2019-2020年人教版八年级数学上册第一次月考

合集下载

人教版八年级上册数学第一次月考考试卷及参考答案

人教版八年级上册数学第一次月考考试卷及参考答案

人教版八年级上册数学第一次月考考试卷及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1C .6,8,11D .5,12,236.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.因式分解:2218x -=__________.3.若23(1)0m n -++=,则m -n 的值为________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数.(1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F(1)证明:PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、B6、C7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、52、2(x+3)(x﹣3).3、4415、46、8三、解答题(本大题共6小题,共72分)1、x=-1或x=32、1 23、(1)1;(2)m>2;(3)-2<2m-3n<184、(1) 65°;(2) 25°.5、(1)略(2)90°(3)AP=CE6、(1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.。

2020年八年级上学期数学第一次月考试卷及答案

2020年八年级上学期数学第一次月考试卷及答案

2020年八年级上学期第一次月考数学试卷4分,共40分)1.如图1,在△中,点是延长线上一点,=40°,=120°,则等于()A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =().A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图2如下,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1 B.2 C.3 D.49.如图6,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图7,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图8,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理_________________.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为__________.13.小明不慎将一块三角形的玻璃摔碎成如图9所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带_____.图9 图10 图11 图1214.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.16.如图12,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到______________位置时,才能使△ABC≌△QPA.年八年级上学期数学第一次月考答题卡二、填空题(本题共24分,每小题4分)11._________________ , 12._______________ , 13.________________ ,14.__________________ , 15._______________ , 16.________________ .三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF; (2)指出图中所有平行的线段,并说明理由.21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB; (2)若AC=12 cm,求BD的长.23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE. 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.2020年八年级上学期第一次月考数学试卷(答案)4分,共40分)1.如图,在△中,点是延长线上一点,=40°,=120°,则等于(C)A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( B )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =( D).A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是(A)A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( A )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( D )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( B )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( B )A.1 B.2 C.3 D.49.如图5,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于(C)A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图6,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( C )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图7,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是___三角形的稳定性_______.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为____22______.13.小明不慎将一块三角形的玻璃摔碎成如图8所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带__②___.图8 图9 图10 图1114.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=___135°_____.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____67°___.16.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到__AC的中点_位置时,才能使△ABC≌△QPA.三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.解:∵ AB∥CD,∴∠ABO=∠CDO.(1分)又∵ OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.(3分)在△ABO与△CDO中,∴△ABO≌△CDO.(6分)∴ CD=AB=20米.(8分)(也可利用“AAS”证△ABO≌△CDO,其他过程相同).解析:根据AB∥OH∥CD,利用平行线的性质可知∠ABO=∠CDO(或者∠BAO=∠DCO).由题意可证明OD,OB分别是平行线AB与OH以及OH与CD之间的距离,故OD=OB,根据“ASA”或者“AAS”证明△ABO ≌△CDO,所以CD=AB,进而求出CD的长.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.(1)证明:∵ BF=EC,∴ BF+FC=EC+CF,即BC=EF.(3分)又AB=DE,AC=DF,∴△ABC≌△DEF.(5分)(2)AB∥DE,AC∥DF.(7分)理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴ AB∥DE,AC∥DF. (10分)21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.解:(1)∆ABE≅∆ACD∴∠EBA=∠C=42°(3分)∠EBG=0180—∠EBA=138°.(5分)(2) ∆ABE≅∆ACD∴AC=AB=9 AE=AD=6 .(8分)∴EC=AC-AE=9-6=3 . (10分)22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB;(2)若AC=12 cm,求BD的长.(1)证明:∵AF⊥DC,∴∠ACF+∠FAC=90°,∵∠ACF+∠FCB=90°,∴∠EAC=∠FCB,在△DBC和△ECA,⎩⎪⎨⎪⎧∠DBC=∠ACB=90°∠DCB=∠CAEDC=AE,∴△DBC≌△ECA(AAS),∴BC=AC(2)解:∵E是AC的中点,∴EC =12BC =12AC=12×12 cm=6 cm,又∵△DBC≌△ECA,∴BD=CE,∴BD=6 cm23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE.解:(1)△ABE≌△ACD,证明:∵AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴△ABE≌△ACD(2)由△ABE≌△ACD得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (4分)∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE; (6分)(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,(8分)理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (12分)∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF. (14分)。

人教版2019-2020学年福建省厦门市八年级(上)第一次月考数学试卷解析版

人教版2019-2020学年福建省厦门市八年级(上)第一次月考数学试卷解析版

2019-2020学年福建省厦门市八年级(上)月考数学试卷一、选择题(本大题有10小题,每小题4分,共40分)1.(4分)下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A.B.C.D.2.(4分)能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线3.(4分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.94.(4分)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm5.(4分)某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去6.(4分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°7.(4分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.8.(4分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°9.(4分)下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②③④B.①③④C.①②④D.②③④10.(4分)如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A.25°B.27°C.30°D.45°二、填空题(本大题有6小题,每题4分,共24分)11.(4分)如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCD=.12.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.13.(4分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是.14.(4分)如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为.15.(4分)若一个多边形的每个外角都为36°,则这个多边形的对角线共有条.16.(4分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE =CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)三、解答题(本大题有9小题,共86分)17.(8分)解方程组:18.(8分)解不等式组.19.(8分)在直线l上找出一点P,使得点P到∠AOB的两边OA、OB的距离相等.(要求用尺规作图,保留作图痕迹)20.(8分)如图,AD=AE,∠1=∠2,∠B=∠C.求证:AB=AC.21.(8分)如图,已知CE⊥AB于点E,BF⊥AC于点F,CE与BF相交于点D,且AD平分∠BAC,求证:BD=CD.22.(10分)如图,△ABC中,AD⊥BC于D,BF=AC,FD=CD.求证:AC⊥BE.23.(10分)如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且BD=CD.求证:(1)BE=CF;(2)∠ABD+∠ACD=180°.24.(12分)如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF求证:BE+CF>EF.25.(14分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并给出理由.参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分)1.解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选:A.2.解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.3.解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选:C.4.解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.5.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.6.解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.7.解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选:B.8.解:如图,∠2=30°,∠1=∠3﹣∠2=45°﹣30°=15°.故选:C.9.解:由全等三角形的概念可知:全等的图形是完全重合的,所以①全等图形的形状相同、大小相等是正确的;重合则对应边、对应角是相等的,周长与面积也分别相等,所以①②③④都正确的故选:A.10.解:在△ADB和△CDB,∵BD=BD,∠ADB=∠CDB=90°,AD=CD∴△ADB≌△CDB,∴∠ABD=∠CBD,又∵∠ABC=∠ABD+∠CBD=54°,∴∠ABD=∠CBD=×∠ABC=27°.在△ADB和△EDC中,∵AD=CD,∠ADB=∠EDC=90°,BD=ED,∴△ADB≌△CDE,∴∠E=∠ABD.∴∠E=∠ABD=∠CBD=27°.所以,本题应选择B.二、填空题(本大题有6小题,每题4分,共24分)11.解:∠BCD是三角形ABC的外角,所以∠BCD=∠A+∠B=60°+30°=90°.故填90°.12.解:这样做的道理是利用三角形的稳定性.13.解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.14.解:∵DE垂直平分AC,∴EA=EC.△EBC的周长=BC+BE+EC,=BC+BE+AE,=BC+AB,=8+10,=18(cm).故答案为:18cm.15.解:多边形的边数=360°÷36°=10,对角线条数==35条.故答案为:35.16.解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.三、解答题(本大题有9小题,共86分)17.解:解法1:(1)+(2),得5x=10,∴x=2,(3分)把x=2代入(1),得4﹣y=3,∴y=1,(2分)∴方程组的解是.(1分)解法2:由(1),得y=2x﹣3,③(1分)把③代入(2),得3x+2x﹣3=7,∴x=2,(2分)把x=2代入③,得y=1,(2分)∴方程组的解是.(1分)18.解:,由①得:x>1,由②得:x≥﹣2,不等式组的解集为:x>1.19.解:如图,点P为所作.20.证明:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,即∠CAE=∠BAD.在△ABD和△ACE中,∴△ABD≌△ACE(AAS).∴AB=AC.21.证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°,∴∠BDE+∠B=90°,∠FDC+∠90°,∵∠BDE=∠CDF,∴∠B=∠C,∵AD平分∠BAC,∴∠BAD=∠CAD,在△BAD与△CAD中,,∴△BAD≌△CAD(AAS),∴BD=CD.22.证明:∵AD⊥BC,∴∠BDF=∠ADC=90°,在Rt△BDF和Rt△ADC中∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠DAC,∵∠BDF=90°,∴∠DBF+∠BFD=90°,∵∠BFD=∠AFE,∴∠DAC+∠AFE=90°,∴∠AEF=180°﹣90°=90°,∴AC⊥BE.23.解:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在RT△BDE和RT△CDF中,,∴RT△BDE≌RT△CDF(HL),∴BE=CF;(2)∵RT△BDE≌RT△CDF,∴∠ACD=∠DBE,∵∠DBE+∠ABD=180°,∴∠ABD+∠ACD=180°.24.证明:延长FD至G,使得GD=DF,连接BG,EG ∵在△DFC和△DGB中,,∴△DFC≌△DGB(SAS),∴BG=CF,∵在△EDF和△EDG中∴△EDF≌△EDG(SAS),∴EF=EG在△BEG中,两边之和大于第三边,∴BG+BE>EG又∵EF=EG,BG=CF,∴BE+CF>EF.25.解:(1)①如图1中,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:如图2中,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为∠α+∠ACB=180°.(2)结论:EF=BE+AF.理由:如图3中,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.故答案为:=,EF=|BE﹣AF|;②∠α+∠ACB=180°时.。

