3)若将COD ∠绕点O 旋转至图.的位置,BOD ∠和COE ∠的数量关系是否发生变化?只需写出结论,不需说明理由.(4)若将COD ∠绕点O 旋转至图.的位置,继续探究BOD ∠和COE ∠的数量关系,请直接写出BOD ∠和COE ∠之间的数量关系:__________.19.如图所示,将笔记本活页两角向内折叠,使角的顶点A 落在A '处,顶点D 落在D 处,BC ,BE 为折痕. (1)如图1,使边BD '与边BA '重合,若130∠=︒,求2∠=_______,CBE =∠_______.(2)如图2,使边BD 沿着BE 折叠后的边BD '落在1∠内部,若140∠=︒,设A BD α''∠=,EBD β∠=,求a 与β之间的数量关系,并直接写出a ,β的取值范围.20.已知将一副三角板(90,30AOB COD ∠=︒∠=︒)如图1摆放,点O 、A 、C 在一条直线上.将直角三角板OCD 绕点O 逆时针方向转动,变化摆放如图位置.(1)如图1,当点O 、A 、C 在同一条直线上时,BOD ∠=_______度;如图2,若要OB 恰好平分COD ∠,则AOC ∠=_______度;(2)如图3,当三角板OCD 摆放在AOB ∠内部时,作射线OM 平分AOC ∠,射线ON 平分BOD ∠,如果三角板OCD 在AOB ∠内绕点O 任意转动,MON ∠的度数是否发生变化?如果不变,求其值;如果变化,说明理由. (3)当三角板OCD 从图1的位置开始,绕点O 逆时针方向旋转一周,保持射线OM 平分AOC ∠、射线ON 平分BOD ∠(180,180AOC BOD ∠≤︒∠≤︒),在旋转过程中,(2)中的结论是否保持不变?如果保持不变,请说明理由;如果变化,请说明变化的情况和结果(即旋转角度a 在什么范围内时MON ∠的度数是多少).21.在同一平面内的三条射线OA 、OB 、OC ,①当射线OC 在AOB ∠内时,若满足2AOC COB ∠=∠,则称射线OC 是(,OA OB )的好线;若满足2BOC AOC ∠=∠,则称射线OC 是(,OB OA )的好线;②当射线OC 在AOB ∠外时,若满足2AOC COB ∠=∠,称射线OC 是(,OA OB )的皮线.(1)如图1,20AOD DOC COB ∠=∠=∠=︒,则射线OC 是(,OA OB )的好线,又是(,OA OD )的皮线;射线______是(,OB OA )的好线,又是____的皮线.(2)如图2,点O 在线段AB 上,30,60BOD AOC ∠∠=︒=︒,求(,OC OD )的好线与OA 的夹角(写出完整的解答过程).(3)如图3,点O 在直线AB 上,∠30,60BOD AOC =∠=︒︒,射线OM 从OC 位置出发以每秒10︒的速度绕着点O 逆时针方向旋转,设旋转时间为(012)t t <<)秒. ①求当t 为何值时,(,OB OM )的皮线与OC 垂直?②若有射线ON 从OD 位置与射线OM 同时出发以每秒5︒的速度绕着点O 顺时针方向旋转,并与射线OM 同时停止运动,求当t 为何值时,OM 、OB 、ON 三条射线中恰好能使得其中一条为其余两条的好线(直接写出答案).22.已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE 使60BOC EOD ∠=∠=.(1)如图.,若OD 平分BOC ∠,求AOE ∠的度数;(2)如图.,将EOD ∠绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把BOC ∠分成两个角. .若:1:2COD BOD ∠∠=,求AOE ∠的度数;.若:1:COD BOD n ∠∠=(n 为正整数),直接用含n 的代数式表示AOE ∠.。

中考数学直角三角形的边角关系-经典压轴题含答案解析

中考数学直角三角形的边角关系-经典压轴题含答案解析

中考数学直角三角形的边角关系-经典压轴题含答案解析一、直角三角形的边角关系1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.3.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tan PHPAH∠=33=503,∵AC ∥BD ,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD –∠PBD=45°, 则PH=BH=50,∴AB=AH+BH=503+50,∵60千米/时=503米/秒,∴时间t=50350503+=3+33≈8.1(秒), 即车辆通过AB 段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

