2019年新课标I高考数学理科试题含答案(Word版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封并使用完毕前
试题类型:A
2019年普通高等学校招生全国统一考试
理科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合
2
{|430}
A x x x
=-+<,{|230}
B x x
=->,则A B =
(A)
3
(3,)
2
--
(B)
3
(3,)
2
-
(C)
3
(1,)
2(D)
3
(,3)
2
(2)设(1i)1i
x y
+=+,其中x,y是实数,则i=
x y
+
(A)1(B )2(C )3(D)2
(3)已知等差数列{}
n
a
前9项的和为27,10
=8
a
,则100
=
a
(A)100(B)99(C)98(D)97
(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是
(A)(B)(C)(D)
(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是
(A)(–1,3) (B)(–1,3) (C)(0,3) (D)(0,3)
(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是
(A)17π(B)18π(C)20π(D)28π
(7)函数y=2x2–e|x|在[–2,2]的图像大致为
(A )(B )
(C )
(D )
(8)若101a b c >><<,,则
(A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c <
(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足
(A )2y x =(B )3y x =(C )4y x =(D )5y x =
(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为
(A)2 (B)4 (C)6 (D)8
(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为 (A)32(B )22 (C)33 (D)13
12.已知函数()sin()(0),24f x x+x π
π
ωϕωϕ=>≤=-,为()f x 的零点,4x π
=为()y f x =图像的对称
轴,且()f x 在51836ππ⎛⎫ ⎪⎝
⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5
第II 卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.
二、填空题:本大题共3小题,每小题5分
(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =. (14)5(2)x x +的展开式中,x 3的系数是.(用数字填写答案)
(15)设等比数列
满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。

(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。

生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。

该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为元。

三.解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本题满分为12分) ABC 的内角A ,B ,C 的对边分别别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =
(I )求C ;
(II )若7,c ABC =的面积为332
,求ABC 的周长. (18)(本题满分为12分)
如图,在已A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.
(I )证明平面ABEF ⊥EFDC ;
(II )求二面角E -BC -A 的余弦值.
(19)(本小题满分12分)
某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.
(I )求X 的分布列;
(II )若要求()0.5P X n ≤≥,确定n 的最小值;
(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?
20. (本小题满分12分)
设圆22
2150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .
为定值,并写出点E的轨迹方程;
(I)证明EA EB
(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
(21)(本小题满分12分)
已知函数有两个零点.
(I)求a的取值范围;
(II)设x 1,x2是的两个零点,证明:+x2<2.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,△OAB是等腰三角形,∠AOB=120°.以⊙O为圆心,OA为半径作圆.
(I)证明:直线AB与O相切;
(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.
(23)(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0)。

在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(I)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(II)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a。

(24)(本小题满分10分),选修4—5:不等式选讲
已知函数f(x)= ∣x+1∣-∣2x-3∣.
(I)在答题卡第(24)题图中画出y= f(x)的图像;
(II)求不等式∣f(x)∣﹥1的解集。