人教版八年级上册数学《第一次月考》测试卷(完美版)

人教版八年级上册数学《第一次月考》测试卷(完美版)

人教版八年级上册数学《第一次月考》测试卷(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( )A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm3.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .115.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+16.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大9.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.若最简二次根式1a +与8能合并成一项,则a =__________.3.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n =_______.4.如图,将Rt ABC 绕直角顶点C 顺时针旋转90,得到DEC ,连接AD ,若25BAC ∠=,则BAD ∠=________.5.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于__________.6.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y-=⎧⎨+=⎩2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.解不等式组513(1)131722x xx x+>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.4.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF (1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、C5、C6、B7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()2x x y -2、13、54、705、206、7三、解答题(本大题共6小题,共72分)1、21x y =⎧⎨=-⎩2、22x -,12-.3、24x -<≤,数轴见解析.4、(1)略;(2)S 平行四边形ABCD =245、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

2019年八年级数学上学期第一次月考试题(含解析) 新人教版(III)

2019年八年级数学上学期第一次月考试题(含解析) 新人教版(III)

2019年八年级数学上学期第一次月考试题(含解析) 新人教版(III)一、选择题(共8题,每题3分,共24分)1.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A.两角和一边B.两边及夹角C.三个角D.三条边2.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.两处 C.三处 D.四处3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是( )A.21:10 B.10:21 C.10:51 D.12:014.下列图形中,不一定是轴对称图形的是( )A.线段 B.角C.直角三角形D.等腰三角形5.如图,点D、E分别在线段AB、AC上,BECD相交于点O,AE=AD,要使△ABE≌△ACD需要添加一个条件是( )A.AB=AC B.∠A=∠O C.OB=OC D.BD=CE6.已知不平行的两条线段AB、A′B′关于直线L对称,AB和A′B′所在直线交于点P,下列结论:①AB∥A′B′;②点P在直线L上;③若点A′、A是对称点,则直线L垂直平分线段AA′;④若B、B′是对称点,则PB=PB′.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空(共9题,每题3分,共27分)7.等腰三角形是轴对称图形,它的对称轴是__________.8.已知△ABC≌△DEF,∠A=52°,∠B=57°,则∠F=__________.9.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为__________.10.点A(﹣3,2)关于y轴的对称点坐标是__________.11.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为__________cm.12.如图:沿AM折叠,使D点落在BC上,如果AD=7cm,DM=5cm,则AN=__________cm.13.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18cm2,则EF边上的高的长是__________cm.14.如图:EA∥DF,AE=DF,要使△AEC≌△DBF,则只要补充条件:__________(写一个即可).15.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是__________cm.三、解答题(共7题,共75分)16.作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.17.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.18.如图,四边形ABCD中,AB=AD,BC边的垂直平分线MN经过点A,求证:点A在CD的垂直平分线上.19.如图所示,BD平分∠ABC,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,M、N为垂足.求证:PM=PN.20.如图所示,点B、F、C、E在同一直线上,AC、DF相交于G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.(1)求证:△ABC≌△DEF;(2)如果GF=4,求GC的长.21.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.22.(13分)如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE长.2015-2016学年河南省信阳市淮滨二中八年级(上)第一次月考数学试卷一、选择题(共8题,每题3分,共24分)1.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A.两角和一边B.两边及夹角C.三个角D.三条边【考点】全等三角形的判定.【分析】本题考查的是全等三角形的判定,可根据全等三角形的判定定理进行求解,常用的方法有:SSS、SAS、SSA、AAS、HL.【解答】解:判定两三角形全等,就必须有边的参与,因此C选项是错误的.A选项,运用的是全等三角形判定定理中的AAS或ASA,因此结论正确;B选项,运用的是全等三角形判定定理中的SAS,因此结论正确;D选项,运用的是全等三角形判定定理中的SSS,因此结论正确;故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.两处 C.三处 D.四处【考点】角平分线的性质.【专题】应用题.【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥A B,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选D.【点评】此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是( )A.21:10 B.10:21 C.10:51 D.12:01【考点】镜面对称.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻与10:51成轴对称,所以此时实际时刻为10:51.故选C.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.4.下列图形中,不一定是轴对称图形的是( )A.线段 B.角C.直角三角形D.等腰三角形【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项图形分析判断后利用排除法求解.【解答】解:A、线段是轴对称图形,对称轴是线段的垂直平分线与线段本身所在的直线,故本选项错误;B、角是轴对称图形,对称轴是角平分线所在的直线,故本选项错误;C、直角三角形不一定是轴对称图形,故本选项正确;D、等腰三角形是轴对称图形,对称轴是底边的垂直平分线,故本选项错误.故选C.【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,点D、E分别在线段AB、AC上,BECD相交于点O,AE=AD,要使△ABE≌△ACD需要添加一个条件是( )A.AB=AC B.∠A=∠O C.OB=OC D.BD=CE【考点】全等三角形的判定.【分析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.在△ABE和△ACD 中,已知了AE=AD,公共角∠A,因此只需添加一组对应角相等或AC=AB即可判定两三角形全等.【解答】解:添加条件可以是:AB=AC或∠AEB=∠ADC或∠B=∠C.故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.已知不平行的两条线段AB、A′B′关于直线L对称,AB和A′B′所在直线交于点P,下列结论:①AB∥A′B′;②点P在直线L上;③若点A′、A是对称点,则直线L垂直平分线段AA′;④若B、B′是对称点,则PB=PB′.其中正确的结论有( )A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】根据轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.【解答】解:①AB∥A′B′;根据不平行的两条线段AB、A′B′关于直线L对称故此选项错误;②点P在直线L上;如图所示,故选项正确;③若点A′、A是对称点,则直线L垂直平分线段AA′;利用图形对称性得出,此选项正确;④若B、B′是对称点,则PB=PB′,利用图形对称性得出,此选项正确;其中正确的结论有3个,故选:C.【点评】本题考查轴对称图形的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(共9题,每题3分,共27分)7.等腰三角形是轴对称图形,它的对称轴是底边的中垂线.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:等腰三角形是轴对称图形,它的对称轴是底边的中垂线.【点评】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.8.已知△ABC≌△DEF,∠A=52°,∠B=57°,则∠F=71°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D=∠A=52°,∠E=∠B=57°,根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=52°,∠B=57°,∴∠D=∠A=52°,∠E=∠B=57°,∴∠F=180°﹣∠D﹣∠E=71°,故答案为:71°.【点评】本题考查了全等三角形的性质,三角形内角和定理的应用,能根据全等三角形的性质得出∠D=∠A,∠E=∠B是解此题的关键,注意:全等三角形的对应边相等,对应角相等.9.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.10.点A(﹣3,2)关于y轴的对称点坐标是(3,2).【考点】关于x轴、y轴对称的点的坐标.【分析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:点A(﹣3,2)关于y轴的对称点坐标是(3,2).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为9cm.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】由折叠中对应边相等可知,DE=CD,BE=BC,可求AE=AB﹣BE=AB﹣BC,则△AED的周长为AD+DE+AE=AC+AE.【解答】解:DE=CD,BE=BC=7cm,∴AE=AB﹣BE=3cm,∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.【点评】本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.如图:沿AM折叠,使D点落在BC上,如果AD=7cm,DM=5cm,则AN=7cm.【考点】翻折变换(折叠问题).【分析】根据折叠的性质直接解答.【解答】解:根据折叠的性质,有AN=AD=7cm.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.13.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18cm2,则EF边上的高的长是6cm.【考点】全等三角形的性质.【分析】本题还可根据全等三角形的对应边上的高相等,求出BC边上的高,即可得到EF 边上的高.【解答】解:∵△ABC≌△DEF∴S△DEF=S△ABC=18cm设EF边上的高为h,则•EF•h=18即×6×h=18h=6故答案为:6.【点评】本题考查全等三角形的面积相等的性质,解题时应注重识别全等三角形中的对应边.14.如图:EA∥DF,AE=DF,要使△AEC≌△DBF,则只要补充条件:AC=BD(答案不唯一).(写一个即可).【考点】全等三角形的判定;平行线的性质.【专题】开放型.【分析】要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=D B又AE=DF、∠A=∠D∴△AEC≌△DFB故答案为AC=BD(答案不唯一).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是20cm.【考点】角平分线的性质.【分析】由已知条件,结合已知在图形上的位置,根据角平分线的性质可得M到AB的距离等于CM.【解答】解:∵∠C=90°,AM平分∠CAB,∴M到AB的距离等于CM=20cm.故填20.【点评】本题考查了角平分线的性质;注意题中隐含的条件:MC⊥AC的运用.本题比较简单,属于基础题.三、解答题(共7题,共75分)16.作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.【考点】轴对称-最短路线问题.【专题】作图题.【分析】作A关于街道的对称点A',连接A'B,交街道所在直线于C,点C即为所求.【解答】解:作图如右图:牛奶站应建在C点,才能使A、B到它的距离之和最短.【点评】此题主要考查有关轴对称﹣﹣最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握.17.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标.【考点】作图-轴对称变换.【专题】作图题.【分析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y 轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.【解答】解:△ABC的各顶点的坐标分别为:A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).【点评】本题考查了轴对称作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.18.如图,四边形ABCD中,AB=AD,BC边的垂直平分线MN经过点A,求证:点A在CD的垂直平分线上.【考点】线段垂直平分线的性质.【专题】证明题.【分析】连接AC,根据垂直平分线的性质求得AB=AC,进而求得AC=AD,根据垂直平分线性质定理的逆定理即可证得结论.【解答】证明:连接AC,∵MN垂直平分BC,∴AB=AC,∵AB=AD,∴AC=AD,∴点A在CD的垂直平分线上.【点评】本题考查了线段垂直平分线的性质定理和逆定理,作出辅助线构建等腰三角形是本题的关键.19.如图所示,BD平分∠ABC,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,M、N为垂足.求证:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据已知条件结合三角形全等的判定方法通过SAS证明△ABD≌△CBD,得∠ADB=∠CBD,从而根据角平分线的性质即可证明结论.【解答】证明:在△ABD和△CBD中,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB.又PM⊥AD,PN⊥CD,∴PM=PN.【点评】此题考查了全等三角形的判定和性质以及角平分线的性质:角平分线上的点到角两边的距离相等.三角形全等的证明是解题的关键.20.如图所示,点B、F、C、E在同一直线上,AC、DF相交于G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.(1)求证:△ABC≌△DEF;(2)如果GF=4,求GC的长.【考点】全等三角形的判定与性质.【分析】(1)要证明三角形ABC和DEF全等.这两个三角形中已知的条件有一组直角,AB=DE,那么只需证得BC=EF即可得出两三角形全等的结论,已知了BF=CE,等式两边都加上FC后,就可得出BC=EF,那么这两三角形也就全等了(SAS);(2)根据全等三角形的性质得到∠ACB=∠DFE,再根据等腰三角形的性质即可求解.【解答】证明:(1)∵AB⊥BE,DE⊥BE,∴∠ABC=∠DEF=90°,∵BF=CE,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),(2)∵△ABC≌△DEF,∴∠ACB=∠DFE,∴GC=GF=4.【点评】本题考查的是全等三角形的判定与性质.利用全等三角形来得出角相等或线段相等是解此类题的关键.21.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质得出∠AOP=∠COP,∠BOP=∠DOP,从而推出∠AOB=∠COD,再利用SAS判定其全等从而得到AB=CD.【解答】证明:∵OP是∠AOC和∠BOD的平分线,∴∠AOP=∠COP,∠BOP=∠DOP.∴∠AOB=∠COD.在△AOB和△COD中,.∴△AOB≌△COD.∴AB=CD.【点评】本题考查三角形全等的判定方法,以及全等三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题比较简单,读已知时就能想到要用全等来证明线段相等.22.(13分)如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE长.【考点】直角三角形全等的判定;全等三角形的性质.【专题】计算题;证明题.【分析】(1)此题根据已知条件容易证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA≌△AFC仍然成立,再根据对应边相等就可以求出EF了.【解答】(1)证明:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=FC,BE=AF.∴EF=EB+CF.(2)解:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=F C=3,BE=AF=10.∴EF=AF﹣CF=10﹣3=7.【点评】此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.。