初三三角函数压轴题

初三三角函数压轴题

以下是针对初三三角函数的10道原创选择题:1、在直角三角形ABC中,∠C=90°,若sinA = 1/2,则∠A的度数为?A. 30°B. 45°C. 60°D. 90°(答案:A)2、在直角三角形中,如果一个锐角是另一个锐角的两倍,那么这两个锐角分别可能是?A. 30°和60°B. 45°和45°C. 20°和70°D. 15°和75°(答案:A)3、已知直角三角形的一个锐角为α,且tanα= 1/√3,则α的度数为?A. 30°B. 45°C. 60°D. 90°(答案:A)4、在直角三角形中,若一个锐角的正弦值为√2/2,则这个锐角的度数为?A. 30°B. 45°C. 60°D. 90°(答案:B)5、已知直角三角形的一个锐角为β,且cosβ= √3/2,则β的度数为?A. 30°B. 45°C. 60°D. 90°(答案:A)6、在直角三角形ABC中,∠C=90°,若tanA = √3,则∠A的度数为?A. 30°B. 45°C. 60°D. 90°(答案:C)7、已知直角三角形的一个锐角为γ,且sinγ= √3/2,则γ的度数为?A. 30°B. 45°C. 60°D. 90°(答案:C)8、在直角三角形中,若一个锐角的余弦值为1/2,则这个锐角的度数为?A. 30°B. 45°C. 60°D. 90°(答案:A)9、已知直角三角形的一个锐角为δ,且tanδ= 1,则δ的度数为?A. 30°B. 45°C. 60°D. 90°(答案:B)10、在直角三角形ABC中,∠C=90°,若cosA = 1/√2,则∠A的度数为?A. 30°B. 45°C. 60°D. 90°(答案:B)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.【现场学习】现有一个只能直接画31°角的模板,小英同学用这个模板画出了25°的角,他的画法是这样的:
(1)如图1,用模板画出∠AOB =31°;(2)如图2,再继续画出∠BOC =31°; (3)如图3,再继续依次画出3个31°的角;
(4)如图4,画出射线OA 的反向延长线OG ,则∠FOG 就是所画的25°的角. 【尝试实践】请你也用这个模板画出6°的角,并标明相关角度,指明结果.
【实践探究】利用这个模板可以画出12°的角吗?如果不可以,说出结论即可;如果可以,请你画出这个角,并说明理由. 25. 如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.
(1)如图1,当∠AOB 是直角, ∠BOC =60°时,∠MON 的度数是多少? (2)如图2,当∠AOB =α,∠BOC = 60°时,猜想∠MON 与α的数量关系;
(3)如图3,当∠AOB =α,∠BOC =β时,猜想∠MON 与α、β有数量关系吗?如果有,指出结论并说明理由.
25.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC :∠BOC = 2:1,将
一直角三角板的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 在直线AB 的下方.
(1)将图1中的三角板绕点O 按顺时针方向旋转至图2的位置,使得OM 落在射线OA 上,
此时ON 旋转的角度为 °;
(2)继续将图2中的三角板绕点O 按顺时针方向旋转至图3的位置,使得OM 在∠BOC 的
内部,则∠BON -∠COM = °;
(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O 按每秒钟15°
的速度旋转,当OM 恰为∠BOC 的平分线时,此时,三角板绕点O 的运动时间为 秒,简要说明理由.
O
N A
B C
M M C
B A
N
O
图1
图2
图3
O N
A
B C
M
31°
31°31°31°31°25°31°
31°31°31°31°
31°
31°
31°
A
O
B B
A
O
C
C
B O
A
D
E F O
A
B C
D
E
F G
图1
图2
图3
图4
26. 如图1,点O 为直线AB 上一点,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角
三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线
OB 上, 此时三角板旋转的角度为 度;
图1 图2
(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC
的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;
图3
(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O 按15°每秒
的速度旋转,当直角三角板的直角边ON 所在直线恰好平分∠AOC 时,求此时三角 板绕点O 的运动时间t 的值.
备用图 28.(本题9分)如图,动点A 从原点出发向数轴负方向运动,同时动点B 也从
原点出发向数轴正方向运动,2秒后,两点相距16个单位长度.已知动点A 、B 的速度比为1∶3(速度单位:1个单位长度/秒).
