2017年成人高考数学(专升本)试题及答案(三套试卷)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年成人高考专升本高等数学模拟试题一
一. 选择题(1-10小题,每题4分,共40分) 1. 设0
lim
→x sinax
x =7,则a 的值是( ) A 1
7
B 1
C 5
D 7 2. 已知函数f(x)在点x 0处可等,且f ′(x 0)=3,则0
lim
→h f(x 0+2h )-f(x 0)
h 等于( ) A 3 B 0 C 2 D 6
3. 当x 0时,sin(x 2+5x 3)与x 2比较是( )
A 较高阶无穷小量
B 较低阶的无穷小量
C 等价无穷小量
D 同阶但不等价无穷小量 4. 设y=x -5+sinx ,则y ′等于( )
A -5x -6+cosx
B -5x -4+cosx
C -5x -4-cosx
D -5x -6
-cosx 5. 设y=4-3x 2 ,则f ′(1)等于( ) A 0 B -1 C -3 D 3
6. ⎠⎛(2e x
-3sinx)dx 等于( )
A 2e x +3cosx+c
B 2e x +3cosx
C 2e x -3cosx
D 1 7. ⎠⎛
01
dx
1-x 2 dx 等于( )
A 0
B 1 C
2
π
D π 8. 设函数 z=arctan y
x ,则x z ∂∂等于( )y
x z ∂∂∂2
A
-y x 2
+y 2 B y x 2+y 2 C x x 2+y 2 D -x
x 2
+y 2
9. 设y=e
2x+y
则y
x z
∂∂∂2=( )
A 2ye 2x+y
B 2e 2x+y
C e 2x+y
D –e 2x+y
10. 若事件A 与B 互斥,且P (A )=0.5 P (AUB )=0.8,则P (B )等于( ) A 0.3 B 0.4 C 0.2 D 0.1
二、填空题(11-20小题,每小题4分,共40分) 11. ∞→x lim (1-1
x )2x =
12. 设函数f(x)= 在x=0处连续,则 k =
13. 函数-e -x 是f(x)的一个原函数,则f(x)= 14. 函数y=x-e x 的极值点x= 15. 设函数y=cos2x , 求y ″=
16.
曲线y=3x 2-x+1在点(0,1)处的切线方程y=
Ke 2x x<0
Hcosx x ≥0
17. ⎠⎛1
x-1
dx =
18. ⎠⎛(2e x
-3sinx)dx =
19.
xdx x sin cos 2
3⎰
π
=
20. 设z=e xy ,则全微分dz= 三、计算题(21-28小题,共70分) 1. 1lim →x x 2-1
2x 2-x-1
2. 设函数 y=x 3e 2x , 求dy
3. 计算 ⎠⎛xsin(x 2
+1)dx
4. 计算
⎰+1
)12ln(dx x
5. 设随机变量x 的分布列为 (1) 求a 的值,并求P(x<1) (2) 求D(x)
6. 求函数y=e x
1+x
的单调区间和极值
7. 设函数z=(x,y)是由方程x 2+y 2+2x-2yz=e z 所确定的隐函数,求dz
8. 求曲线y=e x ,y=e -x 与直线x=1所围成的平面图形面积
x y
-2 0.1
a
-1 0 0.2
0.1
1 2 0.3
2017
年成人高考专升本高等数学模拟试题一 答案
一、(1-10小题,每题4分,共40分)
1. D
2. D
3. C
4. A
5. C
6. A
7. C
8.A
9. B 10. A 二、(11-20小题,每小题4分,共40分)
11. e -2 12. 2 13. e -x 14. 0 15.-4cos2x 16. y=-x+1 17. 1ln -x +c 18. 2e x +3cosx+c 19. 1
4 20. dz=e xy (ydx+xdy)
三、(21-28小题,共70分)
1. 1lim →x x 2-12x 2-x-1
=(x-1)(x-1)(x-1)(2x+1) =2
3
2. y ′=(x 3)′e 2x +(e 2x )′x 3
=3x 2e 2x +2e 2x x 3 =x 2e 2x (3+2x) dy=x 2e 2x dx
3. ⎠⎛xsin(x 2+1)dx =12 ⎠⎛sin(x 2+1)d(x 2
+1) =12 cos(x 2+1)+c 4. ⎠⎛0
1
ln(2x+1)dx =xln(2x+1) 1
-⎠⎛0
1
2x (2x+1)
dx =ln3-{x-1
2 ln(2x+1)}
10
=-1+3
2
ln3
5. (1) 0.1+a+0.2+0.1+0.3=1 得出a=0.3
P(x<1),就是将x<1各点的概率相加即可,即:0.1+0.3+0.2=0.6 (2) E(x)=0.1×(-2)+0.3×(-1)+0.2×0+0.1×1+0.3×2=0.2
D(x)=E{xi-E(x)}2=(-2-0.2)2×0.1+(-1-0.2)2×0.3+(0-0.2)2×0.2+(1-0.2)2×0.1+(2-0.2)2×0.3=1.96
6. 1) 定义域 x ≠-1
2) y ′=e x
(1+x)-e x
(1+x)2 =xe
x
(1+x)
2
3)令y ′=0,得出x=0(注意x=1这一点也应该作为我们考虑单调区间的点)
↓ ↓ ↑
函数在(-∞,1)U (-1,0)区间内单调递减 x y y ′
(-∞,1)
-
-
+
-1 (-1,0)
0 (0,+∞)
无意义 无意义
F(0)=1为小极小值
在(0,+∞)内单调递增
该函数在x=0处取得极小值,极小值为1 7.
x f ∂∂ =2x+2, y
f ∂∂ =2y-2z z f ∂∂ =-2y-e z x z ∂∂=-x
f ∂∂ ÷z f ∂∂ =2(x+1)2y+e z az
ay ==-y f ∂∂÷z
f ∂∂=2y-2z -(2y+e z ) =2y-2z 2y+e z dz=2(x+1)2y+e z dx+2y-2z
2y+e z
dy 8.如下图:曲线y=e x
,y=e -x
,与直线x=1的交点分别为A(1,e),B(1,e -1
)则
S=dx e e x x )(1
--⎰
= (e x +e -x ) 10=e+e -1
-2
2017年成人高考专升本高等数学模拟试题二
答案必须答在答题卡上指定的位置,答在试卷上无效.......。