2020年秋季八年级上学期数学第一次月考试题含答案(人教版)

2020年秋季八年级上学期数学第一次月考试题含答案(人教版)

2020年秋季第一次月考八年级上学期数学试题含答案(人教版)一、精心选一选(每小题3分,共30分)1.的算术平方根是( )A .4 B. 2 C.-2 D. ±22.下面四个图形中,∠1与∠2是对顶角的是( )3.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)4.下列调查,适合用全面调查的事件是( )A.了解一批炮弹的杀伤半径B.了解枣阳电视台《聚焦》栏目的收视率C.了解汉江中鱼的种类D.了解某班学生对“枣阳一城两花”的知晓率5.一个长方形在直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)6.下列四组值中不是二元一次方程12=-y x 的解的是( ) A.⎪⎩⎪⎨⎧-==21,0y x B.⎩⎨⎧==1,1y x C.⎩⎨⎧==0,1y x D.⎩⎨⎧-=-=1,1y x 7.如图,直线AB,CD 相交于点O ,OA 平分∠EOC.若∠EOC ︰∠EOD=2︰3,则∠BOD 的度数为( )A.36°B.40°C.35°D.45°8.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示为( )A.(1,2)B.(1,3)C.(2,1)D.(3,2)9.下列说法正确的是( )A.22是分数 B.圆周率π是无理数 C.38是无理数 D.无限小数都是无理数10. 已知点P (a ,1-a )在平面直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )二.细心填一填(每题3分,共30分)21,358;x y x y -=⎧⎨-=⎩①②11.把命题“同角的补角相等”改写成“如果……,那么……”的形式是 。

人教版八年级数学上册第一次月考测试题(含答案)

人教版八年级数学上册第一次月考测试题(含答案)

八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.208.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= .10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= .12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为cm.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 时,△ABC和△PQA全等.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90°.【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= 60°.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证△AEC≌△ADB,可得∠ABD=∠2,根据外角等于不相邻内角和即可求解.【解答】解:∵∠BAC=∠DAE,∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠CAE=∠1,∵在△AEC和△ADB中,,∴AEC≌△ADB,(SAS)∴∠ABD=∠2,∵∠3=∠ABD+∠1,∴∠3=∠2+∠1=60°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证AEC≌△ADB是解题的关键.12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 2 块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为20 cm.【考点】角平分线的性质;等腰直角三角形.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为20cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E,∴∠DEC=∠A=90°在△ACD与△ECD中,∵,∴△ACD≌△ECD(ASA),∴AC=EC,AD=ED,∵∠A=90°,AB=AC,∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm.故答案为:20.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有 4 个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= 135 °.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为12 cm.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求DE的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.【点评】本题主要考查了直角三角形全等的判定(HL)以及全等三角形的性质(全等三角形的对应边相等).连接BE是解决本题的关键.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 5或10 时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.都是所求的点.P和P1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定.【分析】①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断.【解答】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠CAF(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,即可解题;(2)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题;(3)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题.【解答】证明:(1)∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF;(2)①∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD;②∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAF=∠CAD+∠DAF=90°+∠CAD,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAF是解题的关键.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为10﹣4t cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°。

2019-2020学年八年级(上)第一次月考数学试卷(含答案)

2019-2020学年八年级(上)第一次月考数学试卷(含答案)

