人教中考数学一模试题分类汇编——平行四边形综合含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.
(1)连结CG,请判断四边形DBCG的形状,并说明理由;
(2)若AE=BD,求∠EDF的度数.
【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.
【解析】
【分析】
(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;
(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.
【详解】
解:(1)四边形BCGD是矩形,理由如下,
∵四边形ABCD是平行四边形,
∴BC∥AD,即BC∥DG,
由折叠可知,BC=DG,
∴四边形BCGD是平行四边形,
∵AD⊥BD,
∴∠CBD=90°,
∴四边形BCGD是矩形;
(2)由折叠可知:EF垂直平分BD,
∴BD⊥EF,DP=BP,
∵AD⊥BD,
∴EF∥AD∥BC,
∴AE PD1
==
BE BP
∴AE=BE,
∴DE是Rt△ADB斜边上的中线,
∴DE=AE=BE,
∵AE=BD,
∴DE=BD=BE,
∴△DBE是等边三角形,
∴∠EDB=∠DBE=60°,
∵AB∥DC,
∴∠DBC=∠DBE=60°,
∴∠EDF=120°.
【点睛】
本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度
2.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.
(1)求证:AE=EG;
(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;
(3)如图3,取GF的中点M,若AB=5,求EM的长.
【答案】(1)证明见解析(2)证明见解析(3)5 2
【解析】
【分析】
(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;
(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=
1
2
AC,计算可得结论.
【详解】
证明:(1)如图1,过E作EH⊥CF于H,
∵AD⊥BC,
∴EH∥AD,
∴∠CEH=∠CAD,∠HEF=∠G,
∵CE=EF,
∴∠CEH=∠HEF,
∴∠CAD=∠G,
∴AE=EG;
(2)如图2,连接GC,
∵AC=BC,AD⊥BC,
∴BD=CD,
∴AG是BC的垂直平分线,
∴GC=GB,
∴∠GBF=∠BCG,
∵BG=BF,
∴GC=BE,
∵CE=EF,
∴∠CEF=180°﹣2∠F,
∵BG=BF,
∴∠GBF=180°﹣2∠F,
∴∠GBF=∠CEF,
∴∠CEF=∠BCG,
∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,
在△BEF 和△GCE 中,
CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩
,
∴△BEF ≌△GEC (SAS ),
∴BE =EG ;
(3)如图3,连接DM ,取AC 的中点N ,连接DN ,
由(1)得AE =EG ,
∴∠GAE =∠AGE ,
在Rt △ACD 中,N 为AC 的中点,
∴DN =
12
AC =AN ,∠DAN =∠ADN , ∴∠ADN =∠AGE ,
∴DN ∥GF ,
在Rt △GDF 中,M 是FG 的中点, ∴DM =
12
FG =GM ,∠GDM =∠AGE , ∴∠GDM =∠DAN ,
∴DM ∥AE ,
∴四边形DMEN 是平行四边形, ∴EM =DN =
12
AC , ∵AC =AB =5, ∴EM =
52
. 【点睛】 本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.
3.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.
性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF 与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.
探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面
积等于△ABC面积的,请直接写出△ABC的面积.
【答案】(1)见解析;(2)12;探究:2或2.
【解析】
试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、
△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.
探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.
试题解析:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∵AE=BF,
∴四边形ABFE是平行四边形,
∴OE=OB,
∴△AOE和△AOB是友好三角形.
(2)∵△AOE和△DOE是友好三角形,
∴S△AOE=S△DOE,AE=ED=AD=3,
∵△AOB与△AOE是友好三角形,
∴S△AOB=S△AOE,
∵△AOE≌△FOB,
∴S△AOE=S△FOB,
∴S△AOD=S△ABF,
∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.
探究:
解:分为两种情况:①如图1,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重合,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OB,A′O=CO,
∴四边形A′DCB是平行四边形,
∴BC=A′D=2,
过B作BM⊥AC于M,
∵AB=4,∠BAC=30°,
∴BM=AB=2=BC,
即C和M重合,
∴∠ACB=90°,
由勾股定理得:AC=,
∴△ABC的面积是×BC×AC=×2×2=2;
②如图2,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重合,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OA′,BO=CO,
∴四边形A′BDC是平行四边形,
∴A′C=BD=2,
过C作CQ⊥A′D于Q,
∵A′C=2,∠DA′C=∠BAC=30°,
∴CQ=A′C=1,
∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;
即△ABC的面积是2或2.