2019年普通高等学校招生全国统一考试
理科数学参考答案
一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)D (2)B (3)C (4)B (5)A (6)A
(7)D (8)C (9)C (10)B (11)A (12)B
二、填空题:本大题共4小题,每小题5分
(13)2- (14)10
(15)64 (16)216000
三、解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分为12分)
解:(I )由已知及正弦定理得,()2cosC sin cos sin cos sinC A B+B A =,
即()2cosCsin sinC A+B =.
故2sinCcosC sinC =. 可得1cosC 2=,所以C 3
π=. (II )由已知,
133sin C 22ab =. 又C 3π
=,所以6ab =.
由已知及余弦定理得,222cosC 7a b ab +-=.
故2213a b +=,从而()2
25a b +=. 所以C ∆AB 的周长为57+.
(18)(本小题满分为12分)
解:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E .
又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .
(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .
以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则D F 2=,DG 3=,
可得()1,4,0A ,
()3,4,0B -,()3,0,0E -,()
D 0,0,3.
由已知,//F AB E ,所以//AB 平面FDC E .
又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角,
C F 60∠E =.从而可得()C 2,0,3-. 所以()C 1,0,3E =,()0,4,0EB =,()
C 3,4,3A =--,()4,0,0AB =-.
设(),,n x y z =是平面C B E 的法向量,则 C 00
n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即3040x z y ⎧+=⎪⎨=⎪⎩, 所以可取()
3,0,3n =-. 设m 是平面CD AB 的法向量,则C 00
m m ⎧⋅A =⎪⎨⋅AB =⎪⎩, 同理可取()0,3,4m =.则219cos ,19
n m n m n m ⋅==
-. 故二面角C E-B -A 的余弦值为21919
-.
(19)(本小题满分12分)
解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而
04.02.02.0)16(=⨯==X P ;
16.04.02.02)17(=⨯⨯==X P ;
24.04.04.02.02.02)18(=⨯+⨯⨯==X P ;
24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ;
2.02.02.04.02.02)20(=⨯+⨯⨯==X P ;
08.02.02.02)21(=⨯⨯==X P ;
04.02.02.0)22(=⨯==X P .
所以X 的分布列为 X 16 17 18 19 20 21 22
P 04.0 16.0 24.0 24.0 2.0 08.0 04.0
(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.
(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).
当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY
404004.0)500320019(=⨯⨯+⨯+.
当20=n 时,
04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=.
可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .
20.(本小题满分12分)
解:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,
所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.
又圆A 的标准方程为16)1(2
2=++y x ,从而4||=AD ,所以4||||=+EB EA .
由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为: 13
42
2=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .
由⎪⎩⎪⎨⎧=+-=134
)1(22y x x k y 得01248)34(2222=-+-+k x k x k .
则3482221+=+k k x x ,3
41242221+-=k k x x . 所以34)1(12||1||22212
++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为1
22+k ,所以 1344)12(42||222
22++=+-=k k k PQ .故四边形MPNQ 的面积 3
41112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.
当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.
综上,四边形MPNQ 面积的取值范围为)38,12[.
(21)(本小题满分12分)
解:(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+.
(i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.
(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.
又(1)f e =-,(2)f a =,取b 满足0b <且ln 2
a b <,则 223()(2)(1)()022
a f
b b a b a b b >-+-=->, 故()f x 存在两个零点.
(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2
e a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0
f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2e a <-,则l n (2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(l n (2),)x a ∈-+∞时,'()0f x >.因
此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.
综上,a 的取值范围为(0,)+∞.
(Ⅱ)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.
由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以
222222(2)(2)x x f x x e x e --=---.
设2()(2)x x g x xe x e -=---,则2'()(1)()x x g x x e e -=--.
所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.
从而22()(2)0g x f x =-<,故122x x +<.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修4-1:几何证明选讲
解:(Ⅰ)设E 是AB 的中点,连结OE ,
因为,120OA OB AOB =∠=︒,所以OE AB ⊥,60AOE ∠=︒.
在Rt AOE ∆中,12
OE AO =,即O 到直线AB 的距离等于圆O 的半径,所以直线AB 与⊙O 相切. E O'
D
C O
B
A
(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .
由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥. 同理可证,'OO CD ⊥.所以//AB CD .
(23)(本小题满分10分)
解:⑴ cos 1sin x a t y a t =⎧⎨=+⎩
(t 均为参数) ∴()2
221x y a +-= ① ∴1C 为以()01,
为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,
∴222sin 10a ρρθ-+-=
即为1C 的极坐标方程 ⑵ 24cos C ρθ=:
两边同乘ρ得22224cos cos x y x ρρθρρθ==+=, 224x y x ∴+=
即()2
224x y -+= ② 3C :化为普通方程为2y x =
由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C
∴210a -=
∴1a =
(24)(本小题满分10分)
解:⑴ 如图所示:
⑵ ()4133212342
x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥ ()1f x >
当1x -≤,41x ->,解得5x >或3x < 1x -∴≤ 当312x -<<,321x ->,解得1x >或13
x < 113x -<<∴或312
x << 当32
x ≥,41x ->,解得5x >或3x < 332
x <∴≤或5x > 综上,13
x <或13x <<或5x > ()1f x >∴,解集为()()11353⎛
⎫-∞+∞ ⎪⎝⎭,,,。

相关文档
最新文档