2019-2020学年八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.在△ABC中,∠C=90°,AB=10,AC:BC=3:4,则BC=()A. 4B. 6C. 8D. 102.下列数中,有理数是()A. −√7B. −0.6C. 2πD. 0.151151115…3.已知P(x,y)在第二象限,且x2=4,∣y∣=7,则点P的坐标是()A. (2,−7)B. (−4,7)C. (4,−7)D. (−2,7)4.在下列各式中正确的是()A. √(−2)2=2B. ±√9=3C. √16=8D. √22=±25.若a=√13,则实数a在数轴上对应的点P的大致位置是()A. B.C. D.6.下列说法中:(1)√5是实数;(2)√5是无限不循环小数;(3)√5是无理数;(4)√5的值等于2.236,正确的说法有()A. 4个B. 3个C. 2个D. 1个7.(如图)在4×8的方格中,建立直角坐标系E(−1,−2),F(2,−2),则G点坐标()A. (−1,1)B. (−2,−1)C. (−3,1)D. (1,−2)8.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A. 3cmB. 4cmC. 5cmD. 6cm9.和数轴上的点一一对应的数是()A. 整数B. 有理数C. 无理数D. 实数10.在直角坐标系xOy中,△ABC关于直线y=1轴对称,已知点A坐标是(4,4),则点B的坐标是()A. (4,−4)B. (−4,2)C. (4,−2)D. (−2,4)二、填空题(本大题共4小题,共16.0分)11.一直角三角形的三边分别为6,8,x,那么以x为边长的正方形的面积为______.12.916的算术平方根是.13.计算:√−83+√9=______.14.若点(a,−4)与点(−3,b)关于x轴对称,则a=________,b=________.三、计算题(本大题共2小题,共14.0分)15.计算12√113+(3√18+15√50−4√12)÷√3216.计算(1)(2x−1)2+(1−2x)(1+2x)(2)(x+2)(x−3)−x(x+1)四、解答题(本大题共5小题,共40.0分)17.求满足下列各式的未知数x(1)27x3+125=0(2)(x+2)2=16.18.如图,在每个小正方形是边长为1的网格中,A,B,C均为格点.(Ⅰ)仅用不带刻度的直尺作BD⊥AC,垂足为D,并简要说明道理;(Ⅱ)连接AB,求△ABC的周长.19.如图,在海上观察所A处.我边防海警发现正南方向60海里的B处有一可疑船只正以每小时20海里的速度向正东方向C处驶去,海我边防海警即刻从A处派快艇去拦截.若快艇的速度是每小时1003里.问快艇最快几小时拦截住可疑船只?20.求代数式的值:(1)当a=7,b=4,c=0时,求代数式a(2a−b+3c)的值.(2)如图是一个数值转换机的示意图.请观察示意图,理解运算原理,用代数式表示为______ .若输入x的值为3,y的值为−2,输出的结果是多少?21.如图1,在平面直角坐标系中,A(a,0),B(0,2√3)(1)点(k+1,2k−5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E 点,连接BE.①求证:EB平分∠CED;②M点是y轴上一动点,求AM+CM的最小值.-------- 答案与解析 --------1.答案:C解析:解:∵∠C=90°,AB=10,AC:BC=3:4,∴BC2+AC2=AB2,AC:BC:AB=3:4:5,∴BC=8;故选:C.根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,即BC2+AC2=AB2,结合已知条件,即可得出BC的长.本题考查了勾股定理;熟记勾股定理是解决问题的关键.2.答案:B解析:解:A、−√7是无理数,故选项错误;B、−0.6是有理数,故选项正确;C、2π是无理数,故选项错误;D、0.151151115…是无理数,故选项错误.故选:B.本题考查了实数,根据有理数的定义选出即可.3.答案:D解析:【分析】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据第二象限内点的横坐标是负数,纵坐标是正数分别求出x、y的值,然后写出点P的坐标即可.【解答】解:∵P(x,y)在第二象限,且x2=4,|y|=7,∴x=−2,y=7,∴点P的坐标为(−2,7).故选D.4.答案:A解析:【分析】此题考查了算术平方根,以及平方根,熟练掌握各自的性质是解本题的关键.根据算术平方根和平方根的定义分别对每一项进行计算,即可得出答案.【解答】解:A.√(−2)2=√4=2,正确;B.±√9=±3,故本选项错误;C.√16=4,故本选项错误;D.√22=2,故本选项错误;故选A.5.答案:C解析:解:∵3<√13<4,故选:C.根据3<√13<4,即可选出答案本题主要考查了是实数在数轴上的表示,熟悉实数与数轴的关系式解答此题的关键.6.答案:B解析:解:(1)√5是实数,故正确;(2)√5是无限不循环小数,故正确;(3)√5是无理数,故正确;(4)√5的值等于2.236,故错误;故选B.根据实数的分类进行判断即可.本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.答案:C解析:【分析】本题考查了平面直角坐标系,点的坐标的确定,先由E(−1,−2),F(2,−2)确定平面直角坐标系,然后确定G点坐标即可.【解答】解:如图,由E(−1,−2),F(2,−2)可确定平面直角坐标系如下图:∴G点坐标为(−3,1),故选C.8.答案:A解析:【分析】折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8−x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长【解答】解:设CN=xcm,则DN=(8−x)cm,BC=4cm,根据题意可知DN=EN,EC=12在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8−x)2=16+x2,整理得16x=48,∴x=3,则CN=3cm.故选A.9.答案:D解析:和数轴上的点一一对应的数是实数,故选:D .熟练掌握实数与数轴上的点是一一对应的关系是解题的关键.10.答案:C解析:解:根据题意,点A 和点B 是关于直线y =1对称的对应点,它们到y =1的距离相等是3个单位长度,所以点B 的坐标是(4,−2).故选:C .根据轴对称的两点到对称轴的距离相等,此题易解.主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.11.答案:100或28解析:解:当较大的数8是直角边时,根据勾股定理,得x 2=36+64=100;当较大的数8是斜边时,根据勾股定理,得x 2=64−36=28.所以以x 为边长的正方形的面积为100或28.故答案为:100或28.以x 为边长的正方形的面积是x 2,所以只需求得x 2即可.但此题应分8为直角边和为斜边两种情况考虑.此题考查勾股定理,此类题在没有明确直角边或斜边的时候,一定要注意分情况考虑,熟练运用勾股定理进行计算.12.答案:34解析:【分析】此题主要考查了算术平方根的定义,根据算术平方根的定义即可解答.【解答】解:916的算术平方根为34.故答案为34.13.答案:1解析:解:原式=−2+3=1,故答案为:1原式利用平方根与立方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.答案:−3;4解析:【分析】本题考查了关于轴x、y轴对称的点的坐标,据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,根据关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(a,−4)与点Q(−3,b)关于x轴对称,得a=−3,b+(−4)=0,解得a=−3,b=4,故答案为−3;4.15.答案:解:原式=12×2√3+(9√2+√2−2√2)÷4√23=8√3+2.解析:先化简二次根式,然后根据二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.答案:解:(1)(2x−1)2+(1−2x)(1+2x)=4x2−4x+1+1−4x2=−4x+2;(2)(x+2)(x−3)−x(x+1)=x2−3x+2x−6−x2−x=−2x−6.解析:(1)根据完全平方公式和平方差公式可以解答本题;(2)根据多项式乘多项式和单项式乘多项式可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.17.答案:解:(1)27x3+125=0则x3=−12527解得:x=−5;3(2)(x+2)2=16则x+2=±4,解得:x1=−6,x2=2.解析:(1)直接利用立方根的定义化简求出答案;(2)直接利用平方根的定义化简求出答案.此题主要考查了立方根以及平方根,正确把握相关定义是解题关键.18.答案:解:(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,则BD⊥AC,理由:由图可知BC=√32+42=5,连接AB,则AB=5,∴BC=AB,又CD=AD,∴BD⊥AC.(Ⅱ)由(1)可得AB=5,BC=5由图得AC=√22+42=2√5,∴△ABC的周长=5+5+2√5=10+2√5.解析:本题考查作图−应用与设计,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连接BD,根据等腰三角形的性质可得BD⊥AC,(Ⅱ)利用勾股定理求出AC、BC即可解决问题;19.答案:解:设快艇最快x小时拦截住可疑船只,x,则BC=20x,AC=1003由勾股定理得:AC2=AB2+BC2,x)2=602+(20x)2,即(1003(负值舍去),解得:x=±94∴x=9,4小时拦截住可疑船只.答:快艇最快94解析:本题考查了勾股定理在实际生活中的应用,本题中正确的找到CB,AB,AC的等量关系,并且根据该等量关系在直角△CAB中求解是解题的关键.首先求得线段AC,BC的长,然后利用勾股定理得出方程,解方程即可.20.答案:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2)(2)用代数式表示为12将x=3,y=−2代入(2×3+4)=5.得:原式=12解析:解:(1)∵a=7,b=4,c=0,∴原式=2a2−ab+3ac=98−28+0=70;(2x+y2),(2)由题意可得:12将x=3,y=−2代入得:原式=5.(2x+y2).故答案为:12(1)直接利用已知数据代入代数式求出答案;(2)直接利用已知数值转换机的示意图得出代数式,进而求出答案.此题主要考查了代数式求值,正确列出代数式是解题关键.21.答案:解:(1)∵点(k+1,2k−5)关于x轴的对称点在第一象限,∴点(k+1,2k−5)在第四象限,∴k+1>0,2k−5<0,∴−1<k<2.5,∵a为实数k的范围内的最大整数,∴a=2,∵A(a,0),∴A(2,0),∴OA=2,∵B(0,2√3),∴OB=2√3,∴S△AOB=12OA⋅OB=12×2×2√3=2√3;(2)如图1,∵点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,∴①当∠BAP=90°时,AB=AP,过点P作PF⊥OA于F,∴∠PAF+∠APF=90°,∵∠BAP=90°,∴∠PAF+∠BAO=90°,∴∠APF=∠BAO,∵AB=AP,∴△OAB≌△FPA(AAS),∴PF=OA=2,AF=OB=2√3,∴OF=OA+AF=2+2√3,∴P(2+2√3,2),②当∠ABP=90°时,同①的方法得,P′(2√3,2√3+2),即:P点坐标为(2+2√3,2)或(2√3,2√3+2);(3)①如图2,∵△OBD和△ABC都是等边三角形,∴BD=OB,AB=BC,∠OBD=∠ABC=60°,∴∠ABD=∠CBO,在△ABD和△CBO中,{BD=OB∠ABD=∠CBO AB=BC,∴△ABD≌△CBO(SAS),∴S△ABD=S△CBO,AD=OC,过点B作BM⊥AD于M,BN⊥OC于N,∴BM=BN,∵BM⊥AD,BN⊥OC,∴BE是∠CED的角平分线;②如图3,作点A关于y轴的对称点A′,∵A(2,0),∴A′(−2,0),连接A′C交y轴于M,过点C作CH⊥OA于H,在Rt△AOB中,OA=2,OB=2√3,∴AB=4,tan∠OAB=OBOA =2√32=√3,∴∠OAB=60°,∵△ABC是等边三角形,∴AC=AB=4,∠BAC=60°,∴∠CAH=60°,在Rt△ACH中,∠ACH=90°−∠CAH=30°,∴AH=2,CH=2√3,∴OH=OA+AH=4,∴点C(4,2√3),∵A′(−2,0),∴直线A′C的解析式为y=√33x+2√33,∴M(0,2√33).解析:(1)根据点在第四象限内,得出不等式,进而求出k的范围,进而求出点A坐标,最后用三角形面积公式即可得出结论;(2)分两种情况:构造全等三角形求出PF和AF,即可求出点P坐标;(3)①先判断出△ABD≌△CBO(SAS),进而得出S△ABD=S△CBO,AD=OC,即可得出BM=BM,最后用角平分线的判定定理即可得出结论;②根据含30度角的直角三角形的性质求出线段的长,进而求出点C坐标,求出直线A′C的解析式,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,角平分线的判定定理,等腰直角三角形的性质,待定系数法,等边三角形的性质,正确作出辅助线是解本题的关键.。