(1)求两个动点运动的速度;(2)在数轴上标出A 、B 两点从原点出发运动2秒时的位置; (3)若表示数0的点记为O ,A 、B 两点分别从(2)中标出的位置同时向数轴负方向运动,再经过多长时间, OB=2OA .
27. 如图,在长方形ABCD 中,AB =6,CB =8,点P 与点Q 分别是AB 、CB 边 上的动点,点P 与点Q 同时出发,点P 以每秒2个单位长度的速度从点A →点 B 运动,点Q 以每秒1个单位长度的速度从点C →点B 运动.当其中一个点到 达终点时,另一个点随之停止运动.(设运动时间为t 秒) (1)如果存在某一时刻恰好使QB =2PB ,求出此时t 的值; (2)在(1)的条件下,求图中阴影部分的面积(结果保留整数).
N
B O A
C M A O B
C C A O B M N
C M
11、(八一实验)已知a 是最大的负整数,b 是多项式232
22m n m n m ---的次数,c 是单项式2
2xy -的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数. (1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .
(2)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1
2
个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 可以追上点P ?
(3)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于10,请直接写出所有点M 对应的数.(不必说明理由)
28.已知α∠=AOB (3045α︒<<︒),∠AOB 的余角为∠AOC ,∠AOB 的补角为∠BOD ,
OM 平分∠AOC , ON 平分∠BOD .
(1)如图,当40α=︒,且射线OM 在∠AOB 的外部时,用直尺、量角器画出射线OD ,
ON 的准确位置;
(2)求(1)中∠MON 的度数,要求写出计算过程;
(3)当射线OM 在∠AOB 的内部..
时,用含α的代数 式表示∠MON 的度数.(直接写出结果即可)
26.(本小题满分6分)
已知, OM 和ON 分别平分∠AOC 和∠BO C.
(1)如图:若C 为∠AOB 内一点,探究MON ∠与AOB ∠的数量关系; (2)若C 为∠AOB 外一点,且C 不在OA 、OB 的反向延长线上,请你画出图形,并探究MON ∠与AOB ∠的数量关系.
C A
O
B
M
B
26. 解:(1)
OM 和ON 分别平分∠AOC 和∠BO C ,
∴ 1111
==()2222
MON MOC NOC AOC BOC AOC BOC AOB ∠∠+∠∠+∠=∠+∠=∠.
……………………… 3分 (2)当C 在如图所示的位置时,
11
==2211
().22
MON MOC NOC AOC BOC
AOC BOC AOB ∠∠-∠∠-∠=∠-∠=∠
当C 在如图所示的位置时,
11
==2211
().22
MON NOC MOC BOC AOC
BOC AOC AOB ∠∠-∠∠-∠=∠-∠=∠
当C 在如图所示的位置时,
11
==22
11
()(360)22
1
180.
2
MON MOC NOC AOC BOC
AOC BOC AOB AOB ∠∠+∠∠+∠=∠+∠=︒-∠=︒-∠ ………………………6分
27.小知识:如图,我们称两臂长度相等(即CB CA =)的圆规为等臂圆规. 当等臂圆规的两脚摆放在一条直线上时,若张角︒=∠x ACB ,则底角︒-=∠=∠)2
90(x CBA CAB . 请运用上述知识解决问题:
如图,n 个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数 变化如下:
112160AC A ∠=︒,22380A C A ∠=︒, 33440A C A ∠=︒,44520A C A ∠=︒,…
a b o c
(1)①由题意可得121C A A ∠= º;
②若2A M 平分321A A C ∠,则22C MA ∠= º;
(2)n n n C A A 1+∠= º(用含n 的代数式表示);
(3)当3≥n 时,设11n n n A A C --∠的度数为a ,11n n n A A C +-∠的角平分线N A n 与n n A C 构成的角的度数为β,那么a 与β之间的等量关系是 ,请说明理由. (提示:可以借助下面的局部示意图)
解:
例题5:(培正)在数轴上表示a 、b 两个实数的点的位置如图所示,则化简
│a -b │-│a +b │的结果是 .
变式练习5-1:如图,a 、b 、c 在数轴上的位置如图所示,
则=--+-+||||||b c c a b a 。

变式练习5-2:(7中)(1)化简:23x x -+-
(2)当x 满足什么条件时,23x x -+-有最小值?最小值是多少? (3)当x 满足什么条件时,23x x ---有最大值?最大值是多少?
12、化简:3121x x ++-
a 0 b。

相关文档
最新文档