高二数学不等式知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学不等式知识点
高二数学不等式知识点1
1.不等式的定义:a-b>;0a>;b,a-b=0a=b,a-b<;0a
①其实质是运用实数运算来定义两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
2.不等式的性质:
①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
a>;bb
a>;b,b>;ca>;c(传递性)
(3)a>;ba+c>;b+c(c∈R)
(4)c>;0时,a>;bac>;bcc<;0时,a>;bac
运算性质有:
(1)a>;b,c>;da+c>;b+d.
(2)a>;b>;0,c>;d>;0ac>;bd.
(3)a>;b>;0an>;bn(n∈N,n>;1)。
(4)a>;b>;0>;(n∈N,n>;1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
高二数学不等式知识点2
证明不等式的灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。
要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。
比较法的一般步骤是:作差(商)→变形→判断符号(值)。
不等式相关公式
a>b,b>c=>a>c;a>b=>a+c>b+c;a>b,c>0=>ac>bc;a>b,c<0=>ac
;a>b>0,c>d>0=>ac>bd;a>b,ab>0=>1/a<1/b
;a>b>0=>a^n>b^n;
基本不等式:(根号ab)≤(a+b)/2那麽可以变为a^2-2ab+b^2≥0a^2+b^2≥2ab
有两条哦!
证明可利用向量,把a、b看作向量,利用三角形两边之差小于第三边,两边之和大于第三边。