2019年新人教版八年级数学上册第一次月考试卷

2019年新人教版八年级数学上册第一次月考试卷

八年级数学上册第一次月考数学试卷一.选择题(10小题,每题3分,共30分,)1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3 cm,4 cm,8 cm B.8 cm,7 cm,15 cmC.5 cm,5 cm,11 cm D.13 cm,12 cm,20 cm2.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB,CD两根木条),这样做是运用了三角形的()(第2题图)(第3题图)A.全等性B.灵活性C.稳定性D.对称性3.如图,在△ABC中,D是BC延长线上一点,∠B=50°,∠ACD=120°,则∠A=()A.50°B.60°C.70°D.80°4.已知一个多边形的内角和为1080°,则这个多边形是()A. 九边形B. 八边形C. 七边形D. 六边形5.以下图中能表示△ABC的BC边上的高的是()A B C D6.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形7.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为() A.9 B.12 C.7或9 D.9或12 8.如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为() A.2 B.3 C.4 D.6(第8题图) (第9题图)9.如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则∠1为( ) A .32° B .36°C .40°D .42°10.已知a ,b ,c 是△ABC 的三条边长,化简|a+b ﹣c|﹣|c ﹣a ﹣b|的结果为( ) A .2a+2b ﹣2cB .2a+2bC .2cD .0二、填空题(8小题,每空3分,共24分)11、169的平方根是 ; 81的算术平方根是 ;81的平方根是 。

人教版八年级(上)第一次月考数学试卷及答案

人教版八年级(上)第一次月考数学试卷及答案

人教版八年级(上)第一次月考数学试卷及答案人教版八年级(上)第一次月考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.以下长度的三条线段中,能够组成三角形的是()。

A。

2cm,3cm,4cmB。

1cm,4cm,2cmC。

1cm,2cm,3cmD。

6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()。

A。

带①去B。

带②去C。

带③去D。

带①和②去3.能够把一个任意三角形分成面积相等的两部分的是()。

A。

角平分线B。

中线C。

高D。

A、B、C都可以4.下面四个图形中,线段BE是△ABC的高的图形是()。

A。

B。

C。

D。

5.适合条件∠A=∠B=∠C的△ABC是()。

A。

锐角三角形B。

直角三角形C。

钝角三角形D。

等边三角形6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()。

A。

5B。

6C。

7D。

87.下列命题正确的是()。

A。

三角形的角平分线,中线,高均在三角形内部B。

三角形中至少有一个内角不小于60°C。

直角三角形仅有一条高D。

直角三角形斜边上的高等于斜边的一半8.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC。

其中正确的个数有()。

A。

1个B。

2个C。

3个D。

4个9.如图,在△ABC中,AD平分∠XXX于D,XXX于E,∠B=40°,∠BAC=82°,则∠DAE=()。

A。

7°B。

8°C。

9°D。

10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()。

A。

67°B。

46°C。

23°D。

不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()。

A。

AB=CDB。

人教版2019年八年级上学期第一次月考数学试题A卷(检测)

人教版2019年八年级上学期第一次月考数学试题A卷(检测)

人教版2019年八年级上学期第一次月考数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 以下图形中,既是中心对称图形,又是轴对称图形的是()A.三角形B.菱形C.等腰梯形D.平行四边形2 . 如图,在中,分别是,上的点,作,,垂足分别为,,若,平分,则下列四个结论①;②;③;④.其中正确的有()A.4个B.3个C.2个D.1个3 . 如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是()A.B.C.D.4 . 如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点,若AB=5cm,BC=3cm,则△PBC的周长等于()A.12cm B.11cm C.13cm D.8cm5 . 如图,在△ABC中,∠ACB=90°,AC=3,BC=6,延长AC至点D,DE⊥AD,联结EC并延长交边AB于点F,若2CD+DE=6,则EF长的最小值为()A.B.C.D.6 . 已知等腰的周长为,,若与全等,则的腰长等于()A.B.或C.D.或7 . 如图,在等边三角形ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE的度数为()A.60°B.45°C.30°D.无法确定8 . 如图所示,在△ABC和△DBC中,已知AB=DB,AC=DC,则下列结论中错误的是()A.△ABC≌△DBC B.∠A=∠DC.BC是∠ACD的平分线D.∠A=∠BCD二、填空题9 . 已知在四边形中,,,连接,若,,则的长度为________.10 . 如图,在中,垂直平分边,,且的周长为,则____.11 . 如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.12 . 计算:=__________.13 . 如图,点P是的角平分线OC上一点,PN OB于点N,点M是线段ON上一点,已知OM=3,ON=4,点D为OA上一点,若满足PD=PM,则OD的长度为________14 . 如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=______度.15 . 如图所示,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则直线BC与EF的位置关系是____﹒16 . 酒店的平面镜前停放着一辆汽车,车顶字牌上的字母在平面镜中的像是IXAT,则字牌上的字母实际是____________。

人教版八年级上册数学《第一次月考》考试卷及答案【完整】

人教版八年级上册数学《第一次月考》考试卷及答案【完整】

人教版八年级上册数学《第一次月考》考试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <0<B .x 是实数,且2x a =,则0a >C 0x ≤D .0.1的平方根是0.01±2.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.实数a 、b 在数轴上的位置如图所示,且|a|>|b|a b +的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,在同一直角坐标系中,正比例函数1y k x =,2y k x =,3y k x =,4y k x =的图象分别为1l ,2l ,3l ,4l ,则下列关系中正确的是( )A .1234k k k k <<<B .2143k k k k <<<C .1243k k k k <<<D .2134k k k k <<<10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .2.计算:82-=_______.3.若一个正数的两个平方根分别是a+3和2﹣2a,则这个正数的立方根是________.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为________.5.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.6.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=______度.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.先化简,再求值:a3a2++÷22a6a9a-4++-a1a3++,其中50+-113⎛⎫⎪⎝⎭2(-1)3.解不等式组513(1)131722x xx x+>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.4.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?5.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、D5、C6、C7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.23、44、113y x =-+5、36、24三、解答题(本大题共6小题,共72分)1、无解2、-33a +,;12-.3、24x -<≤,数轴见解析.4、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.5、(1)①△BMN ≌△CDM .理由略;②当t=209秒或t=109秒时,△BMN 是直角三角形;(2)3.8或2.6.6、(1)120件;(2)150元.。

人教版八年级上册数学《第一次月考》考试(完美版)

人教版八年级上册数学《第一次月考》考试(完美版)

