人教版初中数学七年级(上)第八章 一元一次方程 全章学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章一元一次方程
8.1方程和方程的解
【学习目标】
1、能说出什么是方程,方程的解(或根)和解方程
2、会根据简单的问题,列方程
3、知道我的现实生活中的一些问题能通过方程来解决
4、会检验方程的解
【学习过程】
一、学前准备
1.预习疑难摘要:
2.问题链接:
(1)你会求小学中我们见过的4x=12,6x-1=11这样简单方程的x的值吗?
解:
(2)世界上最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少1吨,这头大象多少吨?
这个问题除了用算术法解,还有其他方法吗?
二、探究活动
(一)自主学习
1、阅读课本P158,交流与发现(1)、(2)两题。
(1)可以列出等式:(2)可以列出等式:
思考,上面两个等式特点:总结:叫方程.
读课本P159页,总结一下:
叫做方程的解的根叫做解方程
3、练习:P159练习1、2、3.总结一下检验方程解的步骤:
(二)合作交流.阅读课本P159,挑战自我:讨论一下,得出结论
三、巩固练习
一天,卡迪尔点了两支蜡烛读书,这两支蜡烛长度相同,但粗细不同,已知粗蜡烛可点5小时,细蜡烛可点4小时,临睡时把蜡烛吹灭,这时所剩粗蜡烛的长度恰好是细蜡烛的4倍,请问这两支蜡烛已经点了几个小时?
四、小结反思 五、当堂测试
1、下列各式13 x -1, 7x+3>8, 12 ― 13 =1
6 , 2x=x 中哪个是方程:
2、检验下列方程后面括号内数是不是方程的解:
(1)2x―4=-16x (x=-2,x=2
9 ) (2)7x+8(x+1)=38 (x=2,x=-2)
3、据题意列方程:小亮用24元购买数学作业本和外语练习册10本,数学作业本每本2元,外语练习册每本3元,小亮买数学作业本和外语练习册各多少本?
4、巧题妙解:若代数式5(x+12006 )与56 互为相反数,求17—30x —51003 的值
六、布置作业
8.2一元一次方程
【学习目标】
1、了解一元一次方程的概念,会判断方程是不是一元一次方程;
2、经历一元一次方程的概念归纳形成的过程;
3、会用“估算——检验”的方法估算方程的解的大致范围或求解。
【学习过程】
一、学前准备
预习疑难摘要:
二、探究活动
(一)自主学习实验探究
1、阅读P161,亲手实践,完成下表并交流做法。
2、如果剪得的纸片共64片,一共剪了多少次?
设可列方程为
3、观察下列方程,他们有什么共同点?
(1)3x+1=64 (2)4+3(x―1)=64(3)9x―0.75=393 (4)32+x―8=29
归纳总结一元一次方程的概念:
5、下列方程哪些是一元一次方程,哪些不是?为什么?
(1)2x―1=0 (2)2x―y=3 (3)x2―16=0 (4)4(t―1)=3t+1
(二)合作交流
1、如何用“估算——检验”的方法求方程的解?
例:求方程4+3(x―1)=64的解,按照课本P162的表格提供的步骤完成,谈出的你的想法与建议。
2、用“估算——检验”的方法,求方程7x+8(x+3)=38的解。
三、小结反思 四、当堂测试
1、判断下列方程是不是一元一次方程,说明原因:
(1)3=2x+1 (2)0=x (3)x―1=x 3―1 (4)1
x =2 (5)5s+1=t (6)x―3=x 2―2
2、用“估算——检验”的方法求方程的 1
2 +1=10的解。
3、若关于x 的一元一次方程a―2=1
2 (x―1)的解是x=―1,则a 的值是
4、设某数为x,若比它的3
4 大1的相反数是5,可列方程是
5、如果关于x 的方程 3x n―1+4=5 是一元一次方程,则n=
6、学生队伍以5千米/时的速度外出写生,从学校走了2 1
3 小时后,学校派人骑摩托
车追赶学生队伍传送紧急通知,结果用了22分钟赶上了学生队伍,求摩托车的速度。(只列方程)
五、布置作业
8.3等式的基本性质
【学习目标】
1、能探索出等式的基本性质1和基本性质2
2、理解等式的基本性质
3、会用等式的基本性质进行等式的变形 【学习过程】 一、学前准备
预习疑难摘要: 二、探究活动 (一)自主学习
阅读课本P163中的3个小问题,并探索下面的问题:
等式的基本性质1,等式的两边都加上(或减去) 等式的两边仍然相等。
习题:利用等式的基本性质填空:
(1)如果12 x+4=6,那么1
2 x=6+ (2)如果4a+3b=5,那么4a=5―
(二)合作交流
阅读课本P164中5——7小问题,问答下列各题:
等式的基本性质2、等式两边都乘(或除以) 等式的两边仍然相等。
习题:利用等式的基本性质填空:
(1)如果-2x=2y ,那么x= ,理由 (2)如果a 8 =b
4
, 那么a= ,理由
(三)挑战自我:体会课本P164中9小题中的天平解释了等式的哪些基本性质?
三、小结反思 四、当堂测试
1、在下列括号内填上适当的数或整式,使所得的结果仍是等式,并说明是根据等式的哪一条基本性质以及怎样变形的?