考点:四边形综合题.
4.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.
(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.
【答案】(1)证明见解析;(2)6cm.
【解析】
分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.
详解:(1)证明:∵EF⊥CE,
∴∠FEC=90°,
∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,
∴∠AEF=∠ECD.
在Rt△AEF和Rt△DEC中,
∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.
∴△AEF≌△DCE.
(2)解:∵△AEF≌△DCE.
AE=CD.
AD=AE+4.
∵矩形ABCD的周长为32cm,
∴2(AE+AE+4)=32.
解得,AE=6(cm).
答:AE的长为6cm.
点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.
5.点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC的中点.
(1)如图1,当点P与点O重合时,请你判断OE与OF的数量关系;
(2)当点P运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;
(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样的数量关系,直接写出结论不必证明.
【答案】(1)OE =OF .理由见解析;(2)补全图形如图所示见解析,OE =OF 仍然成立;(3)CF =OE+AE 或CF =OE ﹣AE .
【解析】
【分析】
(1)根据矩形的性质以及垂线,即可判定()AOE COF AAS ∆≅∆,得出OE =OF ; (2)先延长EO 交CF 于点G ,通过判定()AOE COG ASA ∆≅∆,得出OG =OE ,再根据Rt EFG ∆中,12
OF EG =,即可得到OE =OF ; (3)根据点P 在射线OA 上运动,需要分两种情况进行讨论:当点P 在线段OA 上时,当点P 在线段OA 延长线上时,分别根据全等三角形的性质以及线段的和差关系进行推导计算即可.
【详解】
(1)OE =OF .理由如下:
如图1.
∵四边形ABCD 是矩形,∴ OA =OC .
∵AE BP ⊥,CF BP ⊥,∴90AEO CFO ∠=∠=︒.
∵在AOE ∆和COF ∆中,AEO CFO AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩
,∴()AOE COF AAS ∆≅∆,∴ OE =OF ;
(2)补全图形如图2,OE =OF 仍然成立.证明如下:
延长EO 交CF 于点G .
∵AE BP ⊥,CF BP ⊥,∴ AE //CF ,∴EAO GCO ∠=∠.
又∵点O 为AC 的中点,∴ AO =CO .
在AOE ∆和COG ∆中,EAO GCO AO CO AOE COG ∠=∠⎧⎪=⎨⎪∠=⎩
,∴()AOE COG ASA ∆≅∆,∴ OG =OE ,
∴Rt EFG ∆中,12
OF EG =
,∴ OE =OF ; (3)CF =OE +AE 或CF =OE -AE . 证明如下:①如图2,当点P 在线段OA 上时.
∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,由(2)可得:OF =OG ,∴OGF ∆是等边三角形,∴ FG =OF =OE ,由(2)可得:AOE COG ∆≅∆,∴ CG =AE .
又∵ CF =GF +CG ,∴ CF =OE +AE ;
②如图3,当点P 在线段OA 延长线上时.
∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,同理可得:OGF ∆是等边三角形,∴ FG =OF =OE ,同理可得:AOE COG ∆≅∆,∴ CG =AE .
又∵ CF =GF -CG ,∴ CF =OE -AE .
【点睛】
本题属于四边形综合题,主要考查了矩形的性质、全等三角形的性质和判定以及等边三角形的性质和判定,解决问题的关键是构建全等三角形和证明三角形全等,利用矩形的对角线互相平分得全等的边相等的条件,根据线段的和差关系使问题得以解决.
6.猜想与证明:
如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.
【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.
【解析】
试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据
RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.
试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=DE,
∴DM=HM=ME,
∴DM=ME.
(1)、如图1,延长EM交AD于点H,
∵四边形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM
∴DM=HM=ME,
∴DM=ME,
(2)、如图2,连接AE,
∵四边形ABCD和ECGF是正方形,
∴∠FCE=45°,∠FCA=45°,
∴AE和EC在同一条直线上,
在RT△ADF中,AM=MF,
∴DM=AM=MF,
在RT△AEF中,AM=MF,
∴AM=MF=ME,
∴DM=ME.