人教版八年级上册数学《第一次月考》考试(完美版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是( )A .4B .±4C .8D .±82.已知点A (1,-3)关于x 轴的对称点A'在反比例函数ky=x 的图像上,则实数k 的值为( )A .3B .13C .-3D .1-33.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 7.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100D .80(1+x 2)=100 8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.35a 13b ,则5a b +=________4.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩; (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.5.如图1,在菱形ABCD 中,AC =2,BD =3AC ,BD 相交于点O .(1)求边AB 的长;(2)求∠BAC 的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF .判断△AEF 是哪一种特殊三角形,并说明理由.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、D5、C6、B7、A8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、()()()22a b a a -+-2、﹣33、14、ab5、49136、4.三、解答题(本大题共6小题,共72分)1、(1) 52x y =⎧⎨=⎩;(2) 20x y =⎧⎨=⎩2、11a -,1.3、(1)见解析;(2)经过,理由见解析4、(1)见解析(2)成立(3)△DEF 为等边三角形5、(1)2;(2)60︒ ;(3)见详解6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

最新人教版八年级数学上册第一次月考考试卷(带答案)

最新人教版八年级数学上册第一次月考考试卷(带答案)

最新人教版八年级数学上册第一次月考考试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-的倒数是( )A .2019-B .12019-C .12019D .20192.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6 5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A.25B.35C.5 D.67.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E∠=,90C∠=,45A∠=,30D∠=,则12∠+∠等于()A.150B.180C.210D.2709.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A .45°B .60°C .75°D .85°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.计算22111m m m ---的结果是________. 4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图,在等边三角形ABC 中,BD=CE,AD,BE 交于点F,则AFE ∠=____________;三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++.2.先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中2x =.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .5.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、B5、A6、C7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、60133、11m -4、()()2a b a b ++.5、(-2,0)6、60°三、解答题(本大题共6小题,共72分)1、32x =- 2、13x x -+;15.3、3p =,1q =.4、略.5、(1)略;(2)112.5°.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

人教版八年级上册数学《第一次月考》测试卷(全面)

人教版八年级上册数学《第一次月考》测试卷(全面)

人教版八年级上册数学《第一次月考》测试卷(全面) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-的倒数是( ) A .2019- B .12019- C .12019 D .20192.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .123.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.估计56﹣24的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间5.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .156.下列二次根式中能与23合并的是( )A .8B .13C .18D .97.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A.4 cm B.5 cm C.6 cm D.10 cm9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33B.6 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.若正多边形的每一个内角为135,则这个正多边形的边数是__________.3.64的算术平方根是________.4.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是________.5.如图,∠1,∠2,∠3的大小关系是________.6.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a-b+c 的平方根.4.如图所示,在平面直角坐标系中,点A ,B 的坐标分别为A(a ,0),B(b ,0),且a ,b 满足|a 2|b 40++-=,点C 的坐标为(0,3).(1)求a ,b 的值及S 三角形ABC ;(2)若点M 在x 轴上,且S 三角形ACM =13S 三角形ABC ,试求点M 的坐标.5.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、C6、B7、B8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、22、八(或8)3、4、24.5、∠1<∠2<∠36、(-10,3)三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3xx ==.2、3、3a-b+c 的平方根是±4.4、(1)9(2)(0,0)或(-4,0)5、(1)y=-6x ,y=-2x-4(2)86、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

部编人教版八年级数学上册第一次月考考试卷(完美版)

部编人教版八年级数学上册第一次月考考试卷(完美版)

部编人教版八年级数学上册第一次月考考试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为()A.2±B.2C.2±D.22.下列分式中,最简分式是()A.2211xx-+B.211xx+-C.2222x xy yx xy-+-D.236212xx-+3.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.124.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或105.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P 的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)6.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于E,PF⊥AC于 F,M 为 EF 中点,则 AM 的最小值为()A .1B .1.3C .1.2D .1.58.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .23cmB .24cmC .26cmD .212cm9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个10.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 3.如果22(1)4x m x +-+是一个完全平方式,则m =__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.如图,将周长为16的三角形ABC 沿BC 方向平移3个单位得到三角形DEF ,则四边形ABFD 的周长等于________.6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.解方程组:23328x y x y -=⎧⎨+=⎩2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.若关于,x y 的二元一次方程组213x y a x y +=+⎧⎨-=-⎩的解都为正数. (1)求a 的取值范围;(2)若上述方程组的解是等腰三角形的腰和底边的长,且这个等腰三角形周长为9,求a 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、C5、C6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、2b-2a2、43、-1或34、8.5、226、82.︒三、解答题(本大题共6小题,共72分)1、21x y =⎧⎨=⎩2.3、(1)a>1;(2)a 的值为2.4、(1)DE=3;(2)ADB S 15∆=.5、CD 的长为3cm.6、(1) 甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲种商品按原销售单价至少销售20件.。

人教版八年级上册数学《第一次月考》考试【带答案】

人教版八年级上册数学《第一次月考》考试【带答案】

人教版八年级上册数学《第一次月考》考试【带答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤7 3.式子2a -a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.若aba 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 二、填空题(本大题共6小题,每小题3分,共18分)1x 2-x 的取值范围是________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)11322x x x -=--- (2)311x x x-=-2.先化简2728333x x x x x -⎛⎫+-÷ ⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 13分,求3a-b+c 的平方根.4.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.5.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A在x轴上,AB=AC,∠BAC=90°,且A(2,0)、B(3,3),BC交y轴于M,(1)求点C的坐标;(2)连接AM,求△AMB的面积;(3)在x轴上有一动点P,当PB+PM的值最小时,求此时P的坐标.6.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:商品甲乙若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(30a≥),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、D5、A6、A7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x 2≥23、13k <<.4、(-4,2)或(-4,3)5、21x y =⎧⎨=⎩.6、6三、解答题(本大题共6小题,共72分)1、(1)无解;(2)32x =. 2、42x x +;1x =时,原式52=(或当2x =时,原式32=.)3、3a-b+c 的平方根是±4.4、(1)DE=3;(2)ADB S 15∆=.5、(1)C 的坐标是(﹣1,1);(2)154;(3)点P 的坐标为(1,0).6、(1)分别是120元,60元;(2)402000w a =+(30)a ≥,当a=30件时,w最小值=3200元。