一、选择题:1~10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要
求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。

(C) 1.2
lim(1)x x →+=
A .3
B .2
C .1
D .0 (D) 2.设sin y x x =+,则'y =
A .sin x
B .x
C .cos x x +
D .1cos x + (B) 3.设2x y e =,则dy =
A .2x e dx
B .22x
e dx
C .212
x
e dx D .2x e dx (C) 4.1(1)x dx -=⎰
A .21x C x -
+ B .2
1
x C x ++ C .ln ||x x C -+ D .ln ||x x C ++
(C) 5.设5x
y =,则'y =
A .15x -
B .5x
C .5ln 5x
D .15x +
(C) 6.0
lim
x
t x e dt x
→=⎰
A .x e
B .2e
C .e
D .1 (A) 7.设22z x y xy =+,则
z
x
∂=∂ A .22xy y + B .22x xy + C .4xy D .22x y +
(A) 8.过点(1,0,0),(0,1,0),(0,0,1)的平面方程为
A .1x y z ++=
B .21x y z ++=
C .21x y z ++=
D .21x y z ++=
(B) 9.幂级数1
n
n x n ∞
=∑的收敛半径R =
A .0
B .1
C .2
D .+∞
(B) 10.微分方程''2
'3
()()sin 0y y x ++=的阶数为 A .1 B .2 C .3 D .4
二、填空题:11~20小题,每小题4分,共40分。

将答案填写在答题卡相应题号后........。

11.3lim(1)___.
x
x x
→∞
-=(1)
12.曲线x y e -=在点(0,1)处的切线斜率___.k =(-1/e)
13.设2x y x e =,则'___.y =2xe^x+x^2e^x
14.设cos y x =,则'___.y =-sinx
15.3
(1)___.
x dx +=⎰
x^4/4+x+C
16.
1
___.
x e dx ∞
-=⎰
2/e
17.设22z x y =+,则___.dz =2+2y
18.设z xy =,则2___.z
x y ∂=∂∂1
19.
01
___.3n
n ∞
==∑1
20.微分方程0dy xdx +=的通解为___.y =y=-(x^2/2)
三、解答题:21~28小题,共70分。

解答应写出推理、演算步骤,并将其写在答题卡相应题号后........。

21.(本题满分8分)(1/4)
设函数22()sin 2x a f x x x
⎧+⎪
=⎨⎪⎩,0
,0x x ≤>,在0x =处连续,求常数a 的值.
22.(本题满分8分)
计算0lim
.sin x x x e e x
-→- 23.(本题满分8分)
设2
3
x t t t
⎧=⎪⎨=⎪⎩,(t 为参数),求1
t dy dx =.(根号下t-1)
24.(本题满分8分)
设函数32()39f x x x x =--,求()f x 的极大值.(-9)
25.(本题满分8分)

1
(1)dx x x +⎰.
26.(本题满分10分) 计算
2D
x ydxdy ⎰⎰,其中积分区域D 由2
y x
=,1x =,0y =围成.
27.(本题满分10分)
求微分方程2
''3'26y y y e ++=的通解.
28.(本题满分10分)
证明:当0x >时,(1)ln(1)x x x ++>.。

相关文档
最新文档