考点:(1)、三角形全等的性质;(2)、矩形的性质.
7.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.
(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.
【答案】(1)AG2=GE2+GF2(2)
【解析】
试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出
GE=CF,在Rt△GFC中,利用勾股定理即可证明;
(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得
x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.
试题解析:(1)结论:AG2=GE2+GF2.
理由:连接CG.
∵四边形ABCD是正方形,
∴A、C关于对角线BD对称,
∵点G在BD上,
∴GA=GC,
∵GE⊥DC于点E,GF⊥BC于点F,
∴∠GEC=∠ECF=∠CFG=90°,
∴四边形EGFC是矩形,
∴CF=GE,
在Rt△GFC中,∵CG2=GF2+CF2,
∴AG2=GF2+GE2.
(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.
∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,
∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,
∴∠AMN=30°,
∴AM=BM=2x,MN=x,
在Rt△ABN中,∵AB2=AN2+BN2,
∴1=x2+(2x+x)2,
解得x=,
∴BN=,
∴BG=BN÷cos30°=.
考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质
8.如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P 是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.
(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP的平分线上一点,若
∠AMN=90°,则AM=MN是否成立?若成立,请证明;若不成立,说明理由.
(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2…A n“,其它条件不变,请你猜想:当∠A n﹣2MN=_____°时,结论A n﹣2M=MN仍然成立.(不要求证明)
【答案】
0 (2)180 n
n
【解析】
分析:(1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.
(2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.
详(1)证明:在边AB上截取AE=MC,连接ME.
在正△ABC中,∠B=∠BCA=60°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE,
BE=AB-AE=BC-MC=BM,
∴∠BEM=60°,∴∠AEM=120°.
∵N是∠ACP的平分线上一点,
∴∠ACN=60°,∴∠MCN=120°.
在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,
∴△AEM≌△MCN(ASA),
∴AM=MN.
(2)解:结论成立;
理由:在边AB上截取AE=MC,连接ME.
∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,
BE=AB-AE=BC-MC=BM,
∴∠BEM=45°,∴∠AEM=135°.
∵N是∠DCP的平分线上一点,
∴∠NCP=45°,∴∠MCN=135°.
在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,
∴△AEM≌△MCN(ASA),
∴AM=MN.
(3)由(1)(2)可知当∠A n-2MN等于n边形的内角时,结论A n-2M=MN仍然成立;
即∠A n-2MN=()0
2180
n
n
-
时,结论A n-2M=MN仍然成立;
故答案为[()0
2180
n
n
-
].
点睛:本题综合考查了正方形、等边三角形的性质及全等三角形的判定,同时考查了学生的归纳能力及分析、解决问题的能力.难度较大.
9.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P 是DE的中点,连接FP并延长交AD于点G.
(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;
(2)连接CP,求证:CP FP;
(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论
成立吗?若成立,求出的值;若不成立,请说明理由.
【答案】(1)1;(2)见解析;(3).
【解析】
试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则
∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC 得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据
△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.
试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°
∴∠DAH=∠ABC=60°
∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=
∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE
∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC
∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1
、证明:连接CG、CF
由(1)知△PDG≌△PEF ∴PG=PF
在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF
∴CG=CF ∵PG=PF ∴CP⊥GF
(3)如图:CP⊥GF仍成立
理由如下:过D作EF的平行线,交FP延长于点G
连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC
∴∠ADP=∠PEC
∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°
∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF
∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP
∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°
∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==
考点:三角形全等的证明与性质.
10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.
(1)求矩形ABCD的边AD的长.
(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.
(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;
②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式
【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)
S=.
【解析】
试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.
试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.
(2)由折叠可知AM=MP,在Rt△MPD中,
∴∴y=-其中,0<x<3.
(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.
∴△PCN为等腰三角形,只可能NC=NP.
过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,
∴解得x=.
(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.
设MP=y,在Rt△ADM中,,即∴ y=.
∴ S=
考点:函数的性质、勾股定理.。