人教版数学八年级上册第一次月考数学试卷及答案解析

人教版数学八年级上册第一次月考数学试卷及答案解析

人教版数学八年级上册第一次月考数学试卷一.选择题(10小题,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm2.(3分)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.22 B.17 C.17或22 D.263.(3分)一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A.6 B.8 C.10 D.124.(3分)在如图中,正确画出AC边上高的是()A. B.C. D.5.(3分)如图,线段AD把△ABC分为面积相等的两部分,则线段AD是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上都不对6.(3分)适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形7.(3分)过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A.8 B.9 C.10 D.118.(3分)若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.69.(3分)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.810.(3分)三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定11.(3分)n边形的每个外角都为24°,则边数n为()A.13 B.14 C.15 D.1612.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F的和为()A.180° B.360° C.540° D.720°二、填空题(每小题3分,共30分)13.(3分)如图,共有个三角形.14.(3分)如图所示,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是.15.(3分)如图,∠1,∠2,∠3是△ABC的不同的三个外角,则∠1+∠2+∠3= 度.16.(3分)要使五边形木架(用5根木条钉成)不变形,至少要再钉根木条.17.(3分)一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形是.18.(3分)如图,从A处观测C处仰角∠CAD=30°,从B处观测C 处的仰角∠CBD=45°,从C外观测A、B两处时视角∠ACB= 度.三、解答题19.(10分)如图,在△ABC中,∠BAC是钝角,完成下列画图.(不写作法保留作图痕迹)(1)∠BAC的平分线AD;(2)AC边上的中线BE;(3)AC边上的高BF.(10分)某零件如图所示,图纸要求∠A=90°,∠B=32°,∠C=21°,20.当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?21.(10分)如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由.22.(10分)如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠A=56°,求∠EDF.23.(10分)(1)若多边形的内角和为2340°,求此多边形的边数;(2)一个n边形的每个外角都相等,如果它的内角与相邻外角的度数之比为13:2,求n的值.24.(10分)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.25.(12分)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.26.(12分)如图所示:△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=70°,求∠CAD,∠BOA的度数是多少?27.(12分)探究:(1)如图①,∠1+∠2与∠B+∠C有什么关系?为什么?(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2 ∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2= ;(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣= ,猜想∠BDA+∠CEA与∠A的关系为.参考答案与试题解析一.选择题(10小题,共30分)1.(3分)(2015秋•宜昌校级期中)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、4+3>5,能组成三角形;B、6+4=10,不能组成三角形;C、1+1=2<3,不能组成三角形;D、3+4=7<9,不能组成三角形;故选:A.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.2.(3分)(2015秋•河东区期末)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.22 B.17 C.17或22 D.26【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9﹣9<4,所以能构成三角形,周长是:9+9+4=22.故选A.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.(3分)(2015秋•新泰市期中)一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A.6 B.8 C.10 D.12【分析】第三边应该大于两边的差而小于两边的和,因而可得第三边长x满足的关系式.根据第三边长是偶数,就可以判断第三边长的可能值.【解答】解:第三边长x满足:5<x<11,并且第三边长是偶数,因而不满足条件的只有第4个答案.故选D.【点评】考查了三角形三边关系,已知三角形的两边,则第三边的范围是:大于已知两边的差,而小于两边的和.4.(3分)(2015秋•西宁期末)在如图中,正确画出AC边上高的是()A.B.C.D.【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【解答】解:画出AC边上高就是过B作AC的垂线,故选:C.【点评】此题主要考查了三角形的高,关键是掌握高的作法.5.(3分)(2014秋•株洲县期末)如图,线段AD把△ABC分为面积相等的两部分,则线段AD是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上都不对【分析】作三角形ABC的高AE,根据三角形面积公式,分别表示出SS△ACD,即可得出BD=CD,即线段AD是三角形的中线.△ABD和【解答】解:作AE⊥BC,∴S△ABD=×BD×AE,S△ACD=×CD×AE,∵S△ABD=S△ACD,即×BD×AE=×CD×AE,∴BD=CD,即线段AD是三角形的中线.故选B.【点评】本题主要考查了三角形的面积和三角形的中线,三角形的中线可分三角形为面积相等的两部分.6.(3分)(2016秋•弥勒市校级月考)适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【分析】由三角形内角和为180°和∠A=∠B=∠C,可得∠A+∠B+∠C=2∠C=180°,得∠C=90°,故该三角形的形状为直角三角形.【解答】解:∵角形内角和为180°.∴∠A+∠B+∠C=180°.又∵∠A=∠B=∠C的.∴2∠C=180°.解得∠C=90°.故适合条件∠A=∠B=∠C的三角形是直角三角形.故选项A错误,选项B错误,选项C错误,选项D正确.故选D.【点评】本题考查三角形内角和的知识,关键是根据题目中的信息进行转化,来解答本题.7.(3分)(2015•玉林二模)过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A.8 B.9 C.10 D.11【分析】经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数.【解答】解:设多边形有n条边,则n﹣2=8,解得n=10.故这个多边形的边数是10.故选:C.【点评】考查了多边形的对角线,解决此类问题的关键是根据多边形过一个顶点的对角线与分成的三角形的个数的关系列方程求解.8.(3分)(2015秋•西区期末)若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.9.(3分)(2015•岳麓区校级自主招生)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.8【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.【点评】本题考查了多边形的内角和公式和外角和定理.10.(3分)(2014秋•荔湾区期末)三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【分析】三角形的一个外角是锐角,根据邻补角的定义可得它相邻的内角为钝角,即可判断三角形的形状是钝角三角形.【解答】解:∵三角形的一个外角是锐角,∴与它相邻的内角为钝角,∴三角形的形状是钝角三角形.故选B.【点评】本题考查了三角形的一个内角与它相邻的外角互补.11.(3分)(2015秋•临沂期中)n边形的每个外角都为24°,则边数n为()A.13 B.14 C.15 D.16【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于24°,∴多边形的边数为360°÷24°=15.故选C.【点评】本题主要考查了多边形的外角和定理:多边形的外角和是360°.12.(3分)(2008春•滕州市期末)如图,∠A+∠B+∠C+∠D+∠E+∠F的和为()A.180° B.360° C.540° D.720°【分析】根据三角形的内角和定理,可知∠A+∠C+∠E=180°,∠B+∠D+∠F=180°,从而得出结果.【解答】解:∵∠A+∠C+∠E=180°,∠B+∠D+∠F=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选B.【点评】本题主要考查了三角形的内角和定理:三角形的内角和为180°.二、填空题(每小题3分,共30分)13.(3分)(2016秋•汇川区校级月考)如图,共有 6 个三角形.【分析】要数三角形的个数,显然只要数出BE上共有多少条线段即可.有BD、BE、BC、DE、DC、CE共6条线段,即和A组成6个三角形.【解答】解:∵有BD、BE、BC、DE、DC、CE共6条线段,∴与A组成的三角形有6个.故答案为:6【点评】此题考查了三角形的计数,关键是求出BE上共有多少条线段,注意数三角形的个数的简便方法.14.(3分)(2016秋•仙游县期中)如图所示,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是80°.【分析】根据三角形外角的性质可得答案.【解答】解:∵∠CAB的外角=∠B+∠C,且∠CAB的外角等于120°,∠B等于40°,∴∠C=80°,故答案为:80°.【点评】本题主要考查三角形的外角的性质,熟练掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.15.(3分)(2014秋•株洲县期末)如图,∠1,∠2,∠3是△ABC 的不同的三个外角,则∠1+∠2+∠3= 360 度.【分析】利用三角形的外角和定理解答.【解答】解:∵三角形的外角和为360°,∴∠1+∠2+∠3=360°.【点评】此题主要考查了三角形的外角和定理.16.(3分)(2009春•仙桃期末)要使五边形木架(用5根木条钉成)不变形,至少要再钉 2 根木条.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.17.(3分)(2015秋•南通校级期中)一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形是15,16或17 .【分析】根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.【解答】解:设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为17,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为15,故原多边形的边数可以为15,16或17.【点评】本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.(3分)(2014秋•湖北期末)如图,从A处观测C处仰角∠CAD=30°,18.从B处观测C处的仰角∠CBD=45°,从C外观测A、B两处时视角∠ACB= 15 度.【分析】因为∠CBD是△ABC的外角,所以∠CBD=∠CAD+∠ACB,则∠ACB=∠CBD﹣∠ACB.【解答】解:方法1:∵∠CBD是△ABC的外角,∴∠CBD=∠CAD+∠ACB,∴∠ACB=∠CBD﹣∠ACB=45°﹣30°=15°.方法2:由邻补角的定义可得∠CBA=180°﹣∠CBD=180°﹣45°=135°.∵∠CAD=30°,∠CBA=135°,∴∠ACB=180°﹣∠CAD﹣∠CBA=180°﹣30°﹣135°=180°﹣165°=15°.【点评】本题考查的是三角形外角与内角的关系,即三角形的外角等于与它不相邻的两个内角的和.三、解答题19.(10分)(2016秋•鹤庆县校级期中)如图,在△ABC中,∠BAC 是钝角,完成下列画图.(不写作法保留作图痕迹)(1)∠BAC的平分线AD;(2)AC边上的中线BE;(3)AC边上的高BF.【分析】(1)利用角平分线的作法得出即可;(2)首先作出线段AC的垂直平分线得出E为中点,进而得出中线;(3)延长CA,进而过点B作BF⊥CA即可.【解答】解:(1)如图所示:AD即为所求;(2)如图所示:BE即为所求;(3)如图所示:BF即为所求.【点评】此题主要考查了复杂作图,掌握线段垂直平分线、角平分线和线段垂直平分线的作法是解题关键.20.(10分)(2016秋•汇川区校级月考)某零件如图所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?【分析】连接AD并延长,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠1=∠B+∠BAD,∠2=∠C+∠CAD,然后求出∠1+∠2的度数,根据零件规定数据,只有140°才是合格产品.【解答】解:如图,连接AD并延长,∴∠1=∠B+∠BAD,∠2=∠C+∠CAD,∵∠A=90°,∠B=32°,∠C=21°,∴∠BDC=∠1+∠2,=∠B+∠BAD+∠DAC+∠C,=∠B+∠BAC+∠C,=32°+90°+21°,=143°,∵143°≠145°,∴这个零件不合格.【点评】本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.21.(10分)(2013春•金华期中)如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由.【分析】由∠C与∠E的关系,以及平行线EB∥DC,可得出ED与AC 的关系,进而求出角的关系.【解答】解:∵EB∥DC,∴∠C=∠ABE(两直线平行,同位角相等)∵∠C=∠E,∴∠E=∠ABE(等量代换)∴ED∥AC(内错角相等,两直线平行)∴∠A=∠ADE(两直线平行,内错角相等).【点评】熟练掌握平行线的性质及判定是正确解题的关键.22.(10分)(2016秋•汇川区校级月考)如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠A=56°,求∠EDF.【分析】由∠B=∠C,∠A=56°,根据等腰三角形的性质,即可求得∠B的度数,又由DE⊥AB于点E,DF⊥BC,即可求得答案.【解答】解:∵∠B=∠C,∠A=56°,∴∠B=∠C=62°,∵DF⊥BC,DE⊥AB,∴∠BED=∠BDF=90°,∴∠BDE=90°﹣∠B=28°,∴∠EDF=90°﹣∠BDE=62°.【点评】此题考查了等腰三角形的性质与直角三角形的性质.此题比较简单,注意掌握数形结合思想的应用.23.(10分)(2016秋•城东区校级月考)(1)若多边形的内角和为2340°,求此多边形的边数;(2)一个n边形的每个外角都相等,如果它的内角与相邻外角的度数之比为13:2,求n的值.【分析】(1)根据多边形的内角和计算公式作答;(2)先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:(1)设此多边形的边数为n,则(n﹣2)•180°=2340,解得n=15.故此多边形的边数为15;(2)设多边形的一个外角为2x度,则一个内角为13x度,依题意得13x+2x=180,解得x=12.2x=2×12=24,360°÷24°=15.故这个多边形边数为15.【点评】此题主要考查了多边形的内角和,多边形的内角与外角关系、方程的思想,关键是掌握多边形内角和定理.24.(10分)(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC 三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.【点评】此题主要是三角形内角和定理的运用.三角形的内角和是180°.25.(12分)(2010•安县校级模拟)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.【分析】首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.【点评】此题主要考查了三角形的内角和定理、三角形的外角的性质、以及角平分线定义和垂直定义.26.(12分)(2012春•宁津县校级期中)如图所示:△ABC中,AD 是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=70°,求∠CAD,∠BOA的度数是多少?【分析】因为AD是高,所以∠ADC=90°,又因为∠C=70°,所以∠CAD度数可求;因为∠BAC=60°,∠C=70°,所以∠BAO=30°,∠ABC=50°,BF是∠ABC的角平分线,则∠ABO=25°,故∠BOA的度数可求.【解答】解:∵AD⊥BC,∴∠ADC=90°,∵∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠BAC=60°,∠C=70°,∴∠BAO=30°,∠ABC=50°,∵BF是∠ABC的角平分线,∴∠ABO=25°,∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣30°﹣25°=125°.故∠CAD,∠BOA的度数分别是20°,125°.【点评】本题考查了三角形内角和定理、角平分线定义.关键是利用角平分线的性质解出∠ABO、∠BAO,再运用三角形内角和定理求出∠AOB.27.(12分)(2013春•海淀区校级期末)探究:(1)如图①,∠1+∠2与∠B+∠C有什么关系?为什么?(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2 = ∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2= 280°;(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣300°= 60°,猜想∠BDA+∠CEA与∠A的关系为∠BDA+∠CEA=2∠A .【分析】根据三角形内角是180度可得出,∠1+∠2=∠B+∠C,从而求出当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°,有以上计算可归纳出一般规律:∠BDA+∠CEA=2∠A.【解答】解:(1)根据三角形内角是180°可知:∠1+∠2=180°﹣∠A,∠B+∠C=180°﹣∠A∴∠1+∠2=∠B+∠C(2)∵∠1+∠2+∠BDE+∠CED=∠B+∠C+∠BDE+∠CED=360°∴∠1+∠2=∠B+∠C当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°(3)如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣300°=60°所以∠BDA+∠CEA与∠A的关系为:∠BDA+∠CEA=2∠A【点评】本题考查图形的翻折变换和三角形,四边形内角和定理,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。

2019新人教版八年级数学上册第一次月考试卷

2019新人教版八年级数学上册第一次月考试卷

八年级上学期第一次月考数学试题班级: 姓名: 分数:一、选择题(36分)1.若a ;b ;c 分别为三角形的三边;化简:|a-b-c|+|b-c-a|+|c-a+b|=( ) A.-a+b-c B. –a+b+3c C. a-b+c D.a-b-3c2.如图;某同学把一块三角形的玻璃打碎成了三块;现在要到玻璃店去配一块完全一样的玻璃; 那么最省事的办法是( )A 、带①去B 、带②去C 、带③去D 、带①和②去3.如图在△ABD 和△ACE 都是等边三角形;则ΔADC ≌ΔABE 的根据是( ) A. SSS B. SAS C. ASA D. AAS(第2题图) (第3题图) (第5题图) 4.一个多边形的内角和等于1080°;这个多边形对角线条数是( ) A. 18 B.19 C. 20 D.215. 如图;在ΔABC 中;已知∠ABC=66°;∠ACB=54°BE 是AC 上的高;CF 是AB 上的高;H 是BE 和CF 的交点;∠EHF 的度数是 ( )A. 50°B. 40°C. 130°D. 120° 6.下列判定直角三角形全等的方法;不正确的是( )A .两条直角边对应相等。

B. 斜边和一锐角对应相等。

C .斜边和一条直角边对应相等。

D. 两锐角相等。

7. 等腰三角形的周长是18cm ;其中一边长为4cm ;其它两边长分别为 ( )A. 4cm ; 10cmB. 7cm ;7cmC. 4cm ; 10cm 或7cm ; 7cmD. 无法确定 8.一个多边形去掉一个内角后;剩余内角和是1000°;则它的边数是( ) A. 7 B. 8 C. 9 D. 109.如图;ΔABC 的三边AB ;BC ;CA 的长分别为20;30;40;其三条角平分线将ΔABC 分为三个三角形;则S ΔABO :S ΔBCO :S ΔAOC 等于 ( )A. 1:1:1B. 2:3:4C. 1:2:3D.3:4:510. 如图;我国国旗上的五角星的每一个顶角(∠A 、∠B 、∠C 、∠D 、∠E )都相等;其度数是( )A .36°B .72°C .45°D .无法确定12.如图;已知ΔABC 和ΔDCE 均是等边三角形;点B ;C ;E 在同一条直线上;AE 与CD 交于点G ;AC 与BD 交于点F ;连接FG ;则下列结论:①AE=BD ;②AG =BF ;③FG ∥BE ;④CF=CG.其中正确的结论的个数是 ( )A.4个B. 3个C. 2个D. 1个(第10题) (第9题图) (第12题图) 二、填空题(18分)13.已知;如图:∠ABC=∠DEF ;AB=DE ;要说明ΔABC ≌ΔDEF 还要添加的条件为_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年八年级数学上册第一次月考试卷
一、选择题
1、下列四个数中,是负数的是( )
A 、2-
B 、(-2)2
C 、-2
D 、22-)(
2、等腰三角形的底边长为6,底边上的中线为4,它的腰长为( )
A 、7
B 、6
C 、5
D 、4
3、设边长为3的正方形的对角线长为a .下列关于a 的四种说法:
①a 是无理数; ②a 可以用数轴上的一个点来表示; ③3<a <4; ④a 是18的算术平方
根。

其中,所有正确说法的序号是( )
A .①④
B .②③
C .①②④
D .①③④
4、一直角三角形的两条边长分别是3和4,则第三条边的长的平方为( )
A 、25
B 、7
C 、5或7
D 、25或7
5、下列计算正确的是( )
A 、4-3-4-3-⨯=)))((
B 、22223-43-4=
B 、326
= D 、326
=
6、实数a ,b 在数轴上的位置如图所示,且a >b ,则化简b a a +-2的结果为( )
A 、 2a+b
B 、-2a+b
C 、 b
D 、2a-b
7、如图所示,AB ⊥CD 于点B ,△ABD 和△BCE 都是等腰三角形,如果CD=17,BE=5,那么AC 的长为(
) A 、12 B 、7 C 、5 D 、13
8、在△ABC 中,若AC=15,BC=13,AB 边上的高CD=12,那么△ABC 的周长为( )
A 、32
B 、42
C 、32或42
D 、以上都不对
二、填空题
9、9-的相反数是 ,倒数是 。

10、64的算式平方根是,立方根是。

11、如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为。

12、已知一个正数的平方根是3x-2和5x+6,则这个数是。

13、小红从家里出发向正北方向走80米,接着向着正东方向走150米,现在她离家的距离是米。

14、如图,由四个全等的直角三角形拼成的“赵爽弦图”,在Rt△ABF中,∠AFB=90°,AF=3,AB=5,则四边形EFGH的面积是。

第11题图第14题图
三、解答题
17、计算题(12分)
(1)18
-
45
3
1
50
32+
+(2)
4
3
2
1
2
5
2
2⨯
÷
(2)2
2
8
3
2
1
4-6÷






+(4)18
-8
18、(10分)如图,AF⊥DE于F,且DF=15cm,EF=6cm,AE=10cm。

求正方形ABCD的面积。

19、(10分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则C′D的长为多少?
20、(10分)如果正方形网格中的每一个小正方形的边长都为1,则每个小格的顶点叫做格点。

(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?
2。

(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2
21、(12分)阅读下列材料,然后解答下列问题:
在进行代数式化简时,我们有时会碰上如35,1
32+这样的式子,其实我们还可以将其进一步化简:(一)33
5333535=⨯⨯=; (二)131
)3()13(2)13(131-321322-=--⨯=-+⨯=+)()(; (三)1-31
31-313131-3131-313222=++=+=+=+))(()(。

以上这种化简的方法叫分母有理化。

(1)化简3
52+;。

相关文档